1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 * Intel Linux Wireless <ilw@linux.intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 * * Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * * Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in
46 * the documentation and/or other materials provided with the
47 * distribution.
48 * * Neither the name Intel Corporation nor the names of its
49 * contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64 #include <linux/types.h>
65 #include <linux/slab.h>
66 #include <linux/export.h>
67 #include <linux/etherdevice.h>
68 #include <linux/pci.h>
69 #include "iwl-drv.h"
70 #include "iwl-modparams.h"
71 #include "iwl-nvm-parse.h"
72
73 /* NVM offsets (in words) definitions */
74 enum wkp_nvm_offsets {
75 /* NVM HW-Section offset (in words) definitions */
76 HW_ADDR = 0x15,
77
78 /* NVM SW-Section offset (in words) definitions */
79 NVM_SW_SECTION = 0x1C0,
80 NVM_VERSION = 0,
81 RADIO_CFG = 1,
82 SKU = 2,
83 N_HW_ADDRS = 3,
84 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85
86 /* NVM calibration section offset (in words) definitions */
87 NVM_CALIB_SECTION = 0x2B8,
88 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89 };
90
91 enum family_8000_nvm_offsets {
92 /* NVM HW-Section offset (in words) definitions */
93 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98
99 /* NVM SW-Section offset (in words) definitions */
100 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101 NVM_VERSION_FAMILY_8000 = 0,
102 RADIO_CFG_FAMILY_8000 = 2,
103 SKU_FAMILY_8000 = 4,
104 N_HW_ADDRS_FAMILY_8000 = 5,
105
106 /* NVM REGULATORY -Section offset (in words) definitions */
107 NVM_CHANNELS_FAMILY_8000 = 0,
108
109 /* NVM calibration section offset (in words) definitions */
110 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
111 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
112 };
113
114 /* SKU Capabilities (actual values from NVM definition) */
115 enum nvm_sku_bits {
116 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
117 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
118 NVM_SKU_CAP_11N_ENABLE = BIT(2),
119 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
120 };
121
122 /*
123 * These are the channel numbers in the order that they are stored in the NVM
124 */
125 static const u8 iwl_nvm_channels[] = {
126 /* 2.4 GHz */
127 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
128 /* 5 GHz */
129 36, 40, 44 , 48, 52, 56, 60, 64,
130 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
131 149, 153, 157, 161, 165
132 };
133
134 static const u8 iwl_nvm_channels_family_8000[] = {
135 /* 2.4 GHz */
136 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
137 /* 5 GHz */
138 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
139 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
140 149, 153, 157, 161, 165, 169, 173, 177, 181
141 };
142
143 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
144 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
145 #define NUM_2GHZ_CHANNELS 14
146 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14
147 #define FIRST_2GHZ_HT_MINUS 5
148 #define LAST_2GHZ_HT_PLUS 9
149 #define LAST_5GHZ_HT 161
150
151 /* rate data (static) */
152 static struct ieee80211_rate iwl_cfg80211_rates[] = {
153 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
154 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
156 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
158 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
160 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
161 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
162 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
163 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
164 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
165 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
166 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
167 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
168 };
169 #define RATES_24_OFFS 0
170 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
171 #define RATES_52_OFFS 4
172 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
173
174 /**
175 * enum iwl_nvm_channel_flags - channel flags in NVM
176 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
177 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
178 * @NVM_CHANNEL_ACTIVE: active scanning allowed
179 * @NVM_CHANNEL_RADAR: radar detection required
180 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
181 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
182 * on same channel on 2.4 or same UNII band on 5.2
183 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
184 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
185 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
186 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
187 */
188 enum iwl_nvm_channel_flags {
189 NVM_CHANNEL_VALID = BIT(0),
190 NVM_CHANNEL_IBSS = BIT(1),
191 NVM_CHANNEL_ACTIVE = BIT(3),
192 NVM_CHANNEL_RADAR = BIT(4),
193 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
194 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
195 NVM_CHANNEL_WIDE = BIT(8),
196 NVM_CHANNEL_40MHZ = BIT(9),
197 NVM_CHANNEL_80MHZ = BIT(10),
198 NVM_CHANNEL_160MHZ = BIT(11),
199 };
200
201 #define CHECK_AND_PRINT_I(x) \
202 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
203
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * const nvm_ch_flags)204 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
205 struct iwl_nvm_data *data,
206 const __le16 * const nvm_ch_flags)
207 {
208 int ch_idx;
209 int n_channels = 0;
210 struct ieee80211_channel *channel;
211 u16 ch_flags;
212 bool is_5ghz;
213 int num_of_ch, num_2ghz_channels;
214 const u8 *nvm_chan;
215
216 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
217 num_of_ch = IWL_NUM_CHANNELS;
218 nvm_chan = &iwl_nvm_channels[0];
219 num_2ghz_channels = NUM_2GHZ_CHANNELS;
220 } else {
221 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
222 nvm_chan = &iwl_nvm_channels_family_8000[0];
223 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
224 }
225
226 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
227 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
228
229 if (ch_idx >= num_2ghz_channels &&
230 !data->sku_cap_band_52GHz_enable)
231 ch_flags &= ~NVM_CHANNEL_VALID;
232
233 if (!(ch_flags & NVM_CHANNEL_VALID)) {
234 IWL_DEBUG_EEPROM(dev,
235 "Ch. %d Flags %x [%sGHz] - No traffic\n",
236 nvm_chan[ch_idx],
237 ch_flags,
238 (ch_idx >= num_2ghz_channels) ?
239 "5.2" : "2.4");
240 continue;
241 }
242
243 channel = &data->channels[n_channels];
244 n_channels++;
245
246 channel->hw_value = nvm_chan[ch_idx];
247 channel->band = (ch_idx < num_2ghz_channels) ?
248 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
249 channel->center_freq =
250 ieee80211_channel_to_frequency(
251 channel->hw_value, channel->band);
252
253 /* TODO: Need to be dependent to the NVM */
254 channel->flags = IEEE80211_CHAN_NO_HT40;
255 if (ch_idx < num_2ghz_channels &&
256 (ch_flags & NVM_CHANNEL_40MHZ)) {
257 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
258 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
259 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
260 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
261 } else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
262 (ch_flags & NVM_CHANNEL_40MHZ)) {
263 if ((ch_idx - num_2ghz_channels) % 2 == 0)
264 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
265 else
266 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
267 }
268 if (!(ch_flags & NVM_CHANNEL_80MHZ))
269 channel->flags |= IEEE80211_CHAN_NO_80MHZ;
270 if (!(ch_flags & NVM_CHANNEL_160MHZ))
271 channel->flags |= IEEE80211_CHAN_NO_160MHZ;
272
273 if (!(ch_flags & NVM_CHANNEL_IBSS))
274 channel->flags |= IEEE80211_CHAN_NO_IR;
275
276 if (!(ch_flags & NVM_CHANNEL_ACTIVE))
277 channel->flags |= IEEE80211_CHAN_NO_IR;
278
279 if (ch_flags & NVM_CHANNEL_RADAR)
280 channel->flags |= IEEE80211_CHAN_RADAR;
281
282 if (ch_flags & NVM_CHANNEL_INDOOR_ONLY)
283 channel->flags |= IEEE80211_CHAN_INDOOR_ONLY;
284
285 /* Set the GO concurrent flag only in case that NO_IR is set.
286 * Otherwise it is meaningless
287 */
288 if ((ch_flags & NVM_CHANNEL_GO_CONCURRENT) &&
289 (channel->flags & IEEE80211_CHAN_NO_IR))
290 channel->flags |= IEEE80211_CHAN_GO_CONCURRENT;
291
292 /* Initialize regulatory-based run-time data */
293
294 /*
295 * Default value - highest tx power value. max_power
296 * is not used in mvm, and is used for backwards compatibility
297 */
298 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
299 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
300 IWL_DEBUG_EEPROM(dev,
301 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
302 channel->hw_value,
303 is_5ghz ? "5.2" : "2.4",
304 CHECK_AND_PRINT_I(VALID),
305 CHECK_AND_PRINT_I(IBSS),
306 CHECK_AND_PRINT_I(ACTIVE),
307 CHECK_AND_PRINT_I(RADAR),
308 CHECK_AND_PRINT_I(WIDE),
309 CHECK_AND_PRINT_I(INDOOR_ONLY),
310 CHECK_AND_PRINT_I(GO_CONCURRENT),
311 ch_flags,
312 channel->max_power,
313 ((ch_flags & NVM_CHANNEL_IBSS) &&
314 !(ch_flags & NVM_CHANNEL_RADAR))
315 ? "" : "not ");
316 }
317
318 return n_channels;
319 }
320
iwl_init_vht_hw_capab(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)321 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
322 struct iwl_nvm_data *data,
323 struct ieee80211_sta_vht_cap *vht_cap,
324 u8 tx_chains, u8 rx_chains)
325 {
326 int num_rx_ants = num_of_ant(rx_chains);
327 int num_tx_ants = num_of_ant(tx_chains);
328
329 vht_cap->vht_supported = true;
330
331 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
332 IEEE80211_VHT_CAP_RXSTBC_1 |
333 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
334 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
335 7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
336
337 if (cfg->ht_params->ldpc)
338 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
339
340 if (num_tx_ants > 1)
341 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
342 else
343 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
344
345 if (iwlwifi_mod_params.amsdu_size_8K)
346 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
347
348 vht_cap->vht_mcs.rx_mcs_map =
349 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
350 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
351 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
352 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
353 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
354 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
355 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
356 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
357
358 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
359 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
360 /* this works because NOT_SUPPORTED == 3 */
361 vht_cap->vht_mcs.rx_mcs_map |=
362 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
363 }
364
365 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
366 }
367
iwl_init_sbands(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * ch_section,bool enable_vht,u8 tx_chains,u8 rx_chains)368 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
369 struct iwl_nvm_data *data,
370 const __le16 *ch_section, bool enable_vht,
371 u8 tx_chains, u8 rx_chains)
372 {
373 int n_channels;
374 int n_used = 0;
375 struct ieee80211_supported_band *sband;
376
377 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
378 n_channels = iwl_init_channel_map(
379 dev, cfg, data,
380 &ch_section[NVM_CHANNELS]);
381 else
382 n_channels = iwl_init_channel_map(
383 dev, cfg, data,
384 &ch_section[NVM_CHANNELS_FAMILY_8000]);
385
386 sband = &data->bands[IEEE80211_BAND_2GHZ];
387 sband->band = IEEE80211_BAND_2GHZ;
388 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
389 sband->n_bitrates = N_RATES_24;
390 n_used += iwl_init_sband_channels(data, sband, n_channels,
391 IEEE80211_BAND_2GHZ);
392 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
393 tx_chains, rx_chains);
394
395 sband = &data->bands[IEEE80211_BAND_5GHZ];
396 sband->band = IEEE80211_BAND_5GHZ;
397 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
398 sband->n_bitrates = N_RATES_52;
399 n_used += iwl_init_sband_channels(data, sband, n_channels,
400 IEEE80211_BAND_5GHZ);
401 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
402 tx_chains, rx_chains);
403 if (enable_vht)
404 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
405 tx_chains, rx_chains);
406
407 if (n_channels != n_used)
408 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
409 n_used, n_channels);
410 }
411
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw)412 static int iwl_get_sku(const struct iwl_cfg *cfg,
413 const __le16 *nvm_sw)
414 {
415 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
416 return le16_to_cpup(nvm_sw + SKU);
417 else
418 return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
419 }
420
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)421 static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
422 const __le16 *nvm_sw)
423 {
424 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
425 return le16_to_cpup(nvm_sw + NVM_VERSION);
426 else
427 return le32_to_cpup((__le32 *)(nvm_sw +
428 NVM_VERSION_FAMILY_8000));
429 }
430
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw)431 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
432 const __le16 *nvm_sw)
433 {
434 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
435 return le16_to_cpup(nvm_sw + RADIO_CFG);
436 else
437 return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
438 }
439
440 #define N_HW_ADDRS_MASK_FAMILY_8000 0xF
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)441 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
442 const __le16 *nvm_sw)
443 {
444 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
445 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
446 else
447 return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
448 & N_HW_ADDRS_MASK_FAMILY_8000;
449 }
450
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)451 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
452 struct iwl_nvm_data *data,
453 u32 radio_cfg)
454 {
455 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
456 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
457 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
458 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
459 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
460 return;
461 }
462
463 /* set the radio configuration for family 8000 */
464 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
465 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
466 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
467 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
468 }
469
iwl_set_hw_address(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * nvm_sec)470 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
471 struct iwl_nvm_data *data,
472 const __le16 *nvm_sec)
473 {
474 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
475
476 /* The byte order is little endian 16 bit, meaning 214365 */
477 data->hw_addr[0] = hw_addr[1];
478 data->hw_addr[1] = hw_addr[0];
479 data->hw_addr[2] = hw_addr[3];
480 data->hw_addr[3] = hw_addr[2];
481 data->hw_addr[4] = hw_addr[5];
482 data->hw_addr[5] = hw_addr[4];
483 }
484
iwl_set_hw_address_family_8000(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __le16 * nvm_hw)485 static void iwl_set_hw_address_family_8000(struct device *dev,
486 const struct iwl_cfg *cfg,
487 struct iwl_nvm_data *data,
488 const __le16 *mac_override,
489 const __le16 *nvm_hw)
490 {
491 const u8 *hw_addr;
492
493 if (mac_override) {
494 hw_addr = (const u8 *)(mac_override +
495 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
496
497 /* The byte order is little endian 16 bit, meaning 214365 */
498 data->hw_addr[0] = hw_addr[1];
499 data->hw_addr[1] = hw_addr[0];
500 data->hw_addr[2] = hw_addr[3];
501 data->hw_addr[3] = hw_addr[2];
502 data->hw_addr[4] = hw_addr[5];
503 data->hw_addr[5] = hw_addr[4];
504
505 if (is_valid_ether_addr(data->hw_addr))
506 return;
507
508 IWL_ERR_DEV(dev,
509 "mac address from nvm override section is not valid\n");
510 }
511
512 if (nvm_hw) {
513 /* read the MAC address from OTP */
514 if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
515 /* read the mac address from the WFPM location */
516 hw_addr = (const u8 *)(nvm_hw +
517 HW_ADDR0_WFPM_FAMILY_8000);
518 data->hw_addr[0] = hw_addr[3];
519 data->hw_addr[1] = hw_addr[2];
520 data->hw_addr[2] = hw_addr[1];
521 data->hw_addr[3] = hw_addr[0];
522
523 hw_addr = (const u8 *)(nvm_hw +
524 HW_ADDR1_WFPM_FAMILY_8000);
525 data->hw_addr[4] = hw_addr[1];
526 data->hw_addr[5] = hw_addr[0];
527 } else if ((data->nvm_version >= 0xE08) &&
528 (data->nvm_version < 0xE0B)) {
529 /* read "reverse order" from the PCIe location */
530 hw_addr = (const u8 *)(nvm_hw +
531 HW_ADDR0_PCIE_FAMILY_8000);
532 data->hw_addr[5] = hw_addr[2];
533 data->hw_addr[4] = hw_addr[1];
534 data->hw_addr[3] = hw_addr[0];
535
536 hw_addr = (const u8 *)(nvm_hw +
537 HW_ADDR1_PCIE_FAMILY_8000);
538 data->hw_addr[2] = hw_addr[3];
539 data->hw_addr[1] = hw_addr[2];
540 data->hw_addr[0] = hw_addr[1];
541 } else {
542 /* read from the PCIe location */
543 hw_addr = (const u8 *)(nvm_hw +
544 HW_ADDR0_PCIE_FAMILY_8000);
545 data->hw_addr[5] = hw_addr[0];
546 data->hw_addr[4] = hw_addr[1];
547 data->hw_addr[3] = hw_addr[2];
548
549 hw_addr = (const u8 *)(nvm_hw +
550 HW_ADDR1_PCIE_FAMILY_8000);
551 data->hw_addr[2] = hw_addr[1];
552 data->hw_addr[1] = hw_addr[2];
553 data->hw_addr[0] = hw_addr[3];
554 }
555 if (!is_valid_ether_addr(data->hw_addr))
556 IWL_ERR_DEV(dev,
557 "mac address from hw section is not valid\n");
558
559 return;
560 }
561
562 IWL_ERR_DEV(dev, "mac address is not found\n");
563 }
564
565 struct iwl_nvm_data *
iwl_parse_nvm_data(struct device * dev,const struct iwl_cfg * cfg,const __le16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,u8 tx_chains,u8 rx_chains)566 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
567 const __le16 *nvm_hw, const __le16 *nvm_sw,
568 const __le16 *nvm_calib, const __le16 *regulatory,
569 const __le16 *mac_override, u8 tx_chains, u8 rx_chains)
570 {
571 struct iwl_nvm_data *data;
572 u32 sku;
573 u32 radio_cfg;
574
575 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
576 data = kzalloc(sizeof(*data) +
577 sizeof(struct ieee80211_channel) *
578 IWL_NUM_CHANNELS,
579 GFP_KERNEL);
580 else
581 data = kzalloc(sizeof(*data) +
582 sizeof(struct ieee80211_channel) *
583 IWL_NUM_CHANNELS_FAMILY_8000,
584 GFP_KERNEL);
585 if (!data)
586 return NULL;
587
588 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
589
590 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
591 iwl_set_radio_cfg(cfg, data, radio_cfg);
592
593 sku = iwl_get_sku(cfg, nvm_sw);
594 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
595 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
596 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
597 data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
598 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
599 data->sku_cap_11n_enable = false;
600
601 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
602
603 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
604 /* Checking for required sections */
605 if (!nvm_calib) {
606 IWL_ERR_DEV(dev,
607 "Can't parse empty Calib NVM sections\n");
608 kfree(data);
609 return NULL;
610 }
611 /* in family 8000 Xtal calibration values moved to OTP */
612 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
613 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
614 }
615
616 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
617 iwl_set_hw_address(cfg, data, nvm_hw);
618
619 iwl_init_sbands(dev, cfg, data, nvm_sw,
620 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
621 rx_chains);
622 } else {
623 /* MAC address in family 8000 */
624 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
625 nvm_hw);
626
627 iwl_init_sbands(dev, cfg, data, regulatory,
628 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
629 rx_chains);
630 }
631
632 data->calib_version = 255;
633
634 return data;
635 }
636 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
637