• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
5  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
6  *  Copyright (C) 2014 Codethink Limited
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *
17  *  The full GNU General Public License is included in this distribution in
18  *  the file called "COPYING".
19  */
20 
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/platform_device.h>
29 #include <linux/mdio-bitbang.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_net.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55 	[EDSR]		= 0x0000,
56 	[EDMR]		= 0x0400,
57 	[EDTRR]		= 0x0408,
58 	[EDRRR]		= 0x0410,
59 	[EESR]		= 0x0428,
60 	[EESIPR]	= 0x0430,
61 	[TDLAR]		= 0x0010,
62 	[TDFAR]		= 0x0014,
63 	[TDFXR]		= 0x0018,
64 	[TDFFR]		= 0x001c,
65 	[RDLAR]		= 0x0030,
66 	[RDFAR]		= 0x0034,
67 	[RDFXR]		= 0x0038,
68 	[RDFFR]		= 0x003c,
69 	[TRSCER]	= 0x0438,
70 	[RMFCR]		= 0x0440,
71 	[TFTR]		= 0x0448,
72 	[FDR]		= 0x0450,
73 	[RMCR]		= 0x0458,
74 	[RPADIR]	= 0x0460,
75 	[FCFTR]		= 0x0468,
76 	[CSMR]		= 0x04E4,
77 
78 	[ECMR]		= 0x0500,
79 	[ECSR]		= 0x0510,
80 	[ECSIPR]	= 0x0518,
81 	[PIR]		= 0x0520,
82 	[PSR]		= 0x0528,
83 	[PIPR]		= 0x052c,
84 	[RFLR]		= 0x0508,
85 	[APR]		= 0x0554,
86 	[MPR]		= 0x0558,
87 	[PFTCR]		= 0x055c,
88 	[PFRCR]		= 0x0560,
89 	[TPAUSER]	= 0x0564,
90 	[GECMR]		= 0x05b0,
91 	[BCULR]		= 0x05b4,
92 	[MAHR]		= 0x05c0,
93 	[MALR]		= 0x05c8,
94 	[TROCR]		= 0x0700,
95 	[CDCR]		= 0x0708,
96 	[LCCR]		= 0x0710,
97 	[CEFCR]		= 0x0740,
98 	[FRECR]		= 0x0748,
99 	[TSFRCR]	= 0x0750,
100 	[TLFRCR]	= 0x0758,
101 	[RFCR]		= 0x0760,
102 	[CERCR]		= 0x0768,
103 	[CEECR]		= 0x0770,
104 	[MAFCR]		= 0x0778,
105 	[RMII_MII]	= 0x0790,
106 
107 	[ARSTR]		= 0x0000,
108 	[TSU_CTRST]	= 0x0004,
109 	[TSU_FWEN0]	= 0x0010,
110 	[TSU_FWEN1]	= 0x0014,
111 	[TSU_FCM]	= 0x0018,
112 	[TSU_BSYSL0]	= 0x0020,
113 	[TSU_BSYSL1]	= 0x0024,
114 	[TSU_PRISL0]	= 0x0028,
115 	[TSU_PRISL1]	= 0x002c,
116 	[TSU_FWSL0]	= 0x0030,
117 	[TSU_FWSL1]	= 0x0034,
118 	[TSU_FWSLC]	= 0x0038,
119 	[TSU_QTAG0]	= 0x0040,
120 	[TSU_QTAG1]	= 0x0044,
121 	[TSU_FWSR]	= 0x0050,
122 	[TSU_FWINMK]	= 0x0054,
123 	[TSU_ADQT0]	= 0x0048,
124 	[TSU_ADQT1]	= 0x004c,
125 	[TSU_VTAG0]	= 0x0058,
126 	[TSU_VTAG1]	= 0x005c,
127 	[TSU_ADSBSY]	= 0x0060,
128 	[TSU_TEN]	= 0x0064,
129 	[TSU_POST1]	= 0x0070,
130 	[TSU_POST2]	= 0x0074,
131 	[TSU_POST3]	= 0x0078,
132 	[TSU_POST4]	= 0x007c,
133 	[TSU_ADRH0]	= 0x0100,
134 	[TSU_ADRL0]	= 0x0104,
135 	[TSU_ADRH31]	= 0x01f8,
136 	[TSU_ADRL31]	= 0x01fc,
137 
138 	[TXNLCR0]	= 0x0080,
139 	[TXALCR0]	= 0x0084,
140 	[RXNLCR0]	= 0x0088,
141 	[RXALCR0]	= 0x008c,
142 	[FWNLCR0]	= 0x0090,
143 	[FWALCR0]	= 0x0094,
144 	[TXNLCR1]	= 0x00a0,
145 	[TXALCR1]	= 0x00a0,
146 	[RXNLCR1]	= 0x00a8,
147 	[RXALCR1]	= 0x00ac,
148 	[FWNLCR1]	= 0x00b0,
149 	[FWALCR1]	= 0x00b4,
150 };
151 
152 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153 	[EDSR]		= 0x0000,
154 	[EDMR]		= 0x0400,
155 	[EDTRR]		= 0x0408,
156 	[EDRRR]		= 0x0410,
157 	[EESR]		= 0x0428,
158 	[EESIPR]	= 0x0430,
159 	[TDLAR]		= 0x0010,
160 	[TDFAR]		= 0x0014,
161 	[TDFXR]		= 0x0018,
162 	[TDFFR]		= 0x001c,
163 	[RDLAR]		= 0x0030,
164 	[RDFAR]		= 0x0034,
165 	[RDFXR]		= 0x0038,
166 	[RDFFR]		= 0x003c,
167 	[TRSCER]	= 0x0438,
168 	[RMFCR]		= 0x0440,
169 	[TFTR]		= 0x0448,
170 	[FDR]		= 0x0450,
171 	[RMCR]		= 0x0458,
172 	[RPADIR]	= 0x0460,
173 	[FCFTR]		= 0x0468,
174 	[CSMR]		= 0x04E4,
175 
176 	[ECMR]		= 0x0500,
177 	[RFLR]		= 0x0508,
178 	[ECSR]		= 0x0510,
179 	[ECSIPR]	= 0x0518,
180 	[PIR]		= 0x0520,
181 	[APR]		= 0x0554,
182 	[MPR]		= 0x0558,
183 	[PFTCR]		= 0x055c,
184 	[PFRCR]		= 0x0560,
185 	[TPAUSER]	= 0x0564,
186 	[MAHR]		= 0x05c0,
187 	[MALR]		= 0x05c8,
188 	[CEFCR]		= 0x0740,
189 	[FRECR]		= 0x0748,
190 	[TSFRCR]	= 0x0750,
191 	[TLFRCR]	= 0x0758,
192 	[RFCR]		= 0x0760,
193 	[MAFCR]		= 0x0778,
194 
195 	[ARSTR]		= 0x0000,
196 	[TSU_CTRST]	= 0x0004,
197 	[TSU_VTAG0]	= 0x0058,
198 	[TSU_ADSBSY]	= 0x0060,
199 	[TSU_TEN]	= 0x0064,
200 	[TSU_ADRH0]	= 0x0100,
201 	[TSU_ADRL0]	= 0x0104,
202 	[TSU_ADRH31]	= 0x01f8,
203 	[TSU_ADRL31]	= 0x01fc,
204 
205 	[TXNLCR0]	= 0x0080,
206 	[TXALCR0]	= 0x0084,
207 	[RXNLCR0]	= 0x0088,
208 	[RXALCR0]	= 0x008C,
209 };
210 
211 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212 	[ECMR]		= 0x0300,
213 	[RFLR]		= 0x0308,
214 	[ECSR]		= 0x0310,
215 	[ECSIPR]	= 0x0318,
216 	[PIR]		= 0x0320,
217 	[PSR]		= 0x0328,
218 	[RDMLR]		= 0x0340,
219 	[IPGR]		= 0x0350,
220 	[APR]		= 0x0354,
221 	[MPR]		= 0x0358,
222 	[RFCF]		= 0x0360,
223 	[TPAUSER]	= 0x0364,
224 	[TPAUSECR]	= 0x0368,
225 	[MAHR]		= 0x03c0,
226 	[MALR]		= 0x03c8,
227 	[TROCR]		= 0x03d0,
228 	[CDCR]		= 0x03d4,
229 	[LCCR]		= 0x03d8,
230 	[CNDCR]		= 0x03dc,
231 	[CEFCR]		= 0x03e4,
232 	[FRECR]		= 0x03e8,
233 	[TSFRCR]	= 0x03ec,
234 	[TLFRCR]	= 0x03f0,
235 	[RFCR]		= 0x03f4,
236 	[MAFCR]		= 0x03f8,
237 
238 	[EDMR]		= 0x0200,
239 	[EDTRR]		= 0x0208,
240 	[EDRRR]		= 0x0210,
241 	[TDLAR]		= 0x0218,
242 	[RDLAR]		= 0x0220,
243 	[EESR]		= 0x0228,
244 	[EESIPR]	= 0x0230,
245 	[TRSCER]	= 0x0238,
246 	[RMFCR]		= 0x0240,
247 	[TFTR]		= 0x0248,
248 	[FDR]		= 0x0250,
249 	[RMCR]		= 0x0258,
250 	[TFUCR]		= 0x0264,
251 	[RFOCR]		= 0x0268,
252 	[RMIIMODE]      = 0x026c,
253 	[FCFTR]		= 0x0270,
254 	[TRIMD]		= 0x027c,
255 };
256 
257 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258 	[ECMR]		= 0x0100,
259 	[RFLR]		= 0x0108,
260 	[ECSR]		= 0x0110,
261 	[ECSIPR]	= 0x0118,
262 	[PIR]		= 0x0120,
263 	[PSR]		= 0x0128,
264 	[RDMLR]		= 0x0140,
265 	[IPGR]		= 0x0150,
266 	[APR]		= 0x0154,
267 	[MPR]		= 0x0158,
268 	[TPAUSER]	= 0x0164,
269 	[RFCF]		= 0x0160,
270 	[TPAUSECR]	= 0x0168,
271 	[BCFRR]		= 0x016c,
272 	[MAHR]		= 0x01c0,
273 	[MALR]		= 0x01c8,
274 	[TROCR]		= 0x01d0,
275 	[CDCR]		= 0x01d4,
276 	[LCCR]		= 0x01d8,
277 	[CNDCR]		= 0x01dc,
278 	[CEFCR]		= 0x01e4,
279 	[FRECR]		= 0x01e8,
280 	[TSFRCR]	= 0x01ec,
281 	[TLFRCR]	= 0x01f0,
282 	[RFCR]		= 0x01f4,
283 	[MAFCR]		= 0x01f8,
284 	[RTRATE]	= 0x01fc,
285 
286 	[EDMR]		= 0x0000,
287 	[EDTRR]		= 0x0008,
288 	[EDRRR]		= 0x0010,
289 	[TDLAR]		= 0x0018,
290 	[RDLAR]		= 0x0020,
291 	[EESR]		= 0x0028,
292 	[EESIPR]	= 0x0030,
293 	[TRSCER]	= 0x0038,
294 	[RMFCR]		= 0x0040,
295 	[TFTR]		= 0x0048,
296 	[FDR]		= 0x0050,
297 	[RMCR]		= 0x0058,
298 	[TFUCR]		= 0x0064,
299 	[RFOCR]		= 0x0068,
300 	[FCFTR]		= 0x0070,
301 	[RPADIR]	= 0x0078,
302 	[TRIMD]		= 0x007c,
303 	[RBWAR]		= 0x00c8,
304 	[RDFAR]		= 0x00cc,
305 	[TBRAR]		= 0x00d4,
306 	[TDFAR]		= 0x00d8,
307 };
308 
309 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310 	[EDMR]		= 0x0000,
311 	[EDTRR]		= 0x0004,
312 	[EDRRR]		= 0x0008,
313 	[TDLAR]		= 0x000c,
314 	[RDLAR]		= 0x0010,
315 	[EESR]		= 0x0014,
316 	[EESIPR]	= 0x0018,
317 	[TRSCER]	= 0x001c,
318 	[RMFCR]		= 0x0020,
319 	[TFTR]		= 0x0024,
320 	[FDR]		= 0x0028,
321 	[RMCR]		= 0x002c,
322 	[EDOCR]		= 0x0030,
323 	[FCFTR]		= 0x0034,
324 	[RPADIR]	= 0x0038,
325 	[TRIMD]		= 0x003c,
326 	[RBWAR]		= 0x0040,
327 	[RDFAR]		= 0x0044,
328 	[TBRAR]		= 0x004c,
329 	[TDFAR]		= 0x0050,
330 
331 	[ECMR]		= 0x0160,
332 	[ECSR]		= 0x0164,
333 	[ECSIPR]	= 0x0168,
334 	[PIR]		= 0x016c,
335 	[MAHR]		= 0x0170,
336 	[MALR]		= 0x0174,
337 	[RFLR]		= 0x0178,
338 	[PSR]		= 0x017c,
339 	[TROCR]		= 0x0180,
340 	[CDCR]		= 0x0184,
341 	[LCCR]		= 0x0188,
342 	[CNDCR]		= 0x018c,
343 	[CEFCR]		= 0x0194,
344 	[FRECR]		= 0x0198,
345 	[TSFRCR]	= 0x019c,
346 	[TLFRCR]	= 0x01a0,
347 	[RFCR]		= 0x01a4,
348 	[MAFCR]		= 0x01a8,
349 	[IPGR]		= 0x01b4,
350 	[APR]		= 0x01b8,
351 	[MPR]		= 0x01bc,
352 	[TPAUSER]	= 0x01c4,
353 	[BCFR]		= 0x01cc,
354 
355 	[ARSTR]		= 0x0000,
356 	[TSU_CTRST]	= 0x0004,
357 	[TSU_FWEN0]	= 0x0010,
358 	[TSU_FWEN1]	= 0x0014,
359 	[TSU_FCM]	= 0x0018,
360 	[TSU_BSYSL0]	= 0x0020,
361 	[TSU_BSYSL1]	= 0x0024,
362 	[TSU_PRISL0]	= 0x0028,
363 	[TSU_PRISL1]	= 0x002c,
364 	[TSU_FWSL0]	= 0x0030,
365 	[TSU_FWSL1]	= 0x0034,
366 	[TSU_FWSLC]	= 0x0038,
367 	[TSU_QTAGM0]	= 0x0040,
368 	[TSU_QTAGM1]	= 0x0044,
369 	[TSU_ADQT0]	= 0x0048,
370 	[TSU_ADQT1]	= 0x004c,
371 	[TSU_FWSR]	= 0x0050,
372 	[TSU_FWINMK]	= 0x0054,
373 	[TSU_ADSBSY]	= 0x0060,
374 	[TSU_TEN]	= 0x0064,
375 	[TSU_POST1]	= 0x0070,
376 	[TSU_POST2]	= 0x0074,
377 	[TSU_POST3]	= 0x0078,
378 	[TSU_POST4]	= 0x007c,
379 
380 	[TXNLCR0]	= 0x0080,
381 	[TXALCR0]	= 0x0084,
382 	[RXNLCR0]	= 0x0088,
383 	[RXALCR0]	= 0x008c,
384 	[FWNLCR0]	= 0x0090,
385 	[FWALCR0]	= 0x0094,
386 	[TXNLCR1]	= 0x00a0,
387 	[TXALCR1]	= 0x00a0,
388 	[RXNLCR1]	= 0x00a8,
389 	[RXALCR1]	= 0x00ac,
390 	[FWNLCR1]	= 0x00b0,
391 	[FWALCR1]	= 0x00b4,
392 
393 	[TSU_ADRH0]	= 0x0100,
394 	[TSU_ADRL0]	= 0x0104,
395 	[TSU_ADRL31]	= 0x01fc,
396 };
397 
sh_eth_is_gether(struct sh_eth_private * mdp)398 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
399 {
400 	return mdp->reg_offset == sh_eth_offset_gigabit;
401 }
402 
sh_eth_is_rz_fast_ether(struct sh_eth_private * mdp)403 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
404 {
405 	return mdp->reg_offset == sh_eth_offset_fast_rz;
406 }
407 
sh_eth_select_mii(struct net_device * ndev)408 static void sh_eth_select_mii(struct net_device *ndev)
409 {
410 	u32 value = 0x0;
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 
413 	switch (mdp->phy_interface) {
414 	case PHY_INTERFACE_MODE_GMII:
415 		value = 0x2;
416 		break;
417 	case PHY_INTERFACE_MODE_MII:
418 		value = 0x1;
419 		break;
420 	case PHY_INTERFACE_MODE_RMII:
421 		value = 0x0;
422 		break;
423 	default:
424 		netdev_warn(ndev,
425 			    "PHY interface mode was not setup. Set to MII.\n");
426 		value = 0x1;
427 		break;
428 	}
429 
430 	sh_eth_write(ndev, value, RMII_MII);
431 }
432 
sh_eth_set_duplex(struct net_device * ndev)433 static void sh_eth_set_duplex(struct net_device *ndev)
434 {
435 	struct sh_eth_private *mdp = netdev_priv(ndev);
436 
437 	if (mdp->duplex) /* Full */
438 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
439 	else		/* Half */
440 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
441 }
442 
443 /* There is CPU dependent code */
sh_eth_set_rate_r8a777x(struct net_device * ndev)444 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
445 {
446 	struct sh_eth_private *mdp = netdev_priv(ndev);
447 
448 	switch (mdp->speed) {
449 	case 10: /* 10BASE */
450 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
451 		break;
452 	case 100:/* 100BASE */
453 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
454 		break;
455 	default:
456 		break;
457 	}
458 }
459 
460 /* R8A7778/9 */
461 static struct sh_eth_cpu_data r8a777x_data = {
462 	.set_duplex	= sh_eth_set_duplex,
463 	.set_rate	= sh_eth_set_rate_r8a777x,
464 
465 	.register_type	= SH_ETH_REG_FAST_RCAR,
466 
467 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
468 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
469 	.eesipr_value	= 0x01ff009f,
470 
471 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
472 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
473 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
474 			  EESR_ECI,
475 
476 	.apr		= 1,
477 	.mpr		= 1,
478 	.tpauser	= 1,
479 	.hw_swap	= 1,
480 };
481 
482 /* R8A7790/1 */
483 static struct sh_eth_cpu_data r8a779x_data = {
484 	.set_duplex	= sh_eth_set_duplex,
485 	.set_rate	= sh_eth_set_rate_r8a777x,
486 
487 	.register_type	= SH_ETH_REG_FAST_RCAR,
488 
489 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
490 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
491 	.eesipr_value	= 0x01ff009f,
492 
493 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
494 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
495 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
496 			  EESR_ECI,
497 
498 	.apr		= 1,
499 	.mpr		= 1,
500 	.tpauser	= 1,
501 	.hw_swap	= 1,
502 	.rmiimode	= 1,
503 	.shift_rd0	= 1,
504 };
505 
sh_eth_set_rate_sh7724(struct net_device * ndev)506 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
507 {
508 	struct sh_eth_private *mdp = netdev_priv(ndev);
509 
510 	switch (mdp->speed) {
511 	case 10: /* 10BASE */
512 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
513 		break;
514 	case 100:/* 100BASE */
515 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
516 		break;
517 	default:
518 		break;
519 	}
520 }
521 
522 /* SH7724 */
523 static struct sh_eth_cpu_data sh7724_data = {
524 	.set_duplex	= sh_eth_set_duplex,
525 	.set_rate	= sh_eth_set_rate_sh7724,
526 
527 	.register_type	= SH_ETH_REG_FAST_SH4,
528 
529 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
530 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
531 	.eesipr_value	= 0x01ff009f,
532 
533 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
534 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
535 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
536 			  EESR_ECI,
537 
538 	.apr		= 1,
539 	.mpr		= 1,
540 	.tpauser	= 1,
541 	.hw_swap	= 1,
542 	.rpadir		= 1,
543 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
544 };
545 
sh_eth_set_rate_sh7757(struct net_device * ndev)546 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
547 {
548 	struct sh_eth_private *mdp = netdev_priv(ndev);
549 
550 	switch (mdp->speed) {
551 	case 10: /* 10BASE */
552 		sh_eth_write(ndev, 0, RTRATE);
553 		break;
554 	case 100:/* 100BASE */
555 		sh_eth_write(ndev, 1, RTRATE);
556 		break;
557 	default:
558 		break;
559 	}
560 }
561 
562 /* SH7757 */
563 static struct sh_eth_cpu_data sh7757_data = {
564 	.set_duplex	= sh_eth_set_duplex,
565 	.set_rate	= sh_eth_set_rate_sh7757,
566 
567 	.register_type	= SH_ETH_REG_FAST_SH4,
568 
569 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
570 
571 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
572 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
573 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
574 			  EESR_ECI,
575 
576 	.irq_flags	= IRQF_SHARED,
577 	.apr		= 1,
578 	.mpr		= 1,
579 	.tpauser	= 1,
580 	.hw_swap	= 1,
581 	.no_ade		= 1,
582 	.rpadir		= 1,
583 	.rpadir_value   = 2 << 16,
584 };
585 
586 #define SH_GIGA_ETH_BASE	0xfee00000UL
587 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
588 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
sh_eth_chip_reset_giga(struct net_device * ndev)589 static void sh_eth_chip_reset_giga(struct net_device *ndev)
590 {
591 	int i;
592 	unsigned long mahr[2], malr[2];
593 
594 	/* save MAHR and MALR */
595 	for (i = 0; i < 2; i++) {
596 		malr[i] = ioread32((void *)GIGA_MALR(i));
597 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
598 	}
599 
600 	/* reset device */
601 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
602 	mdelay(1);
603 
604 	/* restore MAHR and MALR */
605 	for (i = 0; i < 2; i++) {
606 		iowrite32(malr[i], (void *)GIGA_MALR(i));
607 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
608 	}
609 }
610 
sh_eth_set_rate_giga(struct net_device * ndev)611 static void sh_eth_set_rate_giga(struct net_device *ndev)
612 {
613 	struct sh_eth_private *mdp = netdev_priv(ndev);
614 
615 	switch (mdp->speed) {
616 	case 10: /* 10BASE */
617 		sh_eth_write(ndev, 0x00000000, GECMR);
618 		break;
619 	case 100:/* 100BASE */
620 		sh_eth_write(ndev, 0x00000010, GECMR);
621 		break;
622 	case 1000: /* 1000BASE */
623 		sh_eth_write(ndev, 0x00000020, GECMR);
624 		break;
625 	default:
626 		break;
627 	}
628 }
629 
630 /* SH7757(GETHERC) */
631 static struct sh_eth_cpu_data sh7757_data_giga = {
632 	.chip_reset	= sh_eth_chip_reset_giga,
633 	.set_duplex	= sh_eth_set_duplex,
634 	.set_rate	= sh_eth_set_rate_giga,
635 
636 	.register_type	= SH_ETH_REG_GIGABIT,
637 
638 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
639 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
641 
642 	.tx_check	= EESR_TC1 | EESR_FTC,
643 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
644 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
645 			  EESR_TDE | EESR_ECI,
646 	.fdr_value	= 0x0000072f,
647 
648 	.irq_flags	= IRQF_SHARED,
649 	.apr		= 1,
650 	.mpr		= 1,
651 	.tpauser	= 1,
652 	.bculr		= 1,
653 	.hw_swap	= 1,
654 	.rpadir		= 1,
655 	.rpadir_value   = 2 << 16,
656 	.no_trimd	= 1,
657 	.no_ade		= 1,
658 	.tsu		= 1,
659 };
660 
sh_eth_chip_reset(struct net_device * ndev)661 static void sh_eth_chip_reset(struct net_device *ndev)
662 {
663 	struct sh_eth_private *mdp = netdev_priv(ndev);
664 
665 	/* reset device */
666 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
667 	mdelay(1);
668 }
669 
sh_eth_set_rate_gether(struct net_device * ndev)670 static void sh_eth_set_rate_gether(struct net_device *ndev)
671 {
672 	struct sh_eth_private *mdp = netdev_priv(ndev);
673 
674 	switch (mdp->speed) {
675 	case 10: /* 10BASE */
676 		sh_eth_write(ndev, GECMR_10, GECMR);
677 		break;
678 	case 100:/* 100BASE */
679 		sh_eth_write(ndev, GECMR_100, GECMR);
680 		break;
681 	case 1000: /* 1000BASE */
682 		sh_eth_write(ndev, GECMR_1000, GECMR);
683 		break;
684 	default:
685 		break;
686 	}
687 }
688 
689 /* SH7734 */
690 static struct sh_eth_cpu_data sh7734_data = {
691 	.chip_reset	= sh_eth_chip_reset,
692 	.set_duplex	= sh_eth_set_duplex,
693 	.set_rate	= sh_eth_set_rate_gether,
694 
695 	.register_type	= SH_ETH_REG_GIGABIT,
696 
697 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
698 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
699 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
700 
701 	.tx_check	= EESR_TC1 | EESR_FTC,
702 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
703 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
704 			  EESR_TDE | EESR_ECI,
705 
706 	.apr		= 1,
707 	.mpr		= 1,
708 	.tpauser	= 1,
709 	.bculr		= 1,
710 	.hw_swap	= 1,
711 	.no_trimd	= 1,
712 	.no_ade		= 1,
713 	.tsu		= 1,
714 	.hw_crc		= 1,
715 	.select_mii	= 1,
716 };
717 
718 /* SH7763 */
719 static struct sh_eth_cpu_data sh7763_data = {
720 	.chip_reset	= sh_eth_chip_reset,
721 	.set_duplex	= sh_eth_set_duplex,
722 	.set_rate	= sh_eth_set_rate_gether,
723 
724 	.register_type	= SH_ETH_REG_GIGABIT,
725 
726 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
727 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
728 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
729 
730 	.tx_check	= EESR_TC1 | EESR_FTC,
731 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
732 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
733 			  EESR_ECI,
734 
735 	.apr		= 1,
736 	.mpr		= 1,
737 	.tpauser	= 1,
738 	.bculr		= 1,
739 	.hw_swap	= 1,
740 	.no_trimd	= 1,
741 	.no_ade		= 1,
742 	.tsu		= 1,
743 	.irq_flags	= IRQF_SHARED,
744 };
745 
sh_eth_chip_reset_r8a7740(struct net_device * ndev)746 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
747 {
748 	struct sh_eth_private *mdp = netdev_priv(ndev);
749 
750 	/* reset device */
751 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
752 	mdelay(1);
753 
754 	sh_eth_select_mii(ndev);
755 }
756 
757 /* R8A7740 */
758 static struct sh_eth_cpu_data r8a7740_data = {
759 	.chip_reset	= sh_eth_chip_reset_r8a7740,
760 	.set_duplex	= sh_eth_set_duplex,
761 	.set_rate	= sh_eth_set_rate_gether,
762 
763 	.register_type	= SH_ETH_REG_GIGABIT,
764 
765 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
766 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
767 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
768 
769 	.tx_check	= EESR_TC1 | EESR_FTC,
770 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
771 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
772 			  EESR_TDE | EESR_ECI,
773 	.fdr_value	= 0x0000070f,
774 
775 	.apr		= 1,
776 	.mpr		= 1,
777 	.tpauser	= 1,
778 	.bculr		= 1,
779 	.hw_swap	= 1,
780 	.rpadir		= 1,
781 	.rpadir_value   = 2 << 16,
782 	.no_trimd	= 1,
783 	.no_ade		= 1,
784 	.hw_crc		= 1,
785 	.tsu		= 1,
786 	.select_mii	= 1,
787 	.shift_rd0	= 1,
788 };
789 
790 /* R7S72100 */
791 static struct sh_eth_cpu_data r7s72100_data = {
792 	.chip_reset	= sh_eth_chip_reset,
793 	.set_duplex	= sh_eth_set_duplex,
794 
795 	.register_type	= SH_ETH_REG_FAST_RZ,
796 
797 	.ecsr_value	= ECSR_ICD,
798 	.ecsipr_value	= ECSIPR_ICDIP,
799 	.eesipr_value	= 0xff7f009f,
800 
801 	.tx_check	= EESR_TC1 | EESR_FTC,
802 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
803 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
804 			  EESR_TDE | EESR_ECI,
805 	.fdr_value	= 0x0000070f,
806 
807 	.no_psr		= 1,
808 	.apr		= 1,
809 	.mpr		= 1,
810 	.tpauser	= 1,
811 	.hw_swap	= 1,
812 	.rpadir		= 1,
813 	.rpadir_value   = 2 << 16,
814 	.no_trimd	= 1,
815 	.no_ade		= 1,
816 	.hw_crc		= 1,
817 	.tsu		= 1,
818 	.shift_rd0	= 1,
819 };
820 
821 static struct sh_eth_cpu_data sh7619_data = {
822 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
823 
824 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
825 
826 	.apr		= 1,
827 	.mpr		= 1,
828 	.tpauser	= 1,
829 	.hw_swap	= 1,
830 };
831 
832 static struct sh_eth_cpu_data sh771x_data = {
833 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
834 
835 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
836 	.tsu		= 1,
837 };
838 
sh_eth_set_default_cpu_data(struct sh_eth_cpu_data * cd)839 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
840 {
841 	if (!cd->ecsr_value)
842 		cd->ecsr_value = DEFAULT_ECSR_INIT;
843 
844 	if (!cd->ecsipr_value)
845 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
846 
847 	if (!cd->fcftr_value)
848 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
849 				  DEFAULT_FIFO_F_D_RFD;
850 
851 	if (!cd->fdr_value)
852 		cd->fdr_value = DEFAULT_FDR_INIT;
853 
854 	if (!cd->tx_check)
855 		cd->tx_check = DEFAULT_TX_CHECK;
856 
857 	if (!cd->eesr_err_check)
858 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
859 }
860 
sh_eth_check_reset(struct net_device * ndev)861 static int sh_eth_check_reset(struct net_device *ndev)
862 {
863 	int ret = 0;
864 	int cnt = 100;
865 
866 	while (cnt > 0) {
867 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
868 			break;
869 		mdelay(1);
870 		cnt--;
871 	}
872 	if (cnt <= 0) {
873 		netdev_err(ndev, "Device reset failed\n");
874 		ret = -ETIMEDOUT;
875 	}
876 	return ret;
877 }
878 
sh_eth_reset(struct net_device * ndev)879 static int sh_eth_reset(struct net_device *ndev)
880 {
881 	struct sh_eth_private *mdp = netdev_priv(ndev);
882 	int ret = 0;
883 
884 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
885 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
886 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
887 			     EDMR);
888 
889 		ret = sh_eth_check_reset(ndev);
890 		if (ret)
891 			return ret;
892 
893 		/* Table Init */
894 		sh_eth_write(ndev, 0x0, TDLAR);
895 		sh_eth_write(ndev, 0x0, TDFAR);
896 		sh_eth_write(ndev, 0x0, TDFXR);
897 		sh_eth_write(ndev, 0x0, TDFFR);
898 		sh_eth_write(ndev, 0x0, RDLAR);
899 		sh_eth_write(ndev, 0x0, RDFAR);
900 		sh_eth_write(ndev, 0x0, RDFXR);
901 		sh_eth_write(ndev, 0x0, RDFFR);
902 
903 		/* Reset HW CRC register */
904 		if (mdp->cd->hw_crc)
905 			sh_eth_write(ndev, 0x0, CSMR);
906 
907 		/* Select MII mode */
908 		if (mdp->cd->select_mii)
909 			sh_eth_select_mii(ndev);
910 	} else {
911 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
912 			     EDMR);
913 		mdelay(3);
914 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
915 			     EDMR);
916 	}
917 
918 	return ret;
919 }
920 
sh_eth_set_receive_align(struct sk_buff * skb)921 static void sh_eth_set_receive_align(struct sk_buff *skb)
922 {
923 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
924 
925 	if (reserve)
926 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
927 }
928 
929 
930 /* CPU <-> EDMAC endian convert */
cpu_to_edmac(struct sh_eth_private * mdp,u32 x)931 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
932 {
933 	switch (mdp->edmac_endian) {
934 	case EDMAC_LITTLE_ENDIAN:
935 		return cpu_to_le32(x);
936 	case EDMAC_BIG_ENDIAN:
937 		return cpu_to_be32(x);
938 	}
939 	return x;
940 }
941 
edmac_to_cpu(struct sh_eth_private * mdp,u32 x)942 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
943 {
944 	switch (mdp->edmac_endian) {
945 	case EDMAC_LITTLE_ENDIAN:
946 		return le32_to_cpu(x);
947 	case EDMAC_BIG_ENDIAN:
948 		return be32_to_cpu(x);
949 	}
950 	return x;
951 }
952 
953 /* Program the hardware MAC address from dev->dev_addr. */
update_mac_address(struct net_device * ndev)954 static void update_mac_address(struct net_device *ndev)
955 {
956 	sh_eth_write(ndev,
957 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
958 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
959 	sh_eth_write(ndev,
960 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
961 }
962 
963 /* Get MAC address from SuperH MAC address register
964  *
965  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
966  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
967  * When you want use this device, you must set MAC address in bootloader.
968  *
969  */
read_mac_address(struct net_device * ndev,unsigned char * mac)970 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
971 {
972 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
973 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
974 	} else {
975 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
976 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
977 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
978 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
979 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
980 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
981 	}
982 }
983 
sh_eth_get_edtrr_trns(struct sh_eth_private * mdp)984 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
985 {
986 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
987 		return EDTRR_TRNS_GETHER;
988 	else
989 		return EDTRR_TRNS_ETHER;
990 }
991 
992 struct bb_info {
993 	void (*set_gate)(void *addr);
994 	struct mdiobb_ctrl ctrl;
995 	void *addr;
996 	u32 mmd_msk;/* MMD */
997 	u32 mdo_msk;
998 	u32 mdi_msk;
999 	u32 mdc_msk;
1000 };
1001 
1002 /* PHY bit set */
bb_set(void * addr,u32 msk)1003 static void bb_set(void *addr, u32 msk)
1004 {
1005 	iowrite32(ioread32(addr) | msk, addr);
1006 }
1007 
1008 /* PHY bit clear */
bb_clr(void * addr,u32 msk)1009 static void bb_clr(void *addr, u32 msk)
1010 {
1011 	iowrite32((ioread32(addr) & ~msk), addr);
1012 }
1013 
1014 /* PHY bit read */
bb_read(void * addr,u32 msk)1015 static int bb_read(void *addr, u32 msk)
1016 {
1017 	return (ioread32(addr) & msk) != 0;
1018 }
1019 
1020 /* Data I/O pin control */
sh_mmd_ctrl(struct mdiobb_ctrl * ctrl,int bit)1021 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1022 {
1023 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1024 
1025 	if (bitbang->set_gate)
1026 		bitbang->set_gate(bitbang->addr);
1027 
1028 	if (bit)
1029 		bb_set(bitbang->addr, bitbang->mmd_msk);
1030 	else
1031 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1032 }
1033 
1034 /* Set bit data*/
sh_set_mdio(struct mdiobb_ctrl * ctrl,int bit)1035 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1036 {
1037 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1038 
1039 	if (bitbang->set_gate)
1040 		bitbang->set_gate(bitbang->addr);
1041 
1042 	if (bit)
1043 		bb_set(bitbang->addr, bitbang->mdo_msk);
1044 	else
1045 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1046 }
1047 
1048 /* Get bit data*/
sh_get_mdio(struct mdiobb_ctrl * ctrl)1049 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1050 {
1051 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1052 
1053 	if (bitbang->set_gate)
1054 		bitbang->set_gate(bitbang->addr);
1055 
1056 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1057 }
1058 
1059 /* MDC pin control */
sh_mdc_ctrl(struct mdiobb_ctrl * ctrl,int bit)1060 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1061 {
1062 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1063 
1064 	if (bitbang->set_gate)
1065 		bitbang->set_gate(bitbang->addr);
1066 
1067 	if (bit)
1068 		bb_set(bitbang->addr, bitbang->mdc_msk);
1069 	else
1070 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1071 }
1072 
1073 /* mdio bus control struct */
1074 static struct mdiobb_ops bb_ops = {
1075 	.owner = THIS_MODULE,
1076 	.set_mdc = sh_mdc_ctrl,
1077 	.set_mdio_dir = sh_mmd_ctrl,
1078 	.set_mdio_data = sh_set_mdio,
1079 	.get_mdio_data = sh_get_mdio,
1080 };
1081 
1082 /* free skb and descriptor buffer */
sh_eth_ring_free(struct net_device * ndev)1083 static void sh_eth_ring_free(struct net_device *ndev)
1084 {
1085 	struct sh_eth_private *mdp = netdev_priv(ndev);
1086 	int i;
1087 
1088 	/* Free Rx skb ringbuffer */
1089 	if (mdp->rx_skbuff) {
1090 		for (i = 0; i < mdp->num_rx_ring; i++)
1091 			dev_kfree_skb(mdp->rx_skbuff[i]);
1092 	}
1093 	kfree(mdp->rx_skbuff);
1094 	mdp->rx_skbuff = NULL;
1095 
1096 	/* Free Tx skb ringbuffer */
1097 	if (mdp->tx_skbuff) {
1098 		for (i = 0; i < mdp->num_tx_ring; i++)
1099 			dev_kfree_skb(mdp->tx_skbuff[i]);
1100 	}
1101 	kfree(mdp->tx_skbuff);
1102 	mdp->tx_skbuff = NULL;
1103 }
1104 
1105 /* format skb and descriptor buffer */
sh_eth_ring_format(struct net_device * ndev)1106 static void sh_eth_ring_format(struct net_device *ndev)
1107 {
1108 	struct sh_eth_private *mdp = netdev_priv(ndev);
1109 	int i;
1110 	struct sk_buff *skb;
1111 	struct sh_eth_rxdesc *rxdesc = NULL;
1112 	struct sh_eth_txdesc *txdesc = NULL;
1113 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1114 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1115 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1116 	dma_addr_t dma_addr;
1117 
1118 	mdp->cur_rx = 0;
1119 	mdp->cur_tx = 0;
1120 	mdp->dirty_rx = 0;
1121 	mdp->dirty_tx = 0;
1122 
1123 	memset(mdp->rx_ring, 0, rx_ringsize);
1124 
1125 	/* build Rx ring buffer */
1126 	for (i = 0; i < mdp->num_rx_ring; i++) {
1127 		/* skb */
1128 		mdp->rx_skbuff[i] = NULL;
1129 		skb = netdev_alloc_skb(ndev, skbuff_size);
1130 		if (skb == NULL)
1131 			break;
1132 		sh_eth_set_receive_align(skb);
1133 
1134 		/* RX descriptor */
1135 		rxdesc = &mdp->rx_ring[i];
1136 		/* The size of the buffer is a multiple of 32 bytes. */
1137 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1138 		dma_addr = dma_map_single(&ndev->dev, skb->data,
1139 					  rxdesc->buffer_length,
1140 					  DMA_FROM_DEVICE);
1141 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1142 			kfree_skb(skb);
1143 			break;
1144 		}
1145 		mdp->rx_skbuff[i] = skb;
1146 		rxdesc->addr = dma_addr;
1147 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1148 
1149 		/* Rx descriptor address set */
1150 		if (i == 0) {
1151 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1152 			if (sh_eth_is_gether(mdp) ||
1153 			    sh_eth_is_rz_fast_ether(mdp))
1154 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1155 		}
1156 	}
1157 
1158 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1159 
1160 	/* Mark the last entry as wrapping the ring. */
1161 	if (rxdesc)
1162 		rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1163 
1164 	memset(mdp->tx_ring, 0, tx_ringsize);
1165 
1166 	/* build Tx ring buffer */
1167 	for (i = 0; i < mdp->num_tx_ring; i++) {
1168 		mdp->tx_skbuff[i] = NULL;
1169 		txdesc = &mdp->tx_ring[i];
1170 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1171 		txdesc->buffer_length = 0;
1172 		if (i == 0) {
1173 			/* Tx descriptor address set */
1174 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1175 			if (sh_eth_is_gether(mdp) ||
1176 			    sh_eth_is_rz_fast_ether(mdp))
1177 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1178 		}
1179 	}
1180 
1181 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1182 }
1183 
1184 /* Get skb and descriptor buffer */
sh_eth_ring_init(struct net_device * ndev)1185 static int sh_eth_ring_init(struct net_device *ndev)
1186 {
1187 	struct sh_eth_private *mdp = netdev_priv(ndev);
1188 	int rx_ringsize, tx_ringsize, ret = 0;
1189 
1190 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1191 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1192 	 * the first 2 bytes, and +16 gets room for the status word from the
1193 	 * card.
1194 	 */
1195 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1196 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1197 	if (mdp->cd->rpadir)
1198 		mdp->rx_buf_sz += NET_IP_ALIGN;
1199 
1200 	/* Allocate RX and TX skb rings */
1201 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1202 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1203 	if (!mdp->rx_skbuff) {
1204 		ret = -ENOMEM;
1205 		return ret;
1206 	}
1207 
1208 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1209 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1210 	if (!mdp->tx_skbuff) {
1211 		ret = -ENOMEM;
1212 		goto skb_ring_free;
1213 	}
1214 
1215 	/* Allocate all Rx descriptors. */
1216 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1217 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1218 					  GFP_KERNEL);
1219 	if (!mdp->rx_ring) {
1220 		ret = -ENOMEM;
1221 		goto desc_ring_free;
1222 	}
1223 
1224 	mdp->dirty_rx = 0;
1225 
1226 	/* Allocate all Tx descriptors. */
1227 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1228 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1229 					  GFP_KERNEL);
1230 	if (!mdp->tx_ring) {
1231 		ret = -ENOMEM;
1232 		goto desc_ring_free;
1233 	}
1234 	return ret;
1235 
1236 desc_ring_free:
1237 	/* free DMA buffer */
1238 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1239 
1240 skb_ring_free:
1241 	/* Free Rx and Tx skb ring buffer */
1242 	sh_eth_ring_free(ndev);
1243 	mdp->tx_ring = NULL;
1244 	mdp->rx_ring = NULL;
1245 
1246 	return ret;
1247 }
1248 
sh_eth_free_dma_buffer(struct sh_eth_private * mdp)1249 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1250 {
1251 	int ringsize;
1252 
1253 	if (mdp->rx_ring) {
1254 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1255 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1256 				  mdp->rx_desc_dma);
1257 		mdp->rx_ring = NULL;
1258 	}
1259 
1260 	if (mdp->tx_ring) {
1261 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1262 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1263 				  mdp->tx_desc_dma);
1264 		mdp->tx_ring = NULL;
1265 	}
1266 }
1267 
sh_eth_dev_init(struct net_device * ndev,bool start)1268 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1269 {
1270 	int ret = 0;
1271 	struct sh_eth_private *mdp = netdev_priv(ndev);
1272 	u32 val;
1273 
1274 	/* Soft Reset */
1275 	ret = sh_eth_reset(ndev);
1276 	if (ret)
1277 		return ret;
1278 
1279 	if (mdp->cd->rmiimode)
1280 		sh_eth_write(ndev, 0x1, RMIIMODE);
1281 
1282 	/* Descriptor format */
1283 	sh_eth_ring_format(ndev);
1284 	if (mdp->cd->rpadir)
1285 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1286 
1287 	/* all sh_eth int mask */
1288 	sh_eth_write(ndev, 0, EESIPR);
1289 
1290 #if defined(__LITTLE_ENDIAN)
1291 	if (mdp->cd->hw_swap)
1292 		sh_eth_write(ndev, EDMR_EL, EDMR);
1293 	else
1294 #endif
1295 		sh_eth_write(ndev, 0, EDMR);
1296 
1297 	/* FIFO size set */
1298 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1299 	sh_eth_write(ndev, 0, TFTR);
1300 
1301 	/* Frame recv control (enable multiple-packets per rx irq) */
1302 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1303 
1304 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1305 
1306 	if (mdp->cd->bculr)
1307 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1308 
1309 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1310 
1311 	if (!mdp->cd->no_trimd)
1312 		sh_eth_write(ndev, 0, TRIMD);
1313 
1314 	/* Recv frame limit set register */
1315 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1316 		     RFLR);
1317 
1318 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1319 	if (start)
1320 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1321 
1322 	/* PAUSE Prohibition */
1323 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1324 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1325 
1326 	sh_eth_write(ndev, val, ECMR);
1327 
1328 	if (mdp->cd->set_rate)
1329 		mdp->cd->set_rate(ndev);
1330 
1331 	/* E-MAC Status Register clear */
1332 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1333 
1334 	/* E-MAC Interrupt Enable register */
1335 	if (start)
1336 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1337 
1338 	/* Set MAC address */
1339 	update_mac_address(ndev);
1340 
1341 	/* mask reset */
1342 	if (mdp->cd->apr)
1343 		sh_eth_write(ndev, APR_AP, APR);
1344 	if (mdp->cd->mpr)
1345 		sh_eth_write(ndev, MPR_MP, MPR);
1346 	if (mdp->cd->tpauser)
1347 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1348 
1349 	if (start) {
1350 		/* Setting the Rx mode will start the Rx process. */
1351 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1352 
1353 		netif_start_queue(ndev);
1354 	}
1355 
1356 	return ret;
1357 }
1358 
1359 /* free Tx skb function */
sh_eth_txfree(struct net_device * ndev)1360 static int sh_eth_txfree(struct net_device *ndev)
1361 {
1362 	struct sh_eth_private *mdp = netdev_priv(ndev);
1363 	struct sh_eth_txdesc *txdesc;
1364 	int free_num = 0;
1365 	int entry = 0;
1366 
1367 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1368 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1369 		txdesc = &mdp->tx_ring[entry];
1370 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1371 			break;
1372 		/* Free the original skb. */
1373 		if (mdp->tx_skbuff[entry]) {
1374 			dma_unmap_single(&ndev->dev, txdesc->addr,
1375 					 txdesc->buffer_length, DMA_TO_DEVICE);
1376 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1377 			mdp->tx_skbuff[entry] = NULL;
1378 			free_num++;
1379 		}
1380 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1381 		if (entry >= mdp->num_tx_ring - 1)
1382 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1383 
1384 		ndev->stats.tx_packets++;
1385 		ndev->stats.tx_bytes += txdesc->buffer_length;
1386 	}
1387 	return free_num;
1388 }
1389 
1390 /* Packet receive function */
sh_eth_rx(struct net_device * ndev,u32 intr_status,int * quota)1391 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1392 {
1393 	struct sh_eth_private *mdp = netdev_priv(ndev);
1394 	struct sh_eth_rxdesc *rxdesc;
1395 
1396 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1397 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1398 	struct sk_buff *skb;
1399 	u16 pkt_len = 0;
1400 	u32 desc_status;
1401 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1402 	dma_addr_t dma_addr;
1403 
1404 	rxdesc = &mdp->rx_ring[entry];
1405 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1406 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1407 		pkt_len = rxdesc->frame_length;
1408 
1409 		if (--boguscnt < 0)
1410 			break;
1411 
1412 		if (*quota <= 0)
1413 			break;
1414 
1415 		(*quota)--;
1416 
1417 		if (!(desc_status & RDFEND))
1418 			ndev->stats.rx_length_errors++;
1419 
1420 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1421 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1422 		 * bit 0. However, in case of the R8A7740, R8A779x, and
1423 		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1424 		 * driver needs right shifting by 16.
1425 		 */
1426 		if (mdp->cd->shift_rd0)
1427 			desc_status >>= 16;
1428 
1429 		skb = mdp->rx_skbuff[entry];
1430 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1431 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1432 			ndev->stats.rx_errors++;
1433 			if (desc_status & RD_RFS1)
1434 				ndev->stats.rx_crc_errors++;
1435 			if (desc_status & RD_RFS2)
1436 				ndev->stats.rx_frame_errors++;
1437 			if (desc_status & RD_RFS3)
1438 				ndev->stats.rx_length_errors++;
1439 			if (desc_status & RD_RFS4)
1440 				ndev->stats.rx_length_errors++;
1441 			if (desc_status & RD_RFS6)
1442 				ndev->stats.rx_missed_errors++;
1443 			if (desc_status & RD_RFS10)
1444 				ndev->stats.rx_over_errors++;
1445 		} else	if (skb) {
1446 			if (!mdp->cd->hw_swap)
1447 				sh_eth_soft_swap(
1448 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1449 					pkt_len + 2);
1450 			mdp->rx_skbuff[entry] = NULL;
1451 			if (mdp->cd->rpadir)
1452 				skb_reserve(skb, NET_IP_ALIGN);
1453 			dma_unmap_single(&ndev->dev, rxdesc->addr,
1454 					 ALIGN(mdp->rx_buf_sz, 32),
1455 					 DMA_FROM_DEVICE);
1456 			skb_put(skb, pkt_len);
1457 			skb->protocol = eth_type_trans(skb, ndev);
1458 			netif_receive_skb(skb);
1459 			ndev->stats.rx_packets++;
1460 			ndev->stats.rx_bytes += pkt_len;
1461 		}
1462 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1463 		rxdesc = &mdp->rx_ring[entry];
1464 	}
1465 
1466 	/* Refill the Rx ring buffers. */
1467 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1468 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1469 		rxdesc = &mdp->rx_ring[entry];
1470 		/* The size of the buffer is 32 byte boundary. */
1471 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1472 
1473 		if (mdp->rx_skbuff[entry] == NULL) {
1474 			skb = netdev_alloc_skb(ndev, skbuff_size);
1475 			if (skb == NULL)
1476 				break;	/* Better luck next round. */
1477 			sh_eth_set_receive_align(skb);
1478 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1479 						  rxdesc->buffer_length,
1480 						  DMA_FROM_DEVICE);
1481 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1482 				kfree_skb(skb);
1483 				break;
1484 			}
1485 			mdp->rx_skbuff[entry] = skb;
1486 
1487 			skb_checksum_none_assert(skb);
1488 			rxdesc->addr = dma_addr;
1489 		}
1490 		if (entry >= mdp->num_rx_ring - 1)
1491 			rxdesc->status |=
1492 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1493 		else
1494 			rxdesc->status |=
1495 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1496 	}
1497 
1498 	/* Restart Rx engine if stopped. */
1499 	/* If we don't need to check status, don't. -KDU */
1500 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1501 		/* fix the values for the next receiving if RDE is set */
1502 		if (intr_status & EESR_RDE) {
1503 			u32 count = (sh_eth_read(ndev, RDFAR) -
1504 				     sh_eth_read(ndev, RDLAR)) >> 4;
1505 
1506 			mdp->cur_rx = count;
1507 			mdp->dirty_rx = count;
1508 		}
1509 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1510 	}
1511 
1512 	return *quota <= 0;
1513 }
1514 
sh_eth_rcv_snd_disable(struct net_device * ndev)1515 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1516 {
1517 	/* disable tx and rx */
1518 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1519 		~(ECMR_RE | ECMR_TE), ECMR);
1520 }
1521 
sh_eth_rcv_snd_enable(struct net_device * ndev)1522 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1523 {
1524 	/* enable tx and rx */
1525 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1526 		(ECMR_RE | ECMR_TE), ECMR);
1527 }
1528 
1529 /* error control function */
sh_eth_error(struct net_device * ndev,int intr_status)1530 static void sh_eth_error(struct net_device *ndev, int intr_status)
1531 {
1532 	struct sh_eth_private *mdp = netdev_priv(ndev);
1533 	u32 felic_stat;
1534 	u32 link_stat;
1535 	u32 mask;
1536 
1537 	if (intr_status & EESR_ECI) {
1538 		felic_stat = sh_eth_read(ndev, ECSR);
1539 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1540 		if (felic_stat & ECSR_ICD)
1541 			ndev->stats.tx_carrier_errors++;
1542 		if (felic_stat & ECSR_LCHNG) {
1543 			/* Link Changed */
1544 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1545 				goto ignore_link;
1546 			} else {
1547 				link_stat = (sh_eth_read(ndev, PSR));
1548 				if (mdp->ether_link_active_low)
1549 					link_stat = ~link_stat;
1550 			}
1551 			if (!(link_stat & PHY_ST_LINK)) {
1552 				sh_eth_rcv_snd_disable(ndev);
1553 			} else {
1554 				/* Link Up */
1555 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1556 						   ~DMAC_M_ECI, EESIPR);
1557 				/* clear int */
1558 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1559 					     ECSR);
1560 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1561 						   DMAC_M_ECI, EESIPR);
1562 				/* enable tx and rx */
1563 				sh_eth_rcv_snd_enable(ndev);
1564 			}
1565 		}
1566 	}
1567 
1568 ignore_link:
1569 	if (intr_status & EESR_TWB) {
1570 		/* Unused write back interrupt */
1571 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1572 			ndev->stats.tx_aborted_errors++;
1573 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1574 		}
1575 	}
1576 
1577 	if (intr_status & EESR_RABT) {
1578 		/* Receive Abort int */
1579 		if (intr_status & EESR_RFRMER) {
1580 			/* Receive Frame Overflow int */
1581 			ndev->stats.rx_frame_errors++;
1582 			netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1583 		}
1584 	}
1585 
1586 	if (intr_status & EESR_TDE) {
1587 		/* Transmit Descriptor Empty int */
1588 		ndev->stats.tx_fifo_errors++;
1589 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1590 	}
1591 
1592 	if (intr_status & EESR_TFE) {
1593 		/* FIFO under flow */
1594 		ndev->stats.tx_fifo_errors++;
1595 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1596 	}
1597 
1598 	if (intr_status & EESR_RDE) {
1599 		/* Receive Descriptor Empty int */
1600 		ndev->stats.rx_over_errors++;
1601 		netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1602 	}
1603 
1604 	if (intr_status & EESR_RFE) {
1605 		/* Receive FIFO Overflow int */
1606 		ndev->stats.rx_fifo_errors++;
1607 		netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1608 	}
1609 
1610 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1611 		/* Address Error */
1612 		ndev->stats.tx_fifo_errors++;
1613 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1614 	}
1615 
1616 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1617 	if (mdp->cd->no_ade)
1618 		mask &= ~EESR_ADE;
1619 	if (intr_status & mask) {
1620 		/* Tx error */
1621 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1622 
1623 		/* dmesg */
1624 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1625 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1626 			   (u32)ndev->state, edtrr);
1627 		/* dirty buffer free */
1628 		sh_eth_txfree(ndev);
1629 
1630 		/* SH7712 BUG */
1631 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1632 			/* tx dma start */
1633 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1634 		}
1635 		/* wakeup */
1636 		netif_wake_queue(ndev);
1637 	}
1638 }
1639 
sh_eth_interrupt(int irq,void * netdev)1640 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1641 {
1642 	struct net_device *ndev = netdev;
1643 	struct sh_eth_private *mdp = netdev_priv(ndev);
1644 	struct sh_eth_cpu_data *cd = mdp->cd;
1645 	irqreturn_t ret = IRQ_NONE;
1646 	unsigned long intr_status, intr_enable;
1647 
1648 	spin_lock(&mdp->lock);
1649 
1650 	/* Get interrupt status */
1651 	intr_status = sh_eth_read(ndev, EESR);
1652 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1653 	 * enabled since it's the one that  comes thru regardless of the mask,
1654 	 * and we need to fully handle it in sh_eth_error() in order to quench
1655 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1656 	 */
1657 	intr_enable = sh_eth_read(ndev, EESIPR);
1658 	intr_status &= intr_enable | DMAC_M_ECI;
1659 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1660 		ret = IRQ_HANDLED;
1661 	else
1662 		goto other_irq;
1663 
1664 	if (intr_status & EESR_RX_CHECK) {
1665 		if (napi_schedule_prep(&mdp->napi)) {
1666 			/* Mask Rx interrupts */
1667 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1668 				     EESIPR);
1669 			__napi_schedule(&mdp->napi);
1670 		} else {
1671 			netdev_warn(ndev,
1672 				    "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1673 				    intr_status, intr_enable);
1674 		}
1675 	}
1676 
1677 	/* Tx Check */
1678 	if (intr_status & cd->tx_check) {
1679 		/* Clear Tx interrupts */
1680 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1681 
1682 		sh_eth_txfree(ndev);
1683 		netif_wake_queue(ndev);
1684 	}
1685 
1686 	if (intr_status & cd->eesr_err_check) {
1687 		/* Clear error interrupts */
1688 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1689 
1690 		sh_eth_error(ndev, intr_status);
1691 	}
1692 
1693 other_irq:
1694 	spin_unlock(&mdp->lock);
1695 
1696 	return ret;
1697 }
1698 
sh_eth_poll(struct napi_struct * napi,int budget)1699 static int sh_eth_poll(struct napi_struct *napi, int budget)
1700 {
1701 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1702 						  napi);
1703 	struct net_device *ndev = napi->dev;
1704 	int quota = budget;
1705 	unsigned long intr_status;
1706 
1707 	for (;;) {
1708 		intr_status = sh_eth_read(ndev, EESR);
1709 		if (!(intr_status & EESR_RX_CHECK))
1710 			break;
1711 		/* Clear Rx interrupts */
1712 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1713 
1714 		if (sh_eth_rx(ndev, intr_status, &quota))
1715 			goto out;
1716 	}
1717 
1718 	napi_complete(napi);
1719 
1720 	/* Reenable Rx interrupts */
1721 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1722 out:
1723 	return budget - quota;
1724 }
1725 
1726 /* PHY state control function */
sh_eth_adjust_link(struct net_device * ndev)1727 static void sh_eth_adjust_link(struct net_device *ndev)
1728 {
1729 	struct sh_eth_private *mdp = netdev_priv(ndev);
1730 	struct phy_device *phydev = mdp->phydev;
1731 	int new_state = 0;
1732 
1733 	if (phydev->link) {
1734 		if (phydev->duplex != mdp->duplex) {
1735 			new_state = 1;
1736 			mdp->duplex = phydev->duplex;
1737 			if (mdp->cd->set_duplex)
1738 				mdp->cd->set_duplex(ndev);
1739 		}
1740 
1741 		if (phydev->speed != mdp->speed) {
1742 			new_state = 1;
1743 			mdp->speed = phydev->speed;
1744 			if (mdp->cd->set_rate)
1745 				mdp->cd->set_rate(ndev);
1746 		}
1747 		if (!mdp->link) {
1748 			sh_eth_write(ndev,
1749 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1750 				     ECMR);
1751 			new_state = 1;
1752 			mdp->link = phydev->link;
1753 			if (mdp->cd->no_psr || mdp->no_ether_link)
1754 				sh_eth_rcv_snd_enable(ndev);
1755 		}
1756 	} else if (mdp->link) {
1757 		new_state = 1;
1758 		mdp->link = 0;
1759 		mdp->speed = 0;
1760 		mdp->duplex = -1;
1761 		if (mdp->cd->no_psr || mdp->no_ether_link)
1762 			sh_eth_rcv_snd_disable(ndev);
1763 	}
1764 
1765 	if (new_state && netif_msg_link(mdp))
1766 		phy_print_status(phydev);
1767 }
1768 
1769 /* PHY init function */
sh_eth_phy_init(struct net_device * ndev)1770 static int sh_eth_phy_init(struct net_device *ndev)
1771 {
1772 	struct device_node *np = ndev->dev.parent->of_node;
1773 	struct sh_eth_private *mdp = netdev_priv(ndev);
1774 	struct phy_device *phydev = NULL;
1775 
1776 	mdp->link = 0;
1777 	mdp->speed = 0;
1778 	mdp->duplex = -1;
1779 
1780 	/* Try connect to PHY */
1781 	if (np) {
1782 		struct device_node *pn;
1783 
1784 		pn = of_parse_phandle(np, "phy-handle", 0);
1785 		phydev = of_phy_connect(ndev, pn,
1786 					sh_eth_adjust_link, 0,
1787 					mdp->phy_interface);
1788 
1789 		if (!phydev)
1790 			phydev = ERR_PTR(-ENOENT);
1791 	} else {
1792 		char phy_id[MII_BUS_ID_SIZE + 3];
1793 
1794 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1795 			 mdp->mii_bus->id, mdp->phy_id);
1796 
1797 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1798 				     mdp->phy_interface);
1799 	}
1800 
1801 	if (IS_ERR(phydev)) {
1802 		netdev_err(ndev, "failed to connect PHY\n");
1803 		return PTR_ERR(phydev);
1804 	}
1805 
1806 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1807 		    phydev->addr, phydev->irq, phydev->drv->name);
1808 
1809 	mdp->phydev = phydev;
1810 
1811 	return 0;
1812 }
1813 
1814 /* PHY control start function */
sh_eth_phy_start(struct net_device * ndev)1815 static int sh_eth_phy_start(struct net_device *ndev)
1816 {
1817 	struct sh_eth_private *mdp = netdev_priv(ndev);
1818 	int ret;
1819 
1820 	ret = sh_eth_phy_init(ndev);
1821 	if (ret)
1822 		return ret;
1823 
1824 	phy_start(mdp->phydev);
1825 
1826 	return 0;
1827 }
1828 
sh_eth_get_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1829 static int sh_eth_get_settings(struct net_device *ndev,
1830 			       struct ethtool_cmd *ecmd)
1831 {
1832 	struct sh_eth_private *mdp = netdev_priv(ndev);
1833 	unsigned long flags;
1834 	int ret;
1835 
1836 	if (!mdp->phydev)
1837 		return -ENODEV;
1838 
1839 	spin_lock_irqsave(&mdp->lock, flags);
1840 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1841 	spin_unlock_irqrestore(&mdp->lock, flags);
1842 
1843 	return ret;
1844 }
1845 
sh_eth_set_settings(struct net_device * ndev,struct ethtool_cmd * ecmd)1846 static int sh_eth_set_settings(struct net_device *ndev,
1847 			       struct ethtool_cmd *ecmd)
1848 {
1849 	struct sh_eth_private *mdp = netdev_priv(ndev);
1850 	unsigned long flags;
1851 	int ret;
1852 
1853 	if (!mdp->phydev)
1854 		return -ENODEV;
1855 
1856 	spin_lock_irqsave(&mdp->lock, flags);
1857 
1858 	/* disable tx and rx */
1859 	sh_eth_rcv_snd_disable(ndev);
1860 
1861 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1862 	if (ret)
1863 		goto error_exit;
1864 
1865 	if (ecmd->duplex == DUPLEX_FULL)
1866 		mdp->duplex = 1;
1867 	else
1868 		mdp->duplex = 0;
1869 
1870 	if (mdp->cd->set_duplex)
1871 		mdp->cd->set_duplex(ndev);
1872 
1873 error_exit:
1874 	mdelay(1);
1875 
1876 	/* enable tx and rx */
1877 	sh_eth_rcv_snd_enable(ndev);
1878 
1879 	spin_unlock_irqrestore(&mdp->lock, flags);
1880 
1881 	return ret;
1882 }
1883 
sh_eth_nway_reset(struct net_device * ndev)1884 static int sh_eth_nway_reset(struct net_device *ndev)
1885 {
1886 	struct sh_eth_private *mdp = netdev_priv(ndev);
1887 	unsigned long flags;
1888 	int ret;
1889 
1890 	if (!mdp->phydev)
1891 		return -ENODEV;
1892 
1893 	spin_lock_irqsave(&mdp->lock, flags);
1894 	ret = phy_start_aneg(mdp->phydev);
1895 	spin_unlock_irqrestore(&mdp->lock, flags);
1896 
1897 	return ret;
1898 }
1899 
sh_eth_get_msglevel(struct net_device * ndev)1900 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1901 {
1902 	struct sh_eth_private *mdp = netdev_priv(ndev);
1903 	return mdp->msg_enable;
1904 }
1905 
sh_eth_set_msglevel(struct net_device * ndev,u32 value)1906 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1907 {
1908 	struct sh_eth_private *mdp = netdev_priv(ndev);
1909 	mdp->msg_enable = value;
1910 }
1911 
1912 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1913 	"rx_current", "tx_current",
1914 	"rx_dirty", "tx_dirty",
1915 };
1916 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1917 
sh_eth_get_sset_count(struct net_device * netdev,int sset)1918 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1919 {
1920 	switch (sset) {
1921 	case ETH_SS_STATS:
1922 		return SH_ETH_STATS_LEN;
1923 	default:
1924 		return -EOPNOTSUPP;
1925 	}
1926 }
1927 
sh_eth_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)1928 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1929 				     struct ethtool_stats *stats, u64 *data)
1930 {
1931 	struct sh_eth_private *mdp = netdev_priv(ndev);
1932 	int i = 0;
1933 
1934 	/* device-specific stats */
1935 	data[i++] = mdp->cur_rx;
1936 	data[i++] = mdp->cur_tx;
1937 	data[i++] = mdp->dirty_rx;
1938 	data[i++] = mdp->dirty_tx;
1939 }
1940 
sh_eth_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1941 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1942 {
1943 	switch (stringset) {
1944 	case ETH_SS_STATS:
1945 		memcpy(data, *sh_eth_gstrings_stats,
1946 		       sizeof(sh_eth_gstrings_stats));
1947 		break;
1948 	}
1949 }
1950 
sh_eth_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1951 static void sh_eth_get_ringparam(struct net_device *ndev,
1952 				 struct ethtool_ringparam *ring)
1953 {
1954 	struct sh_eth_private *mdp = netdev_priv(ndev);
1955 
1956 	ring->rx_max_pending = RX_RING_MAX;
1957 	ring->tx_max_pending = TX_RING_MAX;
1958 	ring->rx_pending = mdp->num_rx_ring;
1959 	ring->tx_pending = mdp->num_tx_ring;
1960 }
1961 
sh_eth_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1962 static int sh_eth_set_ringparam(struct net_device *ndev,
1963 				struct ethtool_ringparam *ring)
1964 {
1965 	struct sh_eth_private *mdp = netdev_priv(ndev);
1966 	int ret;
1967 
1968 	if (ring->tx_pending > TX_RING_MAX ||
1969 	    ring->rx_pending > RX_RING_MAX ||
1970 	    ring->tx_pending < TX_RING_MIN ||
1971 	    ring->rx_pending < RX_RING_MIN)
1972 		return -EINVAL;
1973 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1974 		return -EINVAL;
1975 
1976 	if (netif_running(ndev)) {
1977 		netif_tx_disable(ndev);
1978 		/* Disable interrupts by clearing the interrupt mask. */
1979 		sh_eth_write(ndev, 0x0000, EESIPR);
1980 		/* Stop the chip's Tx and Rx processes. */
1981 		sh_eth_write(ndev, 0, EDTRR);
1982 		sh_eth_write(ndev, 0, EDRRR);
1983 		synchronize_irq(ndev->irq);
1984 	}
1985 
1986 	/* Free all the skbuffs in the Rx queue. */
1987 	sh_eth_ring_free(ndev);
1988 	/* Free DMA buffer */
1989 	sh_eth_free_dma_buffer(mdp);
1990 
1991 	/* Set new parameters */
1992 	mdp->num_rx_ring = ring->rx_pending;
1993 	mdp->num_tx_ring = ring->tx_pending;
1994 
1995 	ret = sh_eth_ring_init(ndev);
1996 	if (ret < 0) {
1997 		netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1998 		return ret;
1999 	}
2000 	ret = sh_eth_dev_init(ndev, false);
2001 	if (ret < 0) {
2002 		netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
2003 		return ret;
2004 	}
2005 
2006 	if (netif_running(ndev)) {
2007 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2008 		/* Setting the Rx mode will start the Rx process. */
2009 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2010 		netif_wake_queue(ndev);
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static const struct ethtool_ops sh_eth_ethtool_ops = {
2017 	.get_settings	= sh_eth_get_settings,
2018 	.set_settings	= sh_eth_set_settings,
2019 	.nway_reset	= sh_eth_nway_reset,
2020 	.get_msglevel	= sh_eth_get_msglevel,
2021 	.set_msglevel	= sh_eth_set_msglevel,
2022 	.get_link	= ethtool_op_get_link,
2023 	.get_strings	= sh_eth_get_strings,
2024 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2025 	.get_sset_count     = sh_eth_get_sset_count,
2026 	.get_ringparam	= sh_eth_get_ringparam,
2027 	.set_ringparam	= sh_eth_set_ringparam,
2028 };
2029 
2030 /* network device open function */
sh_eth_open(struct net_device * ndev)2031 static int sh_eth_open(struct net_device *ndev)
2032 {
2033 	int ret = 0;
2034 	struct sh_eth_private *mdp = netdev_priv(ndev);
2035 
2036 	pm_runtime_get_sync(&mdp->pdev->dev);
2037 
2038 	napi_enable(&mdp->napi);
2039 
2040 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2041 			  mdp->cd->irq_flags, ndev->name, ndev);
2042 	if (ret) {
2043 		netdev_err(ndev, "Can not assign IRQ number\n");
2044 		goto out_napi_off;
2045 	}
2046 
2047 	/* Descriptor set */
2048 	ret = sh_eth_ring_init(ndev);
2049 	if (ret)
2050 		goto out_free_irq;
2051 
2052 	/* device init */
2053 	ret = sh_eth_dev_init(ndev, true);
2054 	if (ret)
2055 		goto out_free_irq;
2056 
2057 	/* PHY control start*/
2058 	ret = sh_eth_phy_start(ndev);
2059 	if (ret)
2060 		goto out_free_irq;
2061 
2062 	mdp->is_opened = 1;
2063 
2064 	return ret;
2065 
2066 out_free_irq:
2067 	free_irq(ndev->irq, ndev);
2068 out_napi_off:
2069 	napi_disable(&mdp->napi);
2070 	pm_runtime_put_sync(&mdp->pdev->dev);
2071 	return ret;
2072 }
2073 
2074 /* Timeout function */
sh_eth_tx_timeout(struct net_device * ndev)2075 static void sh_eth_tx_timeout(struct net_device *ndev)
2076 {
2077 	struct sh_eth_private *mdp = netdev_priv(ndev);
2078 	struct sh_eth_rxdesc *rxdesc;
2079 	int i;
2080 
2081 	netif_stop_queue(ndev);
2082 
2083 	netif_err(mdp, timer, ndev,
2084 		  "transmit timed out, status %8.8x, resetting...\n",
2085 		  (int)sh_eth_read(ndev, EESR));
2086 
2087 	/* tx_errors count up */
2088 	ndev->stats.tx_errors++;
2089 
2090 	/* Free all the skbuffs in the Rx queue. */
2091 	for (i = 0; i < mdp->num_rx_ring; i++) {
2092 		rxdesc = &mdp->rx_ring[i];
2093 		rxdesc->status = 0;
2094 		rxdesc->addr = 0xBADF00D0;
2095 		dev_kfree_skb(mdp->rx_skbuff[i]);
2096 		mdp->rx_skbuff[i] = NULL;
2097 	}
2098 	for (i = 0; i < mdp->num_tx_ring; i++) {
2099 		dev_kfree_skb(mdp->tx_skbuff[i]);
2100 		mdp->tx_skbuff[i] = NULL;
2101 	}
2102 
2103 	/* device init */
2104 	sh_eth_dev_init(ndev, true);
2105 }
2106 
2107 /* Packet transmit function */
sh_eth_start_xmit(struct sk_buff * skb,struct net_device * ndev)2108 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2109 {
2110 	struct sh_eth_private *mdp = netdev_priv(ndev);
2111 	struct sh_eth_txdesc *txdesc;
2112 	u32 entry;
2113 	unsigned long flags;
2114 
2115 	spin_lock_irqsave(&mdp->lock, flags);
2116 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2117 		if (!sh_eth_txfree(ndev)) {
2118 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2119 			netif_stop_queue(ndev);
2120 			spin_unlock_irqrestore(&mdp->lock, flags);
2121 			return NETDEV_TX_BUSY;
2122 		}
2123 	}
2124 	spin_unlock_irqrestore(&mdp->lock, flags);
2125 
2126 	entry = mdp->cur_tx % mdp->num_tx_ring;
2127 	mdp->tx_skbuff[entry] = skb;
2128 	txdesc = &mdp->tx_ring[entry];
2129 	/* soft swap. */
2130 	if (!mdp->cd->hw_swap)
2131 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2132 				 skb->len + 2);
2133 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2134 				      DMA_TO_DEVICE);
2135 	if (skb->len < ETH_ZLEN)
2136 		txdesc->buffer_length = ETH_ZLEN;
2137 	else
2138 		txdesc->buffer_length = skb->len;
2139 
2140 	if (entry >= mdp->num_tx_ring - 1)
2141 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2142 	else
2143 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2144 
2145 	mdp->cur_tx++;
2146 
2147 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2148 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2149 
2150 	return NETDEV_TX_OK;
2151 }
2152 
sh_eth_get_stats(struct net_device * ndev)2153 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2154 {
2155 	struct sh_eth_private *mdp = netdev_priv(ndev);
2156 
2157 	if (sh_eth_is_rz_fast_ether(mdp))
2158 		return &ndev->stats;
2159 
2160 	if (!mdp->is_opened)
2161 		return &ndev->stats;
2162 
2163 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2164 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2165 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2166 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2167 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2168 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2169 
2170 	if (sh_eth_is_gether(mdp)) {
2171 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2172 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2173 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2174 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2175 	} else {
2176 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2177 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2178 	}
2179 
2180 	return &ndev->stats;
2181 }
2182 
2183 /* device close function */
sh_eth_close(struct net_device * ndev)2184 static int sh_eth_close(struct net_device *ndev)
2185 {
2186 	struct sh_eth_private *mdp = netdev_priv(ndev);
2187 
2188 	netif_stop_queue(ndev);
2189 
2190 	/* Disable interrupts by clearing the interrupt mask. */
2191 	sh_eth_write(ndev, 0x0000, EESIPR);
2192 
2193 	/* Stop the chip's Tx and Rx processes. */
2194 	sh_eth_write(ndev, 0, EDTRR);
2195 	sh_eth_write(ndev, 0, EDRRR);
2196 
2197 	sh_eth_get_stats(ndev);
2198 	/* PHY Disconnect */
2199 	if (mdp->phydev) {
2200 		phy_stop(mdp->phydev);
2201 		phy_disconnect(mdp->phydev);
2202 		mdp->phydev = NULL;
2203 	}
2204 
2205 	free_irq(ndev->irq, ndev);
2206 
2207 	napi_disable(&mdp->napi);
2208 
2209 	/* Free all the skbuffs in the Rx queue. */
2210 	sh_eth_ring_free(ndev);
2211 
2212 	/* free DMA buffer */
2213 	sh_eth_free_dma_buffer(mdp);
2214 
2215 	pm_runtime_put_sync(&mdp->pdev->dev);
2216 
2217 	mdp->is_opened = 0;
2218 
2219 	return 0;
2220 }
2221 
2222 /* ioctl to device function */
sh_eth_do_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2223 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2224 {
2225 	struct sh_eth_private *mdp = netdev_priv(ndev);
2226 	struct phy_device *phydev = mdp->phydev;
2227 
2228 	if (!netif_running(ndev))
2229 		return -EINVAL;
2230 
2231 	if (!phydev)
2232 		return -ENODEV;
2233 
2234 	return phy_mii_ioctl(phydev, rq, cmd);
2235 }
2236 
2237 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
sh_eth_tsu_get_post_reg_offset(struct sh_eth_private * mdp,int entry)2238 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2239 					    int entry)
2240 {
2241 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2242 }
2243 
sh_eth_tsu_get_post_mask(int entry)2244 static u32 sh_eth_tsu_get_post_mask(int entry)
2245 {
2246 	return 0x0f << (28 - ((entry % 8) * 4));
2247 }
2248 
sh_eth_tsu_get_post_bit(struct sh_eth_private * mdp,int entry)2249 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2250 {
2251 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2252 }
2253 
sh_eth_tsu_enable_cam_entry_post(struct net_device * ndev,int entry)2254 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2255 					     int entry)
2256 {
2257 	struct sh_eth_private *mdp = netdev_priv(ndev);
2258 	u32 tmp;
2259 	void *reg_offset;
2260 
2261 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2262 	tmp = ioread32(reg_offset);
2263 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2264 }
2265 
sh_eth_tsu_disable_cam_entry_post(struct net_device * ndev,int entry)2266 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2267 					      int entry)
2268 {
2269 	struct sh_eth_private *mdp = netdev_priv(ndev);
2270 	u32 post_mask, ref_mask, tmp;
2271 	void *reg_offset;
2272 
2273 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2274 	post_mask = sh_eth_tsu_get_post_mask(entry);
2275 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2276 
2277 	tmp = ioread32(reg_offset);
2278 	iowrite32(tmp & ~post_mask, reg_offset);
2279 
2280 	/* If other port enables, the function returns "true" */
2281 	return tmp & ref_mask;
2282 }
2283 
sh_eth_tsu_busy(struct net_device * ndev)2284 static int sh_eth_tsu_busy(struct net_device *ndev)
2285 {
2286 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2287 	struct sh_eth_private *mdp = netdev_priv(ndev);
2288 
2289 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2290 		udelay(10);
2291 		timeout--;
2292 		if (timeout <= 0) {
2293 			netdev_err(ndev, "%s: timeout\n", __func__);
2294 			return -ETIMEDOUT;
2295 		}
2296 	}
2297 
2298 	return 0;
2299 }
2300 
sh_eth_tsu_write_entry(struct net_device * ndev,void * reg,const u8 * addr)2301 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2302 				  const u8 *addr)
2303 {
2304 	u32 val;
2305 
2306 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2307 	iowrite32(val, reg);
2308 	if (sh_eth_tsu_busy(ndev) < 0)
2309 		return -EBUSY;
2310 
2311 	val = addr[4] << 8 | addr[5];
2312 	iowrite32(val, reg + 4);
2313 	if (sh_eth_tsu_busy(ndev) < 0)
2314 		return -EBUSY;
2315 
2316 	return 0;
2317 }
2318 
sh_eth_tsu_read_entry(void * reg,u8 * addr)2319 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2320 {
2321 	u32 val;
2322 
2323 	val = ioread32(reg);
2324 	addr[0] = (val >> 24) & 0xff;
2325 	addr[1] = (val >> 16) & 0xff;
2326 	addr[2] = (val >> 8) & 0xff;
2327 	addr[3] = val & 0xff;
2328 	val = ioread32(reg + 4);
2329 	addr[4] = (val >> 8) & 0xff;
2330 	addr[5] = val & 0xff;
2331 }
2332 
2333 
sh_eth_tsu_find_entry(struct net_device * ndev,const u8 * addr)2334 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2335 {
2336 	struct sh_eth_private *mdp = netdev_priv(ndev);
2337 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2338 	int i;
2339 	u8 c_addr[ETH_ALEN];
2340 
2341 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2342 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2343 		if (ether_addr_equal(addr, c_addr))
2344 			return i;
2345 	}
2346 
2347 	return -ENOENT;
2348 }
2349 
sh_eth_tsu_find_empty(struct net_device * ndev)2350 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2351 {
2352 	u8 blank[ETH_ALEN];
2353 	int entry;
2354 
2355 	memset(blank, 0, sizeof(blank));
2356 	entry = sh_eth_tsu_find_entry(ndev, blank);
2357 	return (entry < 0) ? -ENOMEM : entry;
2358 }
2359 
sh_eth_tsu_disable_cam_entry_table(struct net_device * ndev,int entry)2360 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2361 					      int entry)
2362 {
2363 	struct sh_eth_private *mdp = netdev_priv(ndev);
2364 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2365 	int ret;
2366 	u8 blank[ETH_ALEN];
2367 
2368 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2369 			 ~(1 << (31 - entry)), TSU_TEN);
2370 
2371 	memset(blank, 0, sizeof(blank));
2372 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2373 	if (ret < 0)
2374 		return ret;
2375 	return 0;
2376 }
2377 
sh_eth_tsu_add_entry(struct net_device * ndev,const u8 * addr)2378 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2379 {
2380 	struct sh_eth_private *mdp = netdev_priv(ndev);
2381 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2382 	int i, ret;
2383 
2384 	if (!mdp->cd->tsu)
2385 		return 0;
2386 
2387 	i = sh_eth_tsu_find_entry(ndev, addr);
2388 	if (i < 0) {
2389 		/* No entry found, create one */
2390 		i = sh_eth_tsu_find_empty(ndev);
2391 		if (i < 0)
2392 			return -ENOMEM;
2393 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2394 		if (ret < 0)
2395 			return ret;
2396 
2397 		/* Enable the entry */
2398 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2399 				 (1 << (31 - i)), TSU_TEN);
2400 	}
2401 
2402 	/* Entry found or created, enable POST */
2403 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2404 
2405 	return 0;
2406 }
2407 
sh_eth_tsu_del_entry(struct net_device * ndev,const u8 * addr)2408 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2409 {
2410 	struct sh_eth_private *mdp = netdev_priv(ndev);
2411 	int i, ret;
2412 
2413 	if (!mdp->cd->tsu)
2414 		return 0;
2415 
2416 	i = sh_eth_tsu_find_entry(ndev, addr);
2417 	if (i) {
2418 		/* Entry found */
2419 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2420 			goto done;
2421 
2422 		/* Disable the entry if both ports was disabled */
2423 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2424 		if (ret < 0)
2425 			return ret;
2426 	}
2427 done:
2428 	return 0;
2429 }
2430 
sh_eth_tsu_purge_all(struct net_device * ndev)2431 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2432 {
2433 	struct sh_eth_private *mdp = netdev_priv(ndev);
2434 	int i, ret;
2435 
2436 	if (unlikely(!mdp->cd->tsu))
2437 		return 0;
2438 
2439 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2440 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2441 			continue;
2442 
2443 		/* Disable the entry if both ports was disabled */
2444 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2445 		if (ret < 0)
2446 			return ret;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
sh_eth_tsu_purge_mcast(struct net_device * ndev)2452 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2453 {
2454 	struct sh_eth_private *mdp = netdev_priv(ndev);
2455 	u8 addr[ETH_ALEN];
2456 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2457 	int i;
2458 
2459 	if (unlikely(!mdp->cd->tsu))
2460 		return;
2461 
2462 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2463 		sh_eth_tsu_read_entry(reg_offset, addr);
2464 		if (is_multicast_ether_addr(addr))
2465 			sh_eth_tsu_del_entry(ndev, addr);
2466 	}
2467 }
2468 
2469 /* Multicast reception directions set */
sh_eth_set_multicast_list(struct net_device * ndev)2470 static void sh_eth_set_multicast_list(struct net_device *ndev)
2471 {
2472 	struct sh_eth_private *mdp = netdev_priv(ndev);
2473 	u32 ecmr_bits;
2474 	int mcast_all = 0;
2475 	unsigned long flags;
2476 
2477 	spin_lock_irqsave(&mdp->lock, flags);
2478 	/* Initial condition is MCT = 1, PRM = 0.
2479 	 * Depending on ndev->flags, set PRM or clear MCT
2480 	 */
2481 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2482 
2483 	if (!(ndev->flags & IFF_MULTICAST)) {
2484 		sh_eth_tsu_purge_mcast(ndev);
2485 		mcast_all = 1;
2486 	}
2487 	if (ndev->flags & IFF_ALLMULTI) {
2488 		sh_eth_tsu_purge_mcast(ndev);
2489 		ecmr_bits &= ~ECMR_MCT;
2490 		mcast_all = 1;
2491 	}
2492 
2493 	if (ndev->flags & IFF_PROMISC) {
2494 		sh_eth_tsu_purge_all(ndev);
2495 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2496 	} else if (mdp->cd->tsu) {
2497 		struct netdev_hw_addr *ha;
2498 		netdev_for_each_mc_addr(ha, ndev) {
2499 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2500 				continue;
2501 
2502 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2503 				if (!mcast_all) {
2504 					sh_eth_tsu_purge_mcast(ndev);
2505 					ecmr_bits &= ~ECMR_MCT;
2506 					mcast_all = 1;
2507 				}
2508 			}
2509 		}
2510 	} else {
2511 		/* Normal, unicast/broadcast-only mode. */
2512 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2513 	}
2514 
2515 	/* update the ethernet mode */
2516 	sh_eth_write(ndev, ecmr_bits, ECMR);
2517 
2518 	spin_unlock_irqrestore(&mdp->lock, flags);
2519 }
2520 
sh_eth_get_vtag_index(struct sh_eth_private * mdp)2521 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2522 {
2523 	if (!mdp->port)
2524 		return TSU_VTAG0;
2525 	else
2526 		return TSU_VTAG1;
2527 }
2528 
sh_eth_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2529 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2530 				  __be16 proto, u16 vid)
2531 {
2532 	struct sh_eth_private *mdp = netdev_priv(ndev);
2533 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2534 
2535 	if (unlikely(!mdp->cd->tsu))
2536 		return -EPERM;
2537 
2538 	/* No filtering if vid = 0 */
2539 	if (!vid)
2540 		return 0;
2541 
2542 	mdp->vlan_num_ids++;
2543 
2544 	/* The controller has one VLAN tag HW filter. So, if the filter is
2545 	 * already enabled, the driver disables it and the filte
2546 	 */
2547 	if (mdp->vlan_num_ids > 1) {
2548 		/* disable VLAN filter */
2549 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2550 		return 0;
2551 	}
2552 
2553 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2554 			 vtag_reg_index);
2555 
2556 	return 0;
2557 }
2558 
sh_eth_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2559 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2560 				   __be16 proto, u16 vid)
2561 {
2562 	struct sh_eth_private *mdp = netdev_priv(ndev);
2563 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2564 
2565 	if (unlikely(!mdp->cd->tsu))
2566 		return -EPERM;
2567 
2568 	/* No filtering if vid = 0 */
2569 	if (!vid)
2570 		return 0;
2571 
2572 	mdp->vlan_num_ids--;
2573 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2574 
2575 	return 0;
2576 }
2577 
2578 /* SuperH's TSU register init function */
sh_eth_tsu_init(struct sh_eth_private * mdp)2579 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2580 {
2581 	if (sh_eth_is_rz_fast_ether(mdp)) {
2582 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2583 		return;
2584 	}
2585 
2586 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2587 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2588 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2589 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2590 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2591 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2592 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2593 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2594 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2595 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2596 	if (sh_eth_is_gether(mdp)) {
2597 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2598 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2599 	} else {
2600 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2601 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2602 	}
2603 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2604 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2605 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2606 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2607 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2608 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2609 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2610 }
2611 
2612 /* MDIO bus release function */
sh_mdio_release(struct sh_eth_private * mdp)2613 static int sh_mdio_release(struct sh_eth_private *mdp)
2614 {
2615 	/* unregister mdio bus */
2616 	mdiobus_unregister(mdp->mii_bus);
2617 
2618 	/* free bitbang info */
2619 	free_mdio_bitbang(mdp->mii_bus);
2620 
2621 	return 0;
2622 }
2623 
2624 /* MDIO bus init function */
sh_mdio_init(struct sh_eth_private * mdp,struct sh_eth_plat_data * pd)2625 static int sh_mdio_init(struct sh_eth_private *mdp,
2626 			struct sh_eth_plat_data *pd)
2627 {
2628 	int ret, i;
2629 	struct bb_info *bitbang;
2630 	struct platform_device *pdev = mdp->pdev;
2631 	struct device *dev = &mdp->pdev->dev;
2632 
2633 	/* create bit control struct for PHY */
2634 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2635 	if (!bitbang)
2636 		return -ENOMEM;
2637 
2638 	/* bitbang init */
2639 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2640 	bitbang->set_gate = pd->set_mdio_gate;
2641 	bitbang->mdi_msk = PIR_MDI;
2642 	bitbang->mdo_msk = PIR_MDO;
2643 	bitbang->mmd_msk = PIR_MMD;
2644 	bitbang->mdc_msk = PIR_MDC;
2645 	bitbang->ctrl.ops = &bb_ops;
2646 
2647 	/* MII controller setting */
2648 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2649 	if (!mdp->mii_bus)
2650 		return -ENOMEM;
2651 
2652 	/* Hook up MII support for ethtool */
2653 	mdp->mii_bus->name = "sh_mii";
2654 	mdp->mii_bus->parent = dev;
2655 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2656 		 pdev->name, pdev->id);
2657 
2658 	/* PHY IRQ */
2659 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2660 					       GFP_KERNEL);
2661 	if (!mdp->mii_bus->irq) {
2662 		ret = -ENOMEM;
2663 		goto out_free_bus;
2664 	}
2665 
2666 	/* register MDIO bus */
2667 	if (dev->of_node) {
2668 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2669 	} else {
2670 		for (i = 0; i < PHY_MAX_ADDR; i++)
2671 			mdp->mii_bus->irq[i] = PHY_POLL;
2672 		if (pd->phy_irq > 0)
2673 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2674 
2675 		ret = mdiobus_register(mdp->mii_bus);
2676 	}
2677 
2678 	if (ret)
2679 		goto out_free_bus;
2680 
2681 	return 0;
2682 
2683 out_free_bus:
2684 	free_mdio_bitbang(mdp->mii_bus);
2685 	return ret;
2686 }
2687 
sh_eth_get_register_offset(int register_type)2688 static const u16 *sh_eth_get_register_offset(int register_type)
2689 {
2690 	const u16 *reg_offset = NULL;
2691 
2692 	switch (register_type) {
2693 	case SH_ETH_REG_GIGABIT:
2694 		reg_offset = sh_eth_offset_gigabit;
2695 		break;
2696 	case SH_ETH_REG_FAST_RZ:
2697 		reg_offset = sh_eth_offset_fast_rz;
2698 		break;
2699 	case SH_ETH_REG_FAST_RCAR:
2700 		reg_offset = sh_eth_offset_fast_rcar;
2701 		break;
2702 	case SH_ETH_REG_FAST_SH4:
2703 		reg_offset = sh_eth_offset_fast_sh4;
2704 		break;
2705 	case SH_ETH_REG_FAST_SH3_SH2:
2706 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2707 		break;
2708 	default:
2709 		break;
2710 	}
2711 
2712 	return reg_offset;
2713 }
2714 
2715 static const struct net_device_ops sh_eth_netdev_ops = {
2716 	.ndo_open		= sh_eth_open,
2717 	.ndo_stop		= sh_eth_close,
2718 	.ndo_start_xmit		= sh_eth_start_xmit,
2719 	.ndo_get_stats		= sh_eth_get_stats,
2720 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2721 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2722 	.ndo_validate_addr	= eth_validate_addr,
2723 	.ndo_set_mac_address	= eth_mac_addr,
2724 	.ndo_change_mtu		= eth_change_mtu,
2725 };
2726 
2727 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2728 	.ndo_open		= sh_eth_open,
2729 	.ndo_stop		= sh_eth_close,
2730 	.ndo_start_xmit		= sh_eth_start_xmit,
2731 	.ndo_get_stats		= sh_eth_get_stats,
2732 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2733 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2734 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2735 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2736 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2737 	.ndo_validate_addr	= eth_validate_addr,
2738 	.ndo_set_mac_address	= eth_mac_addr,
2739 	.ndo_change_mtu		= eth_change_mtu,
2740 };
2741 
2742 #ifdef CONFIG_OF
sh_eth_parse_dt(struct device * dev)2743 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2744 {
2745 	struct device_node *np = dev->of_node;
2746 	struct sh_eth_plat_data *pdata;
2747 	const char *mac_addr;
2748 
2749 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2750 	if (!pdata)
2751 		return NULL;
2752 
2753 	pdata->phy_interface = of_get_phy_mode(np);
2754 
2755 	mac_addr = of_get_mac_address(np);
2756 	if (mac_addr)
2757 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2758 
2759 	pdata->no_ether_link =
2760 		of_property_read_bool(np, "renesas,no-ether-link");
2761 	pdata->ether_link_active_low =
2762 		of_property_read_bool(np, "renesas,ether-link-active-low");
2763 
2764 	return pdata;
2765 }
2766 
2767 static const struct of_device_id sh_eth_match_table[] = {
2768 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2769 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2770 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2771 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2772 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2773 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2774 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2775 	{ }
2776 };
2777 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2778 #else
sh_eth_parse_dt(struct device * dev)2779 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2780 {
2781 	return NULL;
2782 }
2783 #endif
2784 
sh_eth_drv_probe(struct platform_device * pdev)2785 static int sh_eth_drv_probe(struct platform_device *pdev)
2786 {
2787 	int ret, devno = 0;
2788 	struct resource *res;
2789 	struct net_device *ndev = NULL;
2790 	struct sh_eth_private *mdp = NULL;
2791 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2792 	const struct platform_device_id *id = platform_get_device_id(pdev);
2793 
2794 	/* get base addr */
2795 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2796 	if (unlikely(res == NULL)) {
2797 		dev_err(&pdev->dev, "invalid resource\n");
2798 		return -EINVAL;
2799 	}
2800 
2801 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2802 	if (!ndev)
2803 		return -ENOMEM;
2804 
2805 	pm_runtime_enable(&pdev->dev);
2806 	pm_runtime_get_sync(&pdev->dev);
2807 
2808 	/* The sh Ether-specific entries in the device structure. */
2809 	ndev->base_addr = res->start;
2810 	devno = pdev->id;
2811 	if (devno < 0)
2812 		devno = 0;
2813 
2814 	ndev->dma = -1;
2815 	ret = platform_get_irq(pdev, 0);
2816 	if (ret < 0) {
2817 		ret = -ENODEV;
2818 		goto out_release;
2819 	}
2820 	ndev->irq = ret;
2821 
2822 	SET_NETDEV_DEV(ndev, &pdev->dev);
2823 
2824 	mdp = netdev_priv(ndev);
2825 	mdp->num_tx_ring = TX_RING_SIZE;
2826 	mdp->num_rx_ring = RX_RING_SIZE;
2827 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2828 	if (IS_ERR(mdp->addr)) {
2829 		ret = PTR_ERR(mdp->addr);
2830 		goto out_release;
2831 	}
2832 
2833 	spin_lock_init(&mdp->lock);
2834 	mdp->pdev = pdev;
2835 
2836 	if (pdev->dev.of_node)
2837 		pd = sh_eth_parse_dt(&pdev->dev);
2838 	if (!pd) {
2839 		dev_err(&pdev->dev, "no platform data\n");
2840 		ret = -EINVAL;
2841 		goto out_release;
2842 	}
2843 
2844 	/* get PHY ID */
2845 	mdp->phy_id = pd->phy;
2846 	mdp->phy_interface = pd->phy_interface;
2847 	/* EDMAC endian */
2848 	mdp->edmac_endian = pd->edmac_endian;
2849 	mdp->no_ether_link = pd->no_ether_link;
2850 	mdp->ether_link_active_low = pd->ether_link_active_low;
2851 
2852 	/* set cpu data */
2853 	if (id) {
2854 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2855 	} else	{
2856 		const struct of_device_id *match;
2857 
2858 		match = of_match_device(of_match_ptr(sh_eth_match_table),
2859 					&pdev->dev);
2860 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2861 	}
2862 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2863 	if (!mdp->reg_offset) {
2864 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2865 			mdp->cd->register_type);
2866 		ret = -EINVAL;
2867 		goto out_release;
2868 	}
2869 	sh_eth_set_default_cpu_data(mdp->cd);
2870 
2871 	/* set function */
2872 	if (mdp->cd->tsu)
2873 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2874 	else
2875 		ndev->netdev_ops = &sh_eth_netdev_ops;
2876 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2877 	ndev->watchdog_timeo = TX_TIMEOUT;
2878 
2879 	/* debug message level */
2880 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2881 
2882 	/* read and set MAC address */
2883 	read_mac_address(ndev, pd->mac_addr);
2884 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2885 		dev_warn(&pdev->dev,
2886 			 "no valid MAC address supplied, using a random one.\n");
2887 		eth_hw_addr_random(ndev);
2888 	}
2889 
2890 	/* ioremap the TSU registers */
2891 	if (mdp->cd->tsu) {
2892 		struct resource *rtsu;
2893 
2894 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2895 		if (!rtsu) {
2896 			dev_err(&pdev->dev, "no TSU resource\n");
2897 			ret = -ENODEV;
2898 			goto out_release;
2899 		}
2900 		/* We can only request the  TSU region  for the first port
2901 		 * of the two  sharing this TSU for the probe to succeed...
2902 		 */
2903 		if (devno % 2 == 0 &&
2904 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
2905 					     resource_size(rtsu),
2906 					     dev_name(&pdev->dev))) {
2907 			dev_err(&pdev->dev, "can't request TSU resource.\n");
2908 			ret = -EBUSY;
2909 			goto out_release;
2910 		}
2911 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
2912 					     resource_size(rtsu));
2913 		if (!mdp->tsu_addr) {
2914 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
2915 			ret = -ENOMEM;
2916 			goto out_release;
2917 		}
2918 		mdp->port = devno % 2;
2919 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2920 	}
2921 
2922 	/* Need to init only the first port of the two sharing a TSU */
2923 	if (devno % 2 == 0) {
2924 		if (mdp->cd->chip_reset)
2925 			mdp->cd->chip_reset(ndev);
2926 
2927 		if (mdp->cd->tsu) {
2928 			/* TSU init (Init only)*/
2929 			sh_eth_tsu_init(mdp);
2930 		}
2931 	}
2932 
2933 	/* MDIO bus init */
2934 	ret = sh_mdio_init(mdp, pd);
2935 	if (ret) {
2936 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2937 		goto out_release;
2938 	}
2939 
2940 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2941 
2942 	/* network device register */
2943 	ret = register_netdev(ndev);
2944 	if (ret)
2945 		goto out_napi_del;
2946 
2947 	/* print device information */
2948 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2949 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2950 
2951 	pm_runtime_put(&pdev->dev);
2952 	platform_set_drvdata(pdev, ndev);
2953 
2954 	return ret;
2955 
2956 out_napi_del:
2957 	netif_napi_del(&mdp->napi);
2958 	sh_mdio_release(mdp);
2959 
2960 out_release:
2961 	/* net_dev free */
2962 	if (ndev)
2963 		free_netdev(ndev);
2964 
2965 	pm_runtime_put(&pdev->dev);
2966 	pm_runtime_disable(&pdev->dev);
2967 	return ret;
2968 }
2969 
sh_eth_drv_remove(struct platform_device * pdev)2970 static int sh_eth_drv_remove(struct platform_device *pdev)
2971 {
2972 	struct net_device *ndev = platform_get_drvdata(pdev);
2973 	struct sh_eth_private *mdp = netdev_priv(ndev);
2974 
2975 	unregister_netdev(ndev);
2976 	netif_napi_del(&mdp->napi);
2977 	sh_mdio_release(mdp);
2978 	pm_runtime_disable(&pdev->dev);
2979 	free_netdev(ndev);
2980 
2981 	return 0;
2982 }
2983 
2984 #ifdef CONFIG_PM
sh_eth_runtime_nop(struct device * dev)2985 static int sh_eth_runtime_nop(struct device *dev)
2986 {
2987 	/* Runtime PM callback shared between ->runtime_suspend()
2988 	 * and ->runtime_resume(). Simply returns success.
2989 	 *
2990 	 * This driver re-initializes all registers after
2991 	 * pm_runtime_get_sync() anyway so there is no need
2992 	 * to save and restore registers here.
2993 	 */
2994 	return 0;
2995 }
2996 
2997 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2998 	.runtime_suspend = sh_eth_runtime_nop,
2999 	.runtime_resume = sh_eth_runtime_nop,
3000 };
3001 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3002 #else
3003 #define SH_ETH_PM_OPS NULL
3004 #endif
3005 
3006 static struct platform_device_id sh_eth_id_table[] = {
3007 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3008 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3009 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3010 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3011 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3012 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3013 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3014 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3015 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3016 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3017 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3018 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3019 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3020 	{ }
3021 };
3022 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3023 
3024 static struct platform_driver sh_eth_driver = {
3025 	.probe = sh_eth_drv_probe,
3026 	.remove = sh_eth_drv_remove,
3027 	.id_table = sh_eth_id_table,
3028 	.driver = {
3029 		   .name = CARDNAME,
3030 		   .pm = SH_ETH_PM_OPS,
3031 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3032 	},
3033 };
3034 
3035 module_platform_driver(sh_eth_driver);
3036 
3037 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3038 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3039 MODULE_LICENSE("GPL v2");
3040