1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 * commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
56 *
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
59 */
60
fib_map_alloc(struct aac_dev * dev)61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
74 }
75
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
79 *
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
82 */
83
aac_fib_map_free(struct aac_dev * dev)84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 if (dev->hw_fib_va && dev->max_fib_size) {
87 pci_free_consistent(dev->pdev,
88 (dev->max_fib_size *
89 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90 dev->hw_fib_va, dev->hw_fib_pa);
91 }
92 dev->hw_fib_va = NULL;
93 dev->hw_fib_pa = 0;
94 }
95
96 /**
97 * aac_fib_setup - setup the fibs
98 * @dev: Adapter to set up
99 *
100 * Allocate the PCI space for the fibs, map it and then initialise the
101 * fib area, the unmapped fib data and also the free list
102 */
103
aac_fib_setup(struct aac_dev * dev)104 int aac_fib_setup(struct aac_dev * dev)
105 {
106 struct fib *fibptr;
107 struct hw_fib *hw_fib;
108 dma_addr_t hw_fib_pa;
109 int i;
110
111 while (((i = fib_map_alloc(dev)) == -ENOMEM)
112 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
113 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
114 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
115 }
116 if (i<0)
117 return -ENOMEM;
118
119 /* 32 byte alignment for PMC */
120 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
121 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
122 (hw_fib_pa - dev->hw_fib_pa));
123 dev->hw_fib_pa = hw_fib_pa;
124 memset(dev->hw_fib_va, 0,
125 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
126 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
127
128 /* add Xport header */
129 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
130 sizeof(struct aac_fib_xporthdr));
131 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
132
133 hw_fib = dev->hw_fib_va;
134 hw_fib_pa = dev->hw_fib_pa;
135 /*
136 * Initialise the fibs
137 */
138 for (i = 0, fibptr = &dev->fibs[i];
139 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
140 i++, fibptr++)
141 {
142 fibptr->flags = 0;
143 fibptr->dev = dev;
144 fibptr->hw_fib_va = hw_fib;
145 fibptr->data = (void *) fibptr->hw_fib_va->data;
146 fibptr->next = fibptr+1; /* Forward chain the fibs */
147 sema_init(&fibptr->event_wait, 0);
148 spin_lock_init(&fibptr->event_lock);
149 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
150 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
151 fibptr->hw_fib_pa = hw_fib_pa;
152 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
153 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
154 hw_fib_pa = hw_fib_pa +
155 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
156 }
157 /*
158 * Add the fib chain to the free list
159 */
160 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
161 /*
162 * Enable this to debug out of queue space
163 */
164 dev->free_fib = &dev->fibs[0];
165 return 0;
166 }
167
168 /**
169 * aac_fib_alloc - allocate a fib
170 * @dev: Adapter to allocate the fib for
171 *
172 * Allocate a fib from the adapter fib pool. If the pool is empty we
173 * return NULL.
174 */
175
aac_fib_alloc(struct aac_dev * dev)176 struct fib *aac_fib_alloc(struct aac_dev *dev)
177 {
178 struct fib * fibptr;
179 unsigned long flags;
180 spin_lock_irqsave(&dev->fib_lock, flags);
181 fibptr = dev->free_fib;
182 if(!fibptr){
183 spin_unlock_irqrestore(&dev->fib_lock, flags);
184 return fibptr;
185 }
186 dev->free_fib = fibptr->next;
187 spin_unlock_irqrestore(&dev->fib_lock, flags);
188 /*
189 * Set the proper node type code and node byte size
190 */
191 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
192 fibptr->size = sizeof(struct fib);
193 /*
194 * Null out fields that depend on being zero at the start of
195 * each I/O
196 */
197 fibptr->hw_fib_va->header.XferState = 0;
198 fibptr->flags = 0;
199 fibptr->callback = NULL;
200 fibptr->callback_data = NULL;
201
202 return fibptr;
203 }
204
205 /**
206 * aac_fib_free - free a fib
207 * @fibptr: fib to free up
208 *
209 * Frees up a fib and places it on the appropriate queue
210 */
211
aac_fib_free(struct fib * fibptr)212 void aac_fib_free(struct fib *fibptr)
213 {
214 unsigned long flags, flagsv;
215
216 spin_lock_irqsave(&fibptr->event_lock, flagsv);
217 if (fibptr->done == 2) {
218 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
219 return;
220 }
221 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
222
223 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
224 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
225 aac_config.fib_timeouts++;
226 if (fibptr->hw_fib_va->header.XferState != 0) {
227 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
228 (void*)fibptr,
229 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
230 }
231 fibptr->next = fibptr->dev->free_fib;
232 fibptr->dev->free_fib = fibptr;
233 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
234 }
235
236 /**
237 * aac_fib_init - initialise a fib
238 * @fibptr: The fib to initialize
239 *
240 * Set up the generic fib fields ready for use
241 */
242
aac_fib_init(struct fib * fibptr)243 void aac_fib_init(struct fib *fibptr)
244 {
245 struct hw_fib *hw_fib = fibptr->hw_fib_va;
246
247 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
248 hw_fib->header.StructType = FIB_MAGIC;
249 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
250 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
251 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
252 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
253 }
254
255 /**
256 * fib_deallocate - deallocate a fib
257 * @fibptr: fib to deallocate
258 *
259 * Will deallocate and return to the free pool the FIB pointed to by the
260 * caller.
261 */
262
fib_dealloc(struct fib * fibptr)263 static void fib_dealloc(struct fib * fibptr)
264 {
265 struct hw_fib *hw_fib = fibptr->hw_fib_va;
266 hw_fib->header.XferState = 0;
267 }
268
269 /*
270 * Commuication primitives define and support the queuing method we use to
271 * support host to adapter commuication. All queue accesses happen through
272 * these routines and are the only routines which have a knowledge of the
273 * how these queues are implemented.
274 */
275
276 /**
277 * aac_get_entry - get a queue entry
278 * @dev: Adapter
279 * @qid: Queue Number
280 * @entry: Entry return
281 * @index: Index return
282 * @nonotify: notification control
283 *
284 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
285 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
286 * returned.
287 */
288
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)289 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
290 {
291 struct aac_queue * q;
292 unsigned long idx;
293
294 /*
295 * All of the queues wrap when they reach the end, so we check
296 * to see if they have reached the end and if they have we just
297 * set the index back to zero. This is a wrap. You could or off
298 * the high bits in all updates but this is a bit faster I think.
299 */
300
301 q = &dev->queues->queue[qid];
302
303 idx = *index = le32_to_cpu(*(q->headers.producer));
304 /* Interrupt Moderation, only interrupt for first two entries */
305 if (idx != le32_to_cpu(*(q->headers.consumer))) {
306 if (--idx == 0) {
307 if (qid == AdapNormCmdQueue)
308 idx = ADAP_NORM_CMD_ENTRIES;
309 else
310 idx = ADAP_NORM_RESP_ENTRIES;
311 }
312 if (idx != le32_to_cpu(*(q->headers.consumer)))
313 *nonotify = 1;
314 }
315
316 if (qid == AdapNormCmdQueue) {
317 if (*index >= ADAP_NORM_CMD_ENTRIES)
318 *index = 0; /* Wrap to front of the Producer Queue. */
319 } else {
320 if (*index >= ADAP_NORM_RESP_ENTRIES)
321 *index = 0; /* Wrap to front of the Producer Queue. */
322 }
323
324 /* Queue is full */
325 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
326 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
327 qid, q->numpending);
328 return 0;
329 } else {
330 *entry = q->base + *index;
331 return 1;
332 }
333 }
334
335 /**
336 * aac_queue_get - get the next free QE
337 * @dev: Adapter
338 * @index: Returned index
339 * @priority: Priority of fib
340 * @fib: Fib to associate with the queue entry
341 * @wait: Wait if queue full
342 * @fibptr: Driver fib object to go with fib
343 * @nonotify: Don't notify the adapter
344 *
345 * Gets the next free QE off the requested priorty adapter command
346 * queue and associates the Fib with the QE. The QE represented by
347 * index is ready to insert on the queue when this routine returns
348 * success.
349 */
350
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)351 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
352 {
353 struct aac_entry * entry = NULL;
354 int map = 0;
355
356 if (qid == AdapNormCmdQueue) {
357 /* if no entries wait for some if caller wants to */
358 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
359 printk(KERN_ERR "GetEntries failed\n");
360 }
361 /*
362 * Setup queue entry with a command, status and fib mapped
363 */
364 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
365 map = 1;
366 } else {
367 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
368 /* if no entries wait for some if caller wants to */
369 }
370 /*
371 * Setup queue entry with command, status and fib mapped
372 */
373 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
374 entry->addr = hw_fib->header.SenderFibAddress;
375 /* Restore adapters pointer to the FIB */
376 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
377 map = 0;
378 }
379 /*
380 * If MapFib is true than we need to map the Fib and put pointers
381 * in the queue entry.
382 */
383 if (map)
384 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
385 return 0;
386 }
387
388 /*
389 * Define the highest level of host to adapter communication routines.
390 * These routines will support host to adapter FS commuication. These
391 * routines have no knowledge of the commuication method used. This level
392 * sends and receives FIBs. This level has no knowledge of how these FIBs
393 * get passed back and forth.
394 */
395
396 /**
397 * aac_fib_send - send a fib to the adapter
398 * @command: Command to send
399 * @fibptr: The fib
400 * @size: Size of fib data area
401 * @priority: Priority of Fib
402 * @wait: Async/sync select
403 * @reply: True if a reply is wanted
404 * @callback: Called with reply
405 * @callback_data: Passed to callback
406 *
407 * Sends the requested FIB to the adapter and optionally will wait for a
408 * response FIB. If the caller does not wish to wait for a response than
409 * an event to wait on must be supplied. This event will be set when a
410 * response FIB is received from the adapter.
411 */
412
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)413 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
414 int priority, int wait, int reply, fib_callback callback,
415 void *callback_data)
416 {
417 struct aac_dev * dev = fibptr->dev;
418 struct hw_fib * hw_fib = fibptr->hw_fib_va;
419 unsigned long flags = 0;
420 unsigned long qflags;
421 unsigned long mflags = 0;
422 unsigned long sflags = 0;
423
424
425 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
426 return -EBUSY;
427 /*
428 * There are 5 cases with the wait and response requested flags.
429 * The only invalid cases are if the caller requests to wait and
430 * does not request a response and if the caller does not want a
431 * response and the Fib is not allocated from pool. If a response
432 * is not requesed the Fib will just be deallocaed by the DPC
433 * routine when the response comes back from the adapter. No
434 * further processing will be done besides deleting the Fib. We
435 * will have a debug mode where the adapter can notify the host
436 * it had a problem and the host can log that fact.
437 */
438 fibptr->flags = 0;
439 if (wait && !reply) {
440 return -EINVAL;
441 } else if (!wait && reply) {
442 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
443 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
444 } else if (!wait && !reply) {
445 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
446 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
447 } else if (wait && reply) {
448 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
449 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
450 }
451 /*
452 * Map the fib into 32bits by using the fib number
453 */
454
455 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
456 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
457 /*
458 * Set FIB state to indicate where it came from and if we want a
459 * response from the adapter. Also load the command from the
460 * caller.
461 *
462 * Map the hw fib pointer as a 32bit value
463 */
464 hw_fib->header.Command = cpu_to_le16(command);
465 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
466 /*
467 * Set the size of the Fib we want to send to the adapter
468 */
469 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
470 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
471 return -EMSGSIZE;
472 }
473 /*
474 * Get a queue entry connect the FIB to it and send an notify
475 * the adapter a command is ready.
476 */
477 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
478
479 /*
480 * Fill in the Callback and CallbackContext if we are not
481 * going to wait.
482 */
483 if (!wait) {
484 fibptr->callback = callback;
485 fibptr->callback_data = callback_data;
486 fibptr->flags = FIB_CONTEXT_FLAG;
487 }
488
489 fibptr->done = 0;
490
491 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
492
493 dprintk((KERN_DEBUG "Fib contents:.\n"));
494 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
495 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
496 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
497 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
498 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
499 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
500
501 if (!dev->queues)
502 return -EBUSY;
503
504 if (wait) {
505
506 spin_lock_irqsave(&dev->manage_lock, mflags);
507 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
508 printk(KERN_INFO "No management Fibs Available:%d\n",
509 dev->management_fib_count);
510 spin_unlock_irqrestore(&dev->manage_lock, mflags);
511 return -EBUSY;
512 }
513 dev->management_fib_count++;
514 spin_unlock_irqrestore(&dev->manage_lock, mflags);
515 spin_lock_irqsave(&fibptr->event_lock, flags);
516 }
517
518 if (dev->sync_mode) {
519 if (wait)
520 spin_unlock_irqrestore(&fibptr->event_lock, flags);
521 spin_lock_irqsave(&dev->sync_lock, sflags);
522 if (dev->sync_fib) {
523 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
524 spin_unlock_irqrestore(&dev->sync_lock, sflags);
525 } else {
526 dev->sync_fib = fibptr;
527 spin_unlock_irqrestore(&dev->sync_lock, sflags);
528 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
529 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
530 NULL, NULL, NULL, NULL, NULL);
531 }
532 if (wait) {
533 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
534 if (down_interruptible(&fibptr->event_wait)) {
535 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
536 return -EFAULT;
537 }
538 return 0;
539 }
540 return -EINPROGRESS;
541 }
542
543 if (aac_adapter_deliver(fibptr) != 0) {
544 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
545 if (wait) {
546 spin_unlock_irqrestore(&fibptr->event_lock, flags);
547 spin_lock_irqsave(&dev->manage_lock, mflags);
548 dev->management_fib_count--;
549 spin_unlock_irqrestore(&dev->manage_lock, mflags);
550 }
551 return -EBUSY;
552 }
553
554
555 /*
556 * If the caller wanted us to wait for response wait now.
557 */
558
559 if (wait) {
560 spin_unlock_irqrestore(&fibptr->event_lock, flags);
561 /* Only set for first known interruptable command */
562 if (wait < 0) {
563 /*
564 * *VERY* Dangerous to time out a command, the
565 * assumption is made that we have no hope of
566 * functioning because an interrupt routing or other
567 * hardware failure has occurred.
568 */
569 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
570 while (down_trylock(&fibptr->event_wait)) {
571 int blink;
572 if (time_is_before_eq_jiffies(timeout)) {
573 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
574 spin_lock_irqsave(q->lock, qflags);
575 q->numpending--;
576 spin_unlock_irqrestore(q->lock, qflags);
577 if (wait == -1) {
578 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
579 "Usually a result of a PCI interrupt routing problem;\n"
580 "update mother board BIOS or consider utilizing one of\n"
581 "the SAFE mode kernel options (acpi, apic etc)\n");
582 }
583 return -ETIMEDOUT;
584 }
585 if ((blink = aac_adapter_check_health(dev)) > 0) {
586 if (wait == -1) {
587 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
588 "Usually a result of a serious unrecoverable hardware problem\n",
589 blink);
590 }
591 return -EFAULT;
592 }
593 /*
594 * Allow other processes / CPUS to use core
595 */
596 schedule();
597 }
598 } else if (down_interruptible(&fibptr->event_wait)) {
599 /* Do nothing ... satisfy
600 * down_interruptible must_check */
601 }
602
603 spin_lock_irqsave(&fibptr->event_lock, flags);
604 if (fibptr->done == 0) {
605 fibptr->done = 2; /* Tell interrupt we aborted */
606 spin_unlock_irqrestore(&fibptr->event_lock, flags);
607 return -ERESTARTSYS;
608 }
609 spin_unlock_irqrestore(&fibptr->event_lock, flags);
610 BUG_ON(fibptr->done == 0);
611
612 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
613 return -ETIMEDOUT;
614 return 0;
615 }
616 /*
617 * If the user does not want a response than return success otherwise
618 * return pending
619 */
620 if (reply)
621 return -EINPROGRESS;
622 else
623 return 0;
624 }
625
626 /**
627 * aac_consumer_get - get the top of the queue
628 * @dev: Adapter
629 * @q: Queue
630 * @entry: Return entry
631 *
632 * Will return a pointer to the entry on the top of the queue requested that
633 * we are a consumer of, and return the address of the queue entry. It does
634 * not change the state of the queue.
635 */
636
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)637 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
638 {
639 u32 index;
640 int status;
641 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
642 status = 0;
643 } else {
644 /*
645 * The consumer index must be wrapped if we have reached
646 * the end of the queue, else we just use the entry
647 * pointed to by the header index
648 */
649 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
650 index = 0;
651 else
652 index = le32_to_cpu(*q->headers.consumer);
653 *entry = q->base + index;
654 status = 1;
655 }
656 return(status);
657 }
658
659 /**
660 * aac_consumer_free - free consumer entry
661 * @dev: Adapter
662 * @q: Queue
663 * @qid: Queue ident
664 *
665 * Frees up the current top of the queue we are a consumer of. If the
666 * queue was full notify the producer that the queue is no longer full.
667 */
668
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)669 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
670 {
671 int wasfull = 0;
672 u32 notify;
673
674 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
675 wasfull = 1;
676
677 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
678 *q->headers.consumer = cpu_to_le32(1);
679 else
680 le32_add_cpu(q->headers.consumer, 1);
681
682 if (wasfull) {
683 switch (qid) {
684
685 case HostNormCmdQueue:
686 notify = HostNormCmdNotFull;
687 break;
688 case HostNormRespQueue:
689 notify = HostNormRespNotFull;
690 break;
691 default:
692 BUG();
693 return;
694 }
695 aac_adapter_notify(dev, notify);
696 }
697 }
698
699 /**
700 * aac_fib_adapter_complete - complete adapter issued fib
701 * @fibptr: fib to complete
702 * @size: size of fib
703 *
704 * Will do all necessary work to complete a FIB that was sent from
705 * the adapter.
706 */
707
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)708 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
709 {
710 struct hw_fib * hw_fib = fibptr->hw_fib_va;
711 struct aac_dev * dev = fibptr->dev;
712 struct aac_queue * q;
713 unsigned long nointr = 0;
714 unsigned long qflags;
715
716 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
717 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
718 kfree(hw_fib);
719 return 0;
720 }
721
722 if (hw_fib->header.XferState == 0) {
723 if (dev->comm_interface == AAC_COMM_MESSAGE)
724 kfree(hw_fib);
725 return 0;
726 }
727 /*
728 * If we plan to do anything check the structure type first.
729 */
730 if (hw_fib->header.StructType != FIB_MAGIC &&
731 hw_fib->header.StructType != FIB_MAGIC2 &&
732 hw_fib->header.StructType != FIB_MAGIC2_64) {
733 if (dev->comm_interface == AAC_COMM_MESSAGE)
734 kfree(hw_fib);
735 return -EINVAL;
736 }
737 /*
738 * This block handles the case where the adapter had sent us a
739 * command and we have finished processing the command. We
740 * call completeFib when we are done processing the command
741 * and want to send a response back to the adapter. This will
742 * send the completed cdb to the adapter.
743 */
744 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
745 if (dev->comm_interface == AAC_COMM_MESSAGE) {
746 kfree (hw_fib);
747 } else {
748 u32 index;
749 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
750 if (size) {
751 size += sizeof(struct aac_fibhdr);
752 if (size > le16_to_cpu(hw_fib->header.SenderSize))
753 return -EMSGSIZE;
754 hw_fib->header.Size = cpu_to_le16(size);
755 }
756 q = &dev->queues->queue[AdapNormRespQueue];
757 spin_lock_irqsave(q->lock, qflags);
758 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
759 *(q->headers.producer) = cpu_to_le32(index + 1);
760 spin_unlock_irqrestore(q->lock, qflags);
761 if (!(nointr & (int)aac_config.irq_mod))
762 aac_adapter_notify(dev, AdapNormRespQueue);
763 }
764 } else {
765 printk(KERN_WARNING "aac_fib_adapter_complete: "
766 "Unknown xferstate detected.\n");
767 BUG();
768 }
769 return 0;
770 }
771
772 /**
773 * aac_fib_complete - fib completion handler
774 * @fib: FIB to complete
775 *
776 * Will do all necessary work to complete a FIB.
777 */
778
aac_fib_complete(struct fib * fibptr)779 int aac_fib_complete(struct fib *fibptr)
780 {
781 unsigned long flags;
782 struct hw_fib * hw_fib = fibptr->hw_fib_va;
783
784 /*
785 * Check for a fib which has already been completed
786 */
787
788 if (hw_fib->header.XferState == 0)
789 return 0;
790 /*
791 * If we plan to do anything check the structure type first.
792 */
793
794 if (hw_fib->header.StructType != FIB_MAGIC &&
795 hw_fib->header.StructType != FIB_MAGIC2 &&
796 hw_fib->header.StructType != FIB_MAGIC2_64)
797 return -EINVAL;
798 /*
799 * This block completes a cdb which orginated on the host and we
800 * just need to deallocate the cdb or reinit it. At this point the
801 * command is complete that we had sent to the adapter and this
802 * cdb could be reused.
803 */
804 spin_lock_irqsave(&fibptr->event_lock, flags);
805 if (fibptr->done == 2) {
806 spin_unlock_irqrestore(&fibptr->event_lock, flags);
807 return 0;
808 }
809 spin_unlock_irqrestore(&fibptr->event_lock, flags);
810
811 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
812 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
813 {
814 fib_dealloc(fibptr);
815 }
816 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
817 {
818 /*
819 * This handles the case when the host has aborted the I/O
820 * to the adapter because the adapter is not responding
821 */
822 fib_dealloc(fibptr);
823 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
824 fib_dealloc(fibptr);
825 } else {
826 BUG();
827 }
828 return 0;
829 }
830
831 /**
832 * aac_printf - handle printf from firmware
833 * @dev: Adapter
834 * @val: Message info
835 *
836 * Print a message passed to us by the controller firmware on the
837 * Adaptec board
838 */
839
aac_printf(struct aac_dev * dev,u32 val)840 void aac_printf(struct aac_dev *dev, u32 val)
841 {
842 char *cp = dev->printfbuf;
843 if (dev->printf_enabled)
844 {
845 int length = val & 0xffff;
846 int level = (val >> 16) & 0xffff;
847
848 /*
849 * The size of the printfbuf is set in port.c
850 * There is no variable or define for it
851 */
852 if (length > 255)
853 length = 255;
854 if (cp[length] != 0)
855 cp[length] = 0;
856 if (level == LOG_AAC_HIGH_ERROR)
857 printk(KERN_WARNING "%s:%s", dev->name, cp);
858 else
859 printk(KERN_INFO "%s:%s", dev->name, cp);
860 }
861 memset(cp, 0, 256);
862 }
863
864
865 /**
866 * aac_handle_aif - Handle a message from the firmware
867 * @dev: Which adapter this fib is from
868 * @fibptr: Pointer to fibptr from adapter
869 *
870 * This routine handles a driver notify fib from the adapter and
871 * dispatches it to the appropriate routine for handling.
872 */
873
874 #define AIF_SNIFF_TIMEOUT (30*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)875 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
876 {
877 struct hw_fib * hw_fib = fibptr->hw_fib_va;
878 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
879 u32 channel, id, lun, container;
880 struct scsi_device *device;
881 enum {
882 NOTHING,
883 DELETE,
884 ADD,
885 CHANGE
886 } device_config_needed = NOTHING;
887
888 /* Sniff for container changes */
889
890 if (!dev || !dev->fsa_dev)
891 return;
892 container = channel = id = lun = (u32)-1;
893
894 /*
895 * We have set this up to try and minimize the number of
896 * re-configures that take place. As a result of this when
897 * certain AIF's come in we will set a flag waiting for another
898 * type of AIF before setting the re-config flag.
899 */
900 switch (le32_to_cpu(aifcmd->command)) {
901 case AifCmdDriverNotify:
902 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
903 /*
904 * Morph or Expand complete
905 */
906 case AifDenMorphComplete:
907 case AifDenVolumeExtendComplete:
908 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
909 if (container >= dev->maximum_num_containers)
910 break;
911
912 /*
913 * Find the scsi_device associated with the SCSI
914 * address. Make sure we have the right array, and if
915 * so set the flag to initiate a new re-config once we
916 * see an AifEnConfigChange AIF come through.
917 */
918
919 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
920 device = scsi_device_lookup(dev->scsi_host_ptr,
921 CONTAINER_TO_CHANNEL(container),
922 CONTAINER_TO_ID(container),
923 CONTAINER_TO_LUN(container));
924 if (device) {
925 dev->fsa_dev[container].config_needed = CHANGE;
926 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
927 dev->fsa_dev[container].config_waiting_stamp = jiffies;
928 scsi_device_put(device);
929 }
930 }
931 }
932
933 /*
934 * If we are waiting on something and this happens to be
935 * that thing then set the re-configure flag.
936 */
937 if (container != (u32)-1) {
938 if (container >= dev->maximum_num_containers)
939 break;
940 if ((dev->fsa_dev[container].config_waiting_on ==
941 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
942 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
943 dev->fsa_dev[container].config_waiting_on = 0;
944 } else for (container = 0;
945 container < dev->maximum_num_containers; ++container) {
946 if ((dev->fsa_dev[container].config_waiting_on ==
947 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
948 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
949 dev->fsa_dev[container].config_waiting_on = 0;
950 }
951 break;
952
953 case AifCmdEventNotify:
954 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
955 case AifEnBatteryEvent:
956 dev->cache_protected =
957 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
958 break;
959 /*
960 * Add an Array.
961 */
962 case AifEnAddContainer:
963 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
964 if (container >= dev->maximum_num_containers)
965 break;
966 dev->fsa_dev[container].config_needed = ADD;
967 dev->fsa_dev[container].config_waiting_on =
968 AifEnConfigChange;
969 dev->fsa_dev[container].config_waiting_stamp = jiffies;
970 break;
971
972 /*
973 * Delete an Array.
974 */
975 case AifEnDeleteContainer:
976 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
977 if (container >= dev->maximum_num_containers)
978 break;
979 dev->fsa_dev[container].config_needed = DELETE;
980 dev->fsa_dev[container].config_waiting_on =
981 AifEnConfigChange;
982 dev->fsa_dev[container].config_waiting_stamp = jiffies;
983 break;
984
985 /*
986 * Container change detected. If we currently are not
987 * waiting on something else, setup to wait on a Config Change.
988 */
989 case AifEnContainerChange:
990 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
991 if (container >= dev->maximum_num_containers)
992 break;
993 if (dev->fsa_dev[container].config_waiting_on &&
994 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
995 break;
996 dev->fsa_dev[container].config_needed = CHANGE;
997 dev->fsa_dev[container].config_waiting_on =
998 AifEnConfigChange;
999 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1000 break;
1001
1002 case AifEnConfigChange:
1003 break;
1004
1005 case AifEnAddJBOD:
1006 case AifEnDeleteJBOD:
1007 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1008 if ((container >> 28)) {
1009 container = (u32)-1;
1010 break;
1011 }
1012 channel = (container >> 24) & 0xF;
1013 if (channel >= dev->maximum_num_channels) {
1014 container = (u32)-1;
1015 break;
1016 }
1017 id = container & 0xFFFF;
1018 if (id >= dev->maximum_num_physicals) {
1019 container = (u32)-1;
1020 break;
1021 }
1022 lun = (container >> 16) & 0xFF;
1023 container = (u32)-1;
1024 channel = aac_phys_to_logical(channel);
1025 device_config_needed =
1026 (((__le32 *)aifcmd->data)[0] ==
1027 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1028 if (device_config_needed == ADD) {
1029 device = scsi_device_lookup(dev->scsi_host_ptr,
1030 channel,
1031 id,
1032 lun);
1033 if (device) {
1034 scsi_remove_device(device);
1035 scsi_device_put(device);
1036 }
1037 }
1038 break;
1039
1040 case AifEnEnclosureManagement:
1041 /*
1042 * If in JBOD mode, automatic exposure of new
1043 * physical target to be suppressed until configured.
1044 */
1045 if (dev->jbod)
1046 break;
1047 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1048 case EM_DRIVE_INSERTION:
1049 case EM_DRIVE_REMOVAL:
1050 container = le32_to_cpu(
1051 ((__le32 *)aifcmd->data)[2]);
1052 if ((container >> 28)) {
1053 container = (u32)-1;
1054 break;
1055 }
1056 channel = (container >> 24) & 0xF;
1057 if (channel >= dev->maximum_num_channels) {
1058 container = (u32)-1;
1059 break;
1060 }
1061 id = container & 0xFFFF;
1062 lun = (container >> 16) & 0xFF;
1063 container = (u32)-1;
1064 if (id >= dev->maximum_num_physicals) {
1065 /* legacy dev_t ? */
1066 if ((0x2000 <= id) || lun || channel ||
1067 ((channel = (id >> 7) & 0x3F) >=
1068 dev->maximum_num_channels))
1069 break;
1070 lun = (id >> 4) & 7;
1071 id &= 0xF;
1072 }
1073 channel = aac_phys_to_logical(channel);
1074 device_config_needed =
1075 (((__le32 *)aifcmd->data)[3]
1076 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1077 ADD : DELETE;
1078 break;
1079 }
1080 break;
1081 }
1082
1083 /*
1084 * If we are waiting on something and this happens to be
1085 * that thing then set the re-configure flag.
1086 */
1087 if (container != (u32)-1) {
1088 if (container >= dev->maximum_num_containers)
1089 break;
1090 if ((dev->fsa_dev[container].config_waiting_on ==
1091 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1092 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1093 dev->fsa_dev[container].config_waiting_on = 0;
1094 } else for (container = 0;
1095 container < dev->maximum_num_containers; ++container) {
1096 if ((dev->fsa_dev[container].config_waiting_on ==
1097 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1098 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1099 dev->fsa_dev[container].config_waiting_on = 0;
1100 }
1101 break;
1102
1103 case AifCmdJobProgress:
1104 /*
1105 * These are job progress AIF's. When a Clear is being
1106 * done on a container it is initially created then hidden from
1107 * the OS. When the clear completes we don't get a config
1108 * change so we monitor the job status complete on a clear then
1109 * wait for a container change.
1110 */
1111
1112 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1113 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1114 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1115 for (container = 0;
1116 container < dev->maximum_num_containers;
1117 ++container) {
1118 /*
1119 * Stomp on all config sequencing for all
1120 * containers?
1121 */
1122 dev->fsa_dev[container].config_waiting_on =
1123 AifEnContainerChange;
1124 dev->fsa_dev[container].config_needed = ADD;
1125 dev->fsa_dev[container].config_waiting_stamp =
1126 jiffies;
1127 }
1128 }
1129 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1130 ((__le32 *)aifcmd->data)[6] == 0 &&
1131 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1132 for (container = 0;
1133 container < dev->maximum_num_containers;
1134 ++container) {
1135 /*
1136 * Stomp on all config sequencing for all
1137 * containers?
1138 */
1139 dev->fsa_dev[container].config_waiting_on =
1140 AifEnContainerChange;
1141 dev->fsa_dev[container].config_needed = DELETE;
1142 dev->fsa_dev[container].config_waiting_stamp =
1143 jiffies;
1144 }
1145 }
1146 break;
1147 }
1148
1149 container = 0;
1150 retry_next:
1151 if (device_config_needed == NOTHING)
1152 for (; container < dev->maximum_num_containers; ++container) {
1153 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1154 (dev->fsa_dev[container].config_needed != NOTHING) &&
1155 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1156 device_config_needed =
1157 dev->fsa_dev[container].config_needed;
1158 dev->fsa_dev[container].config_needed = NOTHING;
1159 channel = CONTAINER_TO_CHANNEL(container);
1160 id = CONTAINER_TO_ID(container);
1161 lun = CONTAINER_TO_LUN(container);
1162 break;
1163 }
1164 }
1165 if (device_config_needed == NOTHING)
1166 return;
1167
1168 /*
1169 * If we decided that a re-configuration needs to be done,
1170 * schedule it here on the way out the door, please close the door
1171 * behind you.
1172 */
1173
1174 /*
1175 * Find the scsi_device associated with the SCSI address,
1176 * and mark it as changed, invalidating the cache. This deals
1177 * with changes to existing device IDs.
1178 */
1179
1180 if (!dev || !dev->scsi_host_ptr)
1181 return;
1182 /*
1183 * force reload of disk info via aac_probe_container
1184 */
1185 if ((channel == CONTAINER_CHANNEL) &&
1186 (device_config_needed != NOTHING)) {
1187 if (dev->fsa_dev[container].valid == 1)
1188 dev->fsa_dev[container].valid = 2;
1189 aac_probe_container(dev, container);
1190 }
1191 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1192 if (device) {
1193 switch (device_config_needed) {
1194 case DELETE:
1195 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1196 scsi_remove_device(device);
1197 #else
1198 if (scsi_device_online(device)) {
1199 scsi_device_set_state(device, SDEV_OFFLINE);
1200 sdev_printk(KERN_INFO, device,
1201 "Device offlined - %s\n",
1202 (channel == CONTAINER_CHANNEL) ?
1203 "array deleted" :
1204 "enclosure services event");
1205 }
1206 #endif
1207 break;
1208 case ADD:
1209 if (!scsi_device_online(device)) {
1210 sdev_printk(KERN_INFO, device,
1211 "Device online - %s\n",
1212 (channel == CONTAINER_CHANNEL) ?
1213 "array created" :
1214 "enclosure services event");
1215 scsi_device_set_state(device, SDEV_RUNNING);
1216 }
1217 /* FALLTHRU */
1218 case CHANGE:
1219 if ((channel == CONTAINER_CHANNEL)
1220 && (!dev->fsa_dev[container].valid)) {
1221 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1222 scsi_remove_device(device);
1223 #else
1224 if (!scsi_device_online(device))
1225 break;
1226 scsi_device_set_state(device, SDEV_OFFLINE);
1227 sdev_printk(KERN_INFO, device,
1228 "Device offlined - %s\n",
1229 "array failed");
1230 #endif
1231 break;
1232 }
1233 scsi_rescan_device(&device->sdev_gendev);
1234
1235 default:
1236 break;
1237 }
1238 scsi_device_put(device);
1239 device_config_needed = NOTHING;
1240 }
1241 if (device_config_needed == ADD)
1242 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1243 if (channel == CONTAINER_CHANNEL) {
1244 container++;
1245 device_config_needed = NOTHING;
1246 goto retry_next;
1247 }
1248 }
1249
_aac_reset_adapter(struct aac_dev * aac,int forced)1250 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1251 {
1252 int index, quirks;
1253 int retval;
1254 struct Scsi_Host *host;
1255 struct scsi_device *dev;
1256 struct scsi_cmnd *command;
1257 struct scsi_cmnd *command_list;
1258 int jafo = 0;
1259
1260 /*
1261 * Assumptions:
1262 * - host is locked, unless called by the aacraid thread.
1263 * (a matter of convenience, due to legacy issues surrounding
1264 * eh_host_adapter_reset).
1265 * - in_reset is asserted, so no new i/o is getting to the
1266 * card.
1267 * - The card is dead, or will be very shortly ;-/ so no new
1268 * commands are completing in the interrupt service.
1269 */
1270 host = aac->scsi_host_ptr;
1271 scsi_block_requests(host);
1272 aac_adapter_disable_int(aac);
1273 if (aac->thread->pid != current->pid) {
1274 spin_unlock_irq(host->host_lock);
1275 kthread_stop(aac->thread);
1276 jafo = 1;
1277 }
1278
1279 /*
1280 * If a positive health, means in a known DEAD PANIC
1281 * state and the adapter could be reset to `try again'.
1282 */
1283 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1284
1285 if (retval)
1286 goto out;
1287
1288 /*
1289 * Loop through the fibs, close the synchronous FIBS
1290 */
1291 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1292 struct fib *fib = &aac->fibs[index];
1293 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1294 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1295 unsigned long flagv;
1296 spin_lock_irqsave(&fib->event_lock, flagv);
1297 up(&fib->event_wait);
1298 spin_unlock_irqrestore(&fib->event_lock, flagv);
1299 schedule();
1300 retval = 0;
1301 }
1302 }
1303 /* Give some extra time for ioctls to complete. */
1304 if (retval == 0)
1305 ssleep(2);
1306 index = aac->cardtype;
1307
1308 /*
1309 * Re-initialize the adapter, first free resources, then carefully
1310 * apply the initialization sequence to come back again. Only risk
1311 * is a change in Firmware dropping cache, it is assumed the caller
1312 * will ensure that i/o is queisced and the card is flushed in that
1313 * case.
1314 */
1315 aac_fib_map_free(aac);
1316 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1317 aac->comm_addr = NULL;
1318 aac->comm_phys = 0;
1319 kfree(aac->queues);
1320 aac->queues = NULL;
1321 free_irq(aac->pdev->irq, aac);
1322 if (aac->msi)
1323 pci_disable_msi(aac->pdev);
1324 kfree(aac->fsa_dev);
1325 aac->fsa_dev = NULL;
1326 quirks = aac_get_driver_ident(index)->quirks;
1327 if (quirks & AAC_QUIRK_31BIT) {
1328 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1329 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1330 goto out;
1331 } else {
1332 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1333 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1334 goto out;
1335 }
1336 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1337 goto out;
1338 if (quirks & AAC_QUIRK_31BIT)
1339 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1340 goto out;
1341 if (jafo) {
1342 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1343 aac->name);
1344 if (IS_ERR(aac->thread)) {
1345 retval = PTR_ERR(aac->thread);
1346 goto out;
1347 }
1348 }
1349 (void)aac_get_adapter_info(aac);
1350 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1351 host->sg_tablesize = 34;
1352 host->max_sectors = (host->sg_tablesize * 8) + 112;
1353 }
1354 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1355 host->sg_tablesize = 17;
1356 host->max_sectors = (host->sg_tablesize * 8) + 112;
1357 }
1358 aac_get_config_status(aac, 1);
1359 aac_get_containers(aac);
1360 /*
1361 * This is where the assumption that the Adapter is quiesced
1362 * is important.
1363 */
1364 command_list = NULL;
1365 __shost_for_each_device(dev, host) {
1366 unsigned long flags;
1367 spin_lock_irqsave(&dev->list_lock, flags);
1368 list_for_each_entry(command, &dev->cmd_list, list)
1369 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1370 command->SCp.buffer = (struct scatterlist *)command_list;
1371 command_list = command;
1372 }
1373 spin_unlock_irqrestore(&dev->list_lock, flags);
1374 }
1375 while ((command = command_list)) {
1376 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1377 command->SCp.buffer = NULL;
1378 command->result = DID_OK << 16
1379 | COMMAND_COMPLETE << 8
1380 | SAM_STAT_TASK_SET_FULL;
1381 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1382 command->scsi_done(command);
1383 }
1384 retval = 0;
1385
1386 out:
1387 aac->in_reset = 0;
1388 scsi_unblock_requests(host);
1389 if (jafo) {
1390 spin_lock_irq(host->host_lock);
1391 }
1392 return retval;
1393 }
1394
aac_reset_adapter(struct aac_dev * aac,int forced)1395 int aac_reset_adapter(struct aac_dev * aac, int forced)
1396 {
1397 unsigned long flagv = 0;
1398 int retval;
1399 struct Scsi_Host * host;
1400
1401 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1402 return -EBUSY;
1403
1404 if (aac->in_reset) {
1405 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1406 return -EBUSY;
1407 }
1408 aac->in_reset = 1;
1409 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1410
1411 /*
1412 * Wait for all commands to complete to this specific
1413 * target (block maximum 60 seconds). Although not necessary,
1414 * it does make us a good storage citizen.
1415 */
1416 host = aac->scsi_host_ptr;
1417 scsi_block_requests(host);
1418 if (forced < 2) for (retval = 60; retval; --retval) {
1419 struct scsi_device * dev;
1420 struct scsi_cmnd * command;
1421 int active = 0;
1422
1423 __shost_for_each_device(dev, host) {
1424 spin_lock_irqsave(&dev->list_lock, flagv);
1425 list_for_each_entry(command, &dev->cmd_list, list) {
1426 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1427 active++;
1428 break;
1429 }
1430 }
1431 spin_unlock_irqrestore(&dev->list_lock, flagv);
1432 if (active)
1433 break;
1434
1435 }
1436 /*
1437 * We can exit If all the commands are complete
1438 */
1439 if (active == 0)
1440 break;
1441 ssleep(1);
1442 }
1443
1444 /* Quiesce build, flush cache, write through mode */
1445 if (forced < 2)
1446 aac_send_shutdown(aac);
1447 spin_lock_irqsave(host->host_lock, flagv);
1448 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1449 spin_unlock_irqrestore(host->host_lock, flagv);
1450
1451 if ((forced < 2) && (retval == -ENODEV)) {
1452 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1453 struct fib * fibctx = aac_fib_alloc(aac);
1454 if (fibctx) {
1455 struct aac_pause *cmd;
1456 int status;
1457
1458 aac_fib_init(fibctx);
1459
1460 cmd = (struct aac_pause *) fib_data(fibctx);
1461
1462 cmd->command = cpu_to_le32(VM_ContainerConfig);
1463 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1464 cmd->timeout = cpu_to_le32(1);
1465 cmd->min = cpu_to_le32(1);
1466 cmd->noRescan = cpu_to_le32(1);
1467 cmd->count = cpu_to_le32(0);
1468
1469 status = aac_fib_send(ContainerCommand,
1470 fibctx,
1471 sizeof(struct aac_pause),
1472 FsaNormal,
1473 -2 /* Timeout silently */, 1,
1474 NULL, NULL);
1475
1476 if (status >= 0)
1477 aac_fib_complete(fibctx);
1478 /* FIB should be freed only after getting
1479 * the response from the F/W */
1480 if (status != -ERESTARTSYS)
1481 aac_fib_free(fibctx);
1482 }
1483 }
1484
1485 return retval;
1486 }
1487
aac_check_health(struct aac_dev * aac)1488 int aac_check_health(struct aac_dev * aac)
1489 {
1490 int BlinkLED;
1491 unsigned long time_now, flagv = 0;
1492 struct list_head * entry;
1493 struct Scsi_Host * host;
1494
1495 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1496 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1497 return 0;
1498
1499 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1500 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1501 return 0; /* OK */
1502 }
1503
1504 aac->in_reset = 1;
1505
1506 /* Fake up an AIF:
1507 * aac_aifcmd.command = AifCmdEventNotify = 1
1508 * aac_aifcmd.seqnum = 0xFFFFFFFF
1509 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1510 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1511 * aac.aifcmd.data[2] = AifHighPriority = 3
1512 * aac.aifcmd.data[3] = BlinkLED
1513 */
1514
1515 time_now = jiffies/HZ;
1516 entry = aac->fib_list.next;
1517
1518 /*
1519 * For each Context that is on the
1520 * fibctxList, make a copy of the
1521 * fib, and then set the event to wake up the
1522 * thread that is waiting for it.
1523 */
1524 while (entry != &aac->fib_list) {
1525 /*
1526 * Extract the fibctx
1527 */
1528 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1529 struct hw_fib * hw_fib;
1530 struct fib * fib;
1531 /*
1532 * Check if the queue is getting
1533 * backlogged
1534 */
1535 if (fibctx->count > 20) {
1536 /*
1537 * It's *not* jiffies folks,
1538 * but jiffies / HZ, so do not
1539 * panic ...
1540 */
1541 u32 time_last = fibctx->jiffies;
1542 /*
1543 * Has it been > 2 minutes
1544 * since the last read off
1545 * the queue?
1546 */
1547 if ((time_now - time_last) > aif_timeout) {
1548 entry = entry->next;
1549 aac_close_fib_context(aac, fibctx);
1550 continue;
1551 }
1552 }
1553 /*
1554 * Warning: no sleep allowed while
1555 * holding spinlock
1556 */
1557 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1558 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1559 if (fib && hw_fib) {
1560 struct aac_aifcmd * aif;
1561
1562 fib->hw_fib_va = hw_fib;
1563 fib->dev = aac;
1564 aac_fib_init(fib);
1565 fib->type = FSAFS_NTC_FIB_CONTEXT;
1566 fib->size = sizeof (struct fib);
1567 fib->data = hw_fib->data;
1568 aif = (struct aac_aifcmd *)hw_fib->data;
1569 aif->command = cpu_to_le32(AifCmdEventNotify);
1570 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1571 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1572 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1573 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1574 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1575
1576 /*
1577 * Put the FIB onto the
1578 * fibctx's fibs
1579 */
1580 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1581 fibctx->count++;
1582 /*
1583 * Set the event to wake up the
1584 * thread that will waiting.
1585 */
1586 up(&fibctx->wait_sem);
1587 } else {
1588 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1589 kfree(fib);
1590 kfree(hw_fib);
1591 }
1592 entry = entry->next;
1593 }
1594
1595 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1596
1597 if (BlinkLED < 0) {
1598 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1599 goto out;
1600 }
1601
1602 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1603
1604 if (!aac_check_reset || ((aac_check_reset == 1) &&
1605 (aac->supplement_adapter_info.SupportedOptions2 &
1606 AAC_OPTION_IGNORE_RESET)))
1607 goto out;
1608 host = aac->scsi_host_ptr;
1609 if (aac->thread->pid != current->pid)
1610 spin_lock_irqsave(host->host_lock, flagv);
1611 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1612 if (aac->thread->pid != current->pid)
1613 spin_unlock_irqrestore(host->host_lock, flagv);
1614 return BlinkLED;
1615
1616 out:
1617 aac->in_reset = 0;
1618 return BlinkLED;
1619 }
1620
1621
1622 /**
1623 * aac_command_thread - command processing thread
1624 * @dev: Adapter to monitor
1625 *
1626 * Waits on the commandready event in it's queue. When the event gets set
1627 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1628 * until the queue is empty. When the queue is empty it will wait for
1629 * more FIBs.
1630 */
1631
aac_command_thread(void * data)1632 int aac_command_thread(void *data)
1633 {
1634 struct aac_dev *dev = data;
1635 struct hw_fib *hw_fib, *hw_newfib;
1636 struct fib *fib, *newfib;
1637 struct aac_fib_context *fibctx;
1638 unsigned long flags;
1639 DECLARE_WAITQUEUE(wait, current);
1640 unsigned long next_jiffies = jiffies + HZ;
1641 unsigned long next_check_jiffies = next_jiffies;
1642 long difference = HZ;
1643
1644 /*
1645 * We can only have one thread per adapter for AIF's.
1646 */
1647 if (dev->aif_thread)
1648 return -EINVAL;
1649
1650 /*
1651 * Let the DPC know it has a place to send the AIF's to.
1652 */
1653 dev->aif_thread = 1;
1654 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1655 set_current_state(TASK_INTERRUPTIBLE);
1656 dprintk ((KERN_INFO "aac_command_thread start\n"));
1657 while (1) {
1658 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1659 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1660 struct list_head *entry;
1661 struct aac_aifcmd * aifcmd;
1662
1663 set_current_state(TASK_RUNNING);
1664
1665 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1666 list_del(entry);
1667
1668 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1669 fib = list_entry(entry, struct fib, fiblink);
1670 /*
1671 * We will process the FIB here or pass it to a
1672 * worker thread that is TBD. We Really can't
1673 * do anything at this point since we don't have
1674 * anything defined for this thread to do.
1675 */
1676 hw_fib = fib->hw_fib_va;
1677 memset(fib, 0, sizeof(struct fib));
1678 fib->type = FSAFS_NTC_FIB_CONTEXT;
1679 fib->size = sizeof(struct fib);
1680 fib->hw_fib_va = hw_fib;
1681 fib->data = hw_fib->data;
1682 fib->dev = dev;
1683 /*
1684 * We only handle AifRequest fibs from the adapter.
1685 */
1686 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1687 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1688 /* Handle Driver Notify Events */
1689 aac_handle_aif(dev, fib);
1690 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1691 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1692 } else {
1693 /* The u32 here is important and intended. We are using
1694 32bit wrapping time to fit the adapter field */
1695
1696 u32 time_now, time_last;
1697 unsigned long flagv;
1698 unsigned num;
1699 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1700 struct fib ** fib_pool, ** fib_p;
1701
1702 /* Sniff events */
1703 if ((aifcmd->command ==
1704 cpu_to_le32(AifCmdEventNotify)) ||
1705 (aifcmd->command ==
1706 cpu_to_le32(AifCmdJobProgress))) {
1707 aac_handle_aif(dev, fib);
1708 }
1709
1710 time_now = jiffies/HZ;
1711
1712 /*
1713 * Warning: no sleep allowed while
1714 * holding spinlock. We take the estimate
1715 * and pre-allocate a set of fibs outside the
1716 * lock.
1717 */
1718 num = le32_to_cpu(dev->init->AdapterFibsSize)
1719 / sizeof(struct hw_fib); /* some extra */
1720 spin_lock_irqsave(&dev->fib_lock, flagv);
1721 entry = dev->fib_list.next;
1722 while (entry != &dev->fib_list) {
1723 entry = entry->next;
1724 ++num;
1725 }
1726 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1727 hw_fib_pool = NULL;
1728 fib_pool = NULL;
1729 if (num
1730 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1731 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1732 hw_fib_p = hw_fib_pool;
1733 fib_p = fib_pool;
1734 while (hw_fib_p < &hw_fib_pool[num]) {
1735 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1736 --hw_fib_p;
1737 break;
1738 }
1739 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1740 kfree(*(--hw_fib_p));
1741 break;
1742 }
1743 }
1744 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1745 kfree(fib_pool);
1746 fib_pool = NULL;
1747 kfree(hw_fib_pool);
1748 hw_fib_pool = NULL;
1749 }
1750 } else {
1751 kfree(hw_fib_pool);
1752 hw_fib_pool = NULL;
1753 }
1754 spin_lock_irqsave(&dev->fib_lock, flagv);
1755 entry = dev->fib_list.next;
1756 /*
1757 * For each Context that is on the
1758 * fibctxList, make a copy of the
1759 * fib, and then set the event to wake up the
1760 * thread that is waiting for it.
1761 */
1762 hw_fib_p = hw_fib_pool;
1763 fib_p = fib_pool;
1764 while (entry != &dev->fib_list) {
1765 /*
1766 * Extract the fibctx
1767 */
1768 fibctx = list_entry(entry, struct aac_fib_context, next);
1769 /*
1770 * Check if the queue is getting
1771 * backlogged
1772 */
1773 if (fibctx->count > 20)
1774 {
1775 /*
1776 * It's *not* jiffies folks,
1777 * but jiffies / HZ so do not
1778 * panic ...
1779 */
1780 time_last = fibctx->jiffies;
1781 /*
1782 * Has it been > 2 minutes
1783 * since the last read off
1784 * the queue?
1785 */
1786 if ((time_now - time_last) > aif_timeout) {
1787 entry = entry->next;
1788 aac_close_fib_context(dev, fibctx);
1789 continue;
1790 }
1791 }
1792 /*
1793 * Warning: no sleep allowed while
1794 * holding spinlock
1795 */
1796 if (hw_fib_p < &hw_fib_pool[num]) {
1797 hw_newfib = *hw_fib_p;
1798 *(hw_fib_p++) = NULL;
1799 newfib = *fib_p;
1800 *(fib_p++) = NULL;
1801 /*
1802 * Make the copy of the FIB
1803 */
1804 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1805 memcpy(newfib, fib, sizeof(struct fib));
1806 newfib->hw_fib_va = hw_newfib;
1807 /*
1808 * Put the FIB onto the
1809 * fibctx's fibs
1810 */
1811 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1812 fibctx->count++;
1813 /*
1814 * Set the event to wake up the
1815 * thread that is waiting.
1816 */
1817 up(&fibctx->wait_sem);
1818 } else {
1819 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1820 }
1821 entry = entry->next;
1822 }
1823 /*
1824 * Set the status of this FIB
1825 */
1826 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1827 aac_fib_adapter_complete(fib, sizeof(u32));
1828 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1829 /* Free up the remaining resources */
1830 hw_fib_p = hw_fib_pool;
1831 fib_p = fib_pool;
1832 while (hw_fib_p < &hw_fib_pool[num]) {
1833 kfree(*hw_fib_p);
1834 kfree(*fib_p);
1835 ++fib_p;
1836 ++hw_fib_p;
1837 }
1838 kfree(hw_fib_pool);
1839 kfree(fib_pool);
1840 }
1841 kfree(fib);
1842 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1843 }
1844 /*
1845 * There are no more AIF's
1846 */
1847 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1848
1849 /*
1850 * Background activity
1851 */
1852 if ((time_before(next_check_jiffies,next_jiffies))
1853 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1854 next_check_jiffies = next_jiffies;
1855 if (aac_check_health(dev) == 0) {
1856 difference = ((long)(unsigned)check_interval)
1857 * HZ;
1858 next_check_jiffies = jiffies + difference;
1859 } else if (!dev->queues)
1860 break;
1861 }
1862 if (!time_before(next_check_jiffies,next_jiffies)
1863 && ((difference = next_jiffies - jiffies) <= 0)) {
1864 struct timeval now;
1865 int ret;
1866
1867 /* Don't even try to talk to adapter if its sick */
1868 ret = aac_check_health(dev);
1869 if (!ret && !dev->queues)
1870 break;
1871 next_check_jiffies = jiffies
1872 + ((long)(unsigned)check_interval)
1873 * HZ;
1874 do_gettimeofday(&now);
1875
1876 /* Synchronize our watches */
1877 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1878 && (now.tv_usec > (1000000 / HZ)))
1879 difference = (((1000000 - now.tv_usec) * HZ)
1880 + 500000) / 1000000;
1881 else if (ret == 0) {
1882 struct fib *fibptr;
1883
1884 if ((fibptr = aac_fib_alloc(dev))) {
1885 int status;
1886 __le32 *info;
1887
1888 aac_fib_init(fibptr);
1889
1890 info = (__le32 *) fib_data(fibptr);
1891 if (now.tv_usec > 500000)
1892 ++now.tv_sec;
1893
1894 *info = cpu_to_le32(now.tv_sec);
1895
1896 status = aac_fib_send(SendHostTime,
1897 fibptr,
1898 sizeof(*info),
1899 FsaNormal,
1900 1, 1,
1901 NULL,
1902 NULL);
1903 /* Do not set XferState to zero unless
1904 * receives a response from F/W */
1905 if (status >= 0)
1906 aac_fib_complete(fibptr);
1907 /* FIB should be freed only after
1908 * getting the response from the F/W */
1909 if (status != -ERESTARTSYS)
1910 aac_fib_free(fibptr);
1911 }
1912 difference = (long)(unsigned)update_interval*HZ;
1913 } else {
1914 /* retry shortly */
1915 difference = 10 * HZ;
1916 }
1917 next_jiffies = jiffies + difference;
1918 if (time_before(next_check_jiffies,next_jiffies))
1919 difference = next_check_jiffies - jiffies;
1920 }
1921 if (difference <= 0)
1922 difference = 1;
1923 set_current_state(TASK_INTERRUPTIBLE);
1924
1925 if (kthread_should_stop())
1926 break;
1927
1928 schedule_timeout(difference);
1929
1930 if (kthread_should_stop())
1931 break;
1932 }
1933 if (dev->queues)
1934 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1935 dev->aif_thread = 0;
1936 return 0;
1937 }
1938