1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */
2 /*
3 Written 1998-2000 by Donald Becker.
4 Updates 2000 by Keith Underwood.
5
6 This software may be used and distributed according to the terms of
7 the GNU General Public License (GPL), incorporated herein by reference.
8 Drivers based on or derived from this code fall under the GPL and must
9 retain the authorship, copyright and license notice. This file is not
10 a complete program and may only be used when the entire operating
11 system is licensed under the GPL.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet
19 adapter.
20
21 Support and updates available at
22 http://www.scyld.com/network/hamachi.html
23 [link no longer provides useful info -jgarzik]
24 or
25 http://www.parl.clemson.edu/~keithu/hamachi.html
26
27 */
28
29 #define DRV_NAME "hamachi"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "Sept 11, 2006"
32
33
34 /* A few user-configurable values. */
35
36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 #define final_version
38 #define hamachi_debug debug
39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
40 static int max_interrupt_work = 40;
41 static int mtu;
42 /* Default values selected by testing on a dual processor PIII-450 */
43 /* These six interrupt control parameters may be set directly when loading the
44 * module, or through the rx_params and tx_params variables
45 */
46 static int max_rx_latency = 0x11;
47 static int max_rx_gap = 0x05;
48 static int min_rx_pkt = 0x18;
49 static int max_tx_latency = 0x00;
50 static int max_tx_gap = 0x00;
51 static int min_tx_pkt = 0x30;
52
53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
54 -Setting to > 1518 causes all frames to be copied
55 -Setting to 0 disables copies
56 */
57 static int rx_copybreak;
58
59 /* An override for the hardware detection of bus width.
60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit.
61 Add 2 to disable parity detection.
62 */
63 static int force32;
64
65
66 /* Used to pass the media type, etc.
67 These exist for driver interoperability.
68 No media types are currently defined.
69 - The lower 4 bits are reserved for the media type.
70 - The next three bits may be set to one of the following:
71 0x00000000 : Autodetect PCI bus
72 0x00000010 : Force 32 bit PCI bus
73 0x00000020 : Disable parity detection
74 0x00000040 : Force 64 bit PCI bus
75 Default is autodetect
76 - The next bit can be used to force half-duplex. This is a bad
77 idea since no known implementations implement half-duplex, and,
78 in general, half-duplex for gigabit ethernet is a bad idea.
79 0x00000080 : Force half-duplex
80 Default is full-duplex.
81 - In the original driver, the ninth bit could be used to force
82 full-duplex. Maintain that for compatibility
83 0x00000200 : Force full-duplex
84 */
85 #define MAX_UNITS 8 /* More are supported, limit only on options */
86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx
89 * interruput management. Parameters will be loaded as specified into
90 * the TxIntControl and RxIntControl registers.
91 *
92 * The registers are arranged as follows:
93 * 23 - 16 15 - 8 7 - 0
94 * _________________________________
95 * | min_pkt | max_gap | max_latency |
96 * ---------------------------------
97 * min_pkt : The minimum number of packets processed between
98 * interrupts.
99 * max_gap : The maximum inter-packet gap in units of 8.192 us
100 * max_latency : The absolute time between interrupts in units of 8.192 us
101 *
102 */
103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
105
106 /* Operational parameters that are set at compile time. */
107
108 /* Keep the ring sizes a power of two for compile efficiency.
109 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
110 Making the Tx ring too large decreases the effectiveness of channel
111 bonding and packet priority.
112 There are no ill effects from too-large receive rings, except for
113 excessive memory usage */
114 /* Empirically it appears that the Tx ring needs to be a little bigger
115 for these Gbit adapters or you get into an overrun condition really
116 easily. Also, things appear to work a bit better in back-to-back
117 configurations if the Rx ring is 8 times the size of the Tx ring
118 */
119 #define TX_RING_SIZE 64
120 #define RX_RING_SIZE 512
121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc)
122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc)
123
124 /*
125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment.
126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov>
127 */
128
129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */
130 /* #define ADDRLEN 64 */
131
132 /*
133 * RX_CHECKSUM turns on card-generated receive checksum generation for
134 * TCP and UDP packets. Otherwise the upper layers do the calculation.
135 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov>
136 */
137 #define RX_CHECKSUM
138
139 /* Operational parameters that usually are not changed. */
140 /* Time in jiffies before concluding the transmitter is hung. */
141 #define TX_TIMEOUT (5*HZ)
142
143 #include <linux/capability.h>
144 #include <linux/module.h>
145 #include <linux/kernel.h>
146 #include <linux/string.h>
147 #include <linux/timer.h>
148 #include <linux/time.h>
149 #include <linux/errno.h>
150 #include <linux/ioport.h>
151 #include <linux/interrupt.h>
152 #include <linux/pci.h>
153 #include <linux/init.h>
154 #include <linux/ethtool.h>
155 #include <linux/mii.h>
156 #include <linux/netdevice.h>
157 #include <linux/etherdevice.h>
158 #include <linux/skbuff.h>
159 #include <linux/ip.h>
160 #include <linux/delay.h>
161 #include <linux/bitops.h>
162
163 #include <asm/uaccess.h>
164 #include <asm/processor.h> /* Processor type for cache alignment. */
165 #include <asm/io.h>
166 #include <asm/unaligned.h>
167 #include <asm/cache.h>
168
169 static const char version[] =
170 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
171 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n"
172 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n";
173
174
175 /* IP_MF appears to be only defined in <netinet/ip.h>, however,
176 we need it for hardware checksumming support. FYI... some of
177 the definitions in <netinet/ip.h> conflict/duplicate those in
178 other linux headers causing many compiler warnings.
179 */
180 #ifndef IP_MF
181 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */
182 #endif
183
184 /* Define IP_OFFSET to be IPOPT_OFFSET */
185 #ifndef IP_OFFSET
186 #ifdef IPOPT_OFFSET
187 #define IP_OFFSET IPOPT_OFFSET
188 #else
189 #define IP_OFFSET 2
190 #endif
191 #endif
192
193 #define RUN_AT(x) (jiffies + (x))
194
195 #ifndef ADDRLEN
196 #define ADDRLEN 32
197 #endif
198
199 /* Condensed bus+endian portability operations. */
200 #if ADDRLEN == 64
201 #define cpu_to_leXX(addr) cpu_to_le64(addr)
202 #define leXX_to_cpu(addr) le64_to_cpu(addr)
203 #else
204 #define cpu_to_leXX(addr) cpu_to_le32(addr)
205 #define leXX_to_cpu(addr) le32_to_cpu(addr)
206 #endif
207
208
209 /*
210 Theory of Operation
211
212 I. Board Compatibility
213
214 This device driver is designed for the Packet Engines "Hamachi"
215 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit
216 66Mhz PCI card.
217
218 II. Board-specific settings
219
220 No jumpers exist on the board. The chip supports software correction of
221 various motherboard wiring errors, however this driver does not support
222 that feature.
223
224 III. Driver operation
225
226 IIIa. Ring buffers
227
228 The Hamachi uses a typical descriptor based bus-master architecture.
229 The descriptor list is similar to that used by the Digital Tulip.
230 This driver uses two statically allocated fixed-size descriptor lists
231 formed into rings by a branch from the final descriptor to the beginning of
232 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
233
234 This driver uses a zero-copy receive and transmit scheme similar my other
235 network drivers.
236 The driver allocates full frame size skbuffs for the Rx ring buffers at
237 open() time and passes the skb->data field to the Hamachi as receive data
238 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
239 a fresh skbuff is allocated and the frame is copied to the new skbuff.
240 When the incoming frame is larger, the skbuff is passed directly up the
241 protocol stack and replaced by a newly allocated skbuff.
242
243 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
244 using a full-sized skbuff for small frames vs. the copying costs of larger
245 frames. Gigabit cards are typically used on generously configured machines
246 and the underfilled buffers have negligible impact compared to the benefit of
247 a single allocation size, so the default value of zero results in never
248 copying packets.
249
250 IIIb/c. Transmit/Receive Structure
251
252 The Rx and Tx descriptor structure are straight-forward, with no historical
253 baggage that must be explained. Unlike the awkward DBDMA structure, there
254 are no unused fields or option bits that had only one allowable setting.
255
256 Two details should be noted about the descriptors: The chip supports both 32
257 bit and 64 bit address structures, and the length field is overwritten on
258 the receive descriptors. The descriptor length is set in the control word
259 for each channel. The development driver uses 32 bit addresses only, however
260 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha.
261
262 IIId. Synchronization
263
264 This driver is very similar to my other network drivers.
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and other software.
269
270 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
271 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
272 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
273 the 'hmp->tx_full' flag.
274
275 The interrupt handler has exclusive control over the Rx ring and records stats
276 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
277 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it
278 clears both the tx_full and tbusy flags.
279
280 IV. Notes
281
282 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards.
283
284 IVb. References
285
286 Hamachi Engineering Design Specification, 5/15/97
287 (Note: This version was marked "Confidential".)
288
289 IVc. Errata
290
291 None noted.
292
293 V. Recent Changes
294
295 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears
296 to help avoid some stall conditions -- this needs further research.
297
298 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans
299 the Tx ring and is called from hamachi_start_xmit (this used to be
300 called from hamachi_interrupt but it tends to delay execution of the
301 interrupt handler and thus reduce bandwidth by reducing the latency
302 between hamachi_rx()'s). Notably, some modification has been made so
303 that the cleaning loop checks only to make sure that the DescOwn bit
304 isn't set in the status flag since the card is not required
305 to set the entire flag to zero after processing.
306
307 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is
308 checked before attempting to add a buffer to the ring. If the ring is full
309 an attempt is made to free any dirty buffers and thus find space for
310 the new buffer or the function returns non-zero which should case the
311 scheduler to reschedule the buffer later.
312
313 01/15/1999 EPK Some adjustments were made to the chip initialization.
314 End-to-end flow control should now be fully active and the interrupt
315 algorithm vars have been changed. These could probably use further tuning.
316
317 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to
318 set the rx and tx latencies for the Hamachi interrupts. If you're having
319 problems with network stalls, try setting these to higher values.
320 Valid values are 0x00 through 0xff.
321
322 01/15/1999 EPK In general, the overall bandwidth has increased and
323 latencies are better (sometimes by a factor of 2). Stalls are rare at
324 this point, however there still appears to be a bug somewhere between the
325 hardware and driver. TCP checksum errors under load also appear to be
326 eliminated at this point.
327
328 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the
329 Rx and Tx rings. This appears to have been affecting whether a particular
330 peer-to-peer connection would hang under high load. I believe the Rx
331 rings was typically getting set correctly, but the Tx ring wasn't getting
332 the DescEndRing bit set during initialization. ??? Does this mean the
333 hamachi card is using the DescEndRing in processing even if a particular
334 slot isn't in use -- hypothetically, the card might be searching the
335 entire Tx ring for slots with the DescOwn bit set and then processing
336 them. If the DescEndRing bit isn't set, then it might just wander off
337 through memory until it hits a chunk of data with that bit set
338 and then looping back.
339
340 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout
341 problem (TxCmd and RxCmd need only to be set when idle or stopped.
342
343 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt.
344 (Michel Mueller pointed out the ``permanently busy'' potential
345 problem here).
346
347 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies.
348
349 02/23/1999 EPK Verified that the interrupt status field bits for Tx were
350 incorrectly defined and corrected (as per Michel Mueller).
351
352 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots
353 were available before reseting the tbusy and tx_full flags
354 (as per Michel Mueller).
355
356 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support.
357
358 12/31/1999 KDU Cleaned up assorted things and added Don's code to force
359 32 bit.
360
361 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the
362 hamachi_start_xmit() and hamachi_interrupt() code. There is still some
363 re-structuring I would like to do.
364
365 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation
366 parameters on a dual P3-450 setup yielded the new default interrupt
367 mitigation parameters. Tx should interrupt VERY infrequently due to
368 Eric's scheme. Rx should be more often...
369
370 03/13/2000 KDU Added a patch to make the Rx Checksum code interact
371 nicely with non-linux machines.
372
373 03/13/2000 KDU Experimented with some of the configuration values:
374
375 -It seems that enabling PCI performance commands for descriptors
376 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal
377 performance impact for any of my tests. (ttcp, netpipe, netperf) I will
378 leave them that way until I hear further feedback.
379
380 -Increasing the PCI_LATENCY_TIMER to 130
381 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly
382 degrade performance. Leaving default at 64 pending further information.
383
384 03/14/2000 KDU Further tuning:
385
386 -adjusted boguscnt in hamachi_rx() to depend on interrupt
387 mitigation parameters chosen.
388
389 -Selected a set of interrupt parameters based on some extensive testing.
390 These may change with more testing.
391
392 TO DO:
393
394 -Consider borrowing from the acenic driver code to check PCI_COMMAND for
395 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in
396 that case.
397
398 -fix the reset procedure. It doesn't quite work.
399 */
400
401 /* A few values that may be tweaked. */
402 /* Size of each temporary Rx buffer, calculated as:
403 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for
404 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum
405 */
406 #define PKT_BUF_SZ 1536
407
408 /* For now, this is going to be set to the maximum size of an ethernet
409 * packet. Eventually, we may want to make it a variable that is
410 * related to the MTU
411 */
412 #define MAX_FRAME_SIZE 1518
413
414 /* The rest of these values should never change. */
415
416 static void hamachi_timer(unsigned long data);
417
418 enum capability_flags {CanHaveMII=1, };
419 static const struct chip_info {
420 u16 vendor_id, device_id, device_id_mask, pad;
421 const char *name;
422 void (*media_timer)(unsigned long data);
423 int flags;
424 } chip_tbl[] = {
425 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0},
426 {0,},
427 };
428
429 /* Offsets to the Hamachi registers. Various sizes. */
430 enum hamachi_offsets {
431 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10,
432 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30,
433 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B,
434 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E,
435 TxChecksum=0x074, RxChecksum=0x076,
436 TxIntrCtrl=0x078, RxIntrCtrl=0x07C,
437 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088,
438 EventStatus=0x08C,
439 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4,
440 /* See enum MII_offsets below. */
441 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE,
442 AddrMode=0x0D0, StationAddr=0x0D2,
443 /* Gigabit AutoNegotiation. */
444 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8,
445 ANLinkPartnerAbility=0x0EA,
446 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2,
447 FIFOcfg=0x0F8,
448 };
449
450 /* Offsets to the MII-mode registers. */
451 enum MII_offsets {
452 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
453 MII_Status=0xAE,
454 };
455
456 /* Bits in the interrupt status/mask registers. */
457 enum intr_status_bits {
458 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04,
459 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400,
460 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, };
461
462 /* The Hamachi Rx and Tx buffer descriptors. */
463 struct hamachi_desc {
464 __le32 status_n_length;
465 #if ADDRLEN == 64
466 u32 pad;
467 __le64 addr;
468 #else
469 __le32 addr;
470 #endif
471 };
472
473 /* Bits in hamachi_desc.status_n_length */
474 enum desc_status_bits {
475 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000,
476 DescIntr=0x10000000,
477 };
478
479 #define PRIV_ALIGN 15 /* Required alignment mask */
480 #define MII_CNT 4
481 struct hamachi_private {
482 /* Descriptor rings first for alignment. Tx requires a second descriptor
483 for status. */
484 struct hamachi_desc *rx_ring;
485 struct hamachi_desc *tx_ring;
486 struct sk_buff* rx_skbuff[RX_RING_SIZE];
487 struct sk_buff* tx_skbuff[TX_RING_SIZE];
488 dma_addr_t tx_ring_dma;
489 dma_addr_t rx_ring_dma;
490 struct timer_list timer; /* Media selection timer. */
491 /* Frequently used and paired value: keep adjacent for cache effect. */
492 spinlock_t lock;
493 int chip_id;
494 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
495 unsigned int cur_tx, dirty_tx;
496 unsigned int rx_buf_sz; /* Based on MTU+slack. */
497 unsigned int tx_full:1; /* The Tx queue is full. */
498 unsigned int duplex_lock:1;
499 unsigned int default_port:4; /* Last dev->if_port value. */
500 /* MII transceiver section. */
501 int mii_cnt; /* MII device addresses. */
502 struct mii_if_info mii_if; /* MII lib hooks/info */
503 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
504 u32 rx_int_var, tx_int_var; /* interrupt control variables */
505 u32 option; /* Hold on to a copy of the options */
506 struct pci_dev *pci_dev;
507 void __iomem *base;
508 };
509
510 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>");
511 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver");
512 MODULE_LICENSE("GPL");
513
514 module_param(max_interrupt_work, int, 0);
515 module_param(mtu, int, 0);
516 module_param(debug, int, 0);
517 module_param(min_rx_pkt, int, 0);
518 module_param(max_rx_gap, int, 0);
519 module_param(max_rx_latency, int, 0);
520 module_param(min_tx_pkt, int, 0);
521 module_param(max_tx_gap, int, 0);
522 module_param(max_tx_latency, int, 0);
523 module_param(rx_copybreak, int, 0);
524 module_param_array(rx_params, int, NULL, 0);
525 module_param_array(tx_params, int, NULL, 0);
526 module_param_array(options, int, NULL, 0);
527 module_param_array(full_duplex, int, NULL, 0);
528 module_param(force32, int, 0);
529 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt");
530 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)");
531 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)");
532 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts");
533 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units");
534 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units");
535 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts");
536 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units");
537 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units");
538 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames");
539 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency");
540 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency");
541 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex");
542 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)");
543 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)");
544
545 static int read_eeprom(void __iomem *ioaddr, int location);
546 static int mdio_read(struct net_device *dev, int phy_id, int location);
547 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
548 static int hamachi_open(struct net_device *dev);
549 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
550 static void hamachi_timer(unsigned long data);
551 static void hamachi_tx_timeout(struct net_device *dev);
552 static void hamachi_init_ring(struct net_device *dev);
553 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
554 struct net_device *dev);
555 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance);
556 static int hamachi_rx(struct net_device *dev);
557 static inline int hamachi_tx(struct net_device *dev);
558 static void hamachi_error(struct net_device *dev, int intr_status);
559 static int hamachi_close(struct net_device *dev);
560 static struct net_device_stats *hamachi_get_stats(struct net_device *dev);
561 static void set_rx_mode(struct net_device *dev);
562 static const struct ethtool_ops ethtool_ops;
563 static const struct ethtool_ops ethtool_ops_no_mii;
564
565 static const struct net_device_ops hamachi_netdev_ops = {
566 .ndo_open = hamachi_open,
567 .ndo_stop = hamachi_close,
568 .ndo_start_xmit = hamachi_start_xmit,
569 .ndo_get_stats = hamachi_get_stats,
570 .ndo_set_rx_mode = set_rx_mode,
571 .ndo_change_mtu = eth_change_mtu,
572 .ndo_validate_addr = eth_validate_addr,
573 .ndo_set_mac_address = eth_mac_addr,
574 .ndo_tx_timeout = hamachi_tx_timeout,
575 .ndo_do_ioctl = netdev_ioctl,
576 };
577
578
hamachi_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)579 static int hamachi_init_one(struct pci_dev *pdev,
580 const struct pci_device_id *ent)
581 {
582 struct hamachi_private *hmp;
583 int option, i, rx_int_var, tx_int_var, boguscnt;
584 int chip_id = ent->driver_data;
585 int irq;
586 void __iomem *ioaddr;
587 unsigned long base;
588 static int card_idx;
589 struct net_device *dev;
590 void *ring_space;
591 dma_addr_t ring_dma;
592 int ret = -ENOMEM;
593
594 /* when built into the kernel, we only print version if device is found */
595 #ifndef MODULE
596 static int printed_version;
597 if (!printed_version++)
598 printk(version);
599 #endif
600
601 if (pci_enable_device(pdev)) {
602 ret = -EIO;
603 goto err_out;
604 }
605
606 base = pci_resource_start(pdev, 0);
607 #ifdef __alpha__ /* Really "64 bit addrs" */
608 base |= (pci_resource_start(pdev, 1) << 32);
609 #endif
610
611 pci_set_master(pdev);
612
613 i = pci_request_regions(pdev, DRV_NAME);
614 if (i)
615 return i;
616
617 irq = pdev->irq;
618 ioaddr = ioremap(base, 0x400);
619 if (!ioaddr)
620 goto err_out_release;
621
622 dev = alloc_etherdev(sizeof(struct hamachi_private));
623 if (!dev)
624 goto err_out_iounmap;
625
626 SET_NETDEV_DEV(dev, &pdev->dev);
627
628 for (i = 0; i < 6; i++)
629 dev->dev_addr[i] = 1 ? read_eeprom(ioaddr, 4 + i)
630 : readb(ioaddr + StationAddr + i);
631
632 #if ! defined(final_version)
633 if (hamachi_debug > 4)
634 for (i = 0; i < 0x10; i++)
635 printk("%2.2x%s",
636 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n");
637 #endif
638
639 hmp = netdev_priv(dev);
640 spin_lock_init(&hmp->lock);
641
642 hmp->mii_if.dev = dev;
643 hmp->mii_if.mdio_read = mdio_read;
644 hmp->mii_if.mdio_write = mdio_write;
645 hmp->mii_if.phy_id_mask = 0x1f;
646 hmp->mii_if.reg_num_mask = 0x1f;
647
648 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
649 if (!ring_space)
650 goto err_out_cleardev;
651 hmp->tx_ring = ring_space;
652 hmp->tx_ring_dma = ring_dma;
653
654 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
655 if (!ring_space)
656 goto err_out_unmap_tx;
657 hmp->rx_ring = ring_space;
658 hmp->rx_ring_dma = ring_dma;
659
660 /* Check for options being passed in */
661 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
662 if (dev->mem_start)
663 option = dev->mem_start;
664
665 /* If the bus size is misidentified, do the following. */
666 force32 = force32 ? force32 :
667 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 );
668 if (force32)
669 writeb(force32, ioaddr + VirtualJumpers);
670
671 /* Hmmm, do we really need to reset the chip???. */
672 writeb(0x01, ioaddr + ChipReset);
673
674 /* After a reset, the clock speed measurement of the PCI bus will not
675 * be valid for a moment. Wait for a little while until it is. If
676 * it takes more than 10ms, forget it.
677 */
678 udelay(10);
679 i = readb(ioaddr + PCIClkMeas);
680 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){
681 udelay(10);
682 i = readb(ioaddr + PCIClkMeas);
683 }
684
685 hmp->base = ioaddr;
686 pci_set_drvdata(pdev, dev);
687
688 hmp->chip_id = chip_id;
689 hmp->pci_dev = pdev;
690
691 /* The lower four bits are the media type. */
692 if (option > 0) {
693 hmp->option = option;
694 if (option & 0x200)
695 hmp->mii_if.full_duplex = 1;
696 else if (option & 0x080)
697 hmp->mii_if.full_duplex = 0;
698 hmp->default_port = option & 15;
699 if (hmp->default_port)
700 hmp->mii_if.force_media = 1;
701 }
702 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
703 hmp->mii_if.full_duplex = 1;
704
705 /* lock the duplex mode if someone specified a value */
706 if (hmp->mii_if.full_duplex || (option & 0x080))
707 hmp->duplex_lock = 1;
708
709 /* Set interrupt tuning parameters */
710 max_rx_latency = max_rx_latency & 0x00ff;
711 max_rx_gap = max_rx_gap & 0x00ff;
712 min_rx_pkt = min_rx_pkt & 0x00ff;
713 max_tx_latency = max_tx_latency & 0x00ff;
714 max_tx_gap = max_tx_gap & 0x00ff;
715 min_tx_pkt = min_tx_pkt & 0x00ff;
716
717 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1;
718 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1;
719 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var :
720 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency);
721 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var :
722 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency);
723
724
725 /* The Hamachi-specific entries in the device structure. */
726 dev->netdev_ops = &hamachi_netdev_ops;
727 dev->ethtool_ops = (chip_tbl[hmp->chip_id].flags & CanHaveMII) ?
728 ðtool_ops : ðtool_ops_no_mii;
729 dev->watchdog_timeo = TX_TIMEOUT;
730 if (mtu)
731 dev->mtu = mtu;
732
733 i = register_netdev(dev);
734 if (i) {
735 ret = i;
736 goto err_out_unmap_rx;
737 }
738
739 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n",
740 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev),
741 ioaddr, dev->dev_addr, irq);
742 i = readb(ioaddr + PCIClkMeas);
743 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers "
744 "%2.2x, LPA %4.4x.\n",
745 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32,
746 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers),
747 readw(ioaddr + ANLinkPartnerAbility));
748
749 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) {
750 int phy, phy_idx = 0;
751 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
752 int mii_status = mdio_read(dev, phy, MII_BMSR);
753 if (mii_status != 0xffff &&
754 mii_status != 0x0000) {
755 hmp->phys[phy_idx++] = phy;
756 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
757 printk(KERN_INFO "%s: MII PHY found at address %d, status "
758 "0x%4.4x advertising %4.4x.\n",
759 dev->name, phy, mii_status, hmp->mii_if.advertising);
760 }
761 }
762 hmp->mii_cnt = phy_idx;
763 if (hmp->mii_cnt > 0)
764 hmp->mii_if.phy_id = hmp->phys[0];
765 else
766 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if));
767 }
768 /* Configure gigabit autonegotiation. */
769 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
770 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */
771 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */
772
773 card_idx++;
774 return 0;
775
776 err_out_unmap_rx:
777 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
778 hmp->rx_ring_dma);
779 err_out_unmap_tx:
780 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
781 hmp->tx_ring_dma);
782 err_out_cleardev:
783 free_netdev (dev);
784 err_out_iounmap:
785 iounmap(ioaddr);
786 err_out_release:
787 pci_release_regions(pdev);
788 err_out:
789 return ret;
790 }
791
read_eeprom(void __iomem * ioaddr,int location)792 static int read_eeprom(void __iomem *ioaddr, int location)
793 {
794 int bogus_cnt = 1000;
795
796 /* We should check busy first - per docs -KDU */
797 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
798 writew(location, ioaddr + EEAddr);
799 writeb(0x02, ioaddr + EECmdStatus);
800 bogus_cnt = 1000;
801 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
802 if (hamachi_debug > 5)
803 printk(" EEPROM status is %2.2x after %d ticks.\n",
804 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt);
805 return readb(ioaddr + EEData);
806 }
807
808 /* MII Managemen Data I/O accesses.
809 These routines assume the MDIO controller is idle, and do not exit until
810 the command is finished. */
811
mdio_read(struct net_device * dev,int phy_id,int location)812 static int mdio_read(struct net_device *dev, int phy_id, int location)
813 {
814 struct hamachi_private *hmp = netdev_priv(dev);
815 void __iomem *ioaddr = hmp->base;
816 int i;
817
818 /* We should check busy first - per docs -KDU */
819 for (i = 10000; i >= 0; i--)
820 if ((readw(ioaddr + MII_Status) & 1) == 0)
821 break;
822 writew((phy_id<<8) + location, ioaddr + MII_Addr);
823 writew(0x0001, ioaddr + MII_Cmd);
824 for (i = 10000; i >= 0; i--)
825 if ((readw(ioaddr + MII_Status) & 1) == 0)
826 break;
827 return readw(ioaddr + MII_Rd_Data);
828 }
829
mdio_write(struct net_device * dev,int phy_id,int location,int value)830 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
831 {
832 struct hamachi_private *hmp = netdev_priv(dev);
833 void __iomem *ioaddr = hmp->base;
834 int i;
835
836 /* We should check busy first - per docs -KDU */
837 for (i = 10000; i >= 0; i--)
838 if ((readw(ioaddr + MII_Status) & 1) == 0)
839 break;
840 writew((phy_id<<8) + location, ioaddr + MII_Addr);
841 writew(value, ioaddr + MII_Wr_Data);
842
843 /* Wait for the command to finish. */
844 for (i = 10000; i >= 0; i--)
845 if ((readw(ioaddr + MII_Status) & 1) == 0)
846 break;
847 }
848
849
hamachi_open(struct net_device * dev)850 static int hamachi_open(struct net_device *dev)
851 {
852 struct hamachi_private *hmp = netdev_priv(dev);
853 void __iomem *ioaddr = hmp->base;
854 int i;
855 u32 rx_int_var, tx_int_var;
856 u16 fifo_info;
857
858 i = request_irq(hmp->pci_dev->irq, hamachi_interrupt, IRQF_SHARED,
859 dev->name, dev);
860 if (i)
861 return i;
862
863 hamachi_init_ring(dev);
864
865 #if ADDRLEN == 64
866 /* writellll anyone ? */
867 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
868 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4);
869 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
870 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4);
871 #else
872 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
873 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
874 #endif
875
876 /* TODO: It would make sense to organize this as words since the card
877 * documentation does. -KDU
878 */
879 for (i = 0; i < 6; i++)
880 writeb(dev->dev_addr[i], ioaddr + StationAddr + i);
881
882 /* Initialize other registers: with so many this eventually this will
883 converted to an offset/value list. */
884
885 /* Configure the FIFO */
886 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6;
887 switch (fifo_info){
888 case 0 :
889 /* No FIFO */
890 writew(0x0000, ioaddr + FIFOcfg);
891 break;
892 case 1 :
893 /* Configure the FIFO for 512K external, 16K used for Tx. */
894 writew(0x0028, ioaddr + FIFOcfg);
895 break;
896 case 2 :
897 /* Configure the FIFO for 1024 external, 32K used for Tx. */
898 writew(0x004C, ioaddr + FIFOcfg);
899 break;
900 case 3 :
901 /* Configure the FIFO for 2048 external, 32K used for Tx. */
902 writew(0x006C, ioaddr + FIFOcfg);
903 break;
904 default :
905 printk(KERN_WARNING "%s: Unsupported external memory config!\n",
906 dev->name);
907 /* Default to no FIFO */
908 writew(0x0000, ioaddr + FIFOcfg);
909 break;
910 }
911
912 if (dev->if_port == 0)
913 dev->if_port = hmp->default_port;
914
915
916 /* Setting the Rx mode will start the Rx process. */
917 /* If someone didn't choose a duplex, default to full-duplex */
918 if (hmp->duplex_lock != 1)
919 hmp->mii_if.full_duplex = 1;
920
921 /* always 1, takes no more time to do it */
922 writew(0x0001, ioaddr + RxChecksum);
923 writew(0x0000, ioaddr + TxChecksum);
924 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */
925 writew(0x215F, ioaddr + MACCnfg);
926 writew(0x000C, ioaddr + FrameGap0);
927 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */
928 writew(0x1018, ioaddr + FrameGap1);
929 /* Why do we enable receives/transmits here? -KDU */
930 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */
931 /* Enable automatic generation of flow control frames, period 0xffff. */
932 writel(0x0030FFFF, ioaddr + FlowCtrl);
933 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */
934
935 /* Enable legacy links. */
936 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
937 /* Initial Link LED to blinking red. */
938 writeb(0x03, ioaddr + LEDCtrl);
939
940 /* Configure interrupt mitigation. This has a great effect on
941 performance, so systems tuning should start here!. */
942
943 rx_int_var = hmp->rx_int_var;
944 tx_int_var = hmp->tx_int_var;
945
946 if (hamachi_debug > 1) {
947 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n",
948 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8,
949 (tx_int_var & 0x00ff0000) >> 16);
950 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n",
951 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8,
952 (rx_int_var & 0x00ff0000) >> 16);
953 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var);
954 }
955
956 writel(tx_int_var, ioaddr + TxIntrCtrl);
957 writel(rx_int_var, ioaddr + RxIntrCtrl);
958
959 set_rx_mode(dev);
960
961 netif_start_queue(dev);
962
963 /* Enable interrupts by setting the interrupt mask. */
964 writel(0x80878787, ioaddr + InterruptEnable);
965 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
966
967 /* Configure and start the DMA channels. */
968 /* Burst sizes are in the low three bits: size = 4<<(val&7) */
969 #if ADDRLEN == 64
970 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */
971 writew(0x005D, ioaddr + TxDMACtrl);
972 #else
973 writew(0x001D, ioaddr + RxDMACtrl);
974 writew(0x001D, ioaddr + TxDMACtrl);
975 #endif
976 writew(0x0001, ioaddr + RxCmd);
977
978 if (hamachi_debug > 2) {
979 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n",
980 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus));
981 }
982 /* Set the timer to check for link beat. */
983 init_timer(&hmp->timer);
984 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
985 hmp->timer.data = (unsigned long)dev;
986 hmp->timer.function = hamachi_timer; /* timer handler */
987 add_timer(&hmp->timer);
988
989 return 0;
990 }
991
hamachi_tx(struct net_device * dev)992 static inline int hamachi_tx(struct net_device *dev)
993 {
994 struct hamachi_private *hmp = netdev_priv(dev);
995
996 /* Update the dirty pointer until we find an entry that is
997 still owned by the card */
998 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) {
999 int entry = hmp->dirty_tx % TX_RING_SIZE;
1000 struct sk_buff *skb;
1001
1002 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1003 break;
1004 /* Free the original skb. */
1005 skb = hmp->tx_skbuff[entry];
1006 if (skb) {
1007 pci_unmap_single(hmp->pci_dev,
1008 leXX_to_cpu(hmp->tx_ring[entry].addr),
1009 skb->len, PCI_DMA_TODEVICE);
1010 dev_kfree_skb(skb);
1011 hmp->tx_skbuff[entry] = NULL;
1012 }
1013 hmp->tx_ring[entry].status_n_length = 0;
1014 if (entry >= TX_RING_SIZE-1)
1015 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1016 cpu_to_le32(DescEndRing);
1017 dev->stats.tx_packets++;
1018 }
1019
1020 return 0;
1021 }
1022
hamachi_timer(unsigned long data)1023 static void hamachi_timer(unsigned long data)
1024 {
1025 struct net_device *dev = (struct net_device *)data;
1026 struct hamachi_private *hmp = netdev_priv(dev);
1027 void __iomem *ioaddr = hmp->base;
1028 int next_tick = 10*HZ;
1029
1030 if (hamachi_debug > 2) {
1031 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA "
1032 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus),
1033 readw(ioaddr + ANLinkPartnerAbility));
1034 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x "
1035 "%4.4x %4.4x %4.4x.\n", dev->name,
1036 readw(ioaddr + 0x0e0),
1037 readw(ioaddr + 0x0e2),
1038 readw(ioaddr + 0x0e4),
1039 readw(ioaddr + 0x0e6),
1040 readw(ioaddr + 0x0e8),
1041 readw(ioaddr + 0x0eA));
1042 }
1043 /* We could do something here... nah. */
1044 hmp->timer.expires = RUN_AT(next_tick);
1045 add_timer(&hmp->timer);
1046 }
1047
hamachi_tx_timeout(struct net_device * dev)1048 static void hamachi_tx_timeout(struct net_device *dev)
1049 {
1050 int i;
1051 struct hamachi_private *hmp = netdev_priv(dev);
1052 void __iomem *ioaddr = hmp->base;
1053
1054 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x,"
1055 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus));
1056
1057 {
1058 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring);
1059 for (i = 0; i < RX_RING_SIZE; i++)
1060 printk(KERN_CONT " %8.8x",
1061 le32_to_cpu(hmp->rx_ring[i].status_n_length));
1062 printk(KERN_CONT "\n");
1063 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring);
1064 for (i = 0; i < TX_RING_SIZE; i++)
1065 printk(KERN_CONT " %4.4x",
1066 le32_to_cpu(hmp->tx_ring[i].status_n_length));
1067 printk(KERN_CONT "\n");
1068 }
1069
1070 /* Reinit the hardware and make sure the Rx and Tx processes
1071 are up and running.
1072 */
1073 dev->if_port = 0;
1074 /* The right way to do Reset. -KDU
1075 * -Clear OWN bit in all Rx/Tx descriptors
1076 * -Wait 50 uS for channels to go idle
1077 * -Turn off MAC receiver
1078 * -Issue Reset
1079 */
1080
1081 for (i = 0; i < RX_RING_SIZE; i++)
1082 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn);
1083
1084 /* Presume that all packets in the Tx queue are gone if we have to
1085 * re-init the hardware.
1086 */
1087 for (i = 0; i < TX_RING_SIZE; i++){
1088 struct sk_buff *skb;
1089
1090 if (i >= TX_RING_SIZE - 1)
1091 hmp->tx_ring[i].status_n_length =
1092 cpu_to_le32(DescEndRing) |
1093 (hmp->tx_ring[i].status_n_length &
1094 cpu_to_le32(0x0000ffff));
1095 else
1096 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff);
1097 skb = hmp->tx_skbuff[i];
1098 if (skb){
1099 pci_unmap_single(hmp->pci_dev, leXX_to_cpu(hmp->tx_ring[i].addr),
1100 skb->len, PCI_DMA_TODEVICE);
1101 dev_kfree_skb(skb);
1102 hmp->tx_skbuff[i] = NULL;
1103 }
1104 }
1105
1106 udelay(60); /* Sleep 60 us just for safety sake */
1107 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */
1108
1109 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */
1110
1111 hmp->tx_full = 0;
1112 hmp->cur_rx = hmp->cur_tx = 0;
1113 hmp->dirty_rx = hmp->dirty_tx = 0;
1114 /* Rx packets are also presumed lost; however, we need to make sure a
1115 * ring of buffers is in tact. -KDU
1116 */
1117 for (i = 0; i < RX_RING_SIZE; i++){
1118 struct sk_buff *skb = hmp->rx_skbuff[i];
1119
1120 if (skb){
1121 pci_unmap_single(hmp->pci_dev,
1122 leXX_to_cpu(hmp->rx_ring[i].addr),
1123 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1124 dev_kfree_skb(skb);
1125 hmp->rx_skbuff[i] = NULL;
1126 }
1127 }
1128 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1129 for (i = 0; i < RX_RING_SIZE; i++) {
1130 struct sk_buff *skb;
1131
1132 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz);
1133 hmp->rx_skbuff[i] = skb;
1134 if (skb == NULL)
1135 break;
1136
1137 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1138 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1139 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1140 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2));
1141 }
1142 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1143 /* Mark the last entry as wrapping the ring. */
1144 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1145
1146 /* Trigger an immediate transmit demand. */
1147 dev->trans_start = jiffies; /* prevent tx timeout */
1148 dev->stats.tx_errors++;
1149
1150 /* Restart the chip's Tx/Rx processes . */
1151 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */
1152 writew(0x0001, ioaddr + TxCmd); /* START Tx */
1153 writew(0x0001, ioaddr + RxCmd); /* START Rx */
1154
1155 netif_wake_queue(dev);
1156 }
1157
1158
1159 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
hamachi_init_ring(struct net_device * dev)1160 static void hamachi_init_ring(struct net_device *dev)
1161 {
1162 struct hamachi_private *hmp = netdev_priv(dev);
1163 int i;
1164
1165 hmp->tx_full = 0;
1166 hmp->cur_rx = hmp->cur_tx = 0;
1167 hmp->dirty_rx = hmp->dirty_tx = 0;
1168
1169 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1170 * card needs room to do 8 byte alignment, +2 so we can reserve
1171 * the first 2 bytes, and +16 gets room for the status word from the
1172 * card. -KDU
1173 */
1174 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ :
1175 (((dev->mtu+26+7) & ~7) + 16));
1176
1177 /* Initialize all Rx descriptors. */
1178 for (i = 0; i < RX_RING_SIZE; i++) {
1179 hmp->rx_ring[i].status_n_length = 0;
1180 hmp->rx_skbuff[i] = NULL;
1181 }
1182 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1183 for (i = 0; i < RX_RING_SIZE; i++) {
1184 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1185 hmp->rx_skbuff[i] = skb;
1186 if (skb == NULL)
1187 break;
1188 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1189 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1190 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1191 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */
1192 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1193 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2));
1194 }
1195 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1196 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1197
1198 for (i = 0; i < TX_RING_SIZE; i++) {
1199 hmp->tx_skbuff[i] = NULL;
1200 hmp->tx_ring[i].status_n_length = 0;
1201 }
1202 /* Mark the last entry of the ring */
1203 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1204 }
1205
1206
hamachi_start_xmit(struct sk_buff * skb,struct net_device * dev)1207 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
1208 struct net_device *dev)
1209 {
1210 struct hamachi_private *hmp = netdev_priv(dev);
1211 unsigned entry;
1212 u16 status;
1213
1214 /* Ok, now make sure that the queue has space before trying to
1215 add another skbuff. if we return non-zero the scheduler
1216 should interpret this as a queue full and requeue the buffer
1217 for later.
1218 */
1219 if (hmp->tx_full) {
1220 /* We should NEVER reach this point -KDU */
1221 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx);
1222
1223 /* Wake the potentially-idle transmit channel. */
1224 /* If we don't need to read status, DON'T -KDU */
1225 status=readw(hmp->base + TxStatus);
1226 if( !(status & 0x0001) || (status & 0x0002))
1227 writew(0x0001, hmp->base + TxCmd);
1228 return NETDEV_TX_BUSY;
1229 }
1230
1231 /* Caution: the write order is important here, set the field
1232 with the "ownership" bits last. */
1233
1234 /* Calculate the next Tx descriptor entry. */
1235 entry = hmp->cur_tx % TX_RING_SIZE;
1236
1237 hmp->tx_skbuff[entry] = skb;
1238
1239 hmp->tx_ring[entry].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1240 skb->data, skb->len, PCI_DMA_TODEVICE));
1241
1242 /* Hmmmm, could probably put a DescIntr on these, but the way
1243 the driver is currently coded makes Tx interrupts unnecessary
1244 since the clearing of the Tx ring is handled by the start_xmit
1245 routine. This organization helps mitigate the interrupts a
1246 bit and probably renders the max_tx_latency param useless.
1247
1248 Update: Putting a DescIntr bit on all of the descriptors and
1249 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU
1250 */
1251 if (entry >= TX_RING_SIZE-1) /* Wrap ring */
1252 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1253 DescEndPacket | DescEndRing | DescIntr | skb->len);
1254 else
1255 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1256 DescEndPacket | DescIntr | skb->len);
1257 hmp->cur_tx++;
1258
1259 /* Non-x86 Todo: explicitly flush cache lines here. */
1260
1261 /* Wake the potentially-idle transmit channel. */
1262 /* If we don't need to read status, DON'T -KDU */
1263 status=readw(hmp->base + TxStatus);
1264 if( !(status & 0x0001) || (status & 0x0002))
1265 writew(0x0001, hmp->base + TxCmd);
1266
1267 /* Immediately before returning, let's clear as many entries as we can. */
1268 hamachi_tx(dev);
1269
1270 /* We should kick the bottom half here, since we are not accepting
1271 * interrupts with every packet. i.e. realize that Gigabit ethernet
1272 * can transmit faster than ordinary machines can load packets;
1273 * hence, any packet that got put off because we were in the transmit
1274 * routine should IMMEDIATELY get a chance to be re-queued. -KDU
1275 */
1276 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4))
1277 netif_wake_queue(dev); /* Typical path */
1278 else {
1279 hmp->tx_full = 1;
1280 netif_stop_queue(dev);
1281 }
1282
1283 if (hamachi_debug > 4) {
1284 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n",
1285 dev->name, hmp->cur_tx, entry);
1286 }
1287 return NETDEV_TX_OK;
1288 }
1289
1290 /* The interrupt handler does all of the Rx thread work and cleans up
1291 after the Tx thread. */
hamachi_interrupt(int irq,void * dev_instance)1292 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance)
1293 {
1294 struct net_device *dev = dev_instance;
1295 struct hamachi_private *hmp = netdev_priv(dev);
1296 void __iomem *ioaddr = hmp->base;
1297 long boguscnt = max_interrupt_work;
1298 int handled = 0;
1299
1300 #ifndef final_version /* Can never occur. */
1301 if (dev == NULL) {
1302 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq);
1303 return IRQ_NONE;
1304 }
1305 #endif
1306
1307 spin_lock(&hmp->lock);
1308
1309 do {
1310 u32 intr_status = readl(ioaddr + InterruptClear);
1311
1312 if (hamachi_debug > 4)
1313 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n",
1314 dev->name, intr_status);
1315
1316 if (intr_status == 0)
1317 break;
1318
1319 handled = 1;
1320
1321 if (intr_status & IntrRxDone)
1322 hamachi_rx(dev);
1323
1324 if (intr_status & IntrTxDone){
1325 /* This code should RARELY need to execute. After all, this is
1326 * a gigabit link, it should consume packets as fast as we put
1327 * them in AND we clear the Tx ring in hamachi_start_xmit().
1328 */
1329 if (hmp->tx_full){
1330 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){
1331 int entry = hmp->dirty_tx % TX_RING_SIZE;
1332 struct sk_buff *skb;
1333
1334 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1335 break;
1336 skb = hmp->tx_skbuff[entry];
1337 /* Free the original skb. */
1338 if (skb){
1339 pci_unmap_single(hmp->pci_dev,
1340 leXX_to_cpu(hmp->tx_ring[entry].addr),
1341 skb->len,
1342 PCI_DMA_TODEVICE);
1343 dev_kfree_skb_irq(skb);
1344 hmp->tx_skbuff[entry] = NULL;
1345 }
1346 hmp->tx_ring[entry].status_n_length = 0;
1347 if (entry >= TX_RING_SIZE-1)
1348 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1349 cpu_to_le32(DescEndRing);
1350 dev->stats.tx_packets++;
1351 }
1352 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){
1353 /* The ring is no longer full */
1354 hmp->tx_full = 0;
1355 netif_wake_queue(dev);
1356 }
1357 } else {
1358 netif_wake_queue(dev);
1359 }
1360 }
1361
1362
1363 /* Abnormal error summary/uncommon events handlers. */
1364 if (intr_status &
1365 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr |
1366 LinkChange | NegotiationChange | StatsMax))
1367 hamachi_error(dev, intr_status);
1368
1369 if (--boguscnt < 0) {
1370 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n",
1371 dev->name, intr_status);
1372 break;
1373 }
1374 } while (1);
1375
1376 if (hamachi_debug > 3)
1377 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1378 dev->name, readl(ioaddr + IntrStatus));
1379
1380 #ifndef final_version
1381 /* Code that should never be run! Perhaps remove after testing.. */
1382 {
1383 static int stopit = 10;
1384 if (dev->start == 0 && --stopit < 0) {
1385 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
1386 dev->name);
1387 free_irq(irq, dev);
1388 }
1389 }
1390 #endif
1391
1392 spin_unlock(&hmp->lock);
1393 return IRQ_RETVAL(handled);
1394 }
1395
1396 /* This routine is logically part of the interrupt handler, but separated
1397 for clarity and better register allocation. */
hamachi_rx(struct net_device * dev)1398 static int hamachi_rx(struct net_device *dev)
1399 {
1400 struct hamachi_private *hmp = netdev_priv(dev);
1401 int entry = hmp->cur_rx % RX_RING_SIZE;
1402 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx;
1403
1404 if (hamachi_debug > 4) {
1405 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n",
1406 entry, hmp->rx_ring[entry].status_n_length);
1407 }
1408
1409 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1410 while (1) {
1411 struct hamachi_desc *desc = &(hmp->rx_ring[entry]);
1412 u32 desc_status = le32_to_cpu(desc->status_n_length);
1413 u16 data_size = desc_status; /* Implicit truncate */
1414 u8 *buf_addr;
1415 s32 frame_status;
1416
1417 if (desc_status & DescOwn)
1418 break;
1419 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1420 leXX_to_cpu(desc->addr),
1421 hmp->rx_buf_sz,
1422 PCI_DMA_FROMDEVICE);
1423 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data;
1424 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12]));
1425 if (hamachi_debug > 4)
1426 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n",
1427 frame_status);
1428 if (--boguscnt < 0)
1429 break;
1430 if ( ! (desc_status & DescEndPacket)) {
1431 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1432 "multiple buffers, entry %#x length %d status %4.4x!\n",
1433 dev->name, hmp->cur_rx, data_size, desc_status);
1434 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n",
1435 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]);
1436 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n",
1437 dev->name,
1438 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000,
1439 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff,
1440 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length));
1441 dev->stats.rx_length_errors++;
1442 } /* else Omit for prototype errata??? */
1443 if (frame_status & 0x00380000) {
1444 /* There was an error. */
1445 if (hamachi_debug > 2)
1446 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n",
1447 frame_status);
1448 dev->stats.rx_errors++;
1449 if (frame_status & 0x00600000)
1450 dev->stats.rx_length_errors++;
1451 if (frame_status & 0x00080000)
1452 dev->stats.rx_frame_errors++;
1453 if (frame_status & 0x00100000)
1454 dev->stats.rx_crc_errors++;
1455 if (frame_status < 0)
1456 dev->stats.rx_dropped++;
1457 } else {
1458 struct sk_buff *skb;
1459 /* Omit CRC */
1460 u16 pkt_len = (frame_status & 0x07ff) - 4;
1461 #ifdef RX_CHECKSUM
1462 u32 pfck = *(u32 *) &buf_addr[data_size - 8];
1463 #endif
1464
1465
1466 #ifndef final_version
1467 if (hamachi_debug > 4)
1468 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d"
1469 " of %d, bogus_cnt %d.\n",
1470 pkt_len, data_size, boguscnt);
1471 if (hamachi_debug > 5)
1472 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n",
1473 dev->name,
1474 *(s32*)&(buf_addr[data_size - 20]),
1475 *(s32*)&(buf_addr[data_size - 16]),
1476 *(s32*)&(buf_addr[data_size - 12]),
1477 *(s32*)&(buf_addr[data_size - 8]),
1478 *(s32*)&(buf_addr[data_size - 4]));
1479 #endif
1480 /* Check if the packet is long enough to accept without copying
1481 to a minimally-sized skbuff. */
1482 if (pkt_len < rx_copybreak &&
1483 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1484 #ifdef RX_CHECKSUM
1485 printk(KERN_ERR "%s: rx_copybreak non-zero "
1486 "not good with RX_CHECKSUM\n", dev->name);
1487 #endif
1488 skb_reserve(skb, 2); /* 16 byte align the IP header */
1489 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1490 leXX_to_cpu(hmp->rx_ring[entry].addr),
1491 hmp->rx_buf_sz,
1492 PCI_DMA_FROMDEVICE);
1493 /* Call copy + cksum if available. */
1494 #if 1 || USE_IP_COPYSUM
1495 skb_copy_to_linear_data(skb,
1496 hmp->rx_skbuff[entry]->data, pkt_len);
1497 skb_put(skb, pkt_len);
1498 #else
1499 memcpy(skb_put(skb, pkt_len), hmp->rx_ring_dma
1500 + entry*sizeof(*desc), pkt_len);
1501 #endif
1502 pci_dma_sync_single_for_device(hmp->pci_dev,
1503 leXX_to_cpu(hmp->rx_ring[entry].addr),
1504 hmp->rx_buf_sz,
1505 PCI_DMA_FROMDEVICE);
1506 } else {
1507 pci_unmap_single(hmp->pci_dev,
1508 leXX_to_cpu(hmp->rx_ring[entry].addr),
1509 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1510 skb_put(skb = hmp->rx_skbuff[entry], pkt_len);
1511 hmp->rx_skbuff[entry] = NULL;
1512 }
1513 skb->protocol = eth_type_trans(skb, dev);
1514
1515
1516 #ifdef RX_CHECKSUM
1517 /* TCP or UDP on ipv4, DIX encoding */
1518 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) {
1519 struct iphdr *ih = (struct iphdr *) skb->data;
1520 /* Check that IP packet is at least 46 bytes, otherwise,
1521 * there may be pad bytes included in the hardware checksum.
1522 * This wouldn't happen if everyone padded with 0.
1523 */
1524 if (ntohs(ih->tot_len) >= 46){
1525 /* don't worry about frags */
1526 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) {
1527 u32 inv = *(u32 *) &buf_addr[data_size - 16];
1528 u32 *p = (u32 *) &buf_addr[data_size - 20];
1529 register u32 crc, p_r, p_r1;
1530
1531 if (inv & 4) {
1532 inv &= ~4;
1533 --p;
1534 }
1535 p_r = *p;
1536 p_r1 = *(p-1);
1537 switch (inv) {
1538 case 0:
1539 crc = (p_r & 0xffff) + (p_r >> 16);
1540 break;
1541 case 1:
1542 crc = (p_r >> 16) + (p_r & 0xffff)
1543 + (p_r1 >> 16 & 0xff00);
1544 break;
1545 case 2:
1546 crc = p_r + (p_r1 >> 16);
1547 break;
1548 case 3:
1549 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16);
1550 break;
1551 default: /*NOTREACHED*/ crc = 0;
1552 }
1553 if (crc & 0xffff0000) {
1554 crc &= 0xffff;
1555 ++crc;
1556 }
1557 /* tcp/udp will add in pseudo */
1558 skb->csum = ntohs(pfck & 0xffff);
1559 if (skb->csum > crc)
1560 skb->csum -= crc;
1561 else
1562 skb->csum += (~crc & 0xffff);
1563 /*
1564 * could do the pseudo myself and return
1565 * CHECKSUM_UNNECESSARY
1566 */
1567 skb->ip_summed = CHECKSUM_COMPLETE;
1568 }
1569 }
1570 }
1571 #endif /* RX_CHECKSUM */
1572
1573 netif_rx(skb);
1574 dev->stats.rx_packets++;
1575 }
1576 entry = (++hmp->cur_rx) % RX_RING_SIZE;
1577 }
1578
1579 /* Refill the Rx ring buffers. */
1580 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) {
1581 struct hamachi_desc *desc;
1582
1583 entry = hmp->dirty_rx % RX_RING_SIZE;
1584 desc = &(hmp->rx_ring[entry]);
1585 if (hmp->rx_skbuff[entry] == NULL) {
1586 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1587
1588 hmp->rx_skbuff[entry] = skb;
1589 if (skb == NULL)
1590 break; /* Better luck next round. */
1591 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1592 desc->addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1593 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1594 }
1595 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz);
1596 if (entry >= RX_RING_SIZE-1)
1597 desc->status_n_length |= cpu_to_le32(DescOwn |
1598 DescEndPacket | DescEndRing | DescIntr);
1599 else
1600 desc->status_n_length |= cpu_to_le32(DescOwn |
1601 DescEndPacket | DescIntr);
1602 }
1603
1604 /* Restart Rx engine if stopped. */
1605 /* If we don't need to check status, don't. -KDU */
1606 if (readw(hmp->base + RxStatus) & 0x0002)
1607 writew(0x0001, hmp->base + RxCmd);
1608
1609 return 0;
1610 }
1611
1612 /* This is more properly named "uncommon interrupt events", as it covers more
1613 than just errors. */
hamachi_error(struct net_device * dev,int intr_status)1614 static void hamachi_error(struct net_device *dev, int intr_status)
1615 {
1616 struct hamachi_private *hmp = netdev_priv(dev);
1617 void __iomem *ioaddr = hmp->base;
1618
1619 if (intr_status & (LinkChange|NegotiationChange)) {
1620 if (hamachi_debug > 1)
1621 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl"
1622 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n",
1623 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2),
1624 readw(ioaddr + ANLinkPartnerAbility),
1625 readl(ioaddr + IntrStatus));
1626 if (readw(ioaddr + ANStatus) & 0x20)
1627 writeb(0x01, ioaddr + LEDCtrl);
1628 else
1629 writeb(0x03, ioaddr + LEDCtrl);
1630 }
1631 if (intr_status & StatsMax) {
1632 hamachi_get_stats(dev);
1633 /* Read the overflow bits to clear. */
1634 readl(ioaddr + 0x370);
1635 readl(ioaddr + 0x3F0);
1636 }
1637 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) &&
1638 hamachi_debug)
1639 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1640 dev->name, intr_status);
1641 /* Hmmmmm, it's not clear how to recover from PCI faults. */
1642 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1643 dev->stats.tx_fifo_errors++;
1644 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1645 dev->stats.rx_fifo_errors++;
1646 }
1647
hamachi_close(struct net_device * dev)1648 static int hamachi_close(struct net_device *dev)
1649 {
1650 struct hamachi_private *hmp = netdev_priv(dev);
1651 void __iomem *ioaddr = hmp->base;
1652 struct sk_buff *skb;
1653 int i;
1654
1655 netif_stop_queue(dev);
1656
1657 if (hamachi_debug > 1) {
1658 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n",
1659 dev->name, readw(ioaddr + TxStatus),
1660 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus));
1661 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1662 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx);
1663 }
1664
1665 /* Disable interrupts by clearing the interrupt mask. */
1666 writel(0x0000, ioaddr + InterruptEnable);
1667
1668 /* Stop the chip's Tx and Rx processes. */
1669 writel(2, ioaddr + RxCmd);
1670 writew(2, ioaddr + TxCmd);
1671
1672 #ifdef __i386__
1673 if (hamachi_debug > 2) {
1674 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1675 (int)hmp->tx_ring_dma);
1676 for (i = 0; i < TX_RING_SIZE; i++)
1677 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n",
1678 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ',
1679 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr);
1680 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1681 (int)hmp->rx_ring_dma);
1682 for (i = 0; i < RX_RING_SIZE; i++) {
1683 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n",
1684 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ',
1685 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr);
1686 if (hamachi_debug > 6) {
1687 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) {
1688 u16 *addr = (u16 *)
1689 hmp->rx_skbuff[i]->data;
1690 int j;
1691 printk(KERN_DEBUG "Addr: ");
1692 for (j = 0; j < 0x50; j++)
1693 printk(" %4.4x", addr[j]);
1694 printk("\n");
1695 }
1696 }
1697 }
1698 }
1699 #endif /* __i386__ debugging only */
1700
1701 free_irq(hmp->pci_dev->irq, dev);
1702
1703 del_timer_sync(&hmp->timer);
1704
1705 /* Free all the skbuffs in the Rx queue. */
1706 for (i = 0; i < RX_RING_SIZE; i++) {
1707 skb = hmp->rx_skbuff[i];
1708 hmp->rx_ring[i].status_n_length = 0;
1709 if (skb) {
1710 pci_unmap_single(hmp->pci_dev,
1711 leXX_to_cpu(hmp->rx_ring[i].addr),
1712 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1713 dev_kfree_skb(skb);
1714 hmp->rx_skbuff[i] = NULL;
1715 }
1716 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */
1717 }
1718 for (i = 0; i < TX_RING_SIZE; i++) {
1719 skb = hmp->tx_skbuff[i];
1720 if (skb) {
1721 pci_unmap_single(hmp->pci_dev,
1722 leXX_to_cpu(hmp->tx_ring[i].addr),
1723 skb->len, PCI_DMA_TODEVICE);
1724 dev_kfree_skb(skb);
1725 hmp->tx_skbuff[i] = NULL;
1726 }
1727 }
1728
1729 writeb(0x00, ioaddr + LEDCtrl);
1730
1731 return 0;
1732 }
1733
hamachi_get_stats(struct net_device * dev)1734 static struct net_device_stats *hamachi_get_stats(struct net_device *dev)
1735 {
1736 struct hamachi_private *hmp = netdev_priv(dev);
1737 void __iomem *ioaddr = hmp->base;
1738
1739 /* We should lock this segment of code for SMP eventually, although
1740 the vulnerability window is very small and statistics are
1741 non-critical. */
1742 /* Ok, what goes here? This appears to be stuck at 21 packets
1743 according to ifconfig. It does get incremented in hamachi_tx(),
1744 so I think I'll comment it out here and see if better things
1745 happen.
1746 */
1747 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */
1748
1749 /* Total Uni+Brd+Multi */
1750 dev->stats.rx_bytes = readl(ioaddr + 0x330);
1751 /* Total Uni+Brd+Multi */
1752 dev->stats.tx_bytes = readl(ioaddr + 0x3B0);
1753 /* Multicast Rx */
1754 dev->stats.multicast = readl(ioaddr + 0x320);
1755
1756 /* Over+Undersized */
1757 dev->stats.rx_length_errors = readl(ioaddr + 0x368);
1758 /* Jabber */
1759 dev->stats.rx_over_errors = readl(ioaddr + 0x35C);
1760 /* Jabber */
1761 dev->stats.rx_crc_errors = readl(ioaddr + 0x360);
1762 /* Symbol Errs */
1763 dev->stats.rx_frame_errors = readl(ioaddr + 0x364);
1764 /* Dropped */
1765 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C);
1766
1767 return &dev->stats;
1768 }
1769
set_rx_mode(struct net_device * dev)1770 static void set_rx_mode(struct net_device *dev)
1771 {
1772 struct hamachi_private *hmp = netdev_priv(dev);
1773 void __iomem *ioaddr = hmp->base;
1774
1775 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1776 writew(0x000F, ioaddr + AddrMode);
1777 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) {
1778 /* Too many to match, or accept all multicasts. */
1779 writew(0x000B, ioaddr + AddrMode);
1780 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */
1781 struct netdev_hw_addr *ha;
1782 int i = 0;
1783
1784 netdev_for_each_mc_addr(ha, dev) {
1785 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8);
1786 writel(0x20000 | (*(u16 *)&ha->addr[4]),
1787 ioaddr + 0x104 + i*8);
1788 i++;
1789 }
1790 /* Clear remaining entries. */
1791 for (; i < 64; i++)
1792 writel(0, ioaddr + 0x104 + i*8);
1793 writew(0x0003, ioaddr + AddrMode);
1794 } else { /* Normal, unicast/broadcast-only mode. */
1795 writew(0x0001, ioaddr + AddrMode);
1796 }
1797 }
1798
check_if_running(struct net_device * dev)1799 static int check_if_running(struct net_device *dev)
1800 {
1801 if (!netif_running(dev))
1802 return -EINVAL;
1803 return 0;
1804 }
1805
hamachi_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1806 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1807 {
1808 struct hamachi_private *np = netdev_priv(dev);
1809
1810 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1811 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1812 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1813 }
1814
hamachi_get_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1815 static int hamachi_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1816 {
1817 struct hamachi_private *np = netdev_priv(dev);
1818 spin_lock_irq(&np->lock);
1819 mii_ethtool_gset(&np->mii_if, ecmd);
1820 spin_unlock_irq(&np->lock);
1821 return 0;
1822 }
1823
hamachi_set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1824 static int hamachi_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1825 {
1826 struct hamachi_private *np = netdev_priv(dev);
1827 int res;
1828 spin_lock_irq(&np->lock);
1829 res = mii_ethtool_sset(&np->mii_if, ecmd);
1830 spin_unlock_irq(&np->lock);
1831 return res;
1832 }
1833
hamachi_nway_reset(struct net_device * dev)1834 static int hamachi_nway_reset(struct net_device *dev)
1835 {
1836 struct hamachi_private *np = netdev_priv(dev);
1837 return mii_nway_restart(&np->mii_if);
1838 }
1839
hamachi_get_link(struct net_device * dev)1840 static u32 hamachi_get_link(struct net_device *dev)
1841 {
1842 struct hamachi_private *np = netdev_priv(dev);
1843 return mii_link_ok(&np->mii_if);
1844 }
1845
1846 static const struct ethtool_ops ethtool_ops = {
1847 .begin = check_if_running,
1848 .get_drvinfo = hamachi_get_drvinfo,
1849 .get_settings = hamachi_get_settings,
1850 .set_settings = hamachi_set_settings,
1851 .nway_reset = hamachi_nway_reset,
1852 .get_link = hamachi_get_link,
1853 };
1854
1855 static const struct ethtool_ops ethtool_ops_no_mii = {
1856 .begin = check_if_running,
1857 .get_drvinfo = hamachi_get_drvinfo,
1858 };
1859
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1860 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1861 {
1862 struct hamachi_private *np = netdev_priv(dev);
1863 struct mii_ioctl_data *data = if_mii(rq);
1864 int rc;
1865
1866 if (!netif_running(dev))
1867 return -EINVAL;
1868
1869 if (cmd == (SIOCDEVPRIVATE+3)) { /* set rx,tx intr params */
1870 u32 *d = (u32 *)&rq->ifr_ifru;
1871 /* Should add this check here or an ordinary user can do nasty
1872 * things. -KDU
1873 *
1874 * TODO: Shut down the Rx and Tx engines while doing this.
1875 */
1876 if (!capable(CAP_NET_ADMIN))
1877 return -EPERM;
1878 writel(d[0], np->base + TxIntrCtrl);
1879 writel(d[1], np->base + RxIntrCtrl);
1880 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name,
1881 (u32) readl(np->base + TxIntrCtrl),
1882 (u32) readl(np->base + RxIntrCtrl));
1883 rc = 0;
1884 }
1885
1886 else {
1887 spin_lock_irq(&np->lock);
1888 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1889 spin_unlock_irq(&np->lock);
1890 }
1891
1892 return rc;
1893 }
1894
1895
hamachi_remove_one(struct pci_dev * pdev)1896 static void hamachi_remove_one(struct pci_dev *pdev)
1897 {
1898 struct net_device *dev = pci_get_drvdata(pdev);
1899
1900 if (dev) {
1901 struct hamachi_private *hmp = netdev_priv(dev);
1902
1903 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
1904 hmp->rx_ring_dma);
1905 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
1906 hmp->tx_ring_dma);
1907 unregister_netdev(dev);
1908 iounmap(hmp->base);
1909 free_netdev(dev);
1910 pci_release_regions(pdev);
1911 }
1912 }
1913
1914 static const struct pci_device_id hamachi_pci_tbl[] = {
1915 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, },
1916 { 0, }
1917 };
1918 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl);
1919
1920 static struct pci_driver hamachi_driver = {
1921 .name = DRV_NAME,
1922 .id_table = hamachi_pci_tbl,
1923 .probe = hamachi_init_one,
1924 .remove = hamachi_remove_one,
1925 };
1926
hamachi_init(void)1927 static int __init hamachi_init (void)
1928 {
1929 /* when a module, this is printed whether or not devices are found in probe */
1930 #ifdef MODULE
1931 printk(version);
1932 #endif
1933 return pci_register_driver(&hamachi_driver);
1934 }
1935
hamachi_exit(void)1936 static void __exit hamachi_exit (void)
1937 {
1938 pci_unregister_driver(&hamachi_driver);
1939 }
1940
1941
1942 module_init(hamachi_init);
1943 module_exit(hamachi_exit);
1944