• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file buffer_sync.c
3  *
4  * @remark Copyright 2002-2009 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf
9  * @author Robert Richter <robert.richter@amd.com>
10  *
11  * This is the core of the buffer management. Each
12  * CPU buffer is processed and entered into the
13  * global event buffer. Such processing is necessary
14  * in several circumstances, mentioned below.
15  *
16  * The processing does the job of converting the
17  * transitory EIP value into a persistent dentry/offset
18  * value that the profiler can record at its leisure.
19  *
20  * See fs/dcookies.c for a description of the dentry/offset
21  * objects.
22  */
23 
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
34 
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
39 
40 static LIST_HEAD(dying_tasks);
41 static LIST_HEAD(dead_tasks);
42 static cpumask_var_t marked_cpus;
43 static DEFINE_SPINLOCK(task_mortuary);
44 static void process_task_mortuary(void);
45 
46 /* Take ownership of the task struct and place it on the
47  * list for processing. Only after two full buffer syncs
48  * does the task eventually get freed, because by then
49  * we are sure we will not reference it again.
50  * Can be invoked from softirq via RCU callback due to
51  * call_rcu() of the task struct, hence the _irqsave.
52  */
53 static int
task_free_notify(struct notifier_block * self,unsigned long val,void * data)54 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
55 {
56 	unsigned long flags;
57 	struct task_struct *task = data;
58 	spin_lock_irqsave(&task_mortuary, flags);
59 	list_add(&task->tasks, &dying_tasks);
60 	spin_unlock_irqrestore(&task_mortuary, flags);
61 	return NOTIFY_OK;
62 }
63 
64 
65 /* The task is on its way out. A sync of the buffer means we can catch
66  * any remaining samples for this task.
67  */
68 static int
task_exit_notify(struct notifier_block * self,unsigned long val,void * data)69 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
70 {
71 	/* To avoid latency problems, we only process the current CPU,
72 	 * hoping that most samples for the task are on this CPU
73 	 */
74 	sync_buffer(raw_smp_processor_id());
75 	return 0;
76 }
77 
78 
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80  * do, and if it's an executable region, process the samples first, so
81  * we don't lose any. This does not have to be exact, it's a QoI issue
82  * only.
83  */
84 static int
munmap_notify(struct notifier_block * self,unsigned long val,void * data)85 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
86 {
87 	unsigned long addr = (unsigned long)data;
88 	struct mm_struct *mm = current->mm;
89 	struct vm_area_struct *mpnt;
90 
91 	down_read(&mm->mmap_sem);
92 
93 	mpnt = find_vma(mm, addr);
94 	if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 		up_read(&mm->mmap_sem);
96 		/* To avoid latency problems, we only process the current CPU,
97 		 * hoping that most samples for the task are on this CPU
98 		 */
99 		sync_buffer(raw_smp_processor_id());
100 		return 0;
101 	}
102 
103 	up_read(&mm->mmap_sem);
104 	return 0;
105 }
106 
107 
108 /* We need to be told about new modules so we don't attribute to a previously
109  * loaded module, or drop the samples on the floor.
110  */
111 static int
module_load_notify(struct notifier_block * self,unsigned long val,void * data)112 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
113 {
114 #ifdef CONFIG_MODULES
115 	if (val != MODULE_STATE_COMING)
116 		return 0;
117 
118 	/* FIXME: should we process all CPU buffers ? */
119 	mutex_lock(&buffer_mutex);
120 	add_event_entry(ESCAPE_CODE);
121 	add_event_entry(MODULE_LOADED_CODE);
122 	mutex_unlock(&buffer_mutex);
123 #endif
124 	return 0;
125 }
126 
127 
128 static struct notifier_block task_free_nb = {
129 	.notifier_call	= task_free_notify,
130 };
131 
132 static struct notifier_block task_exit_nb = {
133 	.notifier_call	= task_exit_notify,
134 };
135 
136 static struct notifier_block munmap_nb = {
137 	.notifier_call	= munmap_notify,
138 };
139 
140 static struct notifier_block module_load_nb = {
141 	.notifier_call = module_load_notify,
142 };
143 
free_all_tasks(void)144 static void free_all_tasks(void)
145 {
146 	/* make sure we don't leak task structs */
147 	process_task_mortuary();
148 	process_task_mortuary();
149 }
150 
sync_start(void)151 int sync_start(void)
152 {
153 	int err;
154 
155 	if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
156 		return -ENOMEM;
157 
158 	err = task_handoff_register(&task_free_nb);
159 	if (err)
160 		goto out1;
161 	err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 	if (err)
163 		goto out2;
164 	err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 	if (err)
166 		goto out3;
167 	err = register_module_notifier(&module_load_nb);
168 	if (err)
169 		goto out4;
170 
171 	start_cpu_work();
172 
173 out:
174 	return err;
175 out4:
176 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
177 out3:
178 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
179 out2:
180 	task_handoff_unregister(&task_free_nb);
181 	free_all_tasks();
182 out1:
183 	free_cpumask_var(marked_cpus);
184 	goto out;
185 }
186 
187 
sync_stop(void)188 void sync_stop(void)
189 {
190 	end_cpu_work();
191 	unregister_module_notifier(&module_load_nb);
192 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
193 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
194 	task_handoff_unregister(&task_free_nb);
195 	barrier();			/* do all of the above first */
196 
197 	flush_cpu_work();
198 
199 	free_all_tasks();
200 	free_cpumask_var(marked_cpus);
201 }
202 
203 
204 /* Optimisation. We can manage without taking the dcookie sem
205  * because we cannot reach this code without at least one
206  * dcookie user still being registered (namely, the reader
207  * of the event buffer). */
fast_get_dcookie(struct path * path)208 static inline unsigned long fast_get_dcookie(struct path *path)
209 {
210 	unsigned long cookie;
211 
212 	if (path->dentry->d_flags & DCACHE_COOKIE)
213 		return (unsigned long)path->dentry;
214 	get_dcookie(path, &cookie);
215 	return cookie;
216 }
217 
218 
219 /* Look up the dcookie for the task's mm->exe_file,
220  * which corresponds loosely to "application name". This is
221  * not strictly necessary but allows oprofile to associate
222  * shared-library samples with particular applications
223  */
get_exec_dcookie(struct mm_struct * mm)224 static unsigned long get_exec_dcookie(struct mm_struct *mm)
225 {
226 	unsigned long cookie = NO_COOKIE;
227 
228 	if (mm && mm->exe_file)
229 		cookie = fast_get_dcookie(&mm->exe_file->f_path);
230 
231 	return cookie;
232 }
233 
234 
235 /* Convert the EIP value of a sample into a persistent dentry/offset
236  * pair that can then be added to the global event buffer. We make
237  * sure to do this lookup before a mm->mmap modification happens so
238  * we don't lose track.
239  */
240 static unsigned long
lookup_dcookie(struct mm_struct * mm,unsigned long addr,off_t * offset)241 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
242 {
243 	unsigned long cookie = NO_COOKIE;
244 	struct vm_area_struct *vma;
245 
246 	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
247 
248 		if (addr < vma->vm_start || addr >= vma->vm_end)
249 			continue;
250 
251 		if (vma->vm_file) {
252 			cookie = fast_get_dcookie(&vma->vm_file->f_path);
253 			*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
254 				vma->vm_start;
255 		} else {
256 			/* must be an anonymous map */
257 			*offset = addr;
258 		}
259 
260 		break;
261 	}
262 
263 	if (!vma)
264 		cookie = INVALID_COOKIE;
265 
266 	return cookie;
267 }
268 
269 static unsigned long last_cookie = INVALID_COOKIE;
270 
add_cpu_switch(int i)271 static void add_cpu_switch(int i)
272 {
273 	add_event_entry(ESCAPE_CODE);
274 	add_event_entry(CPU_SWITCH_CODE);
275 	add_event_entry(i);
276 	last_cookie = INVALID_COOKIE;
277 }
278 
add_kernel_ctx_switch(unsigned int in_kernel)279 static void add_kernel_ctx_switch(unsigned int in_kernel)
280 {
281 	add_event_entry(ESCAPE_CODE);
282 	if (in_kernel)
283 		add_event_entry(KERNEL_ENTER_SWITCH_CODE);
284 	else
285 		add_event_entry(KERNEL_EXIT_SWITCH_CODE);
286 }
287 
288 static void
add_user_ctx_switch(struct task_struct const * task,unsigned long cookie)289 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
290 {
291 	add_event_entry(ESCAPE_CODE);
292 	add_event_entry(CTX_SWITCH_CODE);
293 	add_event_entry(task->pid);
294 	add_event_entry(cookie);
295 	/* Another code for daemon back-compat */
296 	add_event_entry(ESCAPE_CODE);
297 	add_event_entry(CTX_TGID_CODE);
298 	add_event_entry(task->tgid);
299 }
300 
301 
add_cookie_switch(unsigned long cookie)302 static void add_cookie_switch(unsigned long cookie)
303 {
304 	add_event_entry(ESCAPE_CODE);
305 	add_event_entry(COOKIE_SWITCH_CODE);
306 	add_event_entry(cookie);
307 }
308 
309 
add_trace_begin(void)310 static void add_trace_begin(void)
311 {
312 	add_event_entry(ESCAPE_CODE);
313 	add_event_entry(TRACE_BEGIN_CODE);
314 }
315 
add_data(struct op_entry * entry,struct mm_struct * mm)316 static void add_data(struct op_entry *entry, struct mm_struct *mm)
317 {
318 	unsigned long code, pc, val;
319 	unsigned long cookie;
320 	off_t offset;
321 
322 	if (!op_cpu_buffer_get_data(entry, &code))
323 		return;
324 	if (!op_cpu_buffer_get_data(entry, &pc))
325 		return;
326 	if (!op_cpu_buffer_get_size(entry))
327 		return;
328 
329 	if (mm) {
330 		cookie = lookup_dcookie(mm, pc, &offset);
331 
332 		if (cookie == NO_COOKIE)
333 			offset = pc;
334 		if (cookie == INVALID_COOKIE) {
335 			atomic_inc(&oprofile_stats.sample_lost_no_mapping);
336 			offset = pc;
337 		}
338 		if (cookie != last_cookie) {
339 			add_cookie_switch(cookie);
340 			last_cookie = cookie;
341 		}
342 	} else
343 		offset = pc;
344 
345 	add_event_entry(ESCAPE_CODE);
346 	add_event_entry(code);
347 	add_event_entry(offset);	/* Offset from Dcookie */
348 
349 	while (op_cpu_buffer_get_data(entry, &val))
350 		add_event_entry(val);
351 }
352 
add_sample_entry(unsigned long offset,unsigned long event)353 static inline void add_sample_entry(unsigned long offset, unsigned long event)
354 {
355 	add_event_entry(offset);
356 	add_event_entry(event);
357 }
358 
359 
360 /*
361  * Add a sample to the global event buffer. If possible the
362  * sample is converted into a persistent dentry/offset pair
363  * for later lookup from userspace. Return 0 on failure.
364  */
365 static int
add_sample(struct mm_struct * mm,struct op_sample * s,int in_kernel)366 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
367 {
368 	unsigned long cookie;
369 	off_t offset;
370 
371 	if (in_kernel) {
372 		add_sample_entry(s->eip, s->event);
373 		return 1;
374 	}
375 
376 	/* add userspace sample */
377 
378 	if (!mm) {
379 		atomic_inc(&oprofile_stats.sample_lost_no_mm);
380 		return 0;
381 	}
382 
383 	cookie = lookup_dcookie(mm, s->eip, &offset);
384 
385 	if (cookie == INVALID_COOKIE) {
386 		atomic_inc(&oprofile_stats.sample_lost_no_mapping);
387 		return 0;
388 	}
389 
390 	if (cookie != last_cookie) {
391 		add_cookie_switch(cookie);
392 		last_cookie = cookie;
393 	}
394 
395 	add_sample_entry(offset, s->event);
396 
397 	return 1;
398 }
399 
400 
release_mm(struct mm_struct * mm)401 static void release_mm(struct mm_struct *mm)
402 {
403 	if (!mm)
404 		return;
405 	up_read(&mm->mmap_sem);
406 	mmput(mm);
407 }
408 
409 
take_tasks_mm(struct task_struct * task)410 static struct mm_struct *take_tasks_mm(struct task_struct *task)
411 {
412 	struct mm_struct *mm = get_task_mm(task);
413 	if (mm)
414 		down_read(&mm->mmap_sem);
415 	return mm;
416 }
417 
418 
is_code(unsigned long val)419 static inline int is_code(unsigned long val)
420 {
421 	return val == ESCAPE_CODE;
422 }
423 
424 
425 /* Move tasks along towards death. Any tasks on dead_tasks
426  * will definitely have no remaining references in any
427  * CPU buffers at this point, because we use two lists,
428  * and to have reached the list, it must have gone through
429  * one full sync already.
430  */
process_task_mortuary(void)431 static void process_task_mortuary(void)
432 {
433 	unsigned long flags;
434 	LIST_HEAD(local_dead_tasks);
435 	struct task_struct *task;
436 	struct task_struct *ttask;
437 
438 	spin_lock_irqsave(&task_mortuary, flags);
439 
440 	list_splice_init(&dead_tasks, &local_dead_tasks);
441 	list_splice_init(&dying_tasks, &dead_tasks);
442 
443 	spin_unlock_irqrestore(&task_mortuary, flags);
444 
445 	list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
446 		list_del(&task->tasks);
447 		free_task(task);
448 	}
449 }
450 
451 
mark_done(int cpu)452 static void mark_done(int cpu)
453 {
454 	int i;
455 
456 	cpumask_set_cpu(cpu, marked_cpus);
457 
458 	for_each_online_cpu(i) {
459 		if (!cpumask_test_cpu(i, marked_cpus))
460 			return;
461 	}
462 
463 	/* All CPUs have been processed at least once,
464 	 * we can process the mortuary once
465 	 */
466 	process_task_mortuary();
467 
468 	cpumask_clear(marked_cpus);
469 }
470 
471 
472 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
473  * traversal, the code switch to sb_sample_start at first kernel enter/exit
474  * switch so we need a fifth state and some special handling in sync_buffer()
475  */
476 typedef enum {
477 	sb_bt_ignore = -2,
478 	sb_buffer_start,
479 	sb_bt_start,
480 	sb_sample_start,
481 } sync_buffer_state;
482 
483 /* Sync one of the CPU's buffers into the global event buffer.
484  * Here we need to go through each batch of samples punctuated
485  * by context switch notes, taking the task's mmap_sem and doing
486  * lookup in task->mm->mmap to convert EIP into dcookie/offset
487  * value.
488  */
sync_buffer(int cpu)489 void sync_buffer(int cpu)
490 {
491 	struct mm_struct *mm = NULL;
492 	struct mm_struct *oldmm;
493 	unsigned long val;
494 	struct task_struct *new;
495 	unsigned long cookie = 0;
496 	int in_kernel = 1;
497 	sync_buffer_state state = sb_buffer_start;
498 	unsigned int i;
499 	unsigned long available;
500 	unsigned long flags;
501 	struct op_entry entry;
502 	struct op_sample *sample;
503 
504 	mutex_lock(&buffer_mutex);
505 
506 	add_cpu_switch(cpu);
507 
508 	op_cpu_buffer_reset(cpu);
509 	available = op_cpu_buffer_entries(cpu);
510 
511 	for (i = 0; i < available; ++i) {
512 		sample = op_cpu_buffer_read_entry(&entry, cpu);
513 		if (!sample)
514 			break;
515 
516 		if (is_code(sample->eip)) {
517 			flags = sample->event;
518 			if (flags & TRACE_BEGIN) {
519 				state = sb_bt_start;
520 				add_trace_begin();
521 			}
522 			if (flags & KERNEL_CTX_SWITCH) {
523 				/* kernel/userspace switch */
524 				in_kernel = flags & IS_KERNEL;
525 				if (state == sb_buffer_start)
526 					state = sb_sample_start;
527 				add_kernel_ctx_switch(flags & IS_KERNEL);
528 			}
529 			if (flags & USER_CTX_SWITCH
530 			    && op_cpu_buffer_get_data(&entry, &val)) {
531 				/* userspace context switch */
532 				new = (struct task_struct *)val;
533 				oldmm = mm;
534 				release_mm(oldmm);
535 				mm = take_tasks_mm(new);
536 				if (mm != oldmm)
537 					cookie = get_exec_dcookie(mm);
538 				add_user_ctx_switch(new, cookie);
539 			}
540 			if (op_cpu_buffer_get_size(&entry))
541 				add_data(&entry, mm);
542 			continue;
543 		}
544 
545 		if (state < sb_bt_start)
546 			/* ignore sample */
547 			continue;
548 
549 		if (add_sample(mm, sample, in_kernel))
550 			continue;
551 
552 		/* ignore backtraces if failed to add a sample */
553 		if (state == sb_bt_start) {
554 			state = sb_bt_ignore;
555 			atomic_inc(&oprofile_stats.bt_lost_no_mapping);
556 		}
557 	}
558 	release_mm(mm);
559 
560 	mark_done(cpu);
561 
562 	mutex_unlock(&buffer_mutex);
563 }
564 
565 /* The function can be used to add a buffer worth of data directly to
566  * the kernel buffer. The buffer is assumed to be a circular buffer.
567  * Take the entries from index start and end at index end, wrapping
568  * at max_entries.
569  */
oprofile_put_buff(unsigned long * buf,unsigned int start,unsigned int stop,unsigned int max)570 void oprofile_put_buff(unsigned long *buf, unsigned int start,
571 		       unsigned int stop, unsigned int max)
572 {
573 	int i;
574 
575 	i = start;
576 
577 	mutex_lock(&buffer_mutex);
578 	while (i != stop) {
579 		add_event_entry(buf[i++]);
580 
581 		if (i >= max)
582 			i = 0;
583 	}
584 
585 	mutex_unlock(&buffer_mutex);
586 }
587 
588