• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h>   /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <linux/u64_stats_sync.h>
35 #include <asm/checksum.h>
36 #include <asm/homecache.h>
37 
38 #include <hv/drv_xgbe_intf.h>
39 #include <hv/drv_xgbe_impl.h>
40 #include <hv/hypervisor.h>
41 #include <hv/netio_intf.h>
42 
43 /* For TSO */
44 #include <linux/ip.h>
45 #include <linux/tcp.h>
46 
47 
48 /*
49  * First, "tile_net_init_module()" initializes all four "devices" which
50  * can be used by linux.
51  *
52  * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
53  * the network cpus, then uses "tile_net_open_aux()" to initialize
54  * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
55  * the tiles, provide buffers to LIPP, allow ingress to start, and
56  * turn on hypervisor interrupt handling (and NAPI) on all tiles.
57  *
58  * If registration fails due to the link being down, then "retry_work"
59  * is used to keep calling "tile_net_open_inner()" until it succeeds.
60  *
61  * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
62  * stop egress, drain the LIPP buffers, unregister all the tiles, stop
63  * LIPP/LEPP, and wipe the LEPP queue.
64  *
65  * We start out with the ingress interrupt enabled on each CPU.  When
66  * this interrupt fires, we disable it, and call "napi_schedule()".
67  * This will cause "tile_net_poll()" to be called, which will pull
68  * packets from the netio queue, filtering them out, or passing them
69  * to "netif_receive_skb()".  If our budget is exhausted, we will
70  * return, knowing we will be called again later.  Otherwise, we
71  * reenable the ingress interrupt, and call "napi_complete()".
72  *
73  * HACK: Since disabling the ingress interrupt is not reliable, we
74  * ignore the interrupt if the global "active" flag is false.
75  *
76  *
77  * NOTE: The use of "native_driver" ensures that EPP exists, and that
78  * we are using "LIPP" and "LEPP".
79  *
80  * NOTE: Failing to free completions for an arbitrarily long time
81  * (which is defined to be illegal) does in fact cause bizarre
82  * problems.  The "egress_timer" helps prevent this from happening.
83  */
84 
85 
86 /* HACK: Allow use of "jumbo" packets. */
87 /* This should be 1500 if "jumbo" is not set in LIPP. */
88 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
89 /* ISSUE: This has not been thoroughly tested (except at 1500). */
90 #define TILE_NET_MTU 1500
91 
92 /* HACK: Define this to verify incoming packets. */
93 /* #define TILE_NET_VERIFY_INGRESS */
94 
95 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
96 #define TILE_NET_TX_QUEUE_LEN 0
97 
98 /* Define to dump packets (prints out the whole packet on tx and rx). */
99 /* #define TILE_NET_DUMP_PACKETS */
100 
101 /* Define to enable debug spew (all PDEBUG's are enabled). */
102 /* #define TILE_NET_DEBUG */
103 
104 
105 /* Define to activate paranoia checks. */
106 /* #define TILE_NET_PARANOIA */
107 
108 /* Default transmit lockup timeout period, in jiffies. */
109 #define TILE_NET_TIMEOUT (5 * HZ)
110 
111 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
112 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
113 
114 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
115 #define TILE_NET_DEVS 4
116 
117 
118 
119 /* Paranoia. */
120 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
121 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
122 #endif
123 
124 
125 /* Debug print. */
126 #ifdef TILE_NET_DEBUG
127 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
128 #else
129 #define PDEBUG(fmt, args...)
130 #endif
131 
132 
133 MODULE_AUTHOR("Tilera");
134 MODULE_LICENSE("GPL");
135 
136 
137 /*
138  * Queue of incoming packets for a specific cpu and device.
139  *
140  * Includes a pointer to the "system" data, and the actual "user" data.
141  */
142 struct tile_netio_queue {
143 	netio_queue_impl_t *__system_part;
144 	netio_queue_user_impl_t __user_part;
145 
146 };
147 
148 
149 /*
150  * Statistics counters for a specific cpu and device.
151  */
152 struct tile_net_stats_t {
153 	struct u64_stats_sync syncp;
154 	u64 rx_packets;		/* total packets received	*/
155 	u64 tx_packets;		/* total packets transmitted	*/
156 	u64 rx_bytes;		/* total bytes received 	*/
157 	u64 tx_bytes;		/* total bytes transmitted	*/
158 	u64 rx_errors;		/* packets truncated or marked bad by hw */
159 	u64 rx_dropped;		/* packets not for us or intf not up */
160 };
161 
162 
163 /*
164  * Info for a specific cpu and device.
165  *
166  * ISSUE: There is a "dev" pointer in "napi" as well.
167  */
168 struct tile_net_cpu {
169 	/* The NAPI struct. */
170 	struct napi_struct napi;
171 	/* Packet queue. */
172 	struct tile_netio_queue queue;
173 	/* Statistics. */
174 	struct tile_net_stats_t stats;
175 	/* True iff NAPI is enabled. */
176 	bool napi_enabled;
177 	/* True if this tile has successfully registered with the IPP. */
178 	bool registered;
179 	/* True if the link was down last time we tried to register. */
180 	bool link_down;
181 	/* True if "egress_timer" is scheduled. */
182 	bool egress_timer_scheduled;
183 	/* Number of small sk_buffs which must still be provided. */
184 	unsigned int num_needed_small_buffers;
185 	/* Number of large sk_buffs which must still be provided. */
186 	unsigned int num_needed_large_buffers;
187 	/* A timer for handling egress completions. */
188 	struct timer_list egress_timer;
189 };
190 
191 
192 /*
193  * Info for a specific device.
194  */
195 struct tile_net_priv {
196 	/* Our network device. */
197 	struct net_device *dev;
198 	/* Pages making up the egress queue. */
199 	struct page *eq_pages;
200 	/* Address of the actual egress queue. */
201 	lepp_queue_t *eq;
202 	/* Protects "eq". */
203 	spinlock_t eq_lock;
204 	/* The hypervisor handle for this interface. */
205 	int hv_devhdl;
206 	/* The intr bit mask that IDs this device. */
207 	u32 intr_id;
208 	/* True iff "tile_net_open_aux()" has succeeded. */
209 	bool partly_opened;
210 	/* True iff the device is "active". */
211 	bool active;
212 	/* Effective network cpus. */
213 	struct cpumask network_cpus_map;
214 	/* Number of network cpus. */
215 	int network_cpus_count;
216 	/* Credits per network cpu. */
217 	int network_cpus_credits;
218 	/* For NetIO bringup retries. */
219 	struct delayed_work retry_work;
220 	/* Quick access to per cpu data. */
221 	struct tile_net_cpu *cpu[NR_CPUS];
222 };
223 
224 /* Log2 of the number of small pages needed for the egress queue. */
225 #define EQ_ORDER  get_order(sizeof(lepp_queue_t))
226 /* Size of the egress queue's pages. */
227 #define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
228 
229 /*
230  * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
231  */
232 static struct net_device *tile_net_devs[TILE_NET_DEVS];
233 
234 /*
235  * The "tile_net_cpu" structures for each device.
236  */
237 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
238 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
239 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
240 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
241 
242 
243 /*
244  * True if "network_cpus" was specified.
245  */
246 static bool network_cpus_used;
247 
248 /*
249  * The actual cpus in "network_cpus".
250  */
251 static struct cpumask network_cpus_map;
252 
253 
254 
255 #ifdef TILE_NET_DEBUG
256 /*
257  * printk with extra stuff.
258  *
259  * We print the CPU we're running in brackets.
260  */
net_printk(char * fmt,...)261 static void net_printk(char *fmt, ...)
262 {
263 	int i;
264 	int len;
265 	va_list args;
266 	static char buf[256];
267 
268 	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
269 	va_start(args, fmt);
270 	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
271 	va_end(args);
272 	buf[255] = '\0';
273 	pr_notice(buf);
274 }
275 #endif
276 
277 
278 #ifdef TILE_NET_DUMP_PACKETS
279 /*
280  * Dump a packet.
281  */
dump_packet(unsigned char * data,unsigned long length,char * s)282 static void dump_packet(unsigned char *data, unsigned long length, char *s)
283 {
284 	int my_cpu = smp_processor_id();
285 
286 	unsigned long i;
287 	char buf[128];
288 
289 	static unsigned int count;
290 
291 	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
292 	       data, length, s, count++);
293 
294 	pr_info("\n");
295 
296 	for (i = 0; i < length; i++) {
297 		if ((i & 0xf) == 0)
298 			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
299 		sprintf(buf + strlen(buf), " %2.2x", data[i]);
300 		if ((i & 0xf) == 0xf || i == length - 1) {
301 			strcat(buf, "\n");
302 			pr_info("%s", buf);
303 		}
304 	}
305 }
306 #endif
307 
308 
309 /*
310  * Provide support for the __netio_fastio1() swint
311  * (see <hv/drv_xgbe_intf.h> for how it is used).
312  *
313  * The fastio swint2 call may clobber all the caller-saved registers.
314  * It rarely clobbers memory, but we allow for the possibility in
315  * the signature just to be on the safe side.
316  *
317  * Also, gcc doesn't seem to allow an input operand to be
318  * clobbered, so we fake it with dummy outputs.
319  *
320  * This function can't be static because of the way it is declared
321  * in the netio header.
322  */
__netio_fastio1(u32 fastio_index,u32 arg0)323 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
324 {
325 	long result, clobber_r1, clobber_r10;
326 	asm volatile("swint2"
327 		     : "=R00" (result),
328 		       "=R01" (clobber_r1), "=R10" (clobber_r10)
329 		     : "R10" (fastio_index), "R01" (arg0)
330 		     : "memory", "r2", "r3", "r4",
331 		       "r5", "r6", "r7", "r8", "r9",
332 		       "r11", "r12", "r13", "r14",
333 		       "r15", "r16", "r17", "r18", "r19",
334 		       "r20", "r21", "r22", "r23", "r24",
335 		       "r25", "r26", "r27", "r28", "r29");
336 	return result;
337 }
338 
339 
tile_net_return_credit(struct tile_net_cpu * info)340 static void tile_net_return_credit(struct tile_net_cpu *info)
341 {
342 	struct tile_netio_queue *queue = &info->queue;
343 	netio_queue_user_impl_t *qup = &queue->__user_part;
344 
345 	/* Return four credits after every fourth packet. */
346 	if (--qup->__receive_credit_remaining == 0) {
347 		u32 interval = qup->__receive_credit_interval;
348 		qup->__receive_credit_remaining = interval;
349 		__netio_fastio_return_credits(qup->__fastio_index, interval);
350 	}
351 }
352 
353 
354 
355 /*
356  * Provide a linux buffer to LIPP.
357  */
tile_net_provide_linux_buffer(struct tile_net_cpu * info,void * va,bool small)358 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
359 					  void *va, bool small)
360 {
361 	struct tile_netio_queue *queue = &info->queue;
362 
363 	/* Convert "va" and "small" to "linux_buffer_t". */
364 	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
365 
366 	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
367 }
368 
369 
370 /*
371  * Provide a linux buffer for LIPP.
372  *
373  * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
374  * plus a chunk of memory that includes not only the requested bytes, but
375  * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
376  *
377  * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
378  * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
379  *
380  * Without jumbo packets, the maximum packet size will be 1536 bytes,
381  * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
382  * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
383  * could save an entire cache line, but in practice, we don't need it.
384  *
385  * Since CPAs are 38 bits, and we can only encode the high 31 bits in
386  * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
387  * align the actual "va" mod 128.
388  *
389  * We assume that the underlying "head" will be aligned mod 64.  Note
390  * that in practice, we have seen "head" NOT aligned mod 128 even when
391  * using 2048 byte allocations, which is surprising.
392  *
393  * If "head" WAS always aligned mod 128, we could change LIPP to
394  * assume that the low SIX bits are zero, and the 7th bit is one, that
395  * is, align the actual "va" mod 128 plus 64, which would be "free".
396  *
397  * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
398  * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
399  * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
400  * the actual packet, plus 62 bytes of empty padding, plus some
401  * padding and the "struct skb_shared_info".
402  *
403  * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
404  * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
405  *
406  * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
407  * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
408  * could presumably increase the size of small buffers.
409  *
410  * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
411  * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
412  *
413  * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
414  * bytes, or 524 bytes, which is annoyingly wasteful.
415  *
416  * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
417  *
418  * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
419  */
tile_net_provide_needed_buffer(struct tile_net_cpu * info,bool small)420 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
421 					   bool small)
422 {
423 #if TILE_NET_MTU <= 1536
424 	/* Without "jumbo", 2 + 1536 should be sufficient. */
425 	unsigned int large_size = NET_IP_ALIGN + 1536;
426 #else
427 	/* ISSUE: This has not been tested. */
428 	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
429 #endif
430 
431 	/* Avoid "false sharing" with last cache line. */
432 	/* ISSUE: This is already done by "netdev_alloc_skb()". */
433 	unsigned int len =
434 		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
435 		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
436 
437 	unsigned int padding = 128 - NET_SKB_PAD;
438 	unsigned int align;
439 
440 	struct sk_buff *skb;
441 	void *va;
442 
443 	struct sk_buff **skb_ptr;
444 
445 	/* Request 96 extra bytes for alignment purposes. */
446 	skb = netdev_alloc_skb(info->napi.dev, len + padding);
447 	if (skb == NULL)
448 		return false;
449 
450 	/* Skip 32 or 96 bytes to align "data" mod 128. */
451 	align = -(long)skb->data & (128 - 1);
452 	BUG_ON(align > padding);
453 	skb_reserve(skb, align);
454 
455 	/* This address is given to IPP. */
456 	va = skb->data;
457 
458 	/* Buffers must not span a huge page. */
459 	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
460 
461 #ifdef TILE_NET_PARANOIA
462 #if CHIP_HAS_CBOX_HOME_MAP()
463 	if (hash_default) {
464 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
465 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
466 			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
467 			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
468 	}
469 #endif
470 #endif
471 
472 	/* Invalidate the packet buffer. */
473 	if (!hash_default)
474 		__inv_buffer(va, len);
475 
476 	/* Skip two bytes to satisfy LIPP assumptions. */
477 	/* Note that this aligns IP on a 16 byte boundary. */
478 	/* ISSUE: Do this when the packet arrives? */
479 	skb_reserve(skb, NET_IP_ALIGN);
480 
481 	/* Save a back-pointer to 'skb'. */
482 	skb_ptr = va - sizeof(*skb_ptr);
483 	*skb_ptr = skb;
484 
485 	/* Make sure "skb_ptr" has been flushed. */
486 	__insn_mf();
487 
488 	/* Provide the new buffer. */
489 	tile_net_provide_linux_buffer(info, va, small);
490 
491 	return true;
492 }
493 
494 
495 /*
496  * Provide linux buffers for LIPP.
497  */
tile_net_provide_needed_buffers(struct tile_net_cpu * info)498 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
499 {
500 	while (info->num_needed_small_buffers != 0) {
501 		if (!tile_net_provide_needed_buffer(info, true))
502 			goto oops;
503 		info->num_needed_small_buffers--;
504 	}
505 
506 	while (info->num_needed_large_buffers != 0) {
507 		if (!tile_net_provide_needed_buffer(info, false))
508 			goto oops;
509 		info->num_needed_large_buffers--;
510 	}
511 
512 	return;
513 
514 oops:
515 
516 	/* Add a description to the page allocation failure dump. */
517 	pr_notice("Could not provide a linux buffer to LIPP.\n");
518 }
519 
520 
521 /*
522  * Grab some LEPP completions, and store them in "comps", of size
523  * "comps_size", and return the number of completions which were
524  * stored, so the caller can free them.
525  */
tile_net_lepp_grab_comps(lepp_queue_t * eq,struct sk_buff * comps[],unsigned int comps_size,unsigned int min_size)526 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
527 					     struct sk_buff *comps[],
528 					     unsigned int comps_size,
529 					     unsigned int min_size)
530 {
531 	unsigned int n = 0;
532 
533 	unsigned int comp_head = eq->comp_head;
534 	unsigned int comp_busy = eq->comp_busy;
535 
536 	while (comp_head != comp_busy && n < comps_size) {
537 		comps[n++] = eq->comps[comp_head];
538 		LEPP_QINC(comp_head);
539 	}
540 
541 	if (n < min_size)
542 		return 0;
543 
544 	eq->comp_head = comp_head;
545 
546 	return n;
547 }
548 
549 
550 /*
551  * Free some comps, and return true iff there are still some pending.
552  */
tile_net_lepp_free_comps(struct net_device * dev,bool all)553 static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
554 {
555 	struct tile_net_priv *priv = netdev_priv(dev);
556 
557 	lepp_queue_t *eq = priv->eq;
558 
559 	struct sk_buff *olds[64];
560 	unsigned int wanted = 64;
561 	unsigned int i, n;
562 	bool pending;
563 
564 	spin_lock(&priv->eq_lock);
565 
566 	if (all)
567 		eq->comp_busy = eq->comp_tail;
568 
569 	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
570 
571 	pending = (eq->comp_head != eq->comp_tail);
572 
573 	spin_unlock(&priv->eq_lock);
574 
575 	for (i = 0; i < n; i++)
576 		kfree_skb(olds[i]);
577 
578 	return pending;
579 }
580 
581 
582 /*
583  * Make sure the egress timer is scheduled.
584  *
585  * Note that we use "schedule if not scheduled" logic instead of the more
586  * obvious "reschedule" logic, because "reschedule" is fairly expensive.
587  */
tile_net_schedule_egress_timer(struct tile_net_cpu * info)588 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
589 {
590 	if (!info->egress_timer_scheduled) {
591 		mod_timer_pinned(&info->egress_timer, jiffies + 1);
592 		info->egress_timer_scheduled = true;
593 	}
594 }
595 
596 
597 /*
598  * The "function" for "info->egress_timer".
599  *
600  * This timer will reschedule itself as long as there are any pending
601  * completions expected (on behalf of any tile).
602  *
603  * ISSUE: Realistically, will the timer ever stop scheduling itself?
604  *
605  * ISSUE: This timer is almost never actually needed, so just use a global
606  * timer that can run on any tile.
607  *
608  * ISSUE: Maybe instead track number of expected completions, and free
609  * only that many, resetting to zero if "pending" is ever false.
610  */
tile_net_handle_egress_timer(unsigned long arg)611 static void tile_net_handle_egress_timer(unsigned long arg)
612 {
613 	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
614 	struct net_device *dev = info->napi.dev;
615 
616 	/* The timer is no longer scheduled. */
617 	info->egress_timer_scheduled = false;
618 
619 	/* Free comps, and reschedule timer if more are pending. */
620 	if (tile_net_lepp_free_comps(dev, false))
621 		tile_net_schedule_egress_timer(info);
622 }
623 
624 
tile_net_discard_aux(struct tile_net_cpu * info,int index)625 static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
626 {
627 	struct tile_netio_queue *queue = &info->queue;
628 	netio_queue_impl_t *qsp = queue->__system_part;
629 	netio_queue_user_impl_t *qup = &queue->__user_part;
630 
631 	int index2_aux = index + sizeof(netio_pkt_t);
632 	int index2 =
633 		((index2_aux ==
634 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
635 		 0 : index2_aux);
636 
637 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
638 
639 	/* Extract the "linux_buffer_t". */
640 	unsigned int buffer = pkt->__packet.word;
641 
642 	/* Convert "linux_buffer_t" to "va". */
643 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
644 
645 	/* Acquire the associated "skb". */
646 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
647 	struct sk_buff *skb = *skb_ptr;
648 
649 	kfree_skb(skb);
650 
651 	/* Consume this packet. */
652 	qup->__packet_receive_read = index2;
653 }
654 
655 
656 /*
657  * Like "tile_net_poll()", but just discard packets.
658  */
tile_net_discard_packets(struct net_device * dev)659 static void tile_net_discard_packets(struct net_device *dev)
660 {
661 	struct tile_net_priv *priv = netdev_priv(dev);
662 	int my_cpu = smp_processor_id();
663 	struct tile_net_cpu *info = priv->cpu[my_cpu];
664 	struct tile_netio_queue *queue = &info->queue;
665 	netio_queue_impl_t *qsp = queue->__system_part;
666 	netio_queue_user_impl_t *qup = &queue->__user_part;
667 
668 	while (qup->__packet_receive_read !=
669 	       qsp->__packet_receive_queue.__packet_write) {
670 		int index = qup->__packet_receive_read;
671 		tile_net_discard_aux(info, index);
672 	}
673 }
674 
675 
676 /*
677  * Handle the next packet.  Return true if "processed", false if "filtered".
678  */
tile_net_poll_aux(struct tile_net_cpu * info,int index)679 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
680 {
681 	struct net_device *dev = info->napi.dev;
682 
683 	struct tile_netio_queue *queue = &info->queue;
684 	netio_queue_impl_t *qsp = queue->__system_part;
685 	netio_queue_user_impl_t *qup = &queue->__user_part;
686 	struct tile_net_stats_t *stats = &info->stats;
687 
688 	int filter;
689 
690 	int index2_aux = index + sizeof(netio_pkt_t);
691 	int index2 =
692 		((index2_aux ==
693 		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
694 		 0 : index2_aux);
695 
696 	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
697 
698 	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
699 	netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt);
700 
701 	/* Extract the packet size.  FIXME: Shouldn't the second line */
702 	/* get subtracted?  Mostly moot, since it should be "zero". */
703 	unsigned long len =
704 		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
705 		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
706 
707 	/* Extract the "linux_buffer_t". */
708 	unsigned int buffer = pkt->__packet.word;
709 
710 	/* Extract "small" (vs "large"). */
711 	bool small = ((buffer & 1) != 0);
712 
713 	/* Convert "linux_buffer_t" to "va". */
714 	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
715 
716 	/* Extract the packet data pointer. */
717 	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
718 	unsigned char *buf = va + NET_IP_ALIGN;
719 
720 	/* Invalidate the packet buffer. */
721 	if (!hash_default)
722 		__inv_buffer(buf, len);
723 
724 	/* ISSUE: Is this needed? */
725 	dev->last_rx = jiffies;
726 
727 #ifdef TILE_NET_DUMP_PACKETS
728 	dump_packet(buf, len, "rx");
729 #endif /* TILE_NET_DUMP_PACKETS */
730 
731 #ifdef TILE_NET_VERIFY_INGRESS
732 	if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) {
733 		dump_packet(buf, len, "rx");
734 		panic("Unexpected OVERSIZE.");
735 	}
736 #endif
737 
738 	filter = 0;
739 
740 	if (pkt_status == NETIO_PKT_STATUS_BAD) {
741 		/* Handle CRC error and hardware truncation. */
742 		filter = 2;
743 	} else if (!(dev->flags & IFF_UP)) {
744 		/* Filter packets received before we're up. */
745 		filter = 1;
746 	} else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) &&
747 		   pkt_status == NETIO_PKT_STATUS_UNDERSIZE) {
748 		/* Filter "truncated" packets. */
749 		filter = 2;
750 	} else if (!(dev->flags & IFF_PROMISC)) {
751 		if (!is_multicast_ether_addr(buf)) {
752 			/* Filter packets not for our address. */
753 			const u8 *mine = dev->dev_addr;
754 			filter = !ether_addr_equal(mine, buf);
755 		}
756 	}
757 
758 	u64_stats_update_begin(&stats->syncp);
759 
760 	if (filter != 0) {
761 
762 		if (filter == 1)
763 			stats->rx_dropped++;
764 		else
765 			stats->rx_errors++;
766 
767 		tile_net_provide_linux_buffer(info, va, small);
768 
769 	} else {
770 
771 		/* Acquire the associated "skb". */
772 		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
773 		struct sk_buff *skb = *skb_ptr;
774 
775 		/* Paranoia. */
776 		if (skb->data != buf)
777 			panic("Corrupt linux buffer from LIPP! "
778 			      "VA=%p, skb=%p, skb->data=%p\n",
779 			      va, skb, skb->data);
780 
781 		/* Encode the actual packet length. */
782 		skb_put(skb, len);
783 
784 		/* NOTE: This call also sets "skb->dev = dev". */
785 		skb->protocol = eth_type_trans(skb, dev);
786 
787 		/* Avoid recomputing "good" TCP/UDP checksums. */
788 		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
789 			skb->ip_summed = CHECKSUM_UNNECESSARY;
790 
791 		netif_receive_skb(skb);
792 
793 		stats->rx_packets++;
794 		stats->rx_bytes += len;
795 	}
796 
797 	u64_stats_update_end(&stats->syncp);
798 
799 	/* ISSUE: It would be nice to defer this until the packet has */
800 	/* actually been processed. */
801 	tile_net_return_credit(info);
802 
803 	/* Consume this packet. */
804 	qup->__packet_receive_read = index2;
805 
806 	return !filter;
807 }
808 
809 
810 /*
811  * Handle some packets for the given device on the current CPU.
812  *
813  * If "tile_net_stop()" is called on some other tile while this
814  * function is running, we will return, hopefully before that
815  * other tile asks us to call "napi_disable()".
816  *
817  * The "rotting packet" race condition occurs if a packet arrives
818  * during the extremely narrow window between the queue appearing to
819  * be empty, and the ingress interrupt being re-enabled.  This happens
820  * a LOT under heavy network load.
821  */
tile_net_poll(struct napi_struct * napi,int budget)822 static int tile_net_poll(struct napi_struct *napi, int budget)
823 {
824 	struct net_device *dev = napi->dev;
825 	struct tile_net_priv *priv = netdev_priv(dev);
826 	int my_cpu = smp_processor_id();
827 	struct tile_net_cpu *info = priv->cpu[my_cpu];
828 	struct tile_netio_queue *queue = &info->queue;
829 	netio_queue_impl_t *qsp = queue->__system_part;
830 	netio_queue_user_impl_t *qup = &queue->__user_part;
831 
832 	unsigned int work = 0;
833 
834 	if (budget <= 0)
835 		goto done;
836 
837 	while (priv->active) {
838 		int index = qup->__packet_receive_read;
839 		if (index == qsp->__packet_receive_queue.__packet_write)
840 			break;
841 
842 		if (tile_net_poll_aux(info, index)) {
843 			if (++work >= budget)
844 				goto done;
845 		}
846 	}
847 
848 	napi_complete(&info->napi);
849 
850 	if (!priv->active)
851 		goto done;
852 
853 	/* Re-enable the ingress interrupt. */
854 	enable_percpu_irq(priv->intr_id, 0);
855 
856 	/* HACK: Avoid the "rotting packet" problem (see above). */
857 	if (qup->__packet_receive_read !=
858 	    qsp->__packet_receive_queue.__packet_write) {
859 		/* ISSUE: Sometimes this returns zero, presumably */
860 		/* because an interrupt was handled for this tile. */
861 		(void)napi_reschedule(&info->napi);
862 	}
863 
864 done:
865 
866 	if (priv->active)
867 		tile_net_provide_needed_buffers(info);
868 
869 	return work;
870 }
871 
872 
873 /*
874  * Handle an ingress interrupt for the given device on the current cpu.
875  *
876  * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
877  * been called!  This is probably due to "pending hypervisor downcalls".
878  *
879  * ISSUE: Is there any race condition between the "napi_schedule()" here
880  * and the "napi_complete()" call above?
881  */
tile_net_handle_ingress_interrupt(int irq,void * dev_ptr)882 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
883 {
884 	struct net_device *dev = (struct net_device *)dev_ptr;
885 	struct tile_net_priv *priv = netdev_priv(dev);
886 	int my_cpu = smp_processor_id();
887 	struct tile_net_cpu *info = priv->cpu[my_cpu];
888 
889 	/* Disable the ingress interrupt. */
890 	disable_percpu_irq(priv->intr_id);
891 
892 	/* Ignore unwanted interrupts. */
893 	if (!priv->active)
894 		return IRQ_HANDLED;
895 
896 	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
897 
898 	napi_schedule(&info->napi);
899 
900 	return IRQ_HANDLED;
901 }
902 
903 
904 /*
905  * One time initialization per interface.
906  */
tile_net_open_aux(struct net_device * dev)907 static int tile_net_open_aux(struct net_device *dev)
908 {
909 	struct tile_net_priv *priv = netdev_priv(dev);
910 
911 	int ret;
912 	int dummy;
913 	unsigned int epp_lotar;
914 
915 	/*
916 	 * Find out where EPP memory should be homed.
917 	 */
918 	ret = hv_dev_pread(priv->hv_devhdl, 0,
919 			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
920 			   NETIO_EPP_SHM_OFF);
921 	if (ret < 0) {
922 		pr_err("could not read epp_shm_queue lotar.\n");
923 		return -EIO;
924 	}
925 
926 	/*
927 	 * Home the page on the EPP.
928 	 */
929 	{
930 		int epp_home = hv_lotar_to_cpu(epp_lotar);
931 		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
932 	}
933 
934 	/*
935 	 * Register the EPP shared memory queue.
936 	 */
937 	{
938 		netio_ipp_address_t ea = {
939 			.va = 0,
940 			.pa = __pa(priv->eq),
941 			.pte = hv_pte(0),
942 			.size = EQ_SIZE,
943 		};
944 		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
945 		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
946 		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
947 				    (HV_VirtAddr)&ea,
948 				    sizeof(ea),
949 				    NETIO_EPP_SHM_OFF);
950 		if (ret < 0)
951 			return -EIO;
952 	}
953 
954 	/*
955 	 * Start LIPP/LEPP.
956 	 */
957 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
958 			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
959 		pr_warn("Failed to start LIPP/LEPP\n");
960 		return -EIO;
961 	}
962 
963 	return 0;
964 }
965 
966 
967 /*
968  * Register with hypervisor on the current CPU.
969  *
970  * Strangely, this function does important things even if it "fails",
971  * which is especially common if the link is not up yet.  Hopefully
972  * these things are all "harmless" if done twice!
973  */
tile_net_register(void * dev_ptr)974 static void tile_net_register(void *dev_ptr)
975 {
976 	struct net_device *dev = (struct net_device *)dev_ptr;
977 	struct tile_net_priv *priv = netdev_priv(dev);
978 	int my_cpu = smp_processor_id();
979 	struct tile_net_cpu *info;
980 
981 	struct tile_netio_queue *queue;
982 
983 	/* Only network cpus can receive packets. */
984 	int queue_id =
985 		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
986 
987 	netio_input_config_t config = {
988 		.flags = 0,
989 		.num_receive_packets = priv->network_cpus_credits,
990 		.queue_id = queue_id
991 	};
992 
993 	int ret = 0;
994 	netio_queue_impl_t *queuep;
995 
996 	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
997 
998 	if (!strcmp(dev->name, "xgbe0"))
999 		info = this_cpu_ptr(&hv_xgbe0);
1000 	else if (!strcmp(dev->name, "xgbe1"))
1001 		info = this_cpu_ptr(&hv_xgbe1);
1002 	else if (!strcmp(dev->name, "gbe0"))
1003 		info = this_cpu_ptr(&hv_gbe0);
1004 	else if (!strcmp(dev->name, "gbe1"))
1005 		info = this_cpu_ptr(&hv_gbe1);
1006 	else
1007 		BUG();
1008 
1009 	/* Initialize the egress timer. */
1010 	init_timer(&info->egress_timer);
1011 	info->egress_timer.data = (long)info;
1012 	info->egress_timer.function = tile_net_handle_egress_timer;
1013 
1014 	u64_stats_init(&info->stats.syncp);
1015 
1016 	priv->cpu[my_cpu] = info;
1017 
1018 	/*
1019 	 * Register ourselves with LIPP.  This does a lot of stuff,
1020 	 * including invoking the LIPP registration code.
1021 	 */
1022 	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1023 			    (HV_VirtAddr)&config,
1024 			    sizeof(netio_input_config_t),
1025 			    NETIO_IPP_INPUT_REGISTER_OFF);
1026 	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1027 	       ret);
1028 	if (ret < 0) {
1029 		if (ret != NETIO_LINK_DOWN) {
1030 			printk(KERN_DEBUG "hv_dev_pwrite "
1031 			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1032 			       ret);
1033 		}
1034 		info->link_down = (ret == NETIO_LINK_DOWN);
1035 		return;
1036 	}
1037 
1038 	/*
1039 	 * Get the pointer to our queue's system part.
1040 	 */
1041 
1042 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1043 			   (HV_VirtAddr)&queuep,
1044 			   sizeof(netio_queue_impl_t *),
1045 			   NETIO_IPP_INPUT_REGISTER_OFF);
1046 	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1047 	       ret);
1048 	PDEBUG("queuep %p\n", queuep);
1049 	if (ret <= 0) {
1050 		/* ISSUE: Shouldn't this be a fatal error? */
1051 		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1052 		return;
1053 	}
1054 
1055 	queue = &info->queue;
1056 
1057 	queue->__system_part = queuep;
1058 
1059 	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1060 
1061 	/* This is traditionally "config.num_receive_packets / 2". */
1062 	queue->__user_part.__receive_credit_interval = 4;
1063 	queue->__user_part.__receive_credit_remaining =
1064 		queue->__user_part.__receive_credit_interval;
1065 
1066 	/*
1067 	 * Get a fastio index from the hypervisor.
1068 	 * ISSUE: Shouldn't this check the result?
1069 	 */
1070 	ret = hv_dev_pread(priv->hv_devhdl, 0,
1071 			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
1072 			   sizeof(queue->__user_part.__fastio_index),
1073 			   NETIO_IPP_GET_FASTIO_OFF);
1074 	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1075 
1076 	/* Now we are registered. */
1077 	info->registered = true;
1078 }
1079 
1080 
1081 /*
1082  * Deregister with hypervisor on the current CPU.
1083  *
1084  * This simply discards all our credits, so no more packets will be
1085  * delivered to this tile.  There may still be packets in our queue.
1086  *
1087  * Also, disable the ingress interrupt.
1088  */
tile_net_deregister(void * dev_ptr)1089 static void tile_net_deregister(void *dev_ptr)
1090 {
1091 	struct net_device *dev = (struct net_device *)dev_ptr;
1092 	struct tile_net_priv *priv = netdev_priv(dev);
1093 	int my_cpu = smp_processor_id();
1094 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1095 
1096 	/* Disable the ingress interrupt. */
1097 	disable_percpu_irq(priv->intr_id);
1098 
1099 	/* Do nothing else if not registered. */
1100 	if (info == NULL || !info->registered)
1101 		return;
1102 
1103 	{
1104 		struct tile_netio_queue *queue = &info->queue;
1105 		netio_queue_user_impl_t *qup = &queue->__user_part;
1106 
1107 		/* Discard all our credits. */
1108 		__netio_fastio_return_credits(qup->__fastio_index, -1);
1109 	}
1110 }
1111 
1112 
1113 /*
1114  * Unregister with hypervisor on the current CPU.
1115  *
1116  * Also, disable the ingress interrupt.
1117  */
tile_net_unregister(void * dev_ptr)1118 static void tile_net_unregister(void *dev_ptr)
1119 {
1120 	struct net_device *dev = (struct net_device *)dev_ptr;
1121 	struct tile_net_priv *priv = netdev_priv(dev);
1122 	int my_cpu = smp_processor_id();
1123 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1124 
1125 	int ret;
1126 	int dummy = 0;
1127 
1128 	/* Disable the ingress interrupt. */
1129 	disable_percpu_irq(priv->intr_id);
1130 
1131 	/* Do nothing else if not registered. */
1132 	if (info == NULL || !info->registered)
1133 		return;
1134 
1135 	/* Unregister ourselves with LIPP/LEPP. */
1136 	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1137 			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1138 	if (ret < 0)
1139 		panic("Failed to unregister with LIPP/LEPP!\n");
1140 
1141 	/* Discard all packets still in our NetIO queue. */
1142 	tile_net_discard_packets(dev);
1143 
1144 	/* Reset state. */
1145 	info->num_needed_small_buffers = 0;
1146 	info->num_needed_large_buffers = 0;
1147 
1148 	/* Cancel egress timer. */
1149 	del_timer(&info->egress_timer);
1150 	info->egress_timer_scheduled = false;
1151 }
1152 
1153 
1154 /*
1155  * Helper function for "tile_net_stop()".
1156  *
1157  * Also used to handle registration failure in "tile_net_open_inner()",
1158  * when the various extra steps in "tile_net_stop()" are not necessary.
1159  */
tile_net_stop_aux(struct net_device * dev)1160 static void tile_net_stop_aux(struct net_device *dev)
1161 {
1162 	struct tile_net_priv *priv = netdev_priv(dev);
1163 	int i;
1164 
1165 	int dummy = 0;
1166 
1167 	/*
1168 	 * Unregister all tiles, so LIPP will stop delivering packets.
1169 	 * Also, delete all the "napi" objects (sequentially, to protect
1170 	 * "dev->napi_list").
1171 	 */
1172 	on_each_cpu(tile_net_unregister, (void *)dev, 1);
1173 	for_each_online_cpu(i) {
1174 		struct tile_net_cpu *info = priv->cpu[i];
1175 		if (info != NULL && info->registered) {
1176 			netif_napi_del(&info->napi);
1177 			info->registered = false;
1178 		}
1179 	}
1180 
1181 	/* Stop LIPP/LEPP. */
1182 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1183 			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1184 		panic("Failed to stop LIPP/LEPP!\n");
1185 
1186 	priv->partly_opened = false;
1187 }
1188 
1189 
1190 /*
1191  * Disable NAPI for the given device on the current cpu.
1192  */
tile_net_stop_disable(void * dev_ptr)1193 static void tile_net_stop_disable(void *dev_ptr)
1194 {
1195 	struct net_device *dev = (struct net_device *)dev_ptr;
1196 	struct tile_net_priv *priv = netdev_priv(dev);
1197 	int my_cpu = smp_processor_id();
1198 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1199 
1200 	/* Disable NAPI if needed. */
1201 	if (info != NULL && info->napi_enabled) {
1202 		napi_disable(&info->napi);
1203 		info->napi_enabled = false;
1204 	}
1205 }
1206 
1207 
1208 /*
1209  * Enable NAPI and the ingress interrupt for the given device
1210  * on the current cpu.
1211  *
1212  * ISSUE: Only do this for "network cpus"?
1213  */
tile_net_open_enable(void * dev_ptr)1214 static void tile_net_open_enable(void *dev_ptr)
1215 {
1216 	struct net_device *dev = (struct net_device *)dev_ptr;
1217 	struct tile_net_priv *priv = netdev_priv(dev);
1218 	int my_cpu = smp_processor_id();
1219 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1220 
1221 	/* Enable NAPI. */
1222 	napi_enable(&info->napi);
1223 	info->napi_enabled = true;
1224 
1225 	/* Enable the ingress interrupt. */
1226 	enable_percpu_irq(priv->intr_id, 0);
1227 }
1228 
1229 
1230 /*
1231  * tile_net_open_inner does most of the work of bringing up the interface.
1232  * It's called from tile_net_open(), and also from tile_net_retry_open().
1233  * The return value is 0 if the interface was brought up, < 0 if
1234  * tile_net_open() should return the return value as an error, and > 0 if
1235  * tile_net_open() should return success and schedule a work item to
1236  * periodically retry the bringup.
1237  */
tile_net_open_inner(struct net_device * dev)1238 static int tile_net_open_inner(struct net_device *dev)
1239 {
1240 	struct tile_net_priv *priv = netdev_priv(dev);
1241 	int my_cpu = smp_processor_id();
1242 	struct tile_net_cpu *info;
1243 	struct tile_netio_queue *queue;
1244 	int result = 0;
1245 	int i;
1246 	int dummy = 0;
1247 
1248 	/*
1249 	 * First try to register just on the local CPU, and handle any
1250 	 * semi-expected "link down" failure specially.  Note that we
1251 	 * do NOT call "tile_net_stop_aux()", unlike below.
1252 	 */
1253 	tile_net_register(dev);
1254 	info = priv->cpu[my_cpu];
1255 	if (!info->registered) {
1256 		if (info->link_down)
1257 			return 1;
1258 		return -EAGAIN;
1259 	}
1260 
1261 	/*
1262 	 * Now register everywhere else.  If any registration fails,
1263 	 * even for "link down" (which might not be possible), we
1264 	 * clean up using "tile_net_stop_aux()".  Also, add all the
1265 	 * "napi" objects (sequentially, to protect "dev->napi_list").
1266 	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1267 	 */
1268 	smp_call_function(tile_net_register, (void *)dev, 1);
1269 	for_each_online_cpu(i) {
1270 		struct tile_net_cpu *info = priv->cpu[i];
1271 		if (info->registered)
1272 			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1273 		else
1274 			result = -EAGAIN;
1275 	}
1276 	if (result != 0) {
1277 		tile_net_stop_aux(dev);
1278 		return result;
1279 	}
1280 
1281 	queue = &info->queue;
1282 
1283 	if (priv->intr_id == 0) {
1284 		unsigned int irq;
1285 
1286 		/*
1287 		 * Acquire the irq allocated by the hypervisor.  Every
1288 		 * queue gets the same irq.  The "__intr_id" field is
1289 		 * "1 << irq", so we use "__ffs()" to extract "irq".
1290 		 */
1291 		priv->intr_id = queue->__system_part->__intr_id;
1292 		BUG_ON(priv->intr_id == 0);
1293 		irq = __ffs(priv->intr_id);
1294 
1295 		/*
1296 		 * Register the ingress interrupt handler for this
1297 		 * device, permanently.
1298 		 *
1299 		 * We used to call "free_irq()" in "tile_net_stop()",
1300 		 * and then re-register the handler here every time,
1301 		 * but that caused DNP errors in "handle_IRQ_event()"
1302 		 * because "desc->action" was NULL.  See bug 9143.
1303 		 */
1304 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1305 		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1306 				   0, dev->name, (void *)dev) != 0);
1307 	}
1308 
1309 	{
1310 		/* Allocate initial buffers. */
1311 
1312 		int max_buffers =
1313 			priv->network_cpus_count * priv->network_cpus_credits;
1314 
1315 		info->num_needed_small_buffers =
1316 			min(LIPP_SMALL_BUFFERS, max_buffers);
1317 
1318 		info->num_needed_large_buffers =
1319 			min(LIPP_LARGE_BUFFERS, max_buffers);
1320 
1321 		tile_net_provide_needed_buffers(info);
1322 
1323 		if (info->num_needed_small_buffers != 0 ||
1324 		    info->num_needed_large_buffers != 0)
1325 			panic("Insufficient memory for buffer stack!");
1326 	}
1327 
1328 	/* We are about to be active. */
1329 	priv->active = true;
1330 
1331 	/* Make sure "active" is visible to all tiles. */
1332 	mb();
1333 
1334 	/* On each tile, enable NAPI and the ingress interrupt. */
1335 	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1336 
1337 	/* Start LIPP/LEPP and activate "ingress" at the shim. */
1338 	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1339 			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1340 		panic("Failed to activate the LIPP Shim!\n");
1341 
1342 	/* Start our transmit queue. */
1343 	netif_start_queue(dev);
1344 
1345 	return 0;
1346 }
1347 
1348 
1349 /*
1350  * Called periodically to retry bringing up the NetIO interface,
1351  * if it doesn't come up cleanly during tile_net_open().
1352  */
tile_net_open_retry(struct work_struct * w)1353 static void tile_net_open_retry(struct work_struct *w)
1354 {
1355 	struct delayed_work *dw =
1356 		container_of(w, struct delayed_work, work);
1357 
1358 	struct tile_net_priv *priv =
1359 		container_of(dw, struct tile_net_priv, retry_work);
1360 
1361 	/*
1362 	 * Try to bring the NetIO interface up.  If it fails, reschedule
1363 	 * ourselves to try again later; otherwise, tell Linux we now have
1364 	 * a working link.  ISSUE: What if the return value is negative?
1365 	 */
1366 	if (tile_net_open_inner(priv->dev) != 0)
1367 		schedule_delayed_work(&priv->retry_work,
1368 				      TILE_NET_RETRY_INTERVAL);
1369 	else
1370 		netif_carrier_on(priv->dev);
1371 }
1372 
1373 
1374 /*
1375  * Called when a network interface is made active.
1376  *
1377  * Returns 0 on success, negative value on failure.
1378  *
1379  * The open entry point is called when a network interface is made
1380  * active by the system (IFF_UP).  At this point all resources needed
1381  * for transmit and receive operations are allocated, the interrupt
1382  * handler is registered with the OS (if needed), the watchdog timer
1383  * is started, and the stack is notified that the interface is ready.
1384  *
1385  * If the actual link is not available yet, then we tell Linux that
1386  * we have no carrier, and we keep checking until the link comes up.
1387  */
tile_net_open(struct net_device * dev)1388 static int tile_net_open(struct net_device *dev)
1389 {
1390 	int ret = 0;
1391 	struct tile_net_priv *priv = netdev_priv(dev);
1392 
1393 	/*
1394 	 * We rely on priv->partly_opened to tell us if this is the
1395 	 * first time this interface is being brought up. If it is
1396 	 * set, the IPP was already initialized and should not be
1397 	 * initialized again.
1398 	 */
1399 	if (!priv->partly_opened) {
1400 
1401 		int count;
1402 		int credits;
1403 
1404 		/* Initialize LIPP/LEPP, and start the Shim. */
1405 		ret = tile_net_open_aux(dev);
1406 		if (ret < 0) {
1407 			pr_err("tile_net_open_aux failed: %d\n", ret);
1408 			return ret;
1409 		}
1410 
1411 		/* Analyze the network cpus. */
1412 
1413 		if (network_cpus_used)
1414 			cpumask_copy(&priv->network_cpus_map,
1415 				     &network_cpus_map);
1416 		else
1417 			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1418 
1419 
1420 		count = cpumask_weight(&priv->network_cpus_map);
1421 
1422 		/* Limit credits to available buffers, and apply min. */
1423 		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1424 
1425 		/* Apply "GBE" max limit. */
1426 		/* ISSUE: Use higher limit for XGBE? */
1427 		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1428 
1429 		priv->network_cpus_count = count;
1430 		priv->network_cpus_credits = credits;
1431 
1432 #ifdef TILE_NET_DEBUG
1433 		pr_info("Using %d network cpus, with %d credits each\n",
1434 		       priv->network_cpus_count, priv->network_cpus_credits);
1435 #endif
1436 
1437 		priv->partly_opened = true;
1438 
1439 	} else {
1440 		/* FIXME: Is this possible? */
1441 		/* printk("Already partly opened.\n"); */
1442 	}
1443 
1444 	/*
1445 	 * Attempt to bring up the link.
1446 	 */
1447 	ret = tile_net_open_inner(dev);
1448 	if (ret <= 0) {
1449 		if (ret == 0)
1450 			netif_carrier_on(dev);
1451 		return ret;
1452 	}
1453 
1454 	/*
1455 	 * We were unable to bring up the NetIO interface, but we want to
1456 	 * try again in a little bit.  Tell Linux that we have no carrier
1457 	 * so it doesn't try to use the interface before the link comes up
1458 	 * and then remember to try again later.
1459 	 */
1460 	netif_carrier_off(dev);
1461 	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1462 
1463 	return 0;
1464 }
1465 
1466 
tile_net_drain_lipp_buffers(struct tile_net_priv * priv)1467 static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1468 {
1469 	int n = 0;
1470 
1471 	/* Drain all the LIPP buffers. */
1472 	while (true) {
1473 		unsigned int buffer;
1474 
1475 		/* NOTE: This should never fail. */
1476 		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1477 				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1478 			break;
1479 
1480 		/* Stop when done. */
1481 		if (buffer == 0)
1482 			break;
1483 
1484 		{
1485 			/* Convert "linux_buffer_t" to "va". */
1486 			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1487 
1488 			/* Acquire the associated "skb". */
1489 			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1490 			struct sk_buff *skb = *skb_ptr;
1491 
1492 			kfree_skb(skb);
1493 		}
1494 
1495 		n++;
1496 	}
1497 
1498 	return n;
1499 }
1500 
1501 
1502 /*
1503  * Disables a network interface.
1504  *
1505  * Returns 0, this is not allowed to fail.
1506  *
1507  * The close entry point is called when an interface is de-activated
1508  * by the OS.  The hardware is still under the drivers control, but
1509  * needs to be disabled.  A global MAC reset is issued to stop the
1510  * hardware, and all transmit and receive resources are freed.
1511  *
1512  * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1513  *
1514  * Before we are called by "__dev_close()", "netif_running()" will
1515  * have been cleared, so no NEW calls to "tile_net_poll()" will be
1516  * made by "netpoll_poll_dev()".
1517  *
1518  * Often, this can cause some tiles to still have packets in their
1519  * queues, so we must call "tile_net_discard_packets()" later.
1520  *
1521  * Note that some other tile may still be INSIDE "tile_net_poll()",
1522  * and in fact, many will be, if there is heavy network load.
1523  *
1524  * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1525  * any tile is still "napi_schedule()"'d will induce a horrible crash
1526  * when "msleep()" is called.  This includes tiles which are inside
1527  * "tile_net_poll()" which have not yet called "napi_complete()".
1528  *
1529  * So, we must first try to wait long enough for other tiles to finish
1530  * with any current "tile_net_poll()" call, and, hopefully, to clear
1531  * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1532  * which have called "napi_schedule()" but which had not yet tried to
1533  * call "tile_net_poll()", or which exhausted their budget inside
1534  * "tile_net_poll()" just before this function was called.
1535  */
tile_net_stop(struct net_device * dev)1536 static int tile_net_stop(struct net_device *dev)
1537 {
1538 	struct tile_net_priv *priv = netdev_priv(dev);
1539 
1540 	PDEBUG("tile_net_stop()\n");
1541 
1542 	/* Start discarding packets. */
1543 	priv->active = false;
1544 
1545 	/* Make sure "active" is visible to all tiles. */
1546 	mb();
1547 
1548 	/*
1549 	 * On each tile, make sure no NEW packets get delivered, and
1550 	 * disable the ingress interrupt.
1551 	 *
1552 	 * Note that the ingress interrupt can fire AFTER this,
1553 	 * presumably due to packets which were recently delivered,
1554 	 * but it will have no effect.
1555 	 */
1556 	on_each_cpu(tile_net_deregister, (void *)dev, 1);
1557 
1558 	/* Optimistically drain LIPP buffers. */
1559 	(void)tile_net_drain_lipp_buffers(priv);
1560 
1561 	/* ISSUE: Only needed if not yet fully open. */
1562 	cancel_delayed_work_sync(&priv->retry_work);
1563 
1564 	/* Can't transmit any more. */
1565 	netif_stop_queue(dev);
1566 
1567 	/* Disable NAPI on each tile. */
1568 	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1569 
1570 	/*
1571 	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1572 	 * has never been observed, but in theory it could happen.
1573 	 */
1574 	if (tile_net_drain_lipp_buffers(priv) != 0)
1575 		printk("Had to drain some extra LIPP buffers!\n");
1576 
1577 	/* Stop LIPP/LEPP. */
1578 	tile_net_stop_aux(dev);
1579 
1580 	/*
1581 	 * ISSUE: It appears that, in practice anyway, by the time we
1582 	 * get here, there are no pending completions, but just in case,
1583 	 * we free (all of) them anyway.
1584 	 */
1585 	while (tile_net_lepp_free_comps(dev, true))
1586 		/* loop */;
1587 
1588 	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
1589 	memset(priv->eq, 0, sizeof(lepp_queue_t));
1590 	mb();
1591 
1592 	return 0;
1593 }
1594 
1595 
1596 /*
1597  * Prepare the "frags" info for the resulting LEPP command.
1598  *
1599  * If needed, flush the memory used by the frags.
1600  */
tile_net_tx_frags(lepp_frag_t * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1601 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1602 				      struct sk_buff *skb,
1603 				      void *b_data, unsigned int b_len)
1604 {
1605 	unsigned int i, n = 0;
1606 
1607 	struct skb_shared_info *sh = skb_shinfo(skb);
1608 
1609 	phys_addr_t cpa;
1610 
1611 	if (b_len != 0) {
1612 
1613 		if (!hash_default)
1614 			finv_buffer_remote(b_data, b_len, 0);
1615 
1616 		cpa = __pa(b_data);
1617 		frags[n].cpa_lo = cpa;
1618 		frags[n].cpa_hi = cpa >> 32;
1619 		frags[n].length = b_len;
1620 		frags[n].hash_for_home = hash_default;
1621 		n++;
1622 	}
1623 
1624 	for (i = 0; i < sh->nr_frags; i++) {
1625 
1626 		skb_frag_t *f = &sh->frags[i];
1627 		unsigned long pfn = page_to_pfn(skb_frag_page(f));
1628 
1629 		/* FIXME: Compute "hash_for_home" properly. */
1630 		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1631 		int hash_for_home = hash_default;
1632 
1633 		/* FIXME: Hmmm. */
1634 		if (!hash_default) {
1635 			void *va = pfn_to_kaddr(pfn) + f->page_offset;
1636 			BUG_ON(PageHighMem(skb_frag_page(f)));
1637 			finv_buffer_remote(va, skb_frag_size(f), 0);
1638 		}
1639 
1640 		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1641 		frags[n].cpa_lo = cpa;
1642 		frags[n].cpa_hi = cpa >> 32;
1643 		frags[n].length = skb_frag_size(f);
1644 		frags[n].hash_for_home = hash_for_home;
1645 		n++;
1646 	}
1647 
1648 	return n;
1649 }
1650 
1651 
1652 /*
1653  * This function takes "skb", consisting of a header template and a
1654  * payload, and hands it to LEPP, to emit as one or more segments,
1655  * each consisting of a possibly modified header, plus a piece of the
1656  * payload, via a process known as "tcp segmentation offload".
1657  *
1658  * Usually, "data" will contain the header template, of size "sh_len",
1659  * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1660  * there will be "sh->gso_segs" segments.
1661  *
1662  * Sometimes, if "sendfile()" requires copying, we will be called with
1663  * "data" containing the header and payload, with "frags" being empty.
1664  *
1665  * Sometimes, for example when using NFS over TCP, a single segment can
1666  * span 3 fragments, which must be handled carefully in LEPP.
1667  *
1668  * See "emulate_large_send_offload()" for some reference code, which
1669  * does not handle checksumming.
1670  *
1671  * ISSUE: How do we make sure that high memory DMA does not migrate?
1672  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1673 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1674 {
1675 	struct tile_net_priv *priv = netdev_priv(dev);
1676 	int my_cpu = smp_processor_id();
1677 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1678 	struct tile_net_stats_t *stats = &info->stats;
1679 
1680 	struct skb_shared_info *sh = skb_shinfo(skb);
1681 
1682 	unsigned char *data = skb->data;
1683 
1684 	/* The ip header follows the ethernet header. */
1685 	struct iphdr *ih = ip_hdr(skb);
1686 	unsigned int ih_len = ih->ihl * 4;
1687 
1688 	/* Note that "nh == ih", by definition. */
1689 	unsigned char *nh = skb_network_header(skb);
1690 	unsigned int eh_len = nh - data;
1691 
1692 	/* The tcp header follows the ip header. */
1693 	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1694 	unsigned int th_len = th->doff * 4;
1695 
1696 	/* The total number of header bytes. */
1697 	/* NOTE: This may be less than skb_headlen(skb). */
1698 	unsigned int sh_len = eh_len + ih_len + th_len;
1699 
1700 	/* The number of payload bytes at "skb->data + sh_len". */
1701 	/* This is non-zero for sendfile() without HIGHDMA. */
1702 	unsigned int b_len = skb_headlen(skb) - sh_len;
1703 
1704 	/* The total number of payload bytes. */
1705 	unsigned int d_len = b_len + skb->data_len;
1706 
1707 	/* The maximum payload size. */
1708 	unsigned int p_len = sh->gso_size;
1709 
1710 	/* The total number of segments. */
1711 	unsigned int num_segs = sh->gso_segs;
1712 
1713 	/* The temporary copy of the command. */
1714 	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1715 	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1716 
1717 	/* Analyze the "frags". */
1718 	unsigned int num_frags =
1719 		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1720 
1721 	/* The size of the command, including frags and header. */
1722 	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1723 
1724 	/* The command header. */
1725 	lepp_tso_cmd_t cmd_init = {
1726 		.tso = true,
1727 		.header_size = sh_len,
1728 		.ip_offset = eh_len,
1729 		.tcp_offset = eh_len + ih_len,
1730 		.payload_size = p_len,
1731 		.num_frags = num_frags,
1732 	};
1733 
1734 	unsigned long irqflags;
1735 
1736 	lepp_queue_t *eq = priv->eq;
1737 
1738 	struct sk_buff *olds[8];
1739 	unsigned int wanted = 8;
1740 	unsigned int i, nolds = 0;
1741 
1742 	unsigned int cmd_head, cmd_tail, cmd_next;
1743 	unsigned int comp_tail;
1744 
1745 
1746 	/* Paranoia. */
1747 	BUG_ON(skb->protocol != htons(ETH_P_IP));
1748 	BUG_ON(ih->protocol != IPPROTO_TCP);
1749 	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1750 	BUG_ON(num_frags > LEPP_MAX_FRAGS);
1751 	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1752 	BUG_ON(num_segs <= 1);
1753 
1754 
1755 	/* Finish preparing the command. */
1756 
1757 	/* Copy the command header. */
1758 	*cmd = cmd_init;
1759 
1760 	/* Copy the "header". */
1761 	memcpy(&cmd->frags[num_frags], data, sh_len);
1762 
1763 
1764 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1765 	prefetch_L1(&eq->comp_tail);
1766 	prefetch_L1(&eq->cmd_tail);
1767 	mb();
1768 
1769 
1770 	/* Enqueue the command. */
1771 
1772 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1773 
1774 	/* Handle completions if needed to make room. */
1775 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1776 	if (lepp_num_free_comp_slots(eq) == 0) {
1777 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1778 		if (nolds == 0) {
1779 busy:
1780 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1781 			return NETDEV_TX_BUSY;
1782 		}
1783 	}
1784 
1785 	cmd_head = eq->cmd_head;
1786 	cmd_tail = eq->cmd_tail;
1787 
1788 	/* Prepare to advance, detecting full queue. */
1789 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1790 	cmd_next = cmd_tail + cmd_size;
1791 	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1792 		goto busy;
1793 	if (cmd_next > LEPP_CMD_LIMIT) {
1794 		cmd_next = 0;
1795 		if (cmd_next == cmd_head)
1796 			goto busy;
1797 	}
1798 
1799 	/* Copy the command. */
1800 	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1801 
1802 	/* Advance. */
1803 	cmd_tail = cmd_next;
1804 
1805 	/* Record "skb" for eventual freeing. */
1806 	comp_tail = eq->comp_tail;
1807 	eq->comps[comp_tail] = skb;
1808 	LEPP_QINC(comp_tail);
1809 	eq->comp_tail = comp_tail;
1810 
1811 	/* Flush before allowing LEPP to handle the command. */
1812 	/* ISSUE: Is this the optimal location for the flush? */
1813 	__insn_mf();
1814 
1815 	eq->cmd_tail = cmd_tail;
1816 
1817 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1818 	/* and, strangely, more efficient than pre-checking the number */
1819 	/* of available completions, and comparing it to 4. */
1820 	if (nolds == 0)
1821 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1822 
1823 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1824 
1825 	/* Handle completions. */
1826 	for (i = 0; i < nolds; i++)
1827 		dev_consume_skb_any(olds[i]);
1828 
1829 	/* Update stats. */
1830 	u64_stats_update_begin(&stats->syncp);
1831 	stats->tx_packets += num_segs;
1832 	stats->tx_bytes += (num_segs * sh_len) + d_len;
1833 	u64_stats_update_end(&stats->syncp);
1834 
1835 	/* Make sure the egress timer is scheduled. */
1836 	tile_net_schedule_egress_timer(info);
1837 
1838 	return NETDEV_TX_OK;
1839 }
1840 
1841 
1842 /*
1843  * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1844  */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1845 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1846 {
1847 	struct tile_net_priv *priv = netdev_priv(dev);
1848 	int my_cpu = smp_processor_id();
1849 	struct tile_net_cpu *info = priv->cpu[my_cpu];
1850 	struct tile_net_stats_t *stats = &info->stats;
1851 
1852 	unsigned long irqflags;
1853 
1854 	struct skb_shared_info *sh = skb_shinfo(skb);
1855 
1856 	unsigned int len = skb->len;
1857 	unsigned char *data = skb->data;
1858 
1859 	unsigned int csum_start = skb_checksum_start_offset(skb);
1860 
1861 	lepp_frag_t frags[1 + MAX_SKB_FRAGS];
1862 
1863 	unsigned int num_frags;
1864 
1865 	lepp_queue_t *eq = priv->eq;
1866 
1867 	struct sk_buff *olds[8];
1868 	unsigned int wanted = 8;
1869 	unsigned int i, nolds = 0;
1870 
1871 	unsigned int cmd_size = sizeof(lepp_cmd_t);
1872 
1873 	unsigned int cmd_head, cmd_tail, cmd_next;
1874 	unsigned int comp_tail;
1875 
1876 	lepp_cmd_t cmds[1 + MAX_SKB_FRAGS];
1877 
1878 
1879 	/*
1880 	 * This is paranoia, since we think that if the link doesn't come
1881 	 * up, telling Linux we have no carrier will keep it from trying
1882 	 * to transmit.  If it does, though, we can't execute this routine,
1883 	 * since data structures we depend on aren't set up yet.
1884 	 */
1885 	if (!info->registered)
1886 		return NETDEV_TX_BUSY;
1887 
1888 
1889 	/* Save the timestamp. */
1890 	dev->trans_start = jiffies;
1891 
1892 
1893 #ifdef TILE_NET_PARANOIA
1894 #if CHIP_HAS_CBOX_HOME_MAP()
1895 	if (hash_default) {
1896 		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1897 		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1898 			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1899 			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
1900 	}
1901 #endif
1902 #endif
1903 
1904 
1905 #ifdef TILE_NET_DUMP_PACKETS
1906 	/* ISSUE: Does not dump the "frags". */
1907 	dump_packet(data, skb_headlen(skb), "tx");
1908 #endif /* TILE_NET_DUMP_PACKETS */
1909 
1910 
1911 	if (sh->gso_size != 0)
1912 		return tile_net_tx_tso(skb, dev);
1913 
1914 
1915 	/* Prepare the commands. */
1916 
1917 	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1918 
1919 	for (i = 0; i < num_frags; i++) {
1920 
1921 		bool final = (i == num_frags - 1);
1922 
1923 		lepp_cmd_t cmd = {
1924 			.cpa_lo = frags[i].cpa_lo,
1925 			.cpa_hi = frags[i].cpa_hi,
1926 			.length = frags[i].length,
1927 			.hash_for_home = frags[i].hash_for_home,
1928 			.send_completion = final,
1929 			.end_of_packet = final
1930 		};
1931 
1932 		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
1933 			cmd.compute_checksum = 1;
1934 			cmd.checksum_data.bits.start_byte = csum_start;
1935 			cmd.checksum_data.bits.count = len - csum_start;
1936 			cmd.checksum_data.bits.destination_byte =
1937 				csum_start + skb->csum_offset;
1938 		}
1939 
1940 		cmds[i] = cmd;
1941 	}
1942 
1943 
1944 	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1945 	prefetch_L1(&eq->comp_tail);
1946 	prefetch_L1(&eq->cmd_tail);
1947 	mb();
1948 
1949 
1950 	/* Enqueue the commands. */
1951 
1952 	spin_lock_irqsave(&priv->eq_lock, irqflags);
1953 
1954 	/* Handle completions if needed to make room. */
1955 	/* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1956 	if (lepp_num_free_comp_slots(eq) == 0) {
1957 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1958 		if (nolds == 0) {
1959 busy:
1960 			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1961 			return NETDEV_TX_BUSY;
1962 		}
1963 	}
1964 
1965 	cmd_head = eq->cmd_head;
1966 	cmd_tail = eq->cmd_tail;
1967 
1968 	/* Copy the commands, or fail. */
1969 	/* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1970 	for (i = 0; i < num_frags; i++) {
1971 
1972 		/* Prepare to advance, detecting full queue. */
1973 		cmd_next = cmd_tail + cmd_size;
1974 		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1975 			goto busy;
1976 		if (cmd_next > LEPP_CMD_LIMIT) {
1977 			cmd_next = 0;
1978 			if (cmd_next == cmd_head)
1979 				goto busy;
1980 		}
1981 
1982 		/* Copy the command. */
1983 		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
1984 
1985 		/* Advance. */
1986 		cmd_tail = cmd_next;
1987 	}
1988 
1989 	/* Record "skb" for eventual freeing. */
1990 	comp_tail = eq->comp_tail;
1991 	eq->comps[comp_tail] = skb;
1992 	LEPP_QINC(comp_tail);
1993 	eq->comp_tail = comp_tail;
1994 
1995 	/* Flush before allowing LEPP to handle the command. */
1996 	/* ISSUE: Is this the optimal location for the flush? */
1997 	__insn_mf();
1998 
1999 	eq->cmd_tail = cmd_tail;
2000 
2001 	/* NOTE: Using "4" here is more efficient than "0" or "2", */
2002 	/* and, strangely, more efficient than pre-checking the number */
2003 	/* of available completions, and comparing it to 4. */
2004 	if (nolds == 0)
2005 		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2006 
2007 	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2008 
2009 	/* Handle completions. */
2010 	for (i = 0; i < nolds; i++)
2011 		dev_consume_skb_any(olds[i]);
2012 
2013 	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2014 	u64_stats_update_begin(&stats->syncp);
2015 	stats->tx_packets++;
2016 	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2017 	u64_stats_update_end(&stats->syncp);
2018 
2019 	/* Make sure the egress timer is scheduled. */
2020 	tile_net_schedule_egress_timer(info);
2021 
2022 	return NETDEV_TX_OK;
2023 }
2024 
2025 
2026 /*
2027  * Deal with a transmit timeout.
2028  */
tile_net_tx_timeout(struct net_device * dev)2029 static void tile_net_tx_timeout(struct net_device *dev)
2030 {
2031 	PDEBUG("tile_net_tx_timeout()\n");
2032 	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2033 	       jiffies - dev->trans_start);
2034 
2035 	/* XXX: ISSUE: This doesn't seem useful for us. */
2036 	netif_wake_queue(dev);
2037 }
2038 
2039 
2040 /*
2041  * Ioctl commands.
2042  */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2043 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2044 {
2045 	return -EOPNOTSUPP;
2046 }
2047 
2048 
2049 /*
2050  * Get System Network Statistics.
2051  *
2052  * Returns the address of the device statistics structure.
2053  */
tile_net_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)2054 static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev,
2055 		struct rtnl_link_stats64 *stats)
2056 {
2057 	struct tile_net_priv *priv = netdev_priv(dev);
2058 	u64 rx_packets = 0, tx_packets = 0;
2059 	u64 rx_bytes = 0, tx_bytes = 0;
2060 	u64 rx_errors = 0, rx_dropped = 0;
2061 	int i;
2062 
2063 	for_each_online_cpu(i) {
2064 		struct tile_net_stats_t *cpu_stats;
2065 		u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes;
2066 		u64 trx_errors, trx_dropped;
2067 		unsigned int start;
2068 
2069 		if (priv->cpu[i] == NULL)
2070 			continue;
2071 		cpu_stats = &priv->cpu[i]->stats;
2072 
2073 		do {
2074 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
2075 			trx_packets = cpu_stats->rx_packets;
2076 			ttx_packets = cpu_stats->tx_packets;
2077 			trx_bytes   = cpu_stats->rx_bytes;
2078 			ttx_bytes   = cpu_stats->tx_bytes;
2079 			trx_errors  = cpu_stats->rx_errors;
2080 			trx_dropped = cpu_stats->rx_dropped;
2081 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
2082 
2083 		rx_packets += trx_packets;
2084 		tx_packets += ttx_packets;
2085 		rx_bytes   += trx_bytes;
2086 		tx_bytes   += ttx_bytes;
2087 		rx_errors  += trx_errors;
2088 		rx_dropped += trx_dropped;
2089 	}
2090 
2091 	stats->rx_packets = rx_packets;
2092 	stats->tx_packets = tx_packets;
2093 	stats->rx_bytes   = rx_bytes;
2094 	stats->tx_bytes   = tx_bytes;
2095 	stats->rx_errors  = rx_errors;
2096 	stats->rx_dropped = rx_dropped;
2097 
2098 	return stats;
2099 }
2100 
2101 
2102 /*
2103  * Change the "mtu".
2104  *
2105  * The "change_mtu" method is usually not needed.
2106  * If you need it, it must be like this.
2107  */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2108 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2109 {
2110 	PDEBUG("tile_net_change_mtu()\n");
2111 
2112 	/* Check ranges. */
2113 	if ((new_mtu < 68) || (new_mtu > 1500))
2114 		return -EINVAL;
2115 
2116 	/* Accept the value. */
2117 	dev->mtu = new_mtu;
2118 
2119 	return 0;
2120 }
2121 
2122 
2123 /*
2124  * Change the Ethernet Address of the NIC.
2125  *
2126  * The hypervisor driver does not support changing MAC address.  However,
2127  * the IPP does not do anything with the MAC address, so the address which
2128  * gets used on outgoing packets, and which is accepted on incoming packets,
2129  * is completely up to the NetIO program or kernel driver which is actually
2130  * handling them.
2131  *
2132  * Returns 0 on success, negative on failure.
2133  */
tile_net_set_mac_address(struct net_device * dev,void * p)2134 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2135 {
2136 	struct sockaddr *addr = p;
2137 
2138 	if (!is_valid_ether_addr(addr->sa_data))
2139 		return -EADDRNOTAVAIL;
2140 
2141 	/* ISSUE: Note that "dev_addr" is now a pointer. */
2142 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2143 
2144 	return 0;
2145 }
2146 
2147 
2148 /*
2149  * Obtain the MAC address from the hypervisor.
2150  * This must be done before opening the device.
2151  */
tile_net_get_mac(struct net_device * dev)2152 static int tile_net_get_mac(struct net_device *dev)
2153 {
2154 	struct tile_net_priv *priv = netdev_priv(dev);
2155 
2156 	char hv_dev_name[32];
2157 	int len;
2158 
2159 	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2160 
2161 	int ret;
2162 
2163 	/* For example, "xgbe0". */
2164 	strcpy(hv_dev_name, dev->name);
2165 	len = strlen(hv_dev_name);
2166 
2167 	/* For example, "xgbe/0". */
2168 	hv_dev_name[len] = hv_dev_name[len - 1];
2169 	hv_dev_name[len - 1] = '/';
2170 	len++;
2171 
2172 	/* For example, "xgbe/0/native_hash". */
2173 	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2174 
2175 	/* Get the hypervisor handle for this device. */
2176 	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2177 	PDEBUG("hv_dev_open(%s) returned %d %p\n",
2178 	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2179 	if (priv->hv_devhdl < 0) {
2180 		if (priv->hv_devhdl == HV_ENODEV)
2181 			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2182 				 hv_dev_name);
2183 		else
2184 			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2185 				 hv_dev_name, priv->hv_devhdl);
2186 		return -1;
2187 	}
2188 
2189 	/*
2190 	 * Read the hardware address from the hypervisor.
2191 	 * ISSUE: Note that "dev_addr" is now a pointer.
2192 	 */
2193 	offset.bits.class = NETIO_PARAM;
2194 	offset.bits.addr = NETIO_PARAM_MAC;
2195 	ret = hv_dev_pread(priv->hv_devhdl, 0,
2196 			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2197 			   offset.word);
2198 	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2199 	if (ret <= 0) {
2200 		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2201 		       dev->name);
2202 		/*
2203 		 * Since the device is configured by the hypervisor but we
2204 		 * can't get its MAC address, we are most likely running
2205 		 * the simulator, so let's generate a random MAC address.
2206 		 */
2207 		eth_hw_addr_random(dev);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 
2214 #ifdef CONFIG_NET_POLL_CONTROLLER
2215 /*
2216  * Polling 'interrupt' - used by things like netconsole to send skbs
2217  * without having to re-enable interrupts. It's not called while
2218  * the interrupt routine is executing.
2219  */
tile_net_netpoll(struct net_device * dev)2220 static void tile_net_netpoll(struct net_device *dev)
2221 {
2222 	struct tile_net_priv *priv = netdev_priv(dev);
2223 	disable_percpu_irq(priv->intr_id);
2224 	tile_net_handle_ingress_interrupt(priv->intr_id, dev);
2225 	enable_percpu_irq(priv->intr_id, 0);
2226 }
2227 #endif
2228 
2229 
2230 static const struct net_device_ops tile_net_ops = {
2231 	.ndo_open = tile_net_open,
2232 	.ndo_stop = tile_net_stop,
2233 	.ndo_start_xmit = tile_net_tx,
2234 	.ndo_do_ioctl = tile_net_ioctl,
2235 	.ndo_get_stats64 = tile_net_get_stats64,
2236 	.ndo_change_mtu = tile_net_change_mtu,
2237 	.ndo_tx_timeout = tile_net_tx_timeout,
2238 	.ndo_set_mac_address = tile_net_set_mac_address,
2239 #ifdef CONFIG_NET_POLL_CONTROLLER
2240 	.ndo_poll_controller = tile_net_netpoll,
2241 #endif
2242 };
2243 
2244 
2245 /*
2246  * The setup function.
2247  *
2248  * This uses ether_setup() to assign various fields in dev, including
2249  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2250  */
tile_net_setup(struct net_device * dev)2251 static void tile_net_setup(struct net_device *dev)
2252 {
2253 	netdev_features_t features = 0;
2254 
2255 	ether_setup(dev);
2256 	dev->netdev_ops = &tile_net_ops;
2257 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2258 	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2259 	dev->mtu = TILE_NET_MTU;
2260 
2261 	features |= NETIF_F_HW_CSUM;
2262 	features |= NETIF_F_SG;
2263 
2264 	/* We support TSO iff the HV supports sufficient frags. */
2265 	if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS)
2266 		features |= NETIF_F_TSO;
2267 
2268 	/* We can't support HIGHDMA without hash_default, since we need
2269 	 * to be able to finv() with a VA if we don't have hash_default.
2270 	 */
2271 	if (hash_default)
2272 		features |= NETIF_F_HIGHDMA;
2273 
2274 	dev->hw_features   |= features;
2275 	dev->vlan_features |= features;
2276 	dev->features      |= features;
2277 }
2278 
2279 
2280 /*
2281  * Allocate the device structure, register the device, and obtain the
2282  * MAC address from the hypervisor.
2283  */
tile_net_dev_init(const char * name)2284 static struct net_device *tile_net_dev_init(const char *name)
2285 {
2286 	int ret;
2287 	struct net_device *dev;
2288 	struct tile_net_priv *priv;
2289 
2290 	/*
2291 	 * Allocate the device structure.  This allocates "priv", calls
2292 	 * tile_net_setup(), and saves "name".  Normally, "name" is a
2293 	 * template, instantiated by register_netdev(), but not for us.
2294 	 */
2295 	dev = alloc_netdev(sizeof(*priv), name, NET_NAME_UNKNOWN,
2296 			   tile_net_setup);
2297 	if (!dev) {
2298 		pr_err("alloc_netdev(%s) failed\n", name);
2299 		return NULL;
2300 	}
2301 
2302 	priv = netdev_priv(dev);
2303 
2304 	/* Initialize "priv". */
2305 
2306 	memset(priv, 0, sizeof(*priv));
2307 
2308 	/* Save "dev" for "tile_net_open_retry()". */
2309 	priv->dev = dev;
2310 
2311 	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2312 
2313 	spin_lock_init(&priv->eq_lock);
2314 
2315 	/* Allocate "eq". */
2316 	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2317 	if (!priv->eq_pages) {
2318 		free_netdev(dev);
2319 		return NULL;
2320 	}
2321 	priv->eq = page_address(priv->eq_pages);
2322 
2323 	/* Register the network device. */
2324 	ret = register_netdev(dev);
2325 	if (ret) {
2326 		pr_err("register_netdev %s failed %d\n", dev->name, ret);
2327 		__free_pages(priv->eq_pages, EQ_ORDER);
2328 		free_netdev(dev);
2329 		return NULL;
2330 	}
2331 
2332 	/* Get the MAC address. */
2333 	ret = tile_net_get_mac(dev);
2334 	if (ret < 0) {
2335 		unregister_netdev(dev);
2336 		__free_pages(priv->eq_pages, EQ_ORDER);
2337 		free_netdev(dev);
2338 		return NULL;
2339 	}
2340 
2341 	return dev;
2342 }
2343 
2344 
2345 /*
2346  * Module cleanup.
2347  *
2348  * FIXME: If compiled as a module, this module cannot be "unloaded",
2349  * because the "ingress interrupt handler" is registered permanently.
2350  */
tile_net_cleanup(void)2351 static void tile_net_cleanup(void)
2352 {
2353 	int i;
2354 
2355 	for (i = 0; i < TILE_NET_DEVS; i++) {
2356 		if (tile_net_devs[i]) {
2357 			struct net_device *dev = tile_net_devs[i];
2358 			struct tile_net_priv *priv = netdev_priv(dev);
2359 			unregister_netdev(dev);
2360 			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2361 			__free_pages(priv->eq_pages, EQ_ORDER);
2362 			free_netdev(dev);
2363 		}
2364 	}
2365 }
2366 
2367 
2368 /*
2369  * Module initialization.
2370  */
tile_net_init_module(void)2371 static int tile_net_init_module(void)
2372 {
2373 	pr_info("Tilera Network Driver\n");
2374 
2375 	tile_net_devs[0] = tile_net_dev_init("xgbe0");
2376 	tile_net_devs[1] = tile_net_dev_init("xgbe1");
2377 	tile_net_devs[2] = tile_net_dev_init("gbe0");
2378 	tile_net_devs[3] = tile_net_dev_init("gbe1");
2379 
2380 	return 0;
2381 }
2382 
2383 
2384 module_init(tile_net_init_module);
2385 module_exit(tile_net_cleanup);
2386 
2387 
2388 #ifndef MODULE
2389 
2390 /*
2391  * The "network_cpus" boot argument specifies the cpus that are dedicated
2392  * to handle ingress packets.
2393  *
2394  * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2395  * m, n, x, y are integer numbers that represent the cpus that can be
2396  * neither a dedicated cpu nor a dataplane cpu.
2397  */
network_cpus_setup(char * str)2398 static int __init network_cpus_setup(char *str)
2399 {
2400 	int rc = cpulist_parse_crop(str, &network_cpus_map);
2401 	if (rc != 0) {
2402 		pr_warn("network_cpus=%s: malformed cpu list\n", str);
2403 	} else {
2404 
2405 		/* Remove dedicated cpus. */
2406 		cpumask_and(&network_cpus_map, &network_cpus_map,
2407 			    cpu_possible_mask);
2408 
2409 
2410 		if (cpumask_empty(&network_cpus_map)) {
2411 			pr_warn("Ignoring network_cpus='%s'\n", str);
2412 		} else {
2413 			char buf[1024];
2414 			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
2415 			pr_info("Linux network CPUs: %s\n", buf);
2416 			network_cpus_used = true;
2417 		}
2418 	}
2419 
2420 	return 0;
2421 }
2422 __setup("network_cpus=", network_cpus_setup);
2423 
2424 #endif
2425