• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Alchemy Semi Au1000 IrDA driver
3  *
4  * Copyright 2001 MontaVista Software Inc.
5  * Author: MontaVista Software, Inc.
6  *         	ppopov@mvista.com or source@mvista.com
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/time.h>
28 #include <linux/types.h>
29 #include <linux/ioport.h>
30 
31 #include <net/irda/irda.h>
32 #include <net/irda/irmod.h>
33 #include <net/irda/wrapper.h>
34 #include <net/irda/irda_device.h>
35 #include <asm/mach-au1x00/au1000.h>
36 
37 /* registers */
38 #define IR_RING_PTR_STATUS	0x00
39 #define IR_RING_BASE_ADDR_H	0x04
40 #define IR_RING_BASE_ADDR_L	0x08
41 #define IR_RING_SIZE		0x0C
42 #define IR_RING_PROMPT		0x10
43 #define IR_RING_ADDR_CMPR	0x14
44 #define IR_INT_CLEAR		0x18
45 #define IR_CONFIG_1		0x20
46 #define IR_SIR_FLAGS		0x24
47 #define IR_STATUS		0x28
48 #define IR_READ_PHY_CONFIG	0x2C
49 #define IR_WRITE_PHY_CONFIG	0x30
50 #define IR_MAX_PKT_LEN		0x34
51 #define IR_RX_BYTE_CNT		0x38
52 #define IR_CONFIG_2		0x3C
53 #define IR_ENABLE		0x40
54 
55 /* Config1 */
56 #define IR_RX_INVERT_LED	(1 << 0)
57 #define IR_TX_INVERT_LED	(1 << 1)
58 #define IR_ST			(1 << 2)
59 #define IR_SF			(1 << 3)
60 #define IR_SIR			(1 << 4)
61 #define IR_MIR			(1 << 5)
62 #define IR_FIR			(1 << 6)
63 #define IR_16CRC		(1 << 7)
64 #define IR_TD			(1 << 8)
65 #define IR_RX_ALL		(1 << 9)
66 #define IR_DMA_ENABLE		(1 << 10)
67 #define IR_RX_ENABLE		(1 << 11)
68 #define IR_TX_ENABLE		(1 << 12)
69 #define IR_LOOPBACK		(1 << 14)
70 #define IR_SIR_MODE		(IR_SIR | IR_DMA_ENABLE | \
71 				 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
72 				 IR_16CRC)
73 
74 /* ir_status */
75 #define IR_RX_STATUS		(1 << 9)
76 #define IR_TX_STATUS		(1 << 10)
77 #define IR_PHYEN		(1 << 15)
78 
79 /* ir_write_phy_config */
80 #define IR_BR(x)		(((x) & 0x3f) << 10)	/* baud rate */
81 #define IR_PW(x)		(((x) & 0x1f) << 5)	/* pulse width */
82 #define IR_P(x)			((x) & 0x1f)		/* preamble bits */
83 
84 /* Config2 */
85 #define IR_MODE_INV		(1 << 0)
86 #define IR_ONE_PIN		(1 << 1)
87 #define IR_PHYCLK_40MHZ		(0 << 2)
88 #define IR_PHYCLK_48MHZ		(1 << 2)
89 #define IR_PHYCLK_56MHZ		(2 << 2)
90 #define IR_PHYCLK_64MHZ		(3 << 2)
91 #define IR_DP			(1 << 4)
92 #define IR_DA			(1 << 5)
93 #define IR_FLT_HIGH		(0 << 6)
94 #define IR_FLT_MEDHI		(1 << 6)
95 #define IR_FLT_MEDLO		(2 << 6)
96 #define IR_FLT_LO		(3 << 6)
97 #define IR_IEN			(1 << 8)
98 
99 /* ir_enable */
100 #define IR_HC			(1 << 3)	/* divide SBUS clock by 2 */
101 #define IR_CE			(1 << 2)	/* clock enable */
102 #define IR_C			(1 << 1)	/* coherency bit */
103 #define IR_BE			(1 << 0)	/* set in big endian mode */
104 
105 #define NUM_IR_DESC	64
106 #define RING_SIZE_4	0x0
107 #define RING_SIZE_16	0x3
108 #define RING_SIZE_64	0xF
109 #define MAX_NUM_IR_DESC	64
110 #define MAX_BUF_SIZE	2048
111 
112 /* Ring descriptor flags */
113 #define AU_OWN		(1 << 7) /* tx,rx */
114 #define IR_DIS_CRC	(1 << 6) /* tx */
115 #define IR_BAD_CRC	(1 << 5) /* tx */
116 #define IR_NEED_PULSE	(1 << 4) /* tx */
117 #define IR_FORCE_UNDER	(1 << 3) /* tx */
118 #define IR_DISABLE_TX	(1 << 2) /* tx */
119 #define IR_HW_UNDER	(1 << 0) /* tx */
120 #define IR_TX_ERROR	(IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
121 
122 #define IR_PHY_ERROR	(1 << 6) /* rx */
123 #define IR_CRC_ERROR	(1 << 5) /* rx */
124 #define IR_MAX_LEN	(1 << 4) /* rx */
125 #define IR_FIFO_OVER	(1 << 3) /* rx */
126 #define IR_SIR_ERROR	(1 << 2) /* rx */
127 #define IR_RX_ERROR	(IR_PHY_ERROR | IR_CRC_ERROR | \
128 			 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
129 
130 struct db_dest {
131 	struct db_dest *pnext;
132 	volatile u32 *vaddr;
133 	dma_addr_t dma_addr;
134 };
135 
136 struct ring_dest {
137 	u8 count_0;	/* 7:0  */
138 	u8 count_1;	/* 12:8 */
139 	u8 reserved;
140 	u8 flags;
141 	u8 addr_0;	/* 7:0   */
142 	u8 addr_1;	/* 15:8  */
143 	u8 addr_2;	/* 23:16 */
144 	u8 addr_3;	/* 31:24 */
145 };
146 
147 /* Private data for each instance */
148 struct au1k_private {
149 	void __iomem *iobase;
150 	int irq_rx, irq_tx;
151 
152 	struct db_dest *pDBfree;
153 	struct db_dest db[2 * NUM_IR_DESC];
154 	volatile struct ring_dest *rx_ring[NUM_IR_DESC];
155 	volatile struct ring_dest *tx_ring[NUM_IR_DESC];
156 	struct db_dest *rx_db_inuse[NUM_IR_DESC];
157 	struct db_dest *tx_db_inuse[NUM_IR_DESC];
158 	u32 rx_head;
159 	u32 tx_head;
160 	u32 tx_tail;
161 	u32 tx_full;
162 
163 	iobuff_t rx_buff;
164 
165 	struct net_device *netdev;
166 	struct timeval stamp;
167 	struct timeval now;
168 	struct qos_info qos;
169 	struct irlap_cb *irlap;
170 
171 	u8 open;
172 	u32 speed;
173 	u32 newspeed;
174 
175 	struct timer_list timer;
176 
177 	struct resource *ioarea;
178 	struct au1k_irda_platform_data *platdata;
179 	struct clk *irda_clk;
180 };
181 
182 static int qos_mtt_bits = 0x07;  /* 1 ms or more */
183 
184 #define RUN_AT(x) (jiffies + (x))
185 
au1k_irda_plat_set_phy_mode(struct au1k_private * p,int mode)186 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
187 {
188 	if (p->platdata && p->platdata->set_phy_mode)
189 		p->platdata->set_phy_mode(mode);
190 }
191 
irda_read(struct au1k_private * p,unsigned long ofs)192 static inline unsigned long irda_read(struct au1k_private *p,
193 				      unsigned long ofs)
194 {
195 	/*
196 	* IrDA peripheral bug. You have to read the register
197 	* twice to get the right value.
198 	*/
199 	(void)__raw_readl(p->iobase + ofs);
200 	return __raw_readl(p->iobase + ofs);
201 }
202 
irda_write(struct au1k_private * p,unsigned long ofs,unsigned long val)203 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
204 			      unsigned long val)
205 {
206 	__raw_writel(val, p->iobase + ofs);
207 	wmb();
208 }
209 
210 /*
211  * Buffer allocation/deallocation routines. The buffer descriptor returned
212  * has the virtual and dma address of a buffer suitable for
213  * both, receive and transmit operations.
214  */
GetFreeDB(struct au1k_private * aup)215 static struct db_dest *GetFreeDB(struct au1k_private *aup)
216 {
217 	struct db_dest *db;
218 	db = aup->pDBfree;
219 
220 	if (db)
221 		aup->pDBfree = db->pnext;
222 	return db;
223 }
224 
225 /*
226   DMA memory allocation, derived from pci_alloc_consistent.
227   However, the Au1000 data cache is coherent (when programmed
228   so), therefore we return KSEG0 address, not KSEG1.
229 */
dma_alloc(size_t size,dma_addr_t * dma_handle)230 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
231 {
232 	void *ret;
233 	int gfp = GFP_ATOMIC | GFP_DMA;
234 
235 	ret = (void *)__get_free_pages(gfp, get_order(size));
236 
237 	if (ret != NULL) {
238 		memset(ret, 0, size);
239 		*dma_handle = virt_to_bus(ret);
240 		ret = (void *)KSEG0ADDR(ret);
241 	}
242 	return ret;
243 }
244 
dma_free(void * vaddr,size_t size)245 static void dma_free(void *vaddr, size_t size)
246 {
247 	vaddr = (void *)KSEG0ADDR(vaddr);
248 	free_pages((unsigned long) vaddr, get_order(size));
249 }
250 
251 
setup_hw_rings(struct au1k_private * aup,u32 rx_base,u32 tx_base)252 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
253 {
254 	int i;
255 	for (i = 0; i < NUM_IR_DESC; i++) {
256 		aup->rx_ring[i] = (volatile struct ring_dest *)
257 			(rx_base + sizeof(struct ring_dest) * i);
258 	}
259 	for (i = 0; i < NUM_IR_DESC; i++) {
260 		aup->tx_ring[i] = (volatile struct ring_dest *)
261 			(tx_base + sizeof(struct ring_dest) * i);
262 	}
263 }
264 
au1k_irda_init_iobuf(iobuff_t * io,int size)265 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
266 {
267 	io->head = kmalloc(size, GFP_KERNEL);
268 	if (io->head != NULL) {
269 		io->truesize	= size;
270 		io->in_frame	= FALSE;
271 		io->state	= OUTSIDE_FRAME;
272 		io->data	= io->head;
273 	}
274 	return io->head ? 0 : -ENOMEM;
275 }
276 
277 /*
278  * Set the IrDA communications speed.
279  */
au1k_irda_set_speed(struct net_device * dev,int speed)280 static int au1k_irda_set_speed(struct net_device *dev, int speed)
281 {
282 	struct au1k_private *aup = netdev_priv(dev);
283 	volatile struct ring_dest *ptxd;
284 	unsigned long control;
285 	int ret = 0, timeout = 10, i;
286 
287 	if (speed == aup->speed)
288 		return ret;
289 
290 	/* disable PHY first */
291 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
292 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
293 
294 	/* disable RX/TX */
295 	irda_write(aup, IR_CONFIG_1,
296 	    irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
297 	msleep(20);
298 	while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
299 		msleep(20);
300 		if (!timeout--) {
301 			printk(KERN_ERR "%s: rx/tx disable timeout\n",
302 					dev->name);
303 			break;
304 		}
305 	}
306 
307 	/* disable DMA */
308 	irda_write(aup, IR_CONFIG_1,
309 		   irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
310 	msleep(20);
311 
312 	/* After we disable tx/rx. the index pointers go back to zero. */
313 	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
314 	for (i = 0; i < NUM_IR_DESC; i++) {
315 		ptxd = aup->tx_ring[i];
316 		ptxd->flags = 0;
317 		ptxd->count_0 = 0;
318 		ptxd->count_1 = 0;
319 	}
320 
321 	for (i = 0; i < NUM_IR_DESC; i++) {
322 		ptxd = aup->rx_ring[i];
323 		ptxd->count_0 = 0;
324 		ptxd->count_1 = 0;
325 		ptxd->flags = AU_OWN;
326 	}
327 
328 	if (speed == 4000000)
329 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
330 	else
331 		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
332 
333 	switch (speed) {
334 	case 9600:
335 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
336 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
337 		break;
338 	case 19200:
339 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
340 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
341 		break;
342 	case 38400:
343 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
344 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
345 		break;
346 	case 57600:
347 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
348 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
349 		break;
350 	case 115200:
351 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
352 		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
353 		break;
354 	case 4000000:
355 		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
356 		irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
357 				IR_RX_ENABLE);
358 		break;
359 	default:
360 		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
361 		ret = -EINVAL;
362 		break;
363 	}
364 
365 	aup->speed = speed;
366 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
367 
368 	control = irda_read(aup, IR_STATUS);
369 	irda_write(aup, IR_RING_PROMPT, 0);
370 
371 	if (control & (1 << 14)) {
372 		printk(KERN_ERR "%s: configuration error\n", dev->name);
373 	} else {
374 		if (control & (1 << 11))
375 			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
376 		if (control & (1 << 12))
377 			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
378 		if (control & (1 << 13))
379 			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
380 		if (control & (1 << 10))
381 			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
382 		if (control & (1 << 9))
383 			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
384 	}
385 
386 	return ret;
387 }
388 
update_rx_stats(struct net_device * dev,u32 status,u32 count)389 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
390 {
391 	struct net_device_stats *ps = &dev->stats;
392 
393 	ps->rx_packets++;
394 
395 	if (status & IR_RX_ERROR) {
396 		ps->rx_errors++;
397 		if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
398 			ps->rx_missed_errors++;
399 		if (status & IR_MAX_LEN)
400 			ps->rx_length_errors++;
401 		if (status & IR_CRC_ERROR)
402 			ps->rx_crc_errors++;
403 	} else
404 		ps->rx_bytes += count;
405 }
406 
update_tx_stats(struct net_device * dev,u32 status,u32 pkt_len)407 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
408 {
409 	struct net_device_stats *ps = &dev->stats;
410 
411 	ps->tx_packets++;
412 	ps->tx_bytes += pkt_len;
413 
414 	if (status & IR_TX_ERROR) {
415 		ps->tx_errors++;
416 		ps->tx_aborted_errors++;
417 	}
418 }
419 
au1k_tx_ack(struct net_device * dev)420 static void au1k_tx_ack(struct net_device *dev)
421 {
422 	struct au1k_private *aup = netdev_priv(dev);
423 	volatile struct ring_dest *ptxd;
424 
425 	ptxd = aup->tx_ring[aup->tx_tail];
426 	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
427 		update_tx_stats(dev, ptxd->flags,
428 				(ptxd->count_1 << 8) | ptxd->count_0);
429 		ptxd->count_0 = 0;
430 		ptxd->count_1 = 0;
431 		wmb();
432 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
433 		ptxd = aup->tx_ring[aup->tx_tail];
434 
435 		if (aup->tx_full) {
436 			aup->tx_full = 0;
437 			netif_wake_queue(dev);
438 		}
439 	}
440 
441 	if (aup->tx_tail == aup->tx_head) {
442 		if (aup->newspeed) {
443 			au1k_irda_set_speed(dev, aup->newspeed);
444 			aup->newspeed = 0;
445 		} else {
446 			irda_write(aup, IR_CONFIG_1,
447 			    irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
448 			irda_write(aup, IR_CONFIG_1,
449 			    irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
450 			irda_write(aup, IR_RING_PROMPT, 0);
451 		}
452 	}
453 }
454 
au1k_irda_rx(struct net_device * dev)455 static int au1k_irda_rx(struct net_device *dev)
456 {
457 	struct au1k_private *aup = netdev_priv(dev);
458 	volatile struct ring_dest *prxd;
459 	struct sk_buff *skb;
460 	struct db_dest *pDB;
461 	u32 flags, count;
462 
463 	prxd = aup->rx_ring[aup->rx_head];
464 	flags = prxd->flags;
465 
466 	while (!(flags & AU_OWN))  {
467 		pDB = aup->rx_db_inuse[aup->rx_head];
468 		count = (prxd->count_1 << 8) | prxd->count_0;
469 		if (!(flags & IR_RX_ERROR)) {
470 			/* good frame */
471 			update_rx_stats(dev, flags, count);
472 			skb = alloc_skb(count + 1, GFP_ATOMIC);
473 			if (skb == NULL) {
474 				dev->stats.rx_dropped++;
475 				continue;
476 			}
477 			skb_reserve(skb, 1);
478 			if (aup->speed == 4000000)
479 				skb_put(skb, count);
480 			else
481 				skb_put(skb, count - 2);
482 			skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
483 						count - 2);
484 			skb->dev = dev;
485 			skb_reset_mac_header(skb);
486 			skb->protocol = htons(ETH_P_IRDA);
487 			netif_rx(skb);
488 			prxd->count_0 = 0;
489 			prxd->count_1 = 0;
490 		}
491 		prxd->flags |= AU_OWN;
492 		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
493 		irda_write(aup, IR_RING_PROMPT, 0);
494 
495 		/* next descriptor */
496 		prxd = aup->rx_ring[aup->rx_head];
497 		flags = prxd->flags;
498 
499 	}
500 	return 0;
501 }
502 
au1k_irda_interrupt(int dummy,void * dev_id)503 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
504 {
505 	struct net_device *dev = dev_id;
506 	struct au1k_private *aup = netdev_priv(dev);
507 
508 	irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
509 
510 	au1k_irda_rx(dev);
511 	au1k_tx_ack(dev);
512 
513 	return IRQ_HANDLED;
514 }
515 
au1k_init(struct net_device * dev)516 static int au1k_init(struct net_device *dev)
517 {
518 	struct au1k_private *aup = netdev_priv(dev);
519 	u32 enable, ring_address, phyck;
520 	struct clk *c;
521 	int i;
522 
523 	c = clk_get(NULL, "irda_clk");
524 	if (IS_ERR(c))
525 		return PTR_ERR(c);
526 	i = clk_prepare_enable(c);
527 	if (i) {
528 		clk_put(c);
529 		return i;
530 	}
531 
532 	switch (clk_get_rate(c)) {
533 	case 40000000:
534 		phyck = IR_PHYCLK_40MHZ;
535 		break;
536 	case 48000000:
537 		phyck = IR_PHYCLK_48MHZ;
538 		break;
539 	case 56000000:
540 		phyck = IR_PHYCLK_56MHZ;
541 		break;
542 	case 64000000:
543 		phyck = IR_PHYCLK_64MHZ;
544 		break;
545 	default:
546 		clk_disable_unprepare(c);
547 		clk_put(c);
548 		return -EINVAL;
549 	}
550 	aup->irda_clk = c;
551 
552 	enable = IR_HC | IR_CE | IR_C;
553 #ifndef CONFIG_CPU_LITTLE_ENDIAN
554 	enable |= IR_BE;
555 #endif
556 	aup->tx_head = 0;
557 	aup->tx_tail = 0;
558 	aup->rx_head = 0;
559 
560 	for (i = 0; i < NUM_IR_DESC; i++)
561 		aup->rx_ring[i]->flags = AU_OWN;
562 
563 	irda_write(aup, IR_ENABLE, enable);
564 	msleep(20);
565 
566 	/* disable PHY */
567 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
568 	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
569 	msleep(20);
570 
571 	irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
572 
573 	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
574 	irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
575 	irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
576 
577 	irda_write(aup, IR_RING_SIZE,
578 				(RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
579 
580 	irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN);
581 	irda_write(aup, IR_RING_ADDR_CMPR, 0);
582 
583 	au1k_irda_set_speed(dev, 9600);
584 	return 0;
585 }
586 
au1k_irda_start(struct net_device * dev)587 static int au1k_irda_start(struct net_device *dev)
588 {
589 	struct au1k_private *aup = netdev_priv(dev);
590 	char hwname[32];
591 	int retval;
592 
593 	retval = au1k_init(dev);
594 	if (retval) {
595 		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
596 		return retval;
597 	}
598 
599 	retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
600 			     dev->name, dev);
601 	if (retval) {
602 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
603 				dev->name, dev->irq);
604 		return retval;
605 	}
606 	retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
607 			     dev->name, dev);
608 	if (retval) {
609 		free_irq(aup->irq_tx, dev);
610 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
611 				dev->name, dev->irq);
612 		return retval;
613 	}
614 
615 	/* Give self a hardware name */
616 	sprintf(hwname, "Au1000 SIR/FIR");
617 	aup->irlap = irlap_open(dev, &aup->qos, hwname);
618 	netif_start_queue(dev);
619 
620 	/* int enable */
621 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
622 
623 	/* power up */
624 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
625 
626 	aup->timer.expires = RUN_AT((3 * HZ));
627 	aup->timer.data = (unsigned long)dev;
628 	return 0;
629 }
630 
au1k_irda_stop(struct net_device * dev)631 static int au1k_irda_stop(struct net_device *dev)
632 {
633 	struct au1k_private *aup = netdev_priv(dev);
634 
635 	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
636 
637 	/* disable interrupts */
638 	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
639 	irda_write(aup, IR_CONFIG_1, 0);
640 	irda_write(aup, IR_ENABLE, 0); /* disable clock */
641 
642 	if (aup->irlap) {
643 		irlap_close(aup->irlap);
644 		aup->irlap = NULL;
645 	}
646 
647 	netif_stop_queue(dev);
648 	del_timer(&aup->timer);
649 
650 	/* disable the interrupt */
651 	free_irq(aup->irq_tx, dev);
652 	free_irq(aup->irq_rx, dev);
653 
654 	clk_disable_unprepare(aup->irda_clk);
655 	clk_put(aup->irda_clk);
656 
657 	return 0;
658 }
659 
660 /*
661  * Au1000 transmit routine.
662  */
au1k_irda_hard_xmit(struct sk_buff * skb,struct net_device * dev)663 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
664 {
665 	struct au1k_private *aup = netdev_priv(dev);
666 	int speed = irda_get_next_speed(skb);
667 	volatile struct ring_dest *ptxd;
668 	struct db_dest *pDB;
669 	u32 len, flags;
670 
671 	if (speed != aup->speed && speed != -1)
672 		aup->newspeed = speed;
673 
674 	if ((skb->len == 0) && (aup->newspeed)) {
675 		if (aup->tx_tail == aup->tx_head) {
676 			au1k_irda_set_speed(dev, speed);
677 			aup->newspeed = 0;
678 		}
679 		dev_kfree_skb(skb);
680 		return NETDEV_TX_OK;
681 	}
682 
683 	ptxd = aup->tx_ring[aup->tx_head];
684 	flags = ptxd->flags;
685 
686 	if (flags & AU_OWN) {
687 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
688 		netif_stop_queue(dev);
689 		aup->tx_full = 1;
690 		return 1;
691 	} else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
692 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
693 		netif_stop_queue(dev);
694 		aup->tx_full = 1;
695 		return 1;
696 	}
697 
698 	pDB = aup->tx_db_inuse[aup->tx_head];
699 
700 #if 0
701 	if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
702 		printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
703 				irda_read(aup, IR_RX_BYTE_CNT));
704 	}
705 #endif
706 
707 	if (aup->speed == 4000000) {
708 		/* FIR */
709 		skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
710 		ptxd->count_0 = skb->len & 0xff;
711 		ptxd->count_1 = (skb->len >> 8) & 0xff;
712 	} else {
713 		/* SIR */
714 		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
715 		ptxd->count_0 = len & 0xff;
716 		ptxd->count_1 = (len >> 8) & 0xff;
717 		ptxd->flags |= IR_DIS_CRC;
718 	}
719 	ptxd->flags |= AU_OWN;
720 	wmb();
721 
722 	irda_write(aup, IR_CONFIG_1,
723 		   irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
724 	irda_write(aup, IR_RING_PROMPT, 0);
725 
726 	dev_kfree_skb(skb);
727 	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
728 	return NETDEV_TX_OK;
729 }
730 
731 /*
732  * The Tx ring has been full longer than the watchdog timeout
733  * value. The transmitter must be hung?
734  */
au1k_tx_timeout(struct net_device * dev)735 static void au1k_tx_timeout(struct net_device *dev)
736 {
737 	u32 speed;
738 	struct au1k_private *aup = netdev_priv(dev);
739 
740 	printk(KERN_ERR "%s: tx timeout\n", dev->name);
741 	speed = aup->speed;
742 	aup->speed = 0;
743 	au1k_irda_set_speed(dev, speed);
744 	aup->tx_full = 0;
745 	netif_wake_queue(dev);
746 }
747 
au1k_irda_ioctl(struct net_device * dev,struct ifreq * ifreq,int cmd)748 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
749 {
750 	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
751 	struct au1k_private *aup = netdev_priv(dev);
752 	int ret = -EOPNOTSUPP;
753 
754 	switch (cmd) {
755 	case SIOCSBANDWIDTH:
756 		if (capable(CAP_NET_ADMIN)) {
757 			/*
758 			 * We are unable to set the speed if the
759 			 * device is not running.
760 			 */
761 			if (aup->open)
762 				ret = au1k_irda_set_speed(dev,
763 						rq->ifr_baudrate);
764 			else {
765 				printk(KERN_ERR "%s ioctl: !netif_running\n",
766 						dev->name);
767 				ret = 0;
768 			}
769 		}
770 		break;
771 
772 	case SIOCSMEDIABUSY:
773 		ret = -EPERM;
774 		if (capable(CAP_NET_ADMIN)) {
775 			irda_device_set_media_busy(dev, TRUE);
776 			ret = 0;
777 		}
778 		break;
779 
780 	case SIOCGRECEIVING:
781 		rq->ifr_receiving = 0;
782 		break;
783 	default:
784 		break;
785 	}
786 	return ret;
787 }
788 
789 static const struct net_device_ops au1k_irda_netdev_ops = {
790 	.ndo_open		= au1k_irda_start,
791 	.ndo_stop		= au1k_irda_stop,
792 	.ndo_start_xmit		= au1k_irda_hard_xmit,
793 	.ndo_tx_timeout		= au1k_tx_timeout,
794 	.ndo_do_ioctl		= au1k_irda_ioctl,
795 };
796 
au1k_irda_net_init(struct net_device * dev)797 static int au1k_irda_net_init(struct net_device *dev)
798 {
799 	struct au1k_private *aup = netdev_priv(dev);
800 	struct db_dest *pDB, *pDBfree;
801 	int i, err, retval = 0;
802 	dma_addr_t temp;
803 
804 	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
805 	if (err)
806 		goto out1;
807 
808 	dev->netdev_ops = &au1k_irda_netdev_ops;
809 
810 	irda_init_max_qos_capabilies(&aup->qos);
811 
812 	/* The only value we must override it the baudrate */
813 	aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
814 		IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
815 
816 	aup->qos.min_turn_time.bits = qos_mtt_bits;
817 	irda_qos_bits_to_value(&aup->qos);
818 
819 	retval = -ENOMEM;
820 
821 	/* Tx ring follows rx ring + 512 bytes */
822 	/* we need a 1k aligned buffer */
823 	aup->rx_ring[0] = (struct ring_dest *)
824 		dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
825 			  &temp);
826 	if (!aup->rx_ring[0])
827 		goto out2;
828 
829 	/* allocate the data buffers */
830 	aup->db[0].vaddr =
831 		dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
832 	if (!aup->db[0].vaddr)
833 		goto out3;
834 
835 	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
836 
837 	pDBfree = NULL;
838 	pDB = aup->db;
839 	for (i = 0; i < (2 * NUM_IR_DESC); i++) {
840 		pDB->pnext = pDBfree;
841 		pDBfree = pDB;
842 		pDB->vaddr =
843 		       (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
844 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
845 		pDB++;
846 	}
847 	aup->pDBfree = pDBfree;
848 
849 	/* attach a data buffer to each descriptor */
850 	for (i = 0; i < NUM_IR_DESC; i++) {
851 		pDB = GetFreeDB(aup);
852 		if (!pDB)
853 			goto out3;
854 		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
855 		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
856 		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
857 		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
858 		aup->rx_db_inuse[i] = pDB;
859 	}
860 	for (i = 0; i < NUM_IR_DESC; i++) {
861 		pDB = GetFreeDB(aup);
862 		if (!pDB)
863 			goto out3;
864 		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
865 		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
866 		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
867 		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
868 		aup->tx_ring[i]->count_0 = 0;
869 		aup->tx_ring[i]->count_1 = 0;
870 		aup->tx_ring[i]->flags = 0;
871 		aup->tx_db_inuse[i] = pDB;
872 	}
873 
874 	return 0;
875 
876 out3:
877 	dma_free((void *)aup->rx_ring[0],
878 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
879 out2:
880 	kfree(aup->rx_buff.head);
881 out1:
882 	printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
883 	return retval;
884 }
885 
au1k_irda_probe(struct platform_device * pdev)886 static int au1k_irda_probe(struct platform_device *pdev)
887 {
888 	struct au1k_private *aup;
889 	struct net_device *dev;
890 	struct resource *r;
891 	struct clk *c;
892 	int err;
893 
894 	dev = alloc_irdadev(sizeof(struct au1k_private));
895 	if (!dev)
896 		return -ENOMEM;
897 
898 	aup = netdev_priv(dev);
899 
900 	aup->platdata = pdev->dev.platform_data;
901 
902 	err = -EINVAL;
903 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
904 	if (!r)
905 		goto out;
906 
907 	aup->irq_tx = r->start;
908 
909 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
910 	if (!r)
911 		goto out;
912 
913 	aup->irq_rx = r->start;
914 
915 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
916 	if (!r)
917 		goto out;
918 
919 	err = -EBUSY;
920 	aup->ioarea = request_mem_region(r->start, resource_size(r),
921 					 pdev->name);
922 	if (!aup->ioarea)
923 		goto out;
924 
925 	/* bail out early if clock doesn't exist */
926 	c = clk_get(NULL, "irda_clk");
927 	if (IS_ERR(c)) {
928 		err = PTR_ERR(c);
929 		goto out;
930 	}
931 	clk_put(c);
932 
933 	aup->iobase = ioremap_nocache(r->start, resource_size(r));
934 	if (!aup->iobase)
935 		goto out2;
936 
937 	dev->irq = aup->irq_rx;
938 
939 	err = au1k_irda_net_init(dev);
940 	if (err)
941 		goto out3;
942 	err = register_netdev(dev);
943 	if (err)
944 		goto out4;
945 
946 	platform_set_drvdata(pdev, dev);
947 
948 	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
949 	return 0;
950 
951 out4:
952 	dma_free((void *)aup->db[0].vaddr,
953 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
954 	dma_free((void *)aup->rx_ring[0],
955 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
956 	kfree(aup->rx_buff.head);
957 out3:
958 	iounmap(aup->iobase);
959 out2:
960 	release_resource(aup->ioarea);
961 	kfree(aup->ioarea);
962 out:
963 	free_netdev(dev);
964 	return err;
965 }
966 
au1k_irda_remove(struct platform_device * pdev)967 static int au1k_irda_remove(struct platform_device *pdev)
968 {
969 	struct net_device *dev = platform_get_drvdata(pdev);
970 	struct au1k_private *aup = netdev_priv(dev);
971 
972 	unregister_netdev(dev);
973 
974 	dma_free((void *)aup->db[0].vaddr,
975 		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
976 	dma_free((void *)aup->rx_ring[0],
977 		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
978 	kfree(aup->rx_buff.head);
979 
980 	iounmap(aup->iobase);
981 	release_resource(aup->ioarea);
982 	kfree(aup->ioarea);
983 
984 	free_netdev(dev);
985 
986 	return 0;
987 }
988 
989 static struct platform_driver au1k_irda_driver = {
990 	.driver	= {
991 		.name	= "au1000-irda",
992 		.owner	= THIS_MODULE,
993 	},
994 	.probe		= au1k_irda_probe,
995 	.remove		= au1k_irda_remove,
996 };
997 
998 module_platform_driver(au1k_irda_driver);
999 
1000 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
1001 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
1002