• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt2sas/mpt2_base.c
6  * Copyright (C) 2007-2014  LSI Corporation
7  *  (mailto:DL-MPTFusionLinux@lsi.com)
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * NO WARRANTY
20  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24  * solely responsible for determining the appropriateness of using and
25  * distributing the Program and assumes all risks associated with its
26  * exercise of rights under this Agreement, including but not limited to
27  * the risks and costs of program errors, damage to or loss of data,
28  * programs or equipment, and unavailability or interruption of operations.
29 
30  * DISCLAIMER OF LIABILITY
31  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 
39  * You should have received a copy of the GNU General Public License
40  * along with this program; if not, write to the Free Software
41  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
42  * USA.
43  */
44 
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/init.h>
49 #include <linux/slab.h>
50 #include <linux/types.h>
51 #include <linux/pci.h>
52 #include <linux/kdev_t.h>
53 #include <linux/blkdev.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/sort.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62 
63 #include "mpt2sas_base.h"
64 
65 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
66 
67 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
68 
69 #define MAX_HBA_QUEUE_DEPTH	30000
70 #define MAX_CHAIN_DEPTH		100000
71 static int max_queue_depth = -1;
72 module_param(max_queue_depth, int, 0);
73 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
74 
75 static int max_sgl_entries = -1;
76 module_param(max_sgl_entries, int, 0);
77 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
78 
79 static int msix_disable = -1;
80 module_param(msix_disable, int, 0);
81 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
82 
83 static int max_msix_vectors = -1;
84 module_param(max_msix_vectors, int, 0);
85 MODULE_PARM_DESC(max_msix_vectors, " max msix vectors ");
86 
87 static int mpt2sas_fwfault_debug;
88 MODULE_PARM_DESC(mpt2sas_fwfault_debug, " enable detection of firmware fault "
89 	"and halt firmware - (default=0)");
90 
91 static int disable_discovery = -1;
92 module_param(disable_discovery, int, 0);
93 MODULE_PARM_DESC(disable_discovery, " disable discovery ");
94 
95 static int
96 _base_get_ioc_facts(struct MPT2SAS_ADAPTER *ioc, int sleep_flag);
97 
98 static int
99 _base_diag_reset(struct MPT2SAS_ADAPTER *ioc, int sleep_flag);
100 
101 /**
102  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
103  *
104  */
105 static int
_scsih_set_fwfault_debug(const char * val,struct kernel_param * kp)106 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
107 {
108 	int ret = param_set_int(val, kp);
109 	struct MPT2SAS_ADAPTER *ioc;
110 
111 	if (ret)
112 		return ret;
113 
114 	printk(KERN_INFO "setting fwfault_debug(%d)\n", mpt2sas_fwfault_debug);
115 	list_for_each_entry(ioc, &mpt2sas_ioc_list, list)
116 		ioc->fwfault_debug = mpt2sas_fwfault_debug;
117 	return 0;
118 }
119 
120 module_param_call(mpt2sas_fwfault_debug, _scsih_set_fwfault_debug,
121     param_get_int, &mpt2sas_fwfault_debug, 0644);
122 
123 /**
124  *  mpt2sas_remove_dead_ioc_func - kthread context to remove dead ioc
125  * @arg: input argument, used to derive ioc
126  *
127  * Return 0 if controller is removed from pci subsystem.
128  * Return -1 for other case.
129  */
mpt2sas_remove_dead_ioc_func(void * arg)130 static int mpt2sas_remove_dead_ioc_func(void *arg)
131 {
132 		struct MPT2SAS_ADAPTER *ioc = (struct MPT2SAS_ADAPTER *)arg;
133 		struct pci_dev *pdev;
134 
135 		if ((ioc == NULL))
136 			return -1;
137 
138 		pdev = ioc->pdev;
139 		if ((pdev == NULL))
140 			return -1;
141 		pci_stop_and_remove_bus_device_locked(pdev);
142 		return 0;
143 }
144 
145 
146 /**
147  * _base_fault_reset_work - workq handling ioc fault conditions
148  * @work: input argument, used to derive ioc
149  * Context: sleep.
150  *
151  * Return nothing.
152  */
153 static void
_base_fault_reset_work(struct work_struct * work)154 _base_fault_reset_work(struct work_struct *work)
155 {
156 	struct MPT2SAS_ADAPTER *ioc =
157 	    container_of(work, struct MPT2SAS_ADAPTER, fault_reset_work.work);
158 	unsigned long	 flags;
159 	u32 doorbell;
160 	int rc;
161 	struct task_struct *p;
162 
163 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
164 	if (ioc->shost_recovery || ioc->pci_error_recovery)
165 		goto rearm_timer;
166 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
167 
168 	doorbell = mpt2sas_base_get_iocstate(ioc, 0);
169 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
170 		printk(MPT2SAS_INFO_FMT "%s : SAS host is non-operational !!!!\n",
171 			ioc->name, __func__);
172 
173 		/* It may be possible that EEH recovery can resolve some of
174 		 * pci bus failure issues rather removing the dead ioc function
175 		 * by considering controller is in a non-operational state. So
176 		 * here priority is given to the EEH recovery. If it doesn't
177 		 * not resolve this issue, mpt2sas driver will consider this
178 		 * controller to non-operational state and remove the dead ioc
179 		 * function.
180 		 */
181 		if (ioc->non_operational_loop++ < 5) {
182 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
183 							 flags);
184 			goto rearm_timer;
185 		}
186 
187 		/*
188 		 * Call _scsih_flush_pending_cmds callback so that we flush all
189 		 * pending commands back to OS. This call is required to aovid
190 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
191 		 * and this call is safe since dead ioc will never return any
192 		 * command back from HW.
193 		 */
194 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
195 		/*
196 		 * Set remove_host flag early since kernel thread will
197 		 * take some time to execute.
198 		 */
199 		ioc->remove_host = 1;
200 		/*Remove the Dead Host */
201 		p = kthread_run(mpt2sas_remove_dead_ioc_func, ioc,
202 		    "mpt2sas_dead_ioc_%d", ioc->id);
203 		if (IS_ERR(p)) {
204 			printk(MPT2SAS_ERR_FMT
205 			"%s: Running mpt2sas_dead_ioc thread failed !!!!\n",
206 			ioc->name, __func__);
207 		} else {
208 		    printk(MPT2SAS_ERR_FMT
209 			"%s: Running mpt2sas_dead_ioc thread success !!!!\n",
210 			ioc->name, __func__);
211 		}
212 
213 		return; /* don't rearm timer */
214 	}
215 
216 	ioc->non_operational_loop = 0;
217 
218 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
219 		rc = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
220 		    FORCE_BIG_HAMMER);
221 		printk(MPT2SAS_WARN_FMT "%s: hard reset: %s\n", ioc->name,
222 		    __func__, (rc == 0) ? "success" : "failed");
223 		doorbell = mpt2sas_base_get_iocstate(ioc, 0);
224 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
225 			mpt2sas_base_fault_info(ioc, doorbell &
226 			    MPI2_DOORBELL_DATA_MASK);
227 	}
228 
229 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230  rearm_timer:
231 	if (ioc->fault_reset_work_q)
232 		queue_delayed_work(ioc->fault_reset_work_q,
233 		    &ioc->fault_reset_work,
234 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
236 }
237 
238 /**
239  * mpt2sas_base_start_watchdog - start the fault_reset_work_q
240  * @ioc: per adapter object
241  * Context: sleep.
242  *
243  * Return nothing.
244  */
245 void
mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER * ioc)246 mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER *ioc)
247 {
248 	unsigned long	 flags;
249 
250 	if (ioc->fault_reset_work_q)
251 		return;
252 
253 	/* initialize fault polling */
254 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
255 	snprintf(ioc->fault_reset_work_q_name,
256 	    sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
257 	ioc->fault_reset_work_q =
258 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
259 	if (!ioc->fault_reset_work_q) {
260 		printk(MPT2SAS_ERR_FMT "%s: failed (line=%d)\n",
261 		    ioc->name, __func__, __LINE__);
262 			return;
263 	}
264 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
265 	if (ioc->fault_reset_work_q)
266 		queue_delayed_work(ioc->fault_reset_work_q,
267 		    &ioc->fault_reset_work,
268 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
269 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
270 }
271 
272 /**
273  * mpt2sas_base_stop_watchdog - stop the fault_reset_work_q
274  * @ioc: per adapter object
275  * Context: sleep.
276  *
277  * Return nothing.
278  */
279 void
mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER * ioc)280 mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER *ioc)
281 {
282 	unsigned long	 flags;
283 	struct workqueue_struct *wq;
284 
285 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
286 	wq = ioc->fault_reset_work_q;
287 	ioc->fault_reset_work_q = NULL;
288 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
289 	if (wq) {
290 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
291 			flush_workqueue(wq);
292 		destroy_workqueue(wq);
293 	}
294 }
295 
296 /**
297  * mpt2sas_base_fault_info - verbose translation of firmware FAULT code
298  * @ioc: per adapter object
299  * @fault_code: fault code
300  *
301  * Return nothing.
302  */
303 void
mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER * ioc,u16 fault_code)304 mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER *ioc , u16 fault_code)
305 {
306 	printk(MPT2SAS_ERR_FMT "fault_state(0x%04x)!\n",
307 	    ioc->name, fault_code);
308 }
309 
310 /**
311  * mpt2sas_halt_firmware - halt's mpt controller firmware
312  * @ioc: per adapter object
313  *
314  * For debugging timeout related issues.  Writing 0xCOFFEE00
315  * to the doorbell register will halt controller firmware. With
316  * the purpose to stop both driver and firmware, the enduser can
317  * obtain a ring buffer from controller UART.
318  */
319 void
mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER * ioc)320 mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER *ioc)
321 {
322 	u32 doorbell;
323 
324 	if (!ioc->fwfault_debug)
325 		return;
326 
327 	dump_stack();
328 
329 	doorbell = readl(&ioc->chip->Doorbell);
330 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
331 		mpt2sas_base_fault_info(ioc , doorbell);
332 	else {
333 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
334 		printk(MPT2SAS_ERR_FMT "Firmware is halted due to command "
335 		    "timeout\n", ioc->name);
336 	}
337 
338 	panic("panic in %s\n", __func__);
339 }
340 
341 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
342 /**
343  * _base_sas_ioc_info - verbose translation of the ioc status
344  * @ioc: per adapter object
345  * @mpi_reply: reply mf payload returned from firmware
346  * @request_hdr: request mf
347  *
348  * Return nothing.
349  */
350 static void
_base_sas_ioc_info(struct MPT2SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)351 _base_sas_ioc_info(struct MPT2SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
352      MPI2RequestHeader_t *request_hdr)
353 {
354 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
355 	    MPI2_IOCSTATUS_MASK;
356 	char *desc = NULL;
357 	u16 frame_sz;
358 	char *func_str = NULL;
359 
360 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
361 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
362 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
363 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
364 		return;
365 
366 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
367 		return;
368 
369 	switch (ioc_status) {
370 
371 /****************************************************************************
372 *  Common IOCStatus values for all replies
373 ****************************************************************************/
374 
375 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
376 		desc = "invalid function";
377 		break;
378 	case MPI2_IOCSTATUS_BUSY:
379 		desc = "busy";
380 		break;
381 	case MPI2_IOCSTATUS_INVALID_SGL:
382 		desc = "invalid sgl";
383 		break;
384 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
385 		desc = "internal error";
386 		break;
387 	case MPI2_IOCSTATUS_INVALID_VPID:
388 		desc = "invalid vpid";
389 		break;
390 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
391 		desc = "insufficient resources";
392 		break;
393 	case MPI2_IOCSTATUS_INVALID_FIELD:
394 		desc = "invalid field";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_STATE:
397 		desc = "invalid state";
398 		break;
399 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
400 		desc = "op state not supported";
401 		break;
402 
403 /****************************************************************************
404 *  Config IOCStatus values
405 ****************************************************************************/
406 
407 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
408 		desc = "config invalid action";
409 		break;
410 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
411 		desc = "config invalid type";
412 		break;
413 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
414 		desc = "config invalid page";
415 		break;
416 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
417 		desc = "config invalid data";
418 		break;
419 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
420 		desc = "config no defaults";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
423 		desc = "config cant commit";
424 		break;
425 
426 /****************************************************************************
427 *  SCSI IO Reply
428 ****************************************************************************/
429 
430 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
431 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
432 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
433 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
434 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
435 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
436 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
437 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
438 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
439 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
440 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
441 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
442 		break;
443 
444 /****************************************************************************
445 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
446 ****************************************************************************/
447 
448 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
449 		desc = "eedp guard error";
450 		break;
451 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
452 		desc = "eedp ref tag error";
453 		break;
454 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
455 		desc = "eedp app tag error";
456 		break;
457 
458 /****************************************************************************
459 *  SCSI Target values
460 ****************************************************************************/
461 
462 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
463 		desc = "target invalid io index";
464 		break;
465 	case MPI2_IOCSTATUS_TARGET_ABORTED:
466 		desc = "target aborted";
467 		break;
468 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
469 		desc = "target no conn retryable";
470 		break;
471 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
472 		desc = "target no connection";
473 		break;
474 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
475 		desc = "target xfer count mismatch";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
478 		desc = "target data offset error";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
481 		desc = "target too much write data";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
484 		desc = "target iu too short";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
487 		desc = "target ack nak timeout";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
490 		desc = "target nak received";
491 		break;
492 
493 /****************************************************************************
494 *  Serial Attached SCSI values
495 ****************************************************************************/
496 
497 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
498 		desc = "smp request failed";
499 		break;
500 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
501 		desc = "smp data overrun";
502 		break;
503 
504 /****************************************************************************
505 *  Diagnostic Buffer Post / Diagnostic Release values
506 ****************************************************************************/
507 
508 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
509 		desc = "diagnostic released";
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	if (!desc)
516 		return;
517 
518 	switch (request_hdr->Function) {
519 	case MPI2_FUNCTION_CONFIG:
520 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
521 		func_str = "config_page";
522 		break;
523 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
524 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
525 		func_str = "task_mgmt";
526 		break;
527 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
528 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
529 		func_str = "sas_iounit_ctl";
530 		break;
531 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
532 		frame_sz = sizeof(Mpi2SepRequest_t);
533 		func_str = "enclosure";
534 		break;
535 	case MPI2_FUNCTION_IOC_INIT:
536 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
537 		func_str = "ioc_init";
538 		break;
539 	case MPI2_FUNCTION_PORT_ENABLE:
540 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
541 		func_str = "port_enable";
542 		break;
543 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
544 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
545 		func_str = "smp_passthru";
546 		break;
547 	default:
548 		frame_sz = 32;
549 		func_str = "unknown";
550 		break;
551 	}
552 
553 	printk(MPT2SAS_WARN_FMT "ioc_status: %s(0x%04x), request(0x%p),"
554 	    " (%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str);
555 
556 	_debug_dump_mf(request_hdr, frame_sz/4);
557 }
558 
559 /**
560  * _base_display_event_data - verbose translation of firmware asyn events
561  * @ioc: per adapter object
562  * @mpi_reply: reply mf payload returned from firmware
563  *
564  * Return nothing.
565  */
566 static void
_base_display_event_data(struct MPT2SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)567 _base_display_event_data(struct MPT2SAS_ADAPTER *ioc,
568     Mpi2EventNotificationReply_t *mpi_reply)
569 {
570 	char *desc = NULL;
571 	u16 event;
572 
573 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
574 		return;
575 
576 	event = le16_to_cpu(mpi_reply->Event);
577 
578 	switch (event) {
579 	case MPI2_EVENT_LOG_DATA:
580 		desc = "Log Data";
581 		break;
582 	case MPI2_EVENT_STATE_CHANGE:
583 		desc = "Status Change";
584 		break;
585 	case MPI2_EVENT_HARD_RESET_RECEIVED:
586 		desc = "Hard Reset Received";
587 		break;
588 	case MPI2_EVENT_EVENT_CHANGE:
589 		desc = "Event Change";
590 		break;
591 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
592 		desc = "Device Status Change";
593 		break;
594 	case MPI2_EVENT_IR_OPERATION_STATUS:
595 		if (!ioc->hide_ir_msg)
596 			desc = "IR Operation Status";
597 		break;
598 	case MPI2_EVENT_SAS_DISCOVERY:
599 	{
600 		Mpi2EventDataSasDiscovery_t *event_data =
601 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
602 		printk(MPT2SAS_INFO_FMT "Discovery: (%s)", ioc->name,
603 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
604 		    "start" : "stop");
605 		if (event_data->DiscoveryStatus)
606 			printk("discovery_status(0x%08x)",
607 			    le32_to_cpu(event_data->DiscoveryStatus));
608 		printk("\n");
609 		return;
610 	}
611 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
612 		desc = "SAS Broadcast Primitive";
613 		break;
614 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
615 		desc = "SAS Init Device Status Change";
616 		break;
617 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
618 		desc = "SAS Init Table Overflow";
619 		break;
620 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
621 		desc = "SAS Topology Change List";
622 		break;
623 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
624 		desc = "SAS Enclosure Device Status Change";
625 		break;
626 	case MPI2_EVENT_IR_VOLUME:
627 		if (!ioc->hide_ir_msg)
628 			desc = "IR Volume";
629 		break;
630 	case MPI2_EVENT_IR_PHYSICAL_DISK:
631 		if (!ioc->hide_ir_msg)
632 			desc = "IR Physical Disk";
633 		break;
634 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
635 		if (!ioc->hide_ir_msg)
636 			desc = "IR Configuration Change List";
637 		break;
638 	case MPI2_EVENT_LOG_ENTRY_ADDED:
639 		if (!ioc->hide_ir_msg)
640 			desc = "Log Entry Added";
641 		break;
642 	}
643 
644 	if (!desc)
645 		return;
646 
647 	printk(MPT2SAS_INFO_FMT "%s\n", ioc->name, desc);
648 }
649 #endif
650 
651 /**
652  * _base_sas_log_info - verbose translation of firmware log info
653  * @ioc: per adapter object
654  * @log_info: log info
655  *
656  * Return nothing.
657  */
658 static void
_base_sas_log_info(struct MPT2SAS_ADAPTER * ioc,u32 log_info)659 _base_sas_log_info(struct MPT2SAS_ADAPTER *ioc , u32 log_info)
660 {
661 	union loginfo_type {
662 		u32	loginfo;
663 		struct {
664 			u32	subcode:16;
665 			u32	code:8;
666 			u32	originator:4;
667 			u32	bus_type:4;
668 		} dw;
669 	};
670 	union loginfo_type sas_loginfo;
671 	char *originator_str = NULL;
672 
673 	sas_loginfo.loginfo = log_info;
674 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
675 		return;
676 
677 	/* each nexus loss loginfo */
678 	if (log_info == 0x31170000)
679 		return;
680 
681 	/* eat the loginfos associated with task aborts */
682 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
683 	    0x31140000 || log_info == 0x31130000))
684 		return;
685 
686 	switch (sas_loginfo.dw.originator) {
687 	case 0:
688 		originator_str = "IOP";
689 		break;
690 	case 1:
691 		originator_str = "PL";
692 		break;
693 	case 2:
694 		if (!ioc->hide_ir_msg)
695 			originator_str = "IR";
696 		else
697 			originator_str = "WarpDrive";
698 		break;
699 	}
700 
701 	printk(MPT2SAS_WARN_FMT "log_info(0x%08x): originator(%s), "
702 	    "code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info,
703 	     originator_str, sas_loginfo.dw.code,
704 	     sas_loginfo.dw.subcode);
705 }
706 
707 /**
708  * _base_display_reply_info -
709  * @ioc: per adapter object
710  * @smid: system request message index
711  * @msix_index: MSIX table index supplied by the OS
712  * @reply: reply message frame(lower 32bit addr)
713  *
714  * Return nothing.
715  */
716 static void
_base_display_reply_info(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)717 _base_display_reply_info(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
718     u32 reply)
719 {
720 	MPI2DefaultReply_t *mpi_reply;
721 	u16 ioc_status;
722 
723 	mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
724 	if (unlikely(!mpi_reply)) {
725 		printk(MPT2SAS_ERR_FMT "mpi_reply not valid at %s:%d/%s()!\n",
726 			ioc->name, __FILE__, __LINE__, __func__);
727 		return;
728 	}
729 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
730 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
731 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
732 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
733 		_base_sas_ioc_info(ioc , mpi_reply,
734 		   mpt2sas_base_get_msg_frame(ioc, smid));
735 	}
736 #endif
737 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
738 		_base_sas_log_info(ioc, le32_to_cpu(mpi_reply->IOCLogInfo));
739 }
740 
741 /**
742  * mpt2sas_base_done - base internal command completion routine
743  * @ioc: per adapter object
744  * @smid: system request message index
745  * @msix_index: MSIX table index supplied by the OS
746  * @reply: reply message frame(lower 32bit addr)
747  *
748  * Return 1 meaning mf should be freed from _base_interrupt
749  *        0 means the mf is freed from this function.
750  */
751 u8
mpt2sas_base_done(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)752 mpt2sas_base_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
753     u32 reply)
754 {
755 	MPI2DefaultReply_t *mpi_reply;
756 
757 	mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
758 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
759 		return 1;
760 
761 	if (ioc->base_cmds.status == MPT2_CMD_NOT_USED)
762 		return 1;
763 
764 	ioc->base_cmds.status |= MPT2_CMD_COMPLETE;
765 	if (mpi_reply) {
766 		ioc->base_cmds.status |= MPT2_CMD_REPLY_VALID;
767 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
768 	}
769 	ioc->base_cmds.status &= ~MPT2_CMD_PENDING;
770 
771 	complete(&ioc->base_cmds.done);
772 	return 1;
773 }
774 
775 /**
776  * _base_async_event - main callback handler for firmware asyn events
777  * @ioc: per adapter object
778  * @msix_index: MSIX table index supplied by the OS
779  * @reply: reply message frame(lower 32bit addr)
780  *
781  * Returns void.
782  */
783 static void
_base_async_event(struct MPT2SAS_ADAPTER * ioc,u8 msix_index,u32 reply)784 _base_async_event(struct MPT2SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
785 {
786 	Mpi2EventNotificationReply_t *mpi_reply;
787 	Mpi2EventAckRequest_t *ack_request;
788 	u16 smid;
789 
790 	mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
791 	if (!mpi_reply)
792 		return;
793 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
794 		return;
795 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
796 	_base_display_event_data(ioc, mpi_reply);
797 #endif
798 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
799 		goto out;
800 	smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
801 	if (!smid) {
802 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
803 		    ioc->name, __func__);
804 		goto out;
805 	}
806 
807 	ack_request = mpt2sas_base_get_msg_frame(ioc, smid);
808 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
809 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
810 	ack_request->Event = mpi_reply->Event;
811 	ack_request->EventContext = mpi_reply->EventContext;
812 	ack_request->VF_ID = 0;  /* TODO */
813 	ack_request->VP_ID = 0;
814 	mpt2sas_base_put_smid_default(ioc, smid);
815 
816  out:
817 
818 	/* scsih callback handler */
819 	mpt2sas_scsih_event_callback(ioc, msix_index, reply);
820 
821 	/* ctl callback handler */
822 	mpt2sas_ctl_event_callback(ioc, msix_index, reply);
823 
824 	return;
825 }
826 
827 /**
828  * _base_get_cb_idx - obtain the callback index
829  * @ioc: per adapter object
830  * @smid: system request message index
831  *
832  * Return callback index.
833  */
834 static u8
_base_get_cb_idx(struct MPT2SAS_ADAPTER * ioc,u16 smid)835 _base_get_cb_idx(struct MPT2SAS_ADAPTER *ioc, u16 smid)
836 {
837 	int i;
838 	u8 cb_idx;
839 
840 	if (smid < ioc->hi_priority_smid) {
841 		i = smid - 1;
842 		cb_idx = ioc->scsi_lookup[i].cb_idx;
843 	} else if (smid < ioc->internal_smid) {
844 		i = smid - ioc->hi_priority_smid;
845 		cb_idx = ioc->hpr_lookup[i].cb_idx;
846 	} else if (smid <= ioc->hba_queue_depth) {
847 		i = smid - ioc->internal_smid;
848 		cb_idx = ioc->internal_lookup[i].cb_idx;
849 	} else
850 		cb_idx = 0xFF;
851 	return cb_idx;
852 }
853 
854 /**
855  * _base_mask_interrupts - disable interrupts
856  * @ioc: per adapter object
857  *
858  * Disabling ResetIRQ, Reply and Doorbell Interrupts
859  *
860  * Return nothing.
861  */
862 static void
_base_mask_interrupts(struct MPT2SAS_ADAPTER * ioc)863 _base_mask_interrupts(struct MPT2SAS_ADAPTER *ioc)
864 {
865 	u32 him_register;
866 
867 	ioc->mask_interrupts = 1;
868 	him_register = readl(&ioc->chip->HostInterruptMask);
869 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
870 	writel(him_register, &ioc->chip->HostInterruptMask);
871 	readl(&ioc->chip->HostInterruptMask);
872 }
873 
874 /**
875  * _base_unmask_interrupts - enable interrupts
876  * @ioc: per adapter object
877  *
878  * Enabling only Reply Interrupts
879  *
880  * Return nothing.
881  */
882 static void
_base_unmask_interrupts(struct MPT2SAS_ADAPTER * ioc)883 _base_unmask_interrupts(struct MPT2SAS_ADAPTER *ioc)
884 {
885 	u32 him_register;
886 
887 	him_register = readl(&ioc->chip->HostInterruptMask);
888 	him_register &= ~MPI2_HIM_RIM;
889 	writel(him_register, &ioc->chip->HostInterruptMask);
890 	ioc->mask_interrupts = 0;
891 }
892 
893 union reply_descriptor {
894 	u64 word;
895 	struct {
896 		u32 low;
897 		u32 high;
898 	} u;
899 };
900 
901 /**
902  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
903  * @irq: irq number (not used)
904  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
905  * @r: pt_regs pointer (not used)
906  *
907  * Return IRQ_HANDLE if processed, else IRQ_NONE.
908  */
909 static irqreturn_t
_base_interrupt(int irq,void * bus_id)910 _base_interrupt(int irq, void *bus_id)
911 {
912 	struct adapter_reply_queue *reply_q = bus_id;
913 	union reply_descriptor rd;
914 	u32 completed_cmds;
915 	u8 request_desript_type;
916 	u16 smid;
917 	u8 cb_idx;
918 	u32 reply;
919 	u8 msix_index = reply_q->msix_index;
920 	struct MPT2SAS_ADAPTER *ioc = reply_q->ioc;
921 	Mpi2ReplyDescriptorsUnion_t *rpf;
922 	u8 rc;
923 
924 	if (ioc->mask_interrupts)
925 		return IRQ_NONE;
926 
927 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
928 		return IRQ_NONE;
929 
930 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
931 	request_desript_type = rpf->Default.ReplyFlags
932 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
933 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
934 		atomic_dec(&reply_q->busy);
935 		return IRQ_NONE;
936 	}
937 
938 	completed_cmds = 0;
939 	cb_idx = 0xFF;
940 	do {
941 		rd.word = le64_to_cpu(rpf->Words);
942 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
943 			goto out;
944 		reply = 0;
945 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
946 		if (request_desript_type ==
947 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
948 			reply = le32_to_cpu
949 				(rpf->AddressReply.ReplyFrameAddress);
950 			if (reply > ioc->reply_dma_max_address ||
951 			    reply < ioc->reply_dma_min_address)
952 				reply = 0;
953 		} else if (request_desript_type ==
954 		    MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER)
955 			goto next;
956 		else if (request_desript_type ==
957 		    MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS)
958 			goto next;
959 		if (smid) {
960 			cb_idx = _base_get_cb_idx(ioc, smid);
961 		if ((likely(cb_idx < MPT_MAX_CALLBACKS))
962 			    && (likely(mpt_callbacks[cb_idx] != NULL))) {
963 				rc = mpt_callbacks[cb_idx](ioc, smid,
964 				    msix_index, reply);
965 			if (reply)
966 				_base_display_reply_info(ioc, smid,
967 				    msix_index, reply);
968 			if (rc)
969 				mpt2sas_base_free_smid(ioc, smid);
970 			}
971 		}
972 		if (!smid)
973 			_base_async_event(ioc, msix_index, reply);
974 
975 		/* reply free queue handling */
976 		if (reply) {
977 			ioc->reply_free_host_index =
978 			    (ioc->reply_free_host_index ==
979 			    (ioc->reply_free_queue_depth - 1)) ?
980 			    0 : ioc->reply_free_host_index + 1;
981 			ioc->reply_free[ioc->reply_free_host_index] =
982 			    cpu_to_le32(reply);
983 			wmb();
984 			writel(ioc->reply_free_host_index,
985 			    &ioc->chip->ReplyFreeHostIndex);
986 		}
987 
988  next:
989 
990 		rpf->Words = cpu_to_le64(ULLONG_MAX);
991 		reply_q->reply_post_host_index =
992 		    (reply_q->reply_post_host_index ==
993 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
994 		    reply_q->reply_post_host_index + 1;
995 		request_desript_type =
996 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
997 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
998 		completed_cmds++;
999 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1000 			goto out;
1001 		if (!reply_q->reply_post_host_index)
1002 			rpf = reply_q->reply_post_free;
1003 		else
1004 			rpf++;
1005 	} while (1);
1006 
1007  out:
1008 
1009 	if (!completed_cmds) {
1010 		atomic_dec(&reply_q->busy);
1011 		return IRQ_NONE;
1012 	}
1013 	wmb();
1014 	if (ioc->is_warpdrive) {
1015 		writel(reply_q->reply_post_host_index,
1016 		ioc->reply_post_host_index[msix_index]);
1017 		atomic_dec(&reply_q->busy);
1018 		return IRQ_HANDLED;
1019 	}
1020 	writel(reply_q->reply_post_host_index | (msix_index <<
1021 	    MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1022 	atomic_dec(&reply_q->busy);
1023 	return IRQ_HANDLED;
1024 }
1025 
1026 /**
1027  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1028  * @ioc: per adapter object
1029  *
1030  */
1031 static inline int
_base_is_controller_msix_enabled(struct MPT2SAS_ADAPTER * ioc)1032 _base_is_controller_msix_enabled(struct MPT2SAS_ADAPTER *ioc)
1033 {
1034 	return (ioc->facts.IOCCapabilities &
1035 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1036 }
1037 
1038 /**
1039  * mpt2sas_base_flush_reply_queues - flushing the MSIX reply queues
1040  * @ioc: per adapter object
1041  * Context: ISR conext
1042  *
1043  * Called when a Task Management request has completed. We want
1044  * to flush the other reply queues so all the outstanding IO has been
1045  * completed back to OS before we process the TM completetion.
1046  *
1047  * Return nothing.
1048  */
1049 void
mpt2sas_base_flush_reply_queues(struct MPT2SAS_ADAPTER * ioc)1050 mpt2sas_base_flush_reply_queues(struct MPT2SAS_ADAPTER *ioc)
1051 {
1052 	struct adapter_reply_queue *reply_q;
1053 
1054 	/* If MSIX capability is turned off
1055 	 * then multi-queues are not enabled
1056 	 */
1057 	if (!_base_is_controller_msix_enabled(ioc))
1058 		return;
1059 
1060 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1061 		if (ioc->shost_recovery)
1062 			return;
1063 		/* TMs are on msix_index == 0 */
1064 		if (reply_q->msix_index == 0)
1065 			continue;
1066 		_base_interrupt(reply_q->vector, (void *)reply_q);
1067 	}
1068 }
1069 
1070 /**
1071  * mpt2sas_base_release_callback_handler - clear interrupt callback handler
1072  * @cb_idx: callback index
1073  *
1074  * Return nothing.
1075  */
1076 void
mpt2sas_base_release_callback_handler(u8 cb_idx)1077 mpt2sas_base_release_callback_handler(u8 cb_idx)
1078 {
1079 	mpt_callbacks[cb_idx] = NULL;
1080 }
1081 
1082 /**
1083  * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler
1084  * @cb_func: callback function
1085  *
1086  * Returns cb_func.
1087  */
1088 u8
mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func)1089 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1090 {
1091 	u8 cb_idx;
1092 
1093 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1094 		if (mpt_callbacks[cb_idx] == NULL)
1095 			break;
1096 
1097 	mpt_callbacks[cb_idx] = cb_func;
1098 	return cb_idx;
1099 }
1100 
1101 /**
1102  * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler
1103  *
1104  * Return nothing.
1105  */
1106 void
mpt2sas_base_initialize_callback_handler(void)1107 mpt2sas_base_initialize_callback_handler(void)
1108 {
1109 	u8 cb_idx;
1110 
1111 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1112 		mpt2sas_base_release_callback_handler(cb_idx);
1113 }
1114 
1115 /**
1116  * mpt2sas_base_build_zero_len_sge - build zero length sg entry
1117  * @ioc: per adapter object
1118  * @paddr: virtual address for SGE
1119  *
1120  * Create a zero length scatter gather entry to insure the IOCs hardware has
1121  * something to use if the target device goes brain dead and tries
1122  * to send data even when none is asked for.
1123  *
1124  * Return nothing.
1125  */
1126 void
mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER * ioc,void * paddr)1127 mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER *ioc, void *paddr)
1128 {
1129 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1130 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1131 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1132 	    MPI2_SGE_FLAGS_SHIFT);
1133 	ioc->base_add_sg_single(paddr, flags_length, -1);
1134 }
1135 
1136 /**
1137  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1138  * @paddr: virtual address for SGE
1139  * @flags_length: SGE flags and data transfer length
1140  * @dma_addr: Physical address
1141  *
1142  * Return nothing.
1143  */
1144 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1145 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1146 {
1147 	Mpi2SGESimple32_t *sgel = paddr;
1148 
1149 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1150 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1151 	sgel->FlagsLength = cpu_to_le32(flags_length);
1152 	sgel->Address = cpu_to_le32(dma_addr);
1153 }
1154 
1155 
1156 /**
1157  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1158  * @paddr: virtual address for SGE
1159  * @flags_length: SGE flags and data transfer length
1160  * @dma_addr: Physical address
1161  *
1162  * Return nothing.
1163  */
1164 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1165 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1166 {
1167 	Mpi2SGESimple64_t *sgel = paddr;
1168 
1169 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1170 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1171 	sgel->FlagsLength = cpu_to_le32(flags_length);
1172 	sgel->Address = cpu_to_le64(dma_addr);
1173 }
1174 
1175 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1176 
1177 /**
1178  * _base_config_dma_addressing - set dma addressing
1179  * @ioc: per adapter object
1180  * @pdev: PCI device struct
1181  *
1182  * Returns 0 for success, non-zero for failure.
1183  */
1184 static int
_base_config_dma_addressing(struct MPT2SAS_ADAPTER * ioc,struct pci_dev * pdev)1185 _base_config_dma_addressing(struct MPT2SAS_ADAPTER *ioc, struct pci_dev *pdev)
1186 {
1187 	struct sysinfo s;
1188 	u64 consistent_dma_mask;
1189 
1190 	if (ioc->dma_mask)
1191 		consistent_dma_mask = DMA_BIT_MASK(64);
1192 	else
1193 		consistent_dma_mask = DMA_BIT_MASK(32);
1194 
1195 	if (sizeof(dma_addr_t) > 4) {
1196 		const uint64_t required_mask =
1197 		    dma_get_required_mask(&pdev->dev);
1198 		if ((required_mask > DMA_BIT_MASK(32)) &&
1199 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1200 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1201 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1202 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1203 			ioc->dma_mask = 64;
1204 			goto out;
1205 		}
1206 	}
1207 
1208 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1209 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1210 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1211 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1212 		ioc->dma_mask = 32;
1213 	} else
1214 		return -ENODEV;
1215 
1216  out:
1217 	si_meminfo(&s);
1218 	printk(MPT2SAS_INFO_FMT
1219 	    "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1220 	    ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1221 
1222 	return 0;
1223 }
1224 
1225 static int
_base_change_consistent_dma_mask(struct MPT2SAS_ADAPTER * ioc,struct pci_dev * pdev)1226 _base_change_consistent_dma_mask(struct MPT2SAS_ADAPTER *ioc,
1227 				  struct pci_dev *pdev)
1228 {
1229 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1230 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1231 			return -ENODEV;
1232 	}
1233 	return 0;
1234 }
1235 /**
1236  * _base_check_enable_msix - checks MSIX capabable.
1237  * @ioc: per adapter object
1238  *
1239  * Check to see if card is capable of MSIX, and set number
1240  * of available msix vectors
1241  */
1242 static int
_base_check_enable_msix(struct MPT2SAS_ADAPTER * ioc)1243 _base_check_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1244 {
1245 	int base;
1246 	u16 message_control;
1247 
1248 
1249 	/* Check whether controller SAS2008 B0 controller,
1250 	   if it is SAS2008 B0 controller use IO-APIC instead of MSIX */
1251 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1252 	    ioc->pdev->revision == 0x01) {
1253 		return -EINVAL;
1254 	}
1255 
1256 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1257 	if (!base) {
1258 		dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "msix not "
1259 		    "supported\n", ioc->name));
1260 		return -EINVAL;
1261 	}
1262 
1263 	/* get msix vector count */
1264 	/* NUMA_IO not supported for older controllers */
1265 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1266 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1267 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1268 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1269 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1270 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1271 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1272 		ioc->msix_vector_count = 1;
1273 	else {
1274 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1275 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1276 	}
1277 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "msix is supported, "
1278 	    "vector_count(%d)\n", ioc->name, ioc->msix_vector_count));
1279 
1280 	return 0;
1281 }
1282 
1283 /**
1284  * _base_free_irq - free irq
1285  * @ioc: per adapter object
1286  *
1287  * Freeing respective reply_queue from the list.
1288  */
1289 static void
_base_free_irq(struct MPT2SAS_ADAPTER * ioc)1290 _base_free_irq(struct MPT2SAS_ADAPTER *ioc)
1291 {
1292 	struct adapter_reply_queue *reply_q, *next;
1293 
1294 	if (list_empty(&ioc->reply_queue_list))
1295 		return;
1296 
1297 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1298 		list_del(&reply_q->list);
1299 		synchronize_irq(reply_q->vector);
1300 		free_irq(reply_q->vector, reply_q);
1301 		kfree(reply_q);
1302 	}
1303 }
1304 
1305 /**
1306  * _base_request_irq - request irq
1307  * @ioc: per adapter object
1308  * @index: msix index into vector table
1309  * @vector: irq vector
1310  *
1311  * Inserting respective reply_queue into the list.
1312  */
1313 static int
_base_request_irq(struct MPT2SAS_ADAPTER * ioc,u8 index,u32 vector)1314 _base_request_irq(struct MPT2SAS_ADAPTER *ioc, u8 index, u32 vector)
1315 {
1316 	struct adapter_reply_queue *reply_q;
1317 	int r;
1318 
1319 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1320 	if (!reply_q) {
1321 		printk(MPT2SAS_ERR_FMT "unable to allocate memory %d!\n",
1322 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1323 		return -ENOMEM;
1324 	}
1325 	reply_q->ioc = ioc;
1326 	reply_q->msix_index = index;
1327 	reply_q->vector = vector;
1328 	atomic_set(&reply_q->busy, 0);
1329 	if (ioc->msix_enable)
1330 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1331 		    MPT2SAS_DRIVER_NAME, ioc->id, index);
1332 	else
1333 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1334 		    MPT2SAS_DRIVER_NAME, ioc->id);
1335 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1336 	    reply_q);
1337 	if (r) {
1338 		printk(MPT2SAS_ERR_FMT "unable to allocate interrupt %d!\n",
1339 		    reply_q->name, vector);
1340 		kfree(reply_q);
1341 		return -EBUSY;
1342 	}
1343 
1344 	INIT_LIST_HEAD(&reply_q->list);
1345 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1346 	return 0;
1347 }
1348 
1349 /**
1350  * _base_assign_reply_queues - assigning msix index for each cpu
1351  * @ioc: per adapter object
1352  *
1353  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1354  *
1355  * It would nice if we could call irq_set_affinity, however it is not
1356  * an exported symbol
1357  */
1358 static void
_base_assign_reply_queues(struct MPT2SAS_ADAPTER * ioc)1359 _base_assign_reply_queues(struct MPT2SAS_ADAPTER *ioc)
1360 {
1361 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1362 
1363 	if (!_base_is_controller_msix_enabled(ioc))
1364 		return;
1365 
1366 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1367 
1368 	nr_cpus = num_online_cpus();
1369 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1370 					       ioc->facts.MaxMSIxVectors);
1371 	if (!nr_msix)
1372 		return;
1373 
1374 	cpu = cpumask_first(cpu_online_mask);
1375 
1376 	do {
1377 		unsigned int i, group = nr_cpus / nr_msix;
1378 
1379 		if (index < nr_cpus % nr_msix)
1380 			group++;
1381 
1382 		for (i = 0 ; i < group ; i++) {
1383 			ioc->cpu_msix_table[cpu] = index;
1384 			cpu = cpumask_next(cpu, cpu_online_mask);
1385 		}
1386 
1387 		index++;
1388 
1389 	} while (cpu < nr_cpus);
1390 }
1391 
1392 /**
1393  * _base_disable_msix - disables msix
1394  * @ioc: per adapter object
1395  *
1396  */
1397 static void
_base_disable_msix(struct MPT2SAS_ADAPTER * ioc)1398 _base_disable_msix(struct MPT2SAS_ADAPTER *ioc)
1399 {
1400 	if (ioc->msix_enable) {
1401 		pci_disable_msix(ioc->pdev);
1402 		ioc->msix_enable = 0;
1403 	}
1404 }
1405 
1406 /**
1407  * _base_enable_msix - enables msix, failback to io_apic
1408  * @ioc: per adapter object
1409  *
1410  */
1411 static int
_base_enable_msix(struct MPT2SAS_ADAPTER * ioc)1412 _base_enable_msix(struct MPT2SAS_ADAPTER *ioc)
1413 {
1414 	struct msix_entry *entries, *a;
1415 	int r;
1416 	int i;
1417 	u8 try_msix = 0;
1418 
1419 	if (msix_disable == -1 || msix_disable == 0)
1420 		try_msix = 1;
1421 
1422 	if (!try_msix)
1423 		goto try_ioapic;
1424 
1425 	if (_base_check_enable_msix(ioc) != 0)
1426 		goto try_ioapic;
1427 
1428 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1429 	    ioc->msix_vector_count);
1430 
1431 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1432 		max_msix_vectors = 8;
1433 
1434 	if (max_msix_vectors > 0) {
1435 		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1436 		    ioc->reply_queue_count);
1437 		ioc->msix_vector_count = ioc->reply_queue_count;
1438 	} else if (max_msix_vectors == 0)
1439 		goto try_ioapic;
1440 
1441 	printk(MPT2SAS_INFO_FMT
1442 	"MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n",
1443 	 ioc->name, ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors);
1444 
1445 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1446 	    GFP_KERNEL);
1447 	if (!entries) {
1448 		dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "kcalloc "
1449 		    "failed @ at %s:%d/%s() !!!\n", ioc->name, __FILE__,
1450 		    __LINE__, __func__));
1451 		goto try_ioapic;
1452 	}
1453 
1454 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1455 		a->entry = i;
1456 
1457 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1458 	if (r) {
1459 		dfailprintk(ioc, printk(MPT2SAS_INFO_FMT
1460 		    "pci_enable_msix_exact failed (r=%d) !!!\n", ioc->name, r));
1461 		kfree(entries);
1462 		goto try_ioapic;
1463 	}
1464 
1465 	ioc->msix_enable = 1;
1466 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1467 		r = _base_request_irq(ioc, i, a->vector);
1468 		if (r) {
1469 			_base_free_irq(ioc);
1470 			_base_disable_msix(ioc);
1471 			kfree(entries);
1472 			goto try_ioapic;
1473 		}
1474 	}
1475 
1476 	kfree(entries);
1477 	return 0;
1478 
1479 /* failback to io_apic interrupt routing */
1480  try_ioapic:
1481 
1482 	ioc->reply_queue_count = 1;
1483 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1484 
1485 	return r;
1486 }
1487 
1488 /**
1489  * mpt2sas_base_map_resources - map in controller resources (io/irq/memap)
1490  * @ioc: per adapter object
1491  *
1492  * Returns 0 for success, non-zero for failure.
1493  */
1494 int
mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER * ioc)1495 mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER *ioc)
1496 {
1497 	struct pci_dev *pdev = ioc->pdev;
1498 	u32 memap_sz;
1499 	u32 pio_sz;
1500 	int i, r = 0;
1501 	u64 pio_chip = 0;
1502 	u64 chip_phys = 0;
1503 	struct adapter_reply_queue *reply_q;
1504 
1505 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n",
1506 	    ioc->name, __func__));
1507 
1508 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1509 	if (pci_enable_device_mem(pdev)) {
1510 		printk(MPT2SAS_WARN_FMT "pci_enable_device_mem: "
1511 		    "failed\n", ioc->name);
1512 		ioc->bars = 0;
1513 		return -ENODEV;
1514 	}
1515 
1516 
1517 	if (pci_request_selected_regions(pdev, ioc->bars,
1518 	    MPT2SAS_DRIVER_NAME)) {
1519 		printk(MPT2SAS_WARN_FMT "pci_request_selected_regions: "
1520 		    "failed\n", ioc->name);
1521 		ioc->bars = 0;
1522 		r = -ENODEV;
1523 		goto out_fail;
1524 	}
1525 
1526 	/* AER (Advanced Error Reporting) hooks */
1527 	pci_enable_pcie_error_reporting(pdev);
1528 
1529 	pci_set_master(pdev);
1530 
1531 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
1532 		printk(MPT2SAS_WARN_FMT "no suitable DMA mask for %s\n",
1533 		    ioc->name, pci_name(pdev));
1534 		r = -ENODEV;
1535 		goto out_fail;
1536 	}
1537 
1538 	for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1539 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1540 			if (pio_sz)
1541 				continue;
1542 			pio_chip = (u64)pci_resource_start(pdev, i);
1543 			pio_sz = pci_resource_len(pdev, i);
1544 		} else {
1545 			if (memap_sz)
1546 				continue;
1547 			/* verify memory resource is valid before using */
1548 			if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1549 				ioc->chip_phys = pci_resource_start(pdev, i);
1550 				chip_phys = (u64)ioc->chip_phys;
1551 				memap_sz = pci_resource_len(pdev, i);
1552 				ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1553 				if (ioc->chip == NULL) {
1554 					printk(MPT2SAS_ERR_FMT "unable to map "
1555 					    "adapter memory!\n", ioc->name);
1556 					r = -EINVAL;
1557 					goto out_fail;
1558 				}
1559 			}
1560 		}
1561 	}
1562 
1563 	_base_mask_interrupts(ioc);
1564 
1565 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1566 	if (r)
1567 		goto out_fail;
1568 
1569 	if (!ioc->rdpq_array_enable_assigned) {
1570 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1571 		ioc->rdpq_array_enable_assigned = 1;
1572 	}
1573 
1574 	r = _base_enable_msix(ioc);
1575 	if (r)
1576 		goto out_fail;
1577 
1578 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1579 		printk(MPT2SAS_INFO_FMT "%s: IRQ %d\n",
1580 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1581 		    "IO-APIC enabled"), reply_q->vector);
1582 
1583 	printk(MPT2SAS_INFO_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1584 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1585 	printk(MPT2SAS_INFO_FMT "ioport(0x%016llx), size(%d)\n",
1586 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
1587 
1588 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
1589 	pci_save_state(pdev);
1590 
1591 	return 0;
1592 
1593  out_fail:
1594 	if (ioc->chip_phys)
1595 		iounmap(ioc->chip);
1596 	ioc->chip_phys = 0;
1597 	pci_release_selected_regions(ioc->pdev, ioc->bars);
1598 	pci_disable_pcie_error_reporting(pdev);
1599 	pci_disable_device(pdev);
1600 	return r;
1601 }
1602 
1603 /**
1604  * mpt2sas_base_get_msg_frame - obtain request mf pointer
1605  * @ioc: per adapter object
1606  * @smid: system request message index(smid zero is invalid)
1607  *
1608  * Returns virt pointer to message frame.
1609  */
1610 void *
mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER * ioc,u16 smid)1611 mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1612 {
1613 	return (void *)(ioc->request + (smid * ioc->request_sz));
1614 }
1615 
1616 /**
1617  * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request
1618  * @ioc: per adapter object
1619  * @smid: system request message index
1620  *
1621  * Returns virt pointer to sense buffer.
1622  */
1623 void *
mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER * ioc,u16 smid)1624 mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1625 {
1626 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1627 }
1628 
1629 /**
1630  * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request
1631  * @ioc: per adapter object
1632  * @smid: system request message index
1633  *
1634  * Returns phys pointer to the low 32bit address of the sense buffer.
1635  */
1636 __le32
mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER * ioc,u16 smid)1637 mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1638 {
1639 	return cpu_to_le32(ioc->sense_dma +
1640 			((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1641 }
1642 
1643 /**
1644  * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address
1645  * @ioc: per adapter object
1646  * @phys_addr: lower 32 physical addr of the reply
1647  *
1648  * Converts 32bit lower physical addr into a virt address.
1649  */
1650 void *
mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER * ioc,u32 phys_addr)1651 mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER *ioc, u32 phys_addr)
1652 {
1653 	if (!phys_addr)
1654 		return NULL;
1655 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1656 }
1657 
1658 /**
1659  * mpt2sas_base_get_smid - obtain a free smid from internal queue
1660  * @ioc: per adapter object
1661  * @cb_idx: callback index
1662  *
1663  * Returns smid (zero is invalid)
1664  */
1665 u16
mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx)1666 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1667 {
1668 	unsigned long flags;
1669 	struct request_tracker *request;
1670 	u16 smid;
1671 
1672 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1673 	if (list_empty(&ioc->internal_free_list)) {
1674 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1675 		printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1676 		    ioc->name, __func__);
1677 		return 0;
1678 	}
1679 
1680 	request = list_entry(ioc->internal_free_list.next,
1681 	    struct request_tracker, tracker_list);
1682 	request->cb_idx = cb_idx;
1683 	smid = request->smid;
1684 	list_del(&request->tracker_list);
1685 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1686 	return smid;
1687 }
1688 
1689 /**
1690  * mpt2sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1691  * @ioc: per adapter object
1692  * @cb_idx: callback index
1693  * @scmd: pointer to scsi command object
1694  *
1695  * Returns smid (zero is invalid)
1696  */
1697 u16
mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)1698 mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx,
1699     struct scsi_cmnd *scmd)
1700 {
1701 	unsigned long flags;
1702 	struct scsiio_tracker *request;
1703 	u16 smid;
1704 
1705 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1706 	if (list_empty(&ioc->free_list)) {
1707 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1708 		printk(MPT2SAS_ERR_FMT "%s: smid not available\n",
1709 		    ioc->name, __func__);
1710 		return 0;
1711 	}
1712 
1713 	request = list_entry(ioc->free_list.next,
1714 	    struct scsiio_tracker, tracker_list);
1715 	request->scmd = scmd;
1716 	request->cb_idx = cb_idx;
1717 	smid = request->smid;
1718 	list_del(&request->tracker_list);
1719 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1720 	return smid;
1721 }
1722 
1723 /**
1724  * mpt2sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1725  * @ioc: per adapter object
1726  * @cb_idx: callback index
1727  *
1728  * Returns smid (zero is invalid)
1729  */
1730 u16
mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER * ioc,u8 cb_idx)1731 mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx)
1732 {
1733 	unsigned long flags;
1734 	struct request_tracker *request;
1735 	u16 smid;
1736 
1737 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1738 	if (list_empty(&ioc->hpr_free_list)) {
1739 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1740 		return 0;
1741 	}
1742 
1743 	request = list_entry(ioc->hpr_free_list.next,
1744 	    struct request_tracker, tracker_list);
1745 	request->cb_idx = cb_idx;
1746 	smid = request->smid;
1747 	list_del(&request->tracker_list);
1748 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1749 	return smid;
1750 }
1751 
1752 
1753 /**
1754  * mpt2sas_base_free_smid - put smid back on free_list
1755  * @ioc: per adapter object
1756  * @smid: system request message index
1757  *
1758  * Return nothing.
1759  */
1760 void
mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER * ioc,u16 smid)1761 mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1762 {
1763 	unsigned long flags;
1764 	int i;
1765 	struct chain_tracker *chain_req, *next;
1766 
1767 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1768 	if (smid < ioc->hi_priority_smid) {
1769 		/* scsiio queue */
1770 		i = smid - 1;
1771 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
1772 			list_for_each_entry_safe(chain_req, next,
1773 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
1774 				list_del_init(&chain_req->tracker_list);
1775 				list_add(&chain_req->tracker_list,
1776 				    &ioc->free_chain_list);
1777 			}
1778 		}
1779 		ioc->scsi_lookup[i].cb_idx = 0xFF;
1780 		ioc->scsi_lookup[i].scmd = NULL;
1781 		ioc->scsi_lookup[i].direct_io = 0;
1782 		list_add(&ioc->scsi_lookup[i].tracker_list,
1783 		    &ioc->free_list);
1784 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1785 
1786 		/*
1787 		 * See _wait_for_commands_to_complete() call with regards
1788 		 * to this code.
1789 		 */
1790 		if (ioc->shost_recovery && ioc->pending_io_count) {
1791 			if (ioc->pending_io_count == 1)
1792 				wake_up(&ioc->reset_wq);
1793 			ioc->pending_io_count--;
1794 		}
1795 		return;
1796 	} else if (smid < ioc->internal_smid) {
1797 		/* hi-priority */
1798 		i = smid - ioc->hi_priority_smid;
1799 		ioc->hpr_lookup[i].cb_idx = 0xFF;
1800 		list_add(&ioc->hpr_lookup[i].tracker_list,
1801 		    &ioc->hpr_free_list);
1802 	} else if (smid <= ioc->hba_queue_depth) {
1803 		/* internal queue */
1804 		i = smid - ioc->internal_smid;
1805 		ioc->internal_lookup[i].cb_idx = 0xFF;
1806 		list_add(&ioc->internal_lookup[i].tracker_list,
1807 		    &ioc->internal_free_list);
1808 	}
1809 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1810 }
1811 
1812 /**
1813  * _base_writeq - 64 bit write to MMIO
1814  * @ioc: per adapter object
1815  * @b: data payload
1816  * @addr: address in MMIO space
1817  * @writeq_lock: spin lock
1818  *
1819  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
1820  * care of 32 bit environment where its not quarenteed to send the entire word
1821  * in one transfer.
1822  */
1823 #ifndef writeq
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)1824 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1825     spinlock_t *writeq_lock)
1826 {
1827 	unsigned long flags;
1828 	__u64 data_out = cpu_to_le64(b);
1829 
1830 	spin_lock_irqsave(writeq_lock, flags);
1831 	writel((u32)(data_out), addr);
1832 	writel((u32)(data_out >> 32), (addr + 4));
1833 	spin_unlock_irqrestore(writeq_lock, flags);
1834 }
1835 #else
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)1836 static inline void _base_writeq(__u64 b, volatile void __iomem *addr,
1837     spinlock_t *writeq_lock)
1838 {
1839 	writeq(cpu_to_le64(b), addr);
1840 }
1841 #endif
1842 
1843 static inline u8
_base_get_msix_index(struct MPT2SAS_ADAPTER * ioc)1844 _base_get_msix_index(struct MPT2SAS_ADAPTER *ioc)
1845 {
1846 	return ioc->cpu_msix_table[raw_smp_processor_id()];
1847 }
1848 
1849 /**
1850  * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
1851  * @ioc: per adapter object
1852  * @smid: system request message index
1853  * @handle: device handle
1854  *
1855  * Return nothing.
1856  */
1857 void
mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER * ioc,u16 smid,u16 handle)1858 mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER *ioc, u16 smid, u16 handle)
1859 {
1860 	Mpi2RequestDescriptorUnion_t descriptor;
1861 	u64 *request = (u64 *)&descriptor;
1862 
1863 
1864 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1865 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
1866 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
1867 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
1868 	descriptor.SCSIIO.LMID = 0;
1869 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1870 	    &ioc->scsi_lookup_lock);
1871 }
1872 
1873 
1874 /**
1875  * mpt2sas_base_put_smid_hi_priority - send Task Management request to firmware
1876  * @ioc: per adapter object
1877  * @smid: system request message index
1878  *
1879  * Return nothing.
1880  */
1881 void
mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER * ioc,u16 smid)1882 mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1883 {
1884 	Mpi2RequestDescriptorUnion_t descriptor;
1885 	u64 *request = (u64 *)&descriptor;
1886 
1887 	descriptor.HighPriority.RequestFlags =
1888 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
1889 	descriptor.HighPriority.MSIxIndex =  0;
1890 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
1891 	descriptor.HighPriority.LMID = 0;
1892 	descriptor.HighPriority.Reserved1 = 0;
1893 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1894 	    &ioc->scsi_lookup_lock);
1895 }
1896 
1897 /**
1898  * mpt2sas_base_put_smid_default - Default, primarily used for config pages
1899  * @ioc: per adapter object
1900  * @smid: system request message index
1901  *
1902  * Return nothing.
1903  */
1904 void
mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER * ioc,u16 smid)1905 mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER *ioc, u16 smid)
1906 {
1907 	Mpi2RequestDescriptorUnion_t descriptor;
1908 	u64 *request = (u64 *)&descriptor;
1909 
1910 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1911 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
1912 	descriptor.Default.SMID = cpu_to_le16(smid);
1913 	descriptor.Default.LMID = 0;
1914 	descriptor.Default.DescriptorTypeDependent = 0;
1915 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1916 	    &ioc->scsi_lookup_lock);
1917 }
1918 
1919 /**
1920  * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware
1921  * @ioc: per adapter object
1922  * @smid: system request message index
1923  * @io_index: value used to track the IO
1924  *
1925  * Return nothing.
1926  */
1927 void
mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER * ioc,u16 smid,u16 io_index)1928 mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER *ioc, u16 smid,
1929     u16 io_index)
1930 {
1931 	Mpi2RequestDescriptorUnion_t descriptor;
1932 	u64 *request = (u64 *)&descriptor;
1933 
1934 	descriptor.SCSITarget.RequestFlags =
1935 	    MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET;
1936 	descriptor.SCSITarget.MSIxIndex =  _base_get_msix_index(ioc);
1937 	descriptor.SCSITarget.SMID = cpu_to_le16(smid);
1938 	descriptor.SCSITarget.LMID = 0;
1939 	descriptor.SCSITarget.IoIndex = cpu_to_le16(io_index);
1940 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
1941 	    &ioc->scsi_lookup_lock);
1942 }
1943 
1944 /**
1945  * _base_display_dell_branding - Disply branding string
1946  * @ioc: per adapter object
1947  *
1948  * Return nothing.
1949  */
1950 static void
_base_display_dell_branding(struct MPT2SAS_ADAPTER * ioc)1951 _base_display_dell_branding(struct MPT2SAS_ADAPTER *ioc)
1952 {
1953 	char dell_branding[MPT2SAS_DELL_BRANDING_SIZE];
1954 
1955 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL)
1956 		return;
1957 
1958 	memset(dell_branding, 0, MPT2SAS_DELL_BRANDING_SIZE);
1959 	switch (ioc->pdev->subsystem_device) {
1960 	case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
1961 		strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING,
1962 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1963 		break;
1964 	case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
1965 		strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING,
1966 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1967 		break;
1968 	case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
1969 		strncpy(dell_branding,
1970 		    MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING,
1971 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1972 		break;
1973 	case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
1974 		strncpy(dell_branding,
1975 		    MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING,
1976 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1977 		break;
1978 	case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
1979 		strncpy(dell_branding,
1980 		    MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING,
1981 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1982 		break;
1983 	case MPT2SAS_DELL_PERC_H200_SSDID:
1984 		strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_BRANDING,
1985 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1986 		break;
1987 	case MPT2SAS_DELL_6GBPS_SAS_SSDID:
1988 		strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_BRANDING,
1989 		    MPT2SAS_DELL_BRANDING_SIZE - 1);
1990 		break;
1991 	default:
1992 		sprintf(dell_branding, "0x%4X", ioc->pdev->subsystem_device);
1993 		break;
1994 	}
1995 
1996 	printk(MPT2SAS_INFO_FMT "%s: Vendor(0x%04X), Device(0x%04X),"
1997 	    " SSVID(0x%04X), SSDID(0x%04X)\n", ioc->name, dell_branding,
1998 	    ioc->pdev->vendor, ioc->pdev->device, ioc->pdev->subsystem_vendor,
1999 	    ioc->pdev->subsystem_device);
2000 }
2001 
2002 /**
2003  * _base_display_intel_branding - Display branding string
2004  * @ioc: per adapter object
2005  *
2006  * Return nothing.
2007  */
2008 static void
_base_display_intel_branding(struct MPT2SAS_ADAPTER * ioc)2009 _base_display_intel_branding(struct MPT2SAS_ADAPTER *ioc)
2010 {
2011 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2012 		return;
2013 
2014 	switch (ioc->pdev->device) {
2015 	case MPI2_MFGPAGE_DEVID_SAS2008:
2016 		switch (ioc->pdev->subsystem_device) {
2017 		case MPT2SAS_INTEL_RMS2LL080_SSDID:
2018 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2019 			    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2020 			break;
2021 		case MPT2SAS_INTEL_RMS2LL040_SSDID:
2022 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2023 			    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2024 			break;
2025 		case MPT2SAS_INTEL_SSD910_SSDID:
2026 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2027 			    MPT2SAS_INTEL_SSD910_BRANDING);
2028 			break;
2029 		default:
2030 			break;
2031 		}
2032 	case MPI2_MFGPAGE_DEVID_SAS2308_2:
2033 		switch (ioc->pdev->subsystem_device) {
2034 		case MPT2SAS_INTEL_RS25GB008_SSDID:
2035 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2036 			    MPT2SAS_INTEL_RS25GB008_BRANDING);
2037 			break;
2038 		case MPT2SAS_INTEL_RMS25JB080_SSDID:
2039 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2040 			    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2041 			break;
2042 		case MPT2SAS_INTEL_RMS25JB040_SSDID:
2043 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2044 			    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2045 			break;
2046 		case MPT2SAS_INTEL_RMS25KB080_SSDID:
2047 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2048 			    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2049 			break;
2050 		case MPT2SAS_INTEL_RMS25KB040_SSDID:
2051 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2052 			    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2053 			break;
2054 		case MPT2SAS_INTEL_RMS25LB040_SSDID:
2055 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2056 			    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2057 			break;
2058 		case MPT2SAS_INTEL_RMS25LB080_SSDID:
2059 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2060 			    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2061 			break;
2062 		default:
2063 			break;
2064 		}
2065 	default:
2066 		break;
2067 	}
2068 }
2069 
2070 /**
2071  * _base_display_hp_branding - Display branding string
2072  * @ioc: per adapter object
2073  *
2074  * Return nothing.
2075  */
2076 static void
_base_display_hp_branding(struct MPT2SAS_ADAPTER * ioc)2077 _base_display_hp_branding(struct MPT2SAS_ADAPTER *ioc)
2078 {
2079 	if (ioc->pdev->subsystem_vendor != MPT2SAS_HP_3PAR_SSVID)
2080 		return;
2081 
2082 	switch (ioc->pdev->device) {
2083 	case MPI2_MFGPAGE_DEVID_SAS2004:
2084 		switch (ioc->pdev->subsystem_device) {
2085 		case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2086 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2087 			    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2088 			break;
2089 		default:
2090 			break;
2091 		}
2092 	case MPI2_MFGPAGE_DEVID_SAS2308_2:
2093 		switch (ioc->pdev->subsystem_device) {
2094 		case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2095 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2096 			    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2097 			break;
2098 		case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2099 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2100 			    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2101 			break;
2102 		case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2103 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2104 			    MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2105 			break;
2106 		case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2107 			printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2108 			    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2109 			break;
2110 		default:
2111 			break;
2112 		}
2113 	default:
2114 		break;
2115 	}
2116 }
2117 
2118 /**
2119  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2120  * @ioc: per adapter object
2121  *
2122  * Return nothing.
2123  */
2124 static void
_base_display_ioc_capabilities(struct MPT2SAS_ADAPTER * ioc)2125 _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER *ioc)
2126 {
2127 	int i = 0;
2128 	char desc[16];
2129 	u32 iounit_pg1_flags;
2130 	u32 bios_version;
2131 
2132 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2133 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2134 	printk(MPT2SAS_INFO_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "
2135 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2136 	    ioc->name, desc,
2137 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2138 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2139 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2140 	   ioc->facts.FWVersion.Word & 0x000000FF,
2141 	   ioc->pdev->revision,
2142 	   (bios_version & 0xFF000000) >> 24,
2143 	   (bios_version & 0x00FF0000) >> 16,
2144 	   (bios_version & 0x0000FF00) >> 8,
2145 	    bios_version & 0x000000FF);
2146 
2147 	_base_display_dell_branding(ioc);
2148 	_base_display_intel_branding(ioc);
2149 	_base_display_hp_branding(ioc);
2150 
2151 	printk(MPT2SAS_INFO_FMT "Protocol=(", ioc->name);
2152 
2153 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2154 		printk("Initiator");
2155 		i++;
2156 	}
2157 
2158 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2159 		printk("%sTarget", i ? "," : "");
2160 		i++;
2161 	}
2162 
2163 	i = 0;
2164 	printk("), ");
2165 	printk("Capabilities=(");
2166 
2167 	if (!ioc->hide_ir_msg) {
2168 		if (ioc->facts.IOCCapabilities &
2169 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2170 			printk("Raid");
2171 			i++;
2172 		}
2173 	}
2174 
2175 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2176 		printk("%sTLR", i ? "," : "");
2177 		i++;
2178 	}
2179 
2180 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2181 		printk("%sMulticast", i ? "," : "");
2182 		i++;
2183 	}
2184 
2185 	if (ioc->facts.IOCCapabilities &
2186 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2187 		printk("%sBIDI Target", i ? "," : "");
2188 		i++;
2189 	}
2190 
2191 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2192 		printk("%sEEDP", i ? "," : "");
2193 		i++;
2194 	}
2195 
2196 	if (ioc->facts.IOCCapabilities &
2197 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2198 		printk("%sSnapshot Buffer", i ? "," : "");
2199 		i++;
2200 	}
2201 
2202 	if (ioc->facts.IOCCapabilities &
2203 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2204 		printk("%sDiag Trace Buffer", i ? "," : "");
2205 		i++;
2206 	}
2207 
2208 	if (ioc->facts.IOCCapabilities &
2209 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2210 		printk(KERN_INFO "%sDiag Extended Buffer", i ? "," : "");
2211 		i++;
2212 	}
2213 
2214 	if (ioc->facts.IOCCapabilities &
2215 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2216 		printk("%sTask Set Full", i ? "," : "");
2217 		i++;
2218 	}
2219 
2220 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2221 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2222 		printk("%sNCQ", i ? "," : "");
2223 		i++;
2224 	}
2225 
2226 	printk(")\n");
2227 }
2228 
2229 /**
2230  * mpt2sas_base_update_missing_delay - change the missing delay timers
2231  * @ioc: per adapter object
2232  * @device_missing_delay: amount of time till device is reported missing
2233  * @io_missing_delay: interval IO is returned when there is a missing device
2234  *
2235  * Return nothing.
2236  *
2237  * Passed on the command line, this function will modify the device missing
2238  * delay, as well as the io missing delay. This should be called at driver
2239  * load time.
2240  */
2241 void
mpt2sas_base_update_missing_delay(struct MPT2SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)2242 mpt2sas_base_update_missing_delay(struct MPT2SAS_ADAPTER *ioc,
2243 	u16 device_missing_delay, u8 io_missing_delay)
2244 {
2245 	u16 dmd, dmd_new, dmd_orignal;
2246 	u8 io_missing_delay_original;
2247 	u16 sz;
2248 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2249 	Mpi2ConfigReply_t mpi_reply;
2250 	u8 num_phys = 0;
2251 	u16 ioc_status;
2252 
2253 	mpt2sas_config_get_number_hba_phys(ioc, &num_phys);
2254 	if (!num_phys)
2255 		return;
2256 
2257 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2258 	    sizeof(Mpi2SasIOUnit1PhyData_t));
2259 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2260 	if (!sas_iounit_pg1) {
2261 		printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2262 		    ioc->name, __FILE__, __LINE__, __func__);
2263 		goto out;
2264 	}
2265 	if ((mpt2sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2266 	    sas_iounit_pg1, sz))) {
2267 		printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2268 		    ioc->name, __FILE__, __LINE__, __func__);
2269 		goto out;
2270 	}
2271 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2272 	    MPI2_IOCSTATUS_MASK;
2273 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2274 		printk(MPT2SAS_ERR_FMT "failure at %s:%d/%s()!\n",
2275 		    ioc->name, __FILE__, __LINE__, __func__);
2276 		goto out;
2277 	}
2278 
2279 	/* device missing delay */
2280 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2281 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2282 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2283 	else
2284 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2285 	dmd_orignal = dmd;
2286 	if (device_missing_delay > 0x7F) {
2287 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2288 		    device_missing_delay;
2289 		dmd = dmd / 16;
2290 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2291 	} else
2292 		dmd = device_missing_delay;
2293 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2294 
2295 	/* io missing delay */
2296 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2297 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2298 
2299 	if (!mpt2sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2300 	    sz)) {
2301 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2302 			dmd_new = (dmd &
2303 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2304 		else
2305 			dmd_new =
2306 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2307 		printk(MPT2SAS_INFO_FMT "device_missing_delay: old(%d), "
2308 		    "new(%d)\n", ioc->name, dmd_orignal, dmd_new);
2309 		printk(MPT2SAS_INFO_FMT "ioc_missing_delay: old(%d), "
2310 		    "new(%d)\n", ioc->name, io_missing_delay_original,
2311 		    io_missing_delay);
2312 		ioc->device_missing_delay = dmd_new;
2313 		ioc->io_missing_delay = io_missing_delay;
2314 	}
2315 
2316 out:
2317 	kfree(sas_iounit_pg1);
2318 }
2319 
2320 /**
2321  * _base_static_config_pages - static start of day config pages
2322  * @ioc: per adapter object
2323  *
2324  * Return nothing.
2325  */
2326 static void
_base_static_config_pages(struct MPT2SAS_ADAPTER * ioc)2327 _base_static_config_pages(struct MPT2SAS_ADAPTER *ioc)
2328 {
2329 	Mpi2ConfigReply_t mpi_reply;
2330 	u32 iounit_pg1_flags;
2331 
2332 	mpt2sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2333 	if (ioc->ir_firmware)
2334 		mpt2sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2335 		    &ioc->manu_pg10);
2336 	mpt2sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2337 	mpt2sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2338 	mpt2sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2339 	mpt2sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2340 	mpt2sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2341 	_base_display_ioc_capabilities(ioc);
2342 
2343 	/*
2344 	 * Enable task_set_full handling in iounit_pg1 when the
2345 	 * facts capabilities indicate that its supported.
2346 	 */
2347 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2348 	if ((ioc->facts.IOCCapabilities &
2349 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2350 		iounit_pg1_flags &=
2351 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2352 	else
2353 		iounit_pg1_flags |=
2354 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2355 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2356 	mpt2sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2357 
2358 }
2359 
2360 /**
2361  * _base_release_memory_pools - release memory
2362  * @ioc: per adapter object
2363  *
2364  * Free memory allocated from _base_allocate_memory_pools.
2365  *
2366  * Return nothing.
2367  */
2368 static void
_base_release_memory_pools(struct MPT2SAS_ADAPTER * ioc)2369 _base_release_memory_pools(struct MPT2SAS_ADAPTER *ioc)
2370 {
2371 	int i = 0;
2372 	struct reply_post_struct *rps;
2373 
2374 	dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2375 	    __func__));
2376 
2377 	if (ioc->request) {
2378 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2379 		    ioc->request,  ioc->request_dma);
2380 		dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "request_pool(0x%p)"
2381 		    ": free\n", ioc->name, ioc->request));
2382 		ioc->request = NULL;
2383 	}
2384 
2385 	if (ioc->sense) {
2386 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2387 		if (ioc->sense_dma_pool)
2388 			pci_pool_destroy(ioc->sense_dma_pool);
2389 		dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_pool(0x%p)"
2390 		    ": free\n", ioc->name, ioc->sense));
2391 		ioc->sense = NULL;
2392 	}
2393 
2394 	if (ioc->reply) {
2395 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2396 		if (ioc->reply_dma_pool)
2397 			pci_pool_destroy(ioc->reply_dma_pool);
2398 		dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_pool(0x%p)"
2399 		     ": free\n", ioc->name, ioc->reply));
2400 		ioc->reply = NULL;
2401 	}
2402 
2403 	if (ioc->reply_free) {
2404 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2405 		    ioc->reply_free_dma);
2406 		if (ioc->reply_free_dma_pool)
2407 			pci_pool_destroy(ioc->reply_free_dma_pool);
2408 		dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_pool"
2409 		    "(0x%p): free\n", ioc->name, ioc->reply_free));
2410 		ioc->reply_free = NULL;
2411 	}
2412 
2413 	if (ioc->reply_post) {
2414 		do {
2415 			rps = &ioc->reply_post[i];
2416 			if (rps->reply_post_free) {
2417 				pci_pool_free(
2418 				    ioc->reply_post_free_dma_pool,
2419 				    rps->reply_post_free,
2420 				    rps->reply_post_free_dma);
2421 				dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
2422 				    "reply_post_free_pool(0x%p): free\n",
2423 				    ioc->name, rps->reply_post_free));
2424 				rps->reply_post_free = NULL;
2425 			}
2426 		} while (ioc->rdpq_array_enable &&
2427 			   (++i < ioc->reply_queue_count));
2428 
2429 		if (ioc->reply_post_free_dma_pool)
2430 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
2431 		kfree(ioc->reply_post);
2432 	}
2433 
2434 	if (ioc->config_page) {
2435 		dexitprintk(ioc, printk(MPT2SAS_INFO_FMT
2436 		    "config_page(0x%p): free\n", ioc->name,
2437 		    ioc->config_page));
2438 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2439 		    ioc->config_page, ioc->config_page_dma);
2440 	}
2441 
2442 	if (ioc->scsi_lookup) {
2443 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2444 		ioc->scsi_lookup = NULL;
2445 	}
2446 	kfree(ioc->hpr_lookup);
2447 	kfree(ioc->internal_lookup);
2448 	if (ioc->chain_lookup) {
2449 		for (i = 0; i < ioc->chain_depth; i++) {
2450 			if (ioc->chain_lookup[i].chain_buffer)
2451 				pci_pool_free(ioc->chain_dma_pool,
2452 				    ioc->chain_lookup[i].chain_buffer,
2453 				    ioc->chain_lookup[i].chain_buffer_dma);
2454 		}
2455 		if (ioc->chain_dma_pool)
2456 			pci_pool_destroy(ioc->chain_dma_pool);
2457 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2458 		ioc->chain_lookup = NULL;
2459 	}
2460 }
2461 
2462 
2463 /**
2464  * _base_allocate_memory_pools - allocate start of day memory pools
2465  * @ioc: per adapter object
2466  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2467  *
2468  * Returns 0 success, anything else error
2469  */
2470 static int
_base_allocate_memory_pools(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)2471 _base_allocate_memory_pools(struct MPT2SAS_ADAPTER *ioc,  int sleep_flag)
2472 {
2473 	struct mpt2sas_facts *facts;
2474 	u16 max_sge_elements;
2475 	u16 chains_needed_per_io;
2476 	u32 sz, total_sz, reply_post_free_sz;
2477 	u32 retry_sz;
2478 	u16 max_request_credit;
2479 	int i;
2480 
2481 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
2482 	    __func__));
2483 
2484 	retry_sz = 0;
2485 	facts = &ioc->facts;
2486 
2487 	/* command line tunables  for max sgl entries */
2488 	if (max_sgl_entries != -1) {
2489 		ioc->shost->sg_tablesize = (max_sgl_entries <
2490 		    MPT2SAS_SG_DEPTH) ? max_sgl_entries :
2491 		    MPT2SAS_SG_DEPTH;
2492 	} else {
2493 		ioc->shost->sg_tablesize = MPT2SAS_SG_DEPTH;
2494 	}
2495 
2496 	/* command line tunables  for max controller queue depth */
2497 	if (max_queue_depth != -1 && max_queue_depth != 0) {
2498 		max_request_credit = min_t(u16, max_queue_depth +
2499 			ioc->hi_priority_depth + ioc->internal_depth,
2500 			facts->RequestCredit);
2501 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2502 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2503 	} else
2504 		max_request_credit = min_t(u16, facts->RequestCredit,
2505 		    MAX_HBA_QUEUE_DEPTH);
2506 
2507 	ioc->hba_queue_depth = max_request_credit;
2508 	ioc->hi_priority_depth = facts->HighPriorityCredit;
2509 	ioc->internal_depth = ioc->hi_priority_depth + 5;
2510 
2511 	/* request frame size */
2512 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
2513 
2514 	/* reply frame size */
2515 	ioc->reply_sz = facts->ReplyFrameSize * 4;
2516 
2517  retry_allocation:
2518 	total_sz = 0;
2519 	/* calculate number of sg elements left over in the 1st frame */
2520 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2521 	    sizeof(Mpi2SGEIOUnion_t)) + ioc->sge_size);
2522 	ioc->max_sges_in_main_message = max_sge_elements/ioc->sge_size;
2523 
2524 	/* now do the same for a chain buffer */
2525 	max_sge_elements = ioc->request_sz - ioc->sge_size;
2526 	ioc->max_sges_in_chain_message = max_sge_elements/ioc->sge_size;
2527 
2528 	ioc->chain_offset_value_for_main_message =
2529 	    ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) +
2530 	     (ioc->max_sges_in_chain_message * ioc->sge_size)) / 4;
2531 
2532 	/*
2533 	 *  MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2534 	 */
2535 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
2536 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2537 	    + 1;
2538 	if (chains_needed_per_io > facts->MaxChainDepth) {
2539 		chains_needed_per_io = facts->MaxChainDepth;
2540 		ioc->shost->sg_tablesize = min_t(u16,
2541 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2542 		* chains_needed_per_io), ioc->shost->sg_tablesize);
2543 	}
2544 	ioc->chains_needed_per_io = chains_needed_per_io;
2545 
2546 	/* reply free queue sizing - taking into account for 64 FW events */
2547 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2548 
2549 	/* calculate reply descriptor post queue depth */
2550 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2551 					ioc->reply_free_queue_depth +  1;
2552 	/* align the reply post queue on the next 16 count boundary */
2553 	if (ioc->reply_post_queue_depth % 16)
2554 		ioc->reply_post_queue_depth += 16 -
2555 			(ioc->reply_post_queue_depth % 16);
2556 
2557 
2558 	if (ioc->reply_post_queue_depth >
2559 	    facts->MaxReplyDescriptorPostQueueDepth) {
2560 		ioc->reply_post_queue_depth =
2561 			facts->MaxReplyDescriptorPostQueueDepth -
2562 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
2563 		ioc->hba_queue_depth =
2564 			((ioc->reply_post_queue_depth - 64) / 2) - 1;
2565 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2566 	}
2567 
2568 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scatter gather: "
2569 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2570 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2571 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2572 	    ioc->chains_needed_per_io));
2573 
2574 	/* reply post queue, 16 byte align */
2575 	reply_post_free_sz = ioc->reply_post_queue_depth *
2576 	    sizeof(Mpi2DefaultReplyDescriptor_t);
2577 
2578 	sz = reply_post_free_sz;
2579 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2580 		sz *= ioc->reply_queue_count;
2581 
2582 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2583 	    (ioc->reply_queue_count):1,
2584 	    sizeof(struct reply_post_struct), GFP_KERNEL);
2585 
2586 	if (!ioc->reply_post) {
2587 		printk(MPT2SAS_ERR_FMT "reply_post_free pool: kcalloc failed\n",
2588 			ioc->name);
2589 		goto out;
2590 	}
2591 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2592 	    ioc->pdev, sz, 16, 0);
2593 	if (!ioc->reply_post_free_dma_pool) {
2594 		printk(MPT2SAS_ERR_FMT
2595 		 "reply_post_free pool: pci_pool_create failed\n",
2596 		 ioc->name);
2597 		goto out;
2598 	}
2599 	i = 0;
2600 	do {
2601 		ioc->reply_post[i].reply_post_free =
2602 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
2603 		    GFP_KERNEL,
2604 		    &ioc->reply_post[i].reply_post_free_dma);
2605 		if (!ioc->reply_post[i].reply_post_free) {
2606 			printk(MPT2SAS_ERR_FMT
2607 			"reply_post_free pool: pci_pool_alloc failed\n",
2608 			ioc->name);
2609 			goto out;
2610 		}
2611 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
2612 		dinitprintk(ioc, printk(MPT2SAS_INFO_FMT
2613 		    "reply post free pool (0x%p): depth(%d),"
2614 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
2615 		    ioc->reply_post[i].reply_post_free,
2616 		    ioc->reply_post_queue_depth, 8, sz/1024));
2617 		dinitprintk(ioc, printk(MPT2SAS_INFO_FMT
2618 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
2619 		    (unsigned long long)
2620 		    ioc->reply_post[i].reply_post_free_dma));
2621 		total_sz += sz;
2622 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2623 
2624 	if (ioc->dma_mask == 64) {
2625 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2626 			printk(MPT2SAS_WARN_FMT
2627 			    "no suitable consistent DMA mask for %s\n",
2628 			    ioc->name, pci_name(ioc->pdev));
2629 			goto out;
2630 		}
2631 	}
2632 
2633 	ioc->scsiio_depth = ioc->hba_queue_depth -
2634 	    ioc->hi_priority_depth - ioc->internal_depth;
2635 
2636 	/* set the scsi host can_queue depth
2637 	 * with some internal commands that could be outstanding
2638 	 */
2639 	ioc->shost->can_queue = ioc->scsiio_depth;
2640 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsi host: "
2641 	    "can_queue depth (%d)\n", ioc->name, ioc->shost->can_queue));
2642 
2643 	/* contiguous pool for request and chains, 16 byte align, one extra "
2644 	 * "frame for smid=0
2645 	 */
2646 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2647 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2648 
2649 	/* hi-priority queue */
2650 	sz += (ioc->hi_priority_depth * ioc->request_sz);
2651 
2652 	/* internal queue */
2653 	sz += (ioc->internal_depth * ioc->request_sz);
2654 
2655 	ioc->request_dma_sz = sz;
2656 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2657 	if (!ioc->request) {
2658 		printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2659 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2660 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2661 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2662 		if (ioc->scsiio_depth < MPT2SAS_SAS_QUEUE_DEPTH)
2663 			goto out;
2664 		retry_sz += 64;
2665 		ioc->hba_queue_depth = max_request_credit - retry_sz;
2666 		goto retry_allocation;
2667 	}
2668 
2669 	if (retry_sz)
2670 		printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent "
2671 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2672 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2673 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2674 
2675 
2676 	/* hi-priority queue */
2677 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2678 	    ioc->request_sz);
2679 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2680 	    ioc->request_sz);
2681 
2682 	/* internal queue */
2683 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2684 	    ioc->request_sz);
2685 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2686 	    ioc->request_sz);
2687 
2688 
2689 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool(0x%p): "
2690 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
2691 	    ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2692 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
2693 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool: dma(0x%llx)\n",
2694 	    ioc->name, (unsigned long long) ioc->request_dma));
2695 	total_sz += sz;
2696 
2697 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2698 	ioc->scsi_lookup_pages = get_order(sz);
2699 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2700 	    GFP_KERNEL, ioc->scsi_lookup_pages);
2701 	if (!ioc->scsi_lookup) {
2702 		printk(MPT2SAS_ERR_FMT "scsi_lookup: get_free_pages failed, "
2703 		    "sz(%d)\n", ioc->name, (int)sz);
2704 		goto out;
2705 	}
2706 
2707 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsiio(0x%p): "
2708 	    "depth(%d)\n", ioc->name, ioc->request,
2709 	    ioc->scsiio_depth));
2710 
2711 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2712 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
2713 	ioc->chain_pages = get_order(sz);
2714 
2715 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2716 	    GFP_KERNEL, ioc->chain_pages);
2717 	if (!ioc->chain_lookup) {
2718 		printk(MPT2SAS_ERR_FMT "chain_lookup: get_free_pages failed, "
2719 		    "sz(%d)\n", ioc->name, (int)sz);
2720 		goto out;
2721 	}
2722 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2723 	    ioc->request_sz, 16, 0);
2724 	if (!ioc->chain_dma_pool) {
2725 		printk(MPT2SAS_ERR_FMT "chain_dma_pool: pci_pool_create "
2726 		    "failed\n", ioc->name);
2727 		goto out;
2728 	}
2729 	for (i = 0; i < ioc->chain_depth; i++) {
2730 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2731 		    ioc->chain_dma_pool , GFP_KERNEL,
2732 		    &ioc->chain_lookup[i].chain_buffer_dma);
2733 		if (!ioc->chain_lookup[i].chain_buffer) {
2734 			ioc->chain_depth = i;
2735 			goto chain_done;
2736 		}
2737 		total_sz += ioc->request_sz;
2738 	}
2739 chain_done:
2740 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "chain pool depth"
2741 	    "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
2742 	    ioc->chain_depth, ioc->request_sz, ((ioc->chain_depth *
2743 	    ioc->request_sz))/1024));
2744 
2745 	/* initialize hi-priority queue smid's */
2746 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2747 	    sizeof(struct request_tracker), GFP_KERNEL);
2748 	if (!ioc->hpr_lookup) {
2749 		printk(MPT2SAS_ERR_FMT "hpr_lookup: kcalloc failed\n",
2750 		    ioc->name);
2751 		goto out;
2752 	}
2753 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2754 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hi_priority(0x%p): "
2755 	    "depth(%d), start smid(%d)\n", ioc->name, ioc->hi_priority,
2756 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
2757 
2758 	/* initialize internal queue smid's */
2759 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
2760 	    sizeof(struct request_tracker), GFP_KERNEL);
2761 	if (!ioc->internal_lookup) {
2762 		printk(MPT2SAS_ERR_FMT "internal_lookup: kcalloc failed\n",
2763 		    ioc->name);
2764 		goto out;
2765 	}
2766 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2767 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "internal(0x%p): "
2768 	    "depth(%d), start smid(%d)\n", ioc->name, ioc->internal,
2769 	     ioc->internal_depth, ioc->internal_smid));
2770 
2771 	/* sense buffers, 4 byte align */
2772 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2773 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2774 	    0);
2775 	if (!ioc->sense_dma_pool) {
2776 		printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_create failed\n",
2777 		    ioc->name);
2778 		goto out;
2779 	}
2780 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2781 	    &ioc->sense_dma);
2782 	if (!ioc->sense) {
2783 		printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_alloc failed\n",
2784 		    ioc->name);
2785 		goto out;
2786 	}
2787 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT
2788 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2789 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2790 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
2791 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_dma(0x%llx)\n",
2792 	    ioc->name, (unsigned long long)ioc->sense_dma));
2793 	total_sz += sz;
2794 
2795 	/* reply pool, 4 byte align */
2796 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2797 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2798 	    0);
2799 	if (!ioc->reply_dma_pool) {
2800 		printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_create failed\n",
2801 		    ioc->name);
2802 		goto out;
2803 	}
2804 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2805 	    &ioc->reply_dma);
2806 	if (!ioc->reply) {
2807 		printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_alloc failed\n",
2808 		    ioc->name);
2809 		goto out;
2810 	}
2811 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2812 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2813 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply pool(0x%p): depth"
2814 	    "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply,
2815 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2816 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_dma(0x%llx)\n",
2817 	    ioc->name, (unsigned long long)ioc->reply_dma));
2818 	total_sz += sz;
2819 
2820 	/* reply free queue, 16 byte align */
2821 	sz = ioc->reply_free_queue_depth * 4;
2822 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2823 	    ioc->pdev, sz, 16, 0);
2824 	if (!ioc->reply_free_dma_pool) {
2825 		printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_create "
2826 		    "failed\n", ioc->name);
2827 		goto out;
2828 	}
2829 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2830 	    &ioc->reply_free_dma);
2831 	if (!ioc->reply_free) {
2832 		printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_alloc "
2833 		    "failed\n", ioc->name);
2834 		goto out;
2835 	}
2836 	memset(ioc->reply_free, 0, sz);
2837 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free pool(0x%p): "
2838 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2839 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2840 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_dma"
2841 	    "(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma));
2842 	total_sz += sz;
2843 
2844 	ioc->config_page_sz = 512;
2845 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
2846 	    ioc->config_page_sz, &ioc->config_page_dma);
2847 	if (!ioc->config_page) {
2848 		printk(MPT2SAS_ERR_FMT "config page: pci_pool_alloc "
2849 		    "failed\n", ioc->name);
2850 		goto out;
2851 	}
2852 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config page(0x%p): size"
2853 	    "(%d)\n", ioc->name, ioc->config_page, ioc->config_page_sz));
2854 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config_page_dma"
2855 	    "(0x%llx)\n", ioc->name, (unsigned long long)ioc->config_page_dma));
2856 	total_sz += ioc->config_page_sz;
2857 
2858 	printk(MPT2SAS_INFO_FMT "Allocated physical memory: size(%d kB)\n",
2859 	    ioc->name, total_sz/1024);
2860 	printk(MPT2SAS_INFO_FMT "Current Controller Queue Depth(%d), "
2861 	    "Max Controller Queue Depth(%d)\n",
2862 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2863 	printk(MPT2SAS_INFO_FMT "Scatter Gather Elements per IO(%d)\n",
2864 	    ioc->name, ioc->shost->sg_tablesize);
2865 	return 0;
2866 
2867  out:
2868 	return -ENOMEM;
2869 }
2870 
2871 
2872 /**
2873  * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter.
2874  * @ioc: Pointer to MPT_ADAPTER structure
2875  * @cooked: Request raw or cooked IOC state
2876  *
2877  * Returns all IOC Doorbell register bits if cooked==0, else just the
2878  * Doorbell bits in MPI_IOC_STATE_MASK.
2879  */
2880 u32
mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER * ioc,int cooked)2881 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER *ioc, int cooked)
2882 {
2883 	u32 s, sc;
2884 
2885 	s = readl(&ioc->chip->Doorbell);
2886 	sc = s & MPI2_IOC_STATE_MASK;
2887 	return cooked ? sc : s;
2888 }
2889 
2890 /**
2891  * _base_wait_on_iocstate - waiting on a particular ioc state
2892  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2893  * @timeout: timeout in second
2894  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2895  *
2896  * Returns 0 for success, non-zero for failure.
2897  */
2898 static int
_base_wait_on_iocstate(struct MPT2SAS_ADAPTER * ioc,u32 ioc_state,int timeout,int sleep_flag)2899 _base_wait_on_iocstate(struct MPT2SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2900     int sleep_flag)
2901 {
2902 	u32 count, cntdn;
2903 	u32 current_state;
2904 
2905 	count = 0;
2906 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2907 	do {
2908 		current_state = mpt2sas_base_get_iocstate(ioc, 1);
2909 		if (current_state == ioc_state)
2910 			return 0;
2911 		if (count && current_state == MPI2_IOC_STATE_FAULT)
2912 			break;
2913 		if (sleep_flag == CAN_SLEEP)
2914 			msleep(1);
2915 		else
2916 			udelay(500);
2917 		count++;
2918 	} while (--cntdn);
2919 
2920 	return current_state;
2921 }
2922 
2923 /**
2924  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2925  * a write to the doorbell)
2926  * @ioc: per adapter object
2927  * @timeout: timeout in second
2928  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2929  *
2930  * Returns 0 for success, non-zero for failure.
2931  *
2932  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
2933  */
2934 static int
_base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)2935 _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER *ioc, int timeout,
2936     int sleep_flag)
2937 {
2938 	u32 cntdn, count;
2939 	u32 int_status;
2940 
2941 	count = 0;
2942 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2943 	do {
2944 		int_status = readl(&ioc->chip->HostInterruptStatus);
2945 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2946 			dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2947 			    "successful count(%d), timeout(%d)\n", ioc->name,
2948 			    __func__, count, timeout));
2949 			return 0;
2950 		}
2951 		if (sleep_flag == CAN_SLEEP)
2952 			msleep(1);
2953 		else
2954 			udelay(500);
2955 		count++;
2956 	} while (--cntdn);
2957 
2958 	printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
2959 	    "int_status(%x)!\n", ioc->name, __func__, count, int_status);
2960 	return -EFAULT;
2961 }
2962 
2963 /**
2964  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
2965  * @ioc: per adapter object
2966  * @timeout: timeout in second
2967  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2968  *
2969  * Returns 0 for success, non-zero for failure.
2970  *
2971  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
2972  * doorbell.
2973  */
2974 static int
_base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)2975 _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER *ioc, int timeout,
2976     int sleep_flag)
2977 {
2978 	u32 cntdn, count;
2979 	u32 int_status;
2980 	u32 doorbell;
2981 
2982 	count = 0;
2983 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2984 	do {
2985 		int_status = readl(&ioc->chip->HostInterruptStatus);
2986 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
2987 			dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2988 			    "successful count(%d), timeout(%d)\n", ioc->name,
2989 			    __func__, count, timeout));
2990 			return 0;
2991 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
2992 			doorbell = readl(&ioc->chip->Doorbell);
2993 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
2994 			    MPI2_IOC_STATE_FAULT) {
2995 				mpt2sas_base_fault_info(ioc , doorbell);
2996 				return -EFAULT;
2997 			}
2998 		} else if (int_status == 0xFFFFFFFF)
2999 			goto out;
3000 
3001 		if (sleep_flag == CAN_SLEEP)
3002 			msleep(1);
3003 		else
3004 			udelay(500);
3005 		count++;
3006 	} while (--cntdn);
3007 
3008  out:
3009 	printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
3010 	    "int_status(%x)!\n", ioc->name, __func__, count, int_status);
3011 	return -EFAULT;
3012 }
3013 
3014 /**
3015  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3016  * @ioc: per adapter object
3017  * @timeout: timeout in second
3018  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3019  *
3020  * Returns 0 for success, non-zero for failure.
3021  *
3022  */
3023 static int
_base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)3024 _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER *ioc, int timeout,
3025     int sleep_flag)
3026 {
3027 	u32 cntdn, count;
3028 	u32 doorbell_reg;
3029 
3030 	count = 0;
3031 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3032 	do {
3033 		doorbell_reg = readl(&ioc->chip->Doorbell);
3034 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3035 			dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
3036 			    "successful count(%d), timeout(%d)\n", ioc->name,
3037 			    __func__, count, timeout));
3038 			return 0;
3039 		}
3040 		if (sleep_flag == CAN_SLEEP)
3041 			msleep(1);
3042 		else
3043 			udelay(500);
3044 		count++;
3045 	} while (--cntdn);
3046 
3047 	printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), "
3048 	    "doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg);
3049 	return -EFAULT;
3050 }
3051 
3052 /**
3053  * _base_send_ioc_reset - send doorbell reset
3054  * @ioc: per adapter object
3055  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3056  * @timeout: timeout in second
3057  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3058  *
3059  * Returns 0 for success, non-zero for failure.
3060  */
3061 static int
_base_send_ioc_reset(struct MPT2SAS_ADAPTER * ioc,u8 reset_type,int timeout,int sleep_flag)3062 _base_send_ioc_reset(struct MPT2SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3063     int sleep_flag)
3064 {
3065 	u32 ioc_state;
3066 	int r = 0;
3067 
3068 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3069 		printk(MPT2SAS_ERR_FMT "%s: unknown reset_type\n",
3070 		    ioc->name, __func__);
3071 		return -EFAULT;
3072 	}
3073 
3074 	if (!(ioc->facts.IOCCapabilities &
3075 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3076 		return -EFAULT;
3077 
3078 	printk(MPT2SAS_INFO_FMT "sending message unit reset !!\n", ioc->name);
3079 
3080 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3081 	    &ioc->chip->Doorbell);
3082 	if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3083 		r = -EFAULT;
3084 		goto out;
3085 	}
3086 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3087 	    timeout, sleep_flag);
3088 	if (ioc_state) {
3089 		printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
3090 		    " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
3091 		r = -EFAULT;
3092 		goto out;
3093 	}
3094  out:
3095 	printk(MPT2SAS_INFO_FMT "message unit reset: %s\n",
3096 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3097 	return r;
3098 }
3099 
3100 /**
3101  * _base_handshake_req_reply_wait - send request thru doorbell interface
3102  * @ioc: per adapter object
3103  * @request_bytes: request length
3104  * @request: pointer having request payload
3105  * @reply_bytes: reply length
3106  * @reply: pointer to reply payload
3107  * @timeout: timeout in second
3108  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3109  *
3110  * Returns 0 for success, non-zero for failure.
3111  */
3112 static int
_base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout,int sleep_flag)3113 _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER *ioc, int request_bytes,
3114     u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3115 {
3116 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3117 	int i;
3118 	u8 failed;
3119 	u16 dummy;
3120 	__le32 *mfp;
3121 
3122 	/* make sure doorbell is not in use */
3123 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3124 		printk(MPT2SAS_ERR_FMT "doorbell is in use "
3125 		    " (line=%d)\n", ioc->name, __LINE__);
3126 		return -EFAULT;
3127 	}
3128 
3129 	/* clear pending doorbell interrupts from previous state changes */
3130 	if (readl(&ioc->chip->HostInterruptStatus) &
3131 	    MPI2_HIS_IOC2SYS_DB_STATUS)
3132 		writel(0, &ioc->chip->HostInterruptStatus);
3133 
3134 	/* send message to ioc */
3135 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3136 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3137 	    &ioc->chip->Doorbell);
3138 
3139 	if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3140 		printk(MPT2SAS_ERR_FMT "doorbell handshake "
3141 		   "int failed (line=%d)\n", ioc->name, __LINE__);
3142 		return -EFAULT;
3143 	}
3144 	writel(0, &ioc->chip->HostInterruptStatus);
3145 
3146 	if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3147 		printk(MPT2SAS_ERR_FMT "doorbell handshake "
3148 		    "ack failed (line=%d)\n", ioc->name, __LINE__);
3149 		return -EFAULT;
3150 	}
3151 
3152 	/* send message 32-bits at a time */
3153 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3154 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3155 		if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3156 			failed = 1;
3157 	}
3158 
3159 	if (failed) {
3160 		printk(MPT2SAS_ERR_FMT "doorbell handshake "
3161 		    "sending request failed (line=%d)\n", ioc->name, __LINE__);
3162 		return -EFAULT;
3163 	}
3164 
3165 	/* now wait for the reply */
3166 	if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3167 		printk(MPT2SAS_ERR_FMT "doorbell handshake "
3168 		   "int failed (line=%d)\n", ioc->name, __LINE__);
3169 		return -EFAULT;
3170 	}
3171 
3172 	/* read the first two 16-bits, it gives the total length of the reply */
3173 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3174 	    & MPI2_DOORBELL_DATA_MASK);
3175 	writel(0, &ioc->chip->HostInterruptStatus);
3176 	if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3177 		printk(MPT2SAS_ERR_FMT "doorbell handshake "
3178 		   "int failed (line=%d)\n", ioc->name, __LINE__);
3179 		return -EFAULT;
3180 	}
3181 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3182 	    & MPI2_DOORBELL_DATA_MASK);
3183 	writel(0, &ioc->chip->HostInterruptStatus);
3184 
3185 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3186 		if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3187 			printk(MPT2SAS_ERR_FMT "doorbell "
3188 			    "handshake int failed (line=%d)\n", ioc->name,
3189 			    __LINE__);
3190 			return -EFAULT;
3191 		}
3192 		if (i >=  reply_bytes/2) /* overflow case */
3193 			dummy = readl(&ioc->chip->Doorbell);
3194 		else
3195 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3196 			    & MPI2_DOORBELL_DATA_MASK);
3197 		writel(0, &ioc->chip->HostInterruptStatus);
3198 	}
3199 
3200 	_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3201 	if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3202 		dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "doorbell is in use "
3203 		    " (line=%d)\n", ioc->name, __LINE__));
3204 	}
3205 	writel(0, &ioc->chip->HostInterruptStatus);
3206 
3207 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3208 		mfp = (__le32 *)reply;
3209 		printk(KERN_INFO "\toffset:data\n");
3210 		for (i = 0; i < reply_bytes/4; i++)
3211 			printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
3212 			    le32_to_cpu(mfp[i]));
3213 	}
3214 	return 0;
3215 }
3216 
3217 /**
3218  * mpt2sas_base_sas_iounit_control - send sas iounit control to FW
3219  * @ioc: per adapter object
3220  * @mpi_reply: the reply payload from FW
3221  * @mpi_request: the request payload sent to FW
3222  *
3223  * The SAS IO Unit Control Request message allows the host to perform low-level
3224  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3225  * to obtain the IOC assigned device handles for a device if it has other
3226  * identifying information about the device, in addition allows the host to
3227  * remove IOC resources associated with the device.
3228  *
3229  * Returns 0 for success, non-zero for failure.
3230  */
3231 int
mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)3232 mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER *ioc,
3233     Mpi2SasIoUnitControlReply_t *mpi_reply,
3234     Mpi2SasIoUnitControlRequest_t *mpi_request)
3235 {
3236 	u16 smid;
3237 	u32 ioc_state;
3238 	unsigned long timeleft;
3239 	u8 issue_reset;
3240 	int rc;
3241 	void *request;
3242 	u16 wait_state_count;
3243 
3244 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3245 	    __func__));
3246 
3247 	mutex_lock(&ioc->base_cmds.mutex);
3248 
3249 	if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
3250 		printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
3251 		    ioc->name, __func__);
3252 		rc = -EAGAIN;
3253 		goto out;
3254 	}
3255 
3256 	wait_state_count = 0;
3257 	ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3258 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3259 		if (wait_state_count++ == 10) {
3260 			printk(MPT2SAS_ERR_FMT
3261 			    "%s: failed due to ioc not operational\n",
3262 			    ioc->name, __func__);
3263 			rc = -EFAULT;
3264 			goto out;
3265 		}
3266 		ssleep(1);
3267 		ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3268 		printk(MPT2SAS_INFO_FMT "%s: waiting for "
3269 		    "operational state(count=%d)\n", ioc->name,
3270 		    __func__, wait_state_count);
3271 	}
3272 
3273 	smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3274 	if (!smid) {
3275 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3276 		    ioc->name, __func__);
3277 		rc = -EAGAIN;
3278 		goto out;
3279 	}
3280 
3281 	rc = 0;
3282 	ioc->base_cmds.status = MPT2_CMD_PENDING;
3283 	request = mpt2sas_base_get_msg_frame(ioc, smid);
3284 	ioc->base_cmds.smid = smid;
3285 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3286 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3287 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3288 		ioc->ioc_link_reset_in_progress = 1;
3289 	init_completion(&ioc->base_cmds.done);
3290 	mpt2sas_base_put_smid_default(ioc, smid);
3291 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3292 	    msecs_to_jiffies(10000));
3293 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3294 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3295 	    ioc->ioc_link_reset_in_progress)
3296 		ioc->ioc_link_reset_in_progress = 0;
3297 	if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3298 		printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3299 		    ioc->name, __func__);
3300 		_debug_dump_mf(mpi_request,
3301 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3302 		if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
3303 			issue_reset = 1;
3304 		goto issue_host_reset;
3305 	}
3306 	if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
3307 		memcpy(mpi_reply, ioc->base_cmds.reply,
3308 		    sizeof(Mpi2SasIoUnitControlReply_t));
3309 	else
3310 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3311 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3312 	goto out;
3313 
3314  issue_host_reset:
3315 	if (issue_reset)
3316 		mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3317 		    FORCE_BIG_HAMMER);
3318 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3319 	rc = -EFAULT;
3320  out:
3321 	mutex_unlock(&ioc->base_cmds.mutex);
3322 	return rc;
3323 }
3324 
3325 
3326 /**
3327  * mpt2sas_base_scsi_enclosure_processor - sending request to sep device
3328  * @ioc: per adapter object
3329  * @mpi_reply: the reply payload from FW
3330  * @mpi_request: the request payload sent to FW
3331  *
3332  * The SCSI Enclosure Processor request message causes the IOC to
3333  * communicate with SES devices to control LED status signals.
3334  *
3335  * Returns 0 for success, non-zero for failure.
3336  */
3337 int
mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)3338 mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER *ioc,
3339     Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3340 {
3341 	u16 smid;
3342 	u32 ioc_state;
3343 	unsigned long timeleft;
3344 	u8 issue_reset;
3345 	int rc;
3346 	void *request;
3347 	u16 wait_state_count;
3348 
3349 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3350 	    __func__));
3351 
3352 	mutex_lock(&ioc->base_cmds.mutex);
3353 
3354 	if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) {
3355 		printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n",
3356 		    ioc->name, __func__);
3357 		rc = -EAGAIN;
3358 		goto out;
3359 	}
3360 
3361 	wait_state_count = 0;
3362 	ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3363 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3364 		if (wait_state_count++ == 10) {
3365 			printk(MPT2SAS_ERR_FMT
3366 			    "%s: failed due to ioc not operational\n",
3367 			    ioc->name, __func__);
3368 			rc = -EFAULT;
3369 			goto out;
3370 		}
3371 		ssleep(1);
3372 		ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
3373 		printk(MPT2SAS_INFO_FMT "%s: waiting for "
3374 		    "operational state(count=%d)\n", ioc->name,
3375 		    __func__, wait_state_count);
3376 	}
3377 
3378 	smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3379 	if (!smid) {
3380 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3381 		    ioc->name, __func__);
3382 		rc = -EAGAIN;
3383 		goto out;
3384 	}
3385 
3386 	rc = 0;
3387 	ioc->base_cmds.status = MPT2_CMD_PENDING;
3388 	request = mpt2sas_base_get_msg_frame(ioc, smid);
3389 	ioc->base_cmds.smid = smid;
3390 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3391 	init_completion(&ioc->base_cmds.done);
3392 	mpt2sas_base_put_smid_default(ioc, smid);
3393 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3394 	    msecs_to_jiffies(10000));
3395 	if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
3396 		printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3397 		    ioc->name, __func__);
3398 		_debug_dump_mf(mpi_request,
3399 		    sizeof(Mpi2SepRequest_t)/4);
3400 		if (!(ioc->base_cmds.status & MPT2_CMD_RESET))
3401 			issue_reset = 1;
3402 		goto issue_host_reset;
3403 	}
3404 	if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID)
3405 		memcpy(mpi_reply, ioc->base_cmds.reply,
3406 		    sizeof(Mpi2SepReply_t));
3407 	else
3408 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3409 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3410 	goto out;
3411 
3412  issue_host_reset:
3413 	if (issue_reset)
3414 		mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3415 		    FORCE_BIG_HAMMER);
3416 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
3417 	rc = -EFAULT;
3418  out:
3419 	mutex_unlock(&ioc->base_cmds.mutex);
3420 	return rc;
3421 }
3422 
3423 /**
3424  * _base_get_port_facts - obtain port facts reply and save in ioc
3425  * @ioc: per adapter object
3426  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3427  *
3428  * Returns 0 for success, non-zero for failure.
3429  */
3430 static int
_base_get_port_facts(struct MPT2SAS_ADAPTER * ioc,int port,int sleep_flag)3431 _base_get_port_facts(struct MPT2SAS_ADAPTER *ioc, int port, int sleep_flag)
3432 {
3433 	Mpi2PortFactsRequest_t mpi_request;
3434 	Mpi2PortFactsReply_t mpi_reply;
3435 	struct mpt2sas_port_facts *pfacts;
3436 	int mpi_reply_sz, mpi_request_sz, r;
3437 
3438 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3439 	    __func__));
3440 
3441 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3442 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3443 	memset(&mpi_request, 0, mpi_request_sz);
3444 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3445 	mpi_request.PortNumber = port;
3446 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3447 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3448 
3449 	if (r != 0) {
3450 		printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3451 		    ioc->name, __func__, r);
3452 		return r;
3453 	}
3454 
3455 	pfacts = &ioc->pfacts[port];
3456 	memset(pfacts, 0, sizeof(struct mpt2sas_port_facts));
3457 	pfacts->PortNumber = mpi_reply.PortNumber;
3458 	pfacts->VP_ID = mpi_reply.VP_ID;
3459 	pfacts->VF_ID = mpi_reply.VF_ID;
3460 	pfacts->MaxPostedCmdBuffers =
3461 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3462 
3463 	return 0;
3464 }
3465 
3466 /**
3467  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
3468  * @ioc: per adapter object
3469  * @timeout:
3470  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3471  *
3472  * Returns 0 for success, non-zero for failure.
3473  */
3474 static int
_base_wait_for_iocstate(struct MPT2SAS_ADAPTER * ioc,int timeout,int sleep_flag)3475 _base_wait_for_iocstate(struct MPT2SAS_ADAPTER *ioc, int timeout,
3476 	int sleep_flag)
3477 {
3478 	u32 ioc_state, doorbell;
3479 	int rc;
3480 
3481 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3482 	    __func__));
3483 
3484 	if (ioc->pci_error_recovery)
3485 		return 0;
3486 
3487 	doorbell = mpt2sas_base_get_iocstate(ioc, 0);
3488 	ioc_state = doorbell & MPI2_IOC_STATE_MASK;
3489 	dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
3490 	    ioc->name, __func__, ioc_state));
3491 
3492 	switch (ioc_state) {
3493 	case MPI2_IOC_STATE_READY:
3494 	case MPI2_IOC_STATE_OPERATIONAL:
3495 		return 0;
3496 	}
3497 
3498 	if (doorbell & MPI2_DOORBELL_USED) {
3499 		dhsprintk(ioc, printk(MPT2SAS_INFO_FMT
3500 		    "unexpected doorbell activ!e\n", ioc->name));
3501 		goto issue_diag_reset;
3502 	}
3503 
3504 	if (ioc_state == MPI2_IOC_STATE_FAULT) {
3505 		mpt2sas_base_fault_info(ioc, doorbell &
3506 		    MPI2_DOORBELL_DATA_MASK);
3507 		goto issue_diag_reset;
3508 	}
3509 
3510 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3511 	    timeout, sleep_flag);
3512 	if (ioc_state) {
3513 		printk(MPT2SAS_ERR_FMT
3514 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
3515 		    ioc->name, __func__, ioc_state);
3516 		return -EFAULT;
3517 	}
3518 
3519  issue_diag_reset:
3520 	rc = _base_diag_reset(ioc, sleep_flag);
3521 	return rc;
3522 }
3523 
3524 /**
3525  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3526  * @ioc: per adapter object
3527  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3528  *
3529  * Returns 0 for success, non-zero for failure.
3530  */
3531 static int
_base_get_ioc_facts(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3532 _base_get_ioc_facts(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3533 {
3534 	Mpi2IOCFactsRequest_t mpi_request;
3535 	Mpi2IOCFactsReply_t mpi_reply;
3536 	struct mpt2sas_facts *facts;
3537 	int mpi_reply_sz, mpi_request_sz, r;
3538 
3539 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3540 	    __func__));
3541 
3542 	r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
3543 	if (r) {
3544 		printk(MPT2SAS_ERR_FMT "%s: failed getting to correct state\n",
3545 			ioc->name, __func__);
3546 		return r;
3547 	}
3548 
3549 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3550 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3551 	memset(&mpi_request, 0, mpi_request_sz);
3552 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3553 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3554 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3555 
3556 	if (r != 0) {
3557 		printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3558 		    ioc->name, __func__, r);
3559 		return r;
3560 	}
3561 
3562 	facts = &ioc->facts;
3563 	memset(facts, 0, sizeof(struct mpt2sas_facts));
3564 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3565 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3566 	facts->VP_ID = mpi_reply.VP_ID;
3567 	facts->VF_ID = mpi_reply.VF_ID;
3568 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3569 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3570 	facts->WhoInit = mpi_reply.WhoInit;
3571 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3572 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3573 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3574 	facts->MaxReplyDescriptorPostQueueDepth =
3575 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3576 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3577 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3578 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3579 		ioc->ir_firmware = 1;
3580 	if ((facts->IOCCapabilities &
3581 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3582 		ioc->rdpq_array_capable = 1;
3583 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3584 	facts->IOCRequestFrameSize =
3585 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3586 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3587 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3588 	ioc->shost->max_id = -1;
3589 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3590 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3591 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3592 	facts->HighPriorityCredit =
3593 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
3594 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3595 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3596 
3597 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hba queue depth(%d), "
3598 	    "max chains per io(%d)\n", ioc->name, facts->RequestCredit,
3599 	    facts->MaxChainDepth));
3600 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request frame size(%d), "
3601 	    "reply frame size(%d)\n", ioc->name,
3602 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3603 	return 0;
3604 }
3605 
3606 /**
3607  * _base_send_ioc_init - send ioc_init to firmware
3608  * @ioc: per adapter object
3609  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3610  *
3611  * Returns 0 for success, non-zero for failure.
3612  */
3613 static int
_base_send_ioc_init(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3614 _base_send_ioc_init(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3615 {
3616 	Mpi2IOCInitRequest_t mpi_request;
3617 	Mpi2IOCInitReply_t mpi_reply;
3618 	int i, r = 0;
3619 	struct timeval current_time;
3620 	u16 ioc_status;
3621 	u32 reply_post_free_array_sz = 0;
3622 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
3623 	dma_addr_t reply_post_free_array_dma;
3624 
3625 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3626 	    __func__));
3627 
3628 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3629 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3630 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3631 	mpi_request.VF_ID = 0; /* TODO */
3632 	mpi_request.VP_ID = 0;
3633 	mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3634 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3635 
3636 	if (_base_is_controller_msix_enabled(ioc))
3637 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3638 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3639 	mpi_request.ReplyDescriptorPostQueueDepth =
3640 	    cpu_to_le16(ioc->reply_post_queue_depth);
3641 	mpi_request.ReplyFreeQueueDepth =
3642 	    cpu_to_le16(ioc->reply_free_queue_depth);
3643 
3644 	mpi_request.SenseBufferAddressHigh =
3645 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
3646 	mpi_request.SystemReplyAddressHigh =
3647 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
3648 	mpi_request.SystemRequestFrameBaseAddress =
3649 	    cpu_to_le64((u64)ioc->request_dma);
3650 	mpi_request.ReplyFreeQueueAddress =
3651 	    cpu_to_le64((u64)ioc->reply_free_dma);
3652 
3653 	if (ioc->rdpq_array_enable) {
3654 		reply_post_free_array_sz = ioc->reply_queue_count *
3655 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
3656 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
3657 			reply_post_free_array_sz, &reply_post_free_array_dma);
3658 		if (!reply_post_free_array) {
3659 			printk(MPT2SAS_ERR_FMT
3660 			"reply_post_free_array: pci_alloc_consistent failed\n",
3661 			ioc->name);
3662 			r = -ENOMEM;
3663 			goto out;
3664 		}
3665 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
3666 		for (i = 0; i < ioc->reply_queue_count; i++)
3667 			reply_post_free_array[i].RDPQBaseAddress =
3668 			    cpu_to_le64(
3669 				(u64)ioc->reply_post[i].reply_post_free_dma);
3670 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
3671 		mpi_request.ReplyDescriptorPostQueueAddress =
3672 		    cpu_to_le64((u64)reply_post_free_array_dma);
3673 	} else {
3674 		mpi_request.ReplyDescriptorPostQueueAddress =
3675 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
3676 	}
3677 
3678 	/* This time stamp specifies number of milliseconds
3679 	 * since epoch ~ midnight January 1, 1970.
3680 	 */
3681 	do_gettimeofday(&current_time);
3682 	mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3683 	    (current_time.tv_usec / 1000));
3684 
3685 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3686 		__le32 *mfp;
3687 		int i;
3688 
3689 		mfp = (__le32 *)&mpi_request;
3690 		printk(KERN_INFO "\toffset:data\n");
3691 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3692 			printk(KERN_INFO "\t[0x%02x]:%08x\n", i*4,
3693 			    le32_to_cpu(mfp[i]));
3694 	}
3695 
3696 	r = _base_handshake_req_reply_wait(ioc,
3697 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3698 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3699 	    sleep_flag);
3700 
3701 	if (r != 0) {
3702 		printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
3703 		    ioc->name, __func__, r);
3704 		goto out;
3705 	}
3706 
3707 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3708 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3709 	    mpi_reply.IOCLogInfo) {
3710 		printk(MPT2SAS_ERR_FMT "%s: failed\n", ioc->name, __func__);
3711 		r = -EIO;
3712 	}
3713 
3714 out:
3715 	if (reply_post_free_array)
3716 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
3717 				    reply_post_free_array,
3718 				    reply_post_free_array_dma);
3719 	return r;
3720 }
3721 
3722 /**
3723  * mpt2sas_port_enable_done - command completion routine for port enable
3724  * @ioc: per adapter object
3725  * @smid: system request message index
3726  * @msix_index: MSIX table index supplied by the OS
3727  * @reply: reply message frame(lower 32bit addr)
3728  *
3729  * Return 1 meaning mf should be freed from _base_interrupt
3730  *        0 means the mf is freed from this function.
3731  */
3732 u8
mpt2sas_port_enable_done(struct MPT2SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)3733 mpt2sas_port_enable_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3734 	u32 reply)
3735 {
3736 	MPI2DefaultReply_t *mpi_reply;
3737 	u16 ioc_status;
3738 
3739 	mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
3740 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
3741 		return 1;
3742 
3743 	if (ioc->port_enable_cmds.status == MPT2_CMD_NOT_USED)
3744 		return 1;
3745 
3746 	ioc->port_enable_cmds.status |= MPT2_CMD_COMPLETE;
3747 	if (mpi_reply) {
3748 		ioc->port_enable_cmds.status |= MPT2_CMD_REPLY_VALID;
3749 		memcpy(ioc->port_enable_cmds.reply, mpi_reply,
3750 		    mpi_reply->MsgLength*4);
3751 	}
3752 	ioc->port_enable_cmds.status &= ~MPT2_CMD_PENDING;
3753 
3754 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3755 
3756 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3757 		ioc->port_enable_failed = 1;
3758 
3759 	if (ioc->is_driver_loading) {
3760 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3761 			mpt2sas_port_enable_complete(ioc);
3762 			return 1;
3763 		} else {
3764 			ioc->start_scan_failed = ioc_status;
3765 			ioc->start_scan = 0;
3766 			return 1;
3767 		}
3768 	}
3769 	complete(&ioc->port_enable_cmds.done);
3770 	return 1;
3771 }
3772 
3773 
3774 /**
3775  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3776  * @ioc: per adapter object
3777  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3778  *
3779  * Returns 0 for success, non-zero for failure.
3780  */
3781 static int
_base_send_port_enable(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3782 _base_send_port_enable(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3783 {
3784 	Mpi2PortEnableRequest_t *mpi_request;
3785 	Mpi2PortEnableReply_t *mpi_reply;
3786 	unsigned long timeleft;
3787 	int r = 0;
3788 	u16 smid;
3789 	u16 ioc_status;
3790 
3791 	printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name);
3792 
3793 	if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
3794 		printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3795 		    ioc->name, __func__);
3796 		return -EAGAIN;
3797 	}
3798 
3799 	smid = mpt2sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3800 	if (!smid) {
3801 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3802 		    ioc->name, __func__);
3803 		return -EAGAIN;
3804 	}
3805 
3806 	ioc->port_enable_cmds.status = MPT2_CMD_PENDING;
3807 	mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3808 	ioc->port_enable_cmds.smid = smid;
3809 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3810 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3811 
3812 	init_completion(&ioc->port_enable_cmds.done);
3813 	mpt2sas_base_put_smid_default(ioc, smid);
3814 	timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3815 	    300*HZ);
3816 	if (!(ioc->port_enable_cmds.status & MPT2_CMD_COMPLETE)) {
3817 		printk(MPT2SAS_ERR_FMT "%s: timeout\n",
3818 		    ioc->name, __func__);
3819 		_debug_dump_mf(mpi_request,
3820 		    sizeof(Mpi2PortEnableRequest_t)/4);
3821 		if (ioc->port_enable_cmds.status & MPT2_CMD_RESET)
3822 			r = -EFAULT;
3823 		else
3824 			r = -ETIME;
3825 		goto out;
3826 	}
3827 	mpi_reply = ioc->port_enable_cmds.reply;
3828 
3829 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3830 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3831 		printk(MPT2SAS_ERR_FMT "%s: failed with (ioc_status=0x%08x)\n",
3832 		    ioc->name, __func__, ioc_status);
3833 		r = -EFAULT;
3834 		goto out;
3835 	}
3836  out:
3837 	ioc->port_enable_cmds.status = MPT2_CMD_NOT_USED;
3838 	printk(MPT2SAS_INFO_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3839 	    "SUCCESS" : "FAILED"));
3840 	return r;
3841 }
3842 
3843 /**
3844  * mpt2sas_port_enable - initiate firmware discovery (don't wait for reply)
3845  * @ioc: per adapter object
3846  *
3847  * Returns 0 for success, non-zero for failure.
3848  */
3849 int
mpt2sas_port_enable(struct MPT2SAS_ADAPTER * ioc)3850 mpt2sas_port_enable(struct MPT2SAS_ADAPTER *ioc)
3851 {
3852 	Mpi2PortEnableRequest_t *mpi_request;
3853 	u16 smid;
3854 
3855 	printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name);
3856 
3857 	if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
3858 		printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3859 		    ioc->name, __func__);
3860 		return -EAGAIN;
3861 	}
3862 
3863 	smid = mpt2sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3864 	if (!smid) {
3865 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3866 		    ioc->name, __func__);
3867 		return -EAGAIN;
3868 	}
3869 
3870 	ioc->port_enable_cmds.status = MPT2_CMD_PENDING;
3871 	mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3872 	ioc->port_enable_cmds.smid = smid;
3873 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3874 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3875 
3876 	mpt2sas_base_put_smid_default(ioc, smid);
3877 	return 0;
3878 }
3879 
3880 /**
3881  * _base_determine_wait_on_discovery - desposition
3882  * @ioc: per adapter object
3883  *
3884  * Decide whether to wait on discovery to complete. Used to either
3885  * locate boot device, or report volumes ahead of physical devices.
3886  *
3887  * Returns 1 for wait, 0 for don't wait
3888  */
3889 static int
_base_determine_wait_on_discovery(struct MPT2SAS_ADAPTER * ioc)3890 _base_determine_wait_on_discovery(struct MPT2SAS_ADAPTER *ioc)
3891 {
3892 	/* We wait for discovery to complete if IR firmware is loaded.
3893 	 * The sas topology events arrive before PD events, so we need time to
3894 	 * turn on the bit in ioc->pd_handles to indicate PD
3895 	 * Also, it maybe required to report Volumes ahead of physical
3896 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3897 	 */
3898 	if (ioc->ir_firmware)
3899 		return 1;
3900 
3901 	/* if no Bios, then we don't need to wait */
3902 	if (!ioc->bios_pg3.BiosVersion)
3903 		return 0;
3904 
3905 	/* Bios is present, then we drop down here.
3906 	 *
3907 	 * If there any entries in the Bios Page 2, then we wait
3908 	 * for discovery to complete.
3909 	 */
3910 
3911 	/* Current Boot Device */
3912 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
3913 	    MPI2_BIOSPAGE2_FORM_MASK) ==
3914 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3915 	/* Request Boot Device */
3916 	   (ioc->bios_pg2.ReqBootDeviceForm &
3917 	    MPI2_BIOSPAGE2_FORM_MASK) ==
3918 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3919 	/* Alternate Request Boot Device */
3920 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
3921 	    MPI2_BIOSPAGE2_FORM_MASK) ==
3922 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3923 		return 0;
3924 
3925 	return 1;
3926 }
3927 
3928 
3929 /**
3930  * _base_unmask_events - turn on notification for this event
3931  * @ioc: per adapter object
3932  * @event: firmware event
3933  *
3934  * The mask is stored in ioc->event_masks.
3935  */
3936 static void
_base_unmask_events(struct MPT2SAS_ADAPTER * ioc,u16 event)3937 _base_unmask_events(struct MPT2SAS_ADAPTER *ioc, u16 event)
3938 {
3939 	u32 desired_event;
3940 
3941 	if (event >= 128)
3942 		return;
3943 
3944 	desired_event = (1 << (event % 32));
3945 
3946 	if (event < 32)
3947 		ioc->event_masks[0] &= ~desired_event;
3948 	else if (event < 64)
3949 		ioc->event_masks[1] &= ~desired_event;
3950 	else if (event < 96)
3951 		ioc->event_masks[2] &= ~desired_event;
3952 	else if (event < 128)
3953 		ioc->event_masks[3] &= ~desired_event;
3954 }
3955 
3956 /**
3957  * _base_event_notification - send event notification
3958  * @ioc: per adapter object
3959  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3960  *
3961  * Returns 0 for success, non-zero for failure.
3962  */
3963 static int
_base_event_notification(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)3964 _base_event_notification(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
3965 {
3966 	Mpi2EventNotificationRequest_t *mpi_request;
3967 	unsigned long timeleft;
3968 	u16 smid;
3969 	int r = 0;
3970 	int i;
3971 
3972 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
3973 	    __func__));
3974 
3975 	if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
3976 		printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n",
3977 		    ioc->name, __func__);
3978 		return -EAGAIN;
3979 	}
3980 
3981 	smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx);
3982 	if (!smid) {
3983 		printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
3984 		    ioc->name, __func__);
3985 		return -EAGAIN;
3986 	}
3987 	ioc->base_cmds.status = MPT2_CMD_PENDING;
3988 	mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
3989 	ioc->base_cmds.smid = smid;
3990 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3991 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3992 	mpi_request->VF_ID = 0; /* TODO */
3993 	mpi_request->VP_ID = 0;
3994 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3995 		mpi_request->EventMasks[i] =
3996 		    cpu_to_le32(ioc->event_masks[i]);
3997 	init_completion(&ioc->base_cmds.done);
3998 	mpt2sas_base_put_smid_default(ioc, smid);
3999 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4000 	if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) {
4001 		printk(MPT2SAS_ERR_FMT "%s: timeout\n",
4002 		    ioc->name, __func__);
4003 		_debug_dump_mf(mpi_request,
4004 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4005 		if (ioc->base_cmds.status & MPT2_CMD_RESET)
4006 			r = -EFAULT;
4007 		else
4008 			r = -ETIME;
4009 	} else
4010 		dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: complete\n",
4011 		    ioc->name, __func__));
4012 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
4013 	return r;
4014 }
4015 
4016 /**
4017  * mpt2sas_base_validate_event_type - validating event types
4018  * @ioc: per adapter object
4019  * @event: firmware event
4020  *
4021  * This will turn on firmware event notification when application
4022  * ask for that event. We don't mask events that are already enabled.
4023  */
4024 void
mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER * ioc,u32 * event_type)4025 mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER *ioc, u32 *event_type)
4026 {
4027 	int i, j;
4028 	u32 event_mask, desired_event;
4029 	u8 send_update_to_fw;
4030 
4031 	for (i = 0, send_update_to_fw = 0; i <
4032 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4033 		event_mask = ~event_type[i];
4034 		desired_event = 1;
4035 		for (j = 0; j < 32; j++) {
4036 			if (!(event_mask & desired_event) &&
4037 			    (ioc->event_masks[i] & desired_event)) {
4038 				ioc->event_masks[i] &= ~desired_event;
4039 				send_update_to_fw = 1;
4040 			}
4041 			desired_event = (desired_event << 1);
4042 		}
4043 	}
4044 
4045 	if (!send_update_to_fw)
4046 		return;
4047 
4048 	mutex_lock(&ioc->base_cmds.mutex);
4049 	_base_event_notification(ioc, CAN_SLEEP);
4050 	mutex_unlock(&ioc->base_cmds.mutex);
4051 }
4052 
4053 /**
4054  * _base_diag_reset - the "big hammer" start of day reset
4055  * @ioc: per adapter object
4056  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4057  *
4058  * Returns 0 for success, non-zero for failure.
4059  */
4060 static int
_base_diag_reset(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)4061 _base_diag_reset(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
4062 {
4063 	u32 host_diagnostic;
4064 	u32 ioc_state;
4065 	u32 count;
4066 	u32 hcb_size;
4067 
4068 	printk(MPT2SAS_INFO_FMT "sending diag reset !!\n", ioc->name);
4069 	drsprintk(ioc, printk(MPT2SAS_INFO_FMT "clear interrupts\n",
4070 	    ioc->name));
4071 
4072 	count = 0;
4073 	do {
4074 		/* Write magic sequence to WriteSequence register
4075 		 * Loop until in diagnostic mode
4076 		 */
4077 		drsprintk(ioc, printk(MPT2SAS_INFO_FMT "write magic "
4078 		    "sequence\n", ioc->name));
4079 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4080 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4081 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4082 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4083 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4084 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4085 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4086 
4087 		/* wait 100 msec */
4088 		if (sleep_flag == CAN_SLEEP)
4089 			msleep(100);
4090 		else
4091 			mdelay(100);
4092 
4093 		if (count++ > 20)
4094 			goto out;
4095 
4096 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4097 		drsprintk(ioc, printk(MPT2SAS_INFO_FMT "wrote magic "
4098 		    "sequence: count(%d), host_diagnostic(0x%08x)\n",
4099 		    ioc->name, count, host_diagnostic));
4100 
4101 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4102 
4103 	hcb_size = readl(&ioc->chip->HCBSize);
4104 
4105 	drsprintk(ioc, printk(MPT2SAS_INFO_FMT "diag reset: issued\n",
4106 	    ioc->name));
4107 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4108 	     &ioc->chip->HostDiagnostic);
4109 
4110 	/* This delay allows the chip PCIe hardware time to finish reset tasks*/
4111 	if (sleep_flag == CAN_SLEEP)
4112 		msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4113 	else
4114 		mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4115 
4116 	/* Approximately 300 second max wait */
4117 	for (count = 0; count < (300000000 /
4118 	    MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4119 
4120 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4121 
4122 		if (host_diagnostic == 0xFFFFFFFF)
4123 			goto out;
4124 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4125 			break;
4126 
4127 		/* Wait to pass the second read delay window */
4128 		if (sleep_flag == CAN_SLEEP)
4129 			msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4130 			       /1000);
4131 		else
4132 			mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4133 			       /1000);
4134 	}
4135 
4136 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4137 
4138 		drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter "
4139 		    "assuming the HCB Address points to good F/W\n",
4140 		    ioc->name));
4141 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4142 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4143 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4144 
4145 		drsprintk(ioc, printk(MPT2SAS_INFO_FMT
4146 		    "re-enable the HCDW\n", ioc->name));
4147 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4148 		    &ioc->chip->HCBSize);
4149 	}
4150 
4151 	drsprintk(ioc, printk(MPT2SAS_INFO_FMT "restart the adapter\n",
4152 	    ioc->name));
4153 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4154 	    &ioc->chip->HostDiagnostic);
4155 
4156 	drsprintk(ioc, printk(MPT2SAS_INFO_FMT "disable writes to the "
4157 	    "diagnostic register\n", ioc->name));
4158 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4159 
4160 	drsprintk(ioc, printk(MPT2SAS_INFO_FMT "Wait for FW to go to the "
4161 	    "READY state\n", ioc->name));
4162 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4163 	    sleep_flag);
4164 	if (ioc_state) {
4165 		printk(MPT2SAS_ERR_FMT "%s: failed going to ready state "
4166 		    " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
4167 		goto out;
4168 	}
4169 
4170 	printk(MPT2SAS_INFO_FMT "diag reset: SUCCESS\n", ioc->name);
4171 	return 0;
4172 
4173  out:
4174 	printk(MPT2SAS_ERR_FMT "diag reset: FAILED\n", ioc->name);
4175 	return -EFAULT;
4176 }
4177 
4178 /**
4179  * _base_make_ioc_ready - put controller in READY state
4180  * @ioc: per adapter object
4181  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4182  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4183  *
4184  * Returns 0 for success, non-zero for failure.
4185  */
4186 static int
_base_make_ioc_ready(struct MPT2SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4187 _base_make_ioc_ready(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
4188     enum reset_type type)
4189 {
4190 	u32 ioc_state;
4191 	int rc;
4192 
4193 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4194 	    __func__));
4195 
4196 	if (ioc->pci_error_recovery)
4197 		return 0;
4198 
4199 	ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
4200 	dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
4201 	    ioc->name, __func__, ioc_state));
4202 
4203 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4204 		return 0;
4205 
4206 	if (ioc_state & MPI2_DOORBELL_USED) {
4207 		dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "unexpected doorbell "
4208 		    "active!\n", ioc->name));
4209 		goto issue_diag_reset;
4210 	}
4211 
4212 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4213 		mpt2sas_base_fault_info(ioc, ioc_state &
4214 		    MPI2_DOORBELL_DATA_MASK);
4215 		goto issue_diag_reset;
4216 	}
4217 
4218 	if (type == FORCE_BIG_HAMMER)
4219 		goto issue_diag_reset;
4220 
4221 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4222 		if (!(_base_send_ioc_reset(ioc,
4223 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4224 			ioc->ioc_reset_count++;
4225 			return 0;
4226 	}
4227 
4228  issue_diag_reset:
4229 	rc = _base_diag_reset(ioc, CAN_SLEEP);
4230 	ioc->ioc_reset_count++;
4231 	return rc;
4232 }
4233 
4234 /**
4235  * _base_make_ioc_operational - put controller in OPERATIONAL state
4236  * @ioc: per adapter object
4237  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4238  *
4239  * Returns 0 for success, non-zero for failure.
4240  */
4241 static int
_base_make_ioc_operational(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)4242 _base_make_ioc_operational(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
4243 {
4244 	int r, i;
4245 	unsigned long	flags;
4246 	u32 reply_address;
4247 	u16 smid;
4248 	struct _tr_list *delayed_tr, *delayed_tr_next;
4249 	u8 hide_flag;
4250 	struct adapter_reply_queue *reply_q;
4251 	long reply_post_free;
4252 	u32 reply_post_free_sz, index = 0;
4253 
4254 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4255 	    __func__));
4256 
4257 	/* clean the delayed target reset list */
4258 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4259 	    &ioc->delayed_tr_list, list) {
4260 		list_del(&delayed_tr->list);
4261 		kfree(delayed_tr);
4262 	}
4263 
4264 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4265 	    &ioc->delayed_tr_volume_list, list) {
4266 		list_del(&delayed_tr->list);
4267 		kfree(delayed_tr);
4268 	}
4269 
4270 	/* initialize the scsi lookup free list */
4271 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4272 	INIT_LIST_HEAD(&ioc->free_list);
4273 	smid = 1;
4274 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4275 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4276 		ioc->scsi_lookup[i].cb_idx = 0xFF;
4277 		ioc->scsi_lookup[i].smid = smid;
4278 		ioc->scsi_lookup[i].scmd = NULL;
4279 		ioc->scsi_lookup[i].direct_io = 0;
4280 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4281 		    &ioc->free_list);
4282 	}
4283 
4284 	/* hi-priority queue */
4285 	INIT_LIST_HEAD(&ioc->hpr_free_list);
4286 	smid = ioc->hi_priority_smid;
4287 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4288 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4289 		ioc->hpr_lookup[i].smid = smid;
4290 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4291 		    &ioc->hpr_free_list);
4292 	}
4293 
4294 	/* internal queue */
4295 	INIT_LIST_HEAD(&ioc->internal_free_list);
4296 	smid = ioc->internal_smid;
4297 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
4298 		ioc->internal_lookup[i].cb_idx = 0xFF;
4299 		ioc->internal_lookup[i].smid = smid;
4300 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
4301 		    &ioc->internal_free_list);
4302 	}
4303 
4304 	/* chain pool */
4305 	INIT_LIST_HEAD(&ioc->free_chain_list);
4306 	for (i = 0; i < ioc->chain_depth; i++)
4307 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
4308 		    &ioc->free_chain_list);
4309 
4310 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4311 
4312 	/* initialize Reply Free Queue */
4313 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
4314 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
4315 	    ioc->reply_sz)
4316 		ioc->reply_free[i] = cpu_to_le32(reply_address);
4317 
4318 	/* initialize reply queues */
4319 	if (ioc->is_driver_loading)
4320 		_base_assign_reply_queues(ioc);
4321 
4322 	/* initialize Reply Post Free Queue */
4323 	reply_post_free_sz = ioc->reply_post_queue_depth *
4324 	    sizeof(Mpi2DefaultReplyDescriptor_t);
4325 	reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4326 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4327 		reply_q->reply_post_host_index = 0;
4328 		reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4329 		    reply_post_free;
4330 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
4331 			reply_q->reply_post_free[i].Words =
4332 						     cpu_to_le64(ULLONG_MAX);
4333 		if (!_base_is_controller_msix_enabled(ioc))
4334 			goto skip_init_reply_post_free_queue;
4335 		/*
4336 		 * If RDPQ is enabled, switch to the next allocation.
4337 		 * Otherwise advance within the contiguous region.
4338 		 */
4339 		if (ioc->rdpq_array_enable)
4340 			reply_post_free = (long)
4341 			    ioc->reply_post[++index].reply_post_free;
4342 		else
4343 			reply_post_free += reply_post_free_sz;
4344 	}
4345  skip_init_reply_post_free_queue:
4346 
4347 	r = _base_send_ioc_init(ioc, sleep_flag);
4348 	if (r)
4349 		return r;
4350 
4351 	/* initialize reply free host index */
4352 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4353 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4354 
4355 	/* initialize reply post host index */
4356 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4357 		writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4358 		    &ioc->chip->ReplyPostHostIndex);
4359 		if (!_base_is_controller_msix_enabled(ioc))
4360 			goto skip_init_reply_post_host_index;
4361 	}
4362 
4363  skip_init_reply_post_host_index:
4364 
4365 	_base_unmask_interrupts(ioc);
4366 
4367 	r = _base_event_notification(ioc, sleep_flag);
4368 	if (r)
4369 		return r;
4370 
4371 	if (sleep_flag == CAN_SLEEP)
4372 		_base_static_config_pages(ioc);
4373 
4374 
4375 	if (ioc->is_driver_loading) {
4376 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
4377 		    == 0x80) {
4378 			hide_flag = (u8) (
4379 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
4380 			    MFG_PAGE10_HIDE_SSDS_MASK);
4381 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
4382 				ioc->mfg_pg10_hide_flag = hide_flag;
4383 		}
4384 		ioc->wait_for_discovery_to_complete =
4385 		    _base_determine_wait_on_discovery(ioc);
4386 		return r; /* scan_start and scan_finished support */
4387 	}
4388 	r = _base_send_port_enable(ioc, sleep_flag);
4389 	if (r)
4390 		return r;
4391 
4392 	return r;
4393 }
4394 
4395 /**
4396  * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap)
4397  * @ioc: per adapter object
4398  *
4399  * Return nothing.
4400  */
4401 void
mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER * ioc)4402 mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER *ioc)
4403 {
4404 	struct pci_dev *pdev = ioc->pdev;
4405 
4406 	dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4407 	    __func__));
4408 
4409 	if (ioc->chip_phys && ioc->chip) {
4410 		_base_mask_interrupts(ioc);
4411 		ioc->shost_recovery = 1;
4412 		_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4413 		ioc->shost_recovery = 0;
4414 	}
4415 
4416 	_base_free_irq(ioc);
4417 	_base_disable_msix(ioc);
4418 
4419 	if (ioc->chip_phys && ioc->chip)
4420 		iounmap(ioc->chip);
4421 	ioc->chip_phys = 0;
4422 
4423 	if (pci_is_enabled(pdev)) {
4424 		pci_release_selected_regions(ioc->pdev, ioc->bars);
4425 		pci_disable_pcie_error_reporting(pdev);
4426 		pci_disable_device(pdev);
4427 	}
4428 	return;
4429 }
4430 
4431 /**
4432  * mpt2sas_base_attach - attach controller instance
4433  * @ioc: per adapter object
4434  *
4435  * Returns 0 for success, non-zero for failure.
4436  */
4437 int
mpt2sas_base_attach(struct MPT2SAS_ADAPTER * ioc)4438 mpt2sas_base_attach(struct MPT2SAS_ADAPTER *ioc)
4439 {
4440 	int r, i;
4441 	int cpu_id, last_cpu_id = 0;
4442 
4443 	dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4444 	    __func__));
4445 
4446 	/* setup cpu_msix_table */
4447 	ioc->cpu_count = num_online_cpus();
4448 	for_each_online_cpu(cpu_id)
4449 		last_cpu_id = cpu_id;
4450 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
4451 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4452 	ioc->reply_queue_count = 1;
4453 	if (!ioc->cpu_msix_table) {
4454 		dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation for "
4455 		    "cpu_msix_table failed!!!\n", ioc->name));
4456 		r = -ENOMEM;
4457 		goto out_free_resources;
4458 	}
4459 
4460 	if (ioc->is_warpdrive) {
4461 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
4462 		    sizeof(resource_size_t *), GFP_KERNEL);
4463 		if (!ioc->reply_post_host_index) {
4464 			dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation "
4465 				"for cpu_msix_table failed!!!\n", ioc->name));
4466 			r = -ENOMEM;
4467 			goto out_free_resources;
4468 		}
4469 	}
4470 
4471 	ioc->rdpq_array_enable_assigned = 0;
4472 	ioc->dma_mask = 0;
4473 	r = mpt2sas_base_map_resources(ioc);
4474 	if (r)
4475 		goto out_free_resources;
4476 
4477 	if (ioc->is_warpdrive) {
4478 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
4479 		    &ioc->chip->ReplyPostHostIndex;
4480 
4481 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
4482 			ioc->reply_post_host_index[i] =
4483 			(resource_size_t __iomem *)
4484 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
4485 			* 4)));
4486 	}
4487 
4488 	pci_set_drvdata(ioc->pdev, ioc->shost);
4489 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4490 	if (r)
4491 		goto out_free_resources;
4492 
4493 	r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4494 	if (r)
4495 		goto out_free_resources;
4496 
4497 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4498 	    sizeof(struct mpt2sas_port_facts), GFP_KERNEL);
4499 	if (!ioc->pfacts) {
4500 		r = -ENOMEM;
4501 		goto out_free_resources;
4502 	}
4503 
4504 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4505 		r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4506 		if (r)
4507 			goto out_free_resources;
4508 	}
4509 
4510 	r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4511 	if (r)
4512 		goto out_free_resources;
4513 
4514 	init_waitqueue_head(&ioc->reset_wq);
4515 	/* allocate memory pd handle bitmask list */
4516 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4517 	if (ioc->facts.MaxDevHandle % 8)
4518 		ioc->pd_handles_sz++;
4519 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4520 	    GFP_KERNEL);
4521 	if (!ioc->pd_handles) {
4522 		r = -ENOMEM;
4523 		goto out_free_resources;
4524 	}
4525 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4526 	    GFP_KERNEL);
4527 	if (!ioc->blocking_handles) {
4528 		r = -ENOMEM;
4529 		goto out_free_resources;
4530 	}
4531 	ioc->fwfault_debug = mpt2sas_fwfault_debug;
4532 
4533 	/* base internal command bits */
4534 	mutex_init(&ioc->base_cmds.mutex);
4535 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4536 	ioc->base_cmds.status = MPT2_CMD_NOT_USED;
4537 
4538 	/* port_enable command bits */
4539 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4540 	ioc->port_enable_cmds.status = MPT2_CMD_NOT_USED;
4541 
4542 	/* transport internal command bits */
4543 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4544 	ioc->transport_cmds.status = MPT2_CMD_NOT_USED;
4545 	mutex_init(&ioc->transport_cmds.mutex);
4546 
4547 	/* scsih internal command bits */
4548 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4549 	ioc->scsih_cmds.status = MPT2_CMD_NOT_USED;
4550 	mutex_init(&ioc->scsih_cmds.mutex);
4551 
4552 	/* task management internal command bits */
4553 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4554 	ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
4555 	mutex_init(&ioc->tm_cmds.mutex);
4556 
4557 	/* config page internal command bits */
4558 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4559 	ioc->config_cmds.status = MPT2_CMD_NOT_USED;
4560 	mutex_init(&ioc->config_cmds.mutex);
4561 
4562 	/* ctl module internal command bits */
4563 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4564 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4565 	ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
4566 	mutex_init(&ioc->ctl_cmds.mutex);
4567 
4568 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4569 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4570 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4571 	    !ioc->ctl_cmds.sense) {
4572 		r = -ENOMEM;
4573 		goto out_free_resources;
4574 	}
4575 
4576 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4577 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4578 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply) {
4579 		r = -ENOMEM;
4580 		goto out_free_resources;
4581 	}
4582 
4583 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4584 		ioc->event_masks[i] = -1;
4585 
4586 	/* here we enable the events we care about */
4587 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4588 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4589 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4590 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4591 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4592 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4593 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4594 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4595 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4596 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4597 	r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4598 	if (r)
4599 		goto out_free_resources;
4600 
4601 	ioc->non_operational_loop = 0;
4602 
4603 	return 0;
4604 
4605  out_free_resources:
4606 
4607 	ioc->remove_host = 1;
4608 	mpt2sas_base_free_resources(ioc);
4609 	_base_release_memory_pools(ioc);
4610 	pci_set_drvdata(ioc->pdev, NULL);
4611 	kfree(ioc->cpu_msix_table);
4612 	if (ioc->is_warpdrive)
4613 		kfree(ioc->reply_post_host_index);
4614 	kfree(ioc->pd_handles);
4615 	kfree(ioc->blocking_handles);
4616 	kfree(ioc->tm_cmds.reply);
4617 	kfree(ioc->transport_cmds.reply);
4618 	kfree(ioc->scsih_cmds.reply);
4619 	kfree(ioc->config_cmds.reply);
4620 	kfree(ioc->base_cmds.reply);
4621 	kfree(ioc->port_enable_cmds.reply);
4622 	kfree(ioc->ctl_cmds.reply);
4623 	kfree(ioc->ctl_cmds.sense);
4624 	kfree(ioc->pfacts);
4625 	ioc->ctl_cmds.reply = NULL;
4626 	ioc->base_cmds.reply = NULL;
4627 	ioc->tm_cmds.reply = NULL;
4628 	ioc->scsih_cmds.reply = NULL;
4629 	ioc->transport_cmds.reply = NULL;
4630 	ioc->config_cmds.reply = NULL;
4631 	ioc->pfacts = NULL;
4632 	return r;
4633 }
4634 
4635 
4636 /**
4637  * mpt2sas_base_detach - remove controller instance
4638  * @ioc: per adapter object
4639  *
4640  * Return nothing.
4641  */
4642 void
mpt2sas_base_detach(struct MPT2SAS_ADAPTER * ioc)4643 mpt2sas_base_detach(struct MPT2SAS_ADAPTER *ioc)
4644 {
4645 
4646 	dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
4647 	    __func__));
4648 
4649 	mpt2sas_base_stop_watchdog(ioc);
4650 	mpt2sas_base_free_resources(ioc);
4651 	_base_release_memory_pools(ioc);
4652 	pci_set_drvdata(ioc->pdev, NULL);
4653 	kfree(ioc->cpu_msix_table);
4654 	if (ioc->is_warpdrive)
4655 		kfree(ioc->reply_post_host_index);
4656 	kfree(ioc->pd_handles);
4657 	kfree(ioc->blocking_handles);
4658 	kfree(ioc->pfacts);
4659 	kfree(ioc->ctl_cmds.reply);
4660 	kfree(ioc->ctl_cmds.sense);
4661 	kfree(ioc->base_cmds.reply);
4662 	kfree(ioc->port_enable_cmds.reply);
4663 	kfree(ioc->tm_cmds.reply);
4664 	kfree(ioc->transport_cmds.reply);
4665 	kfree(ioc->scsih_cmds.reply);
4666 	kfree(ioc->config_cmds.reply);
4667 }
4668 
4669 /**
4670  * _base_reset_handler - reset callback handler (for base)
4671  * @ioc: per adapter object
4672  * @reset_phase: phase
4673  *
4674  * The handler for doing any required cleanup or initialization.
4675  *
4676  * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
4677  * MPT2_IOC_DONE_RESET
4678  *
4679  * Return nothing.
4680  */
4681 static void
_base_reset_handler(struct MPT2SAS_ADAPTER * ioc,int reset_phase)4682 _base_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
4683 {
4684 	mpt2sas_scsih_reset_handler(ioc, reset_phase);
4685 	mpt2sas_ctl_reset_handler(ioc, reset_phase);
4686 	switch (reset_phase) {
4687 	case MPT2_IOC_PRE_RESET:
4688 		dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4689 		    "MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
4690 		break;
4691 	case MPT2_IOC_AFTER_RESET:
4692 		dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4693 		    "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
4694 		if (ioc->transport_cmds.status & MPT2_CMD_PENDING) {
4695 			ioc->transport_cmds.status |= MPT2_CMD_RESET;
4696 			mpt2sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4697 			complete(&ioc->transport_cmds.done);
4698 		}
4699 		if (ioc->base_cmds.status & MPT2_CMD_PENDING) {
4700 			ioc->base_cmds.status |= MPT2_CMD_RESET;
4701 			mpt2sas_base_free_smid(ioc, ioc->base_cmds.smid);
4702 			complete(&ioc->base_cmds.done);
4703 		}
4704 		if (ioc->port_enable_cmds.status & MPT2_CMD_PENDING) {
4705 			ioc->port_enable_failed = 1;
4706 			ioc->port_enable_cmds.status |= MPT2_CMD_RESET;
4707 			mpt2sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4708 			if (ioc->is_driver_loading) {
4709 				ioc->start_scan_failed =
4710 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
4711 				ioc->start_scan = 0;
4712 				ioc->port_enable_cmds.status =
4713 						MPT2_CMD_NOT_USED;
4714 			} else
4715 				complete(&ioc->port_enable_cmds.done);
4716 
4717 		}
4718 		if (ioc->config_cmds.status & MPT2_CMD_PENDING) {
4719 			ioc->config_cmds.status |= MPT2_CMD_RESET;
4720 			mpt2sas_base_free_smid(ioc, ioc->config_cmds.smid);
4721 			ioc->config_cmds.smid = USHRT_MAX;
4722 			complete(&ioc->config_cmds.done);
4723 		}
4724 		break;
4725 	case MPT2_IOC_DONE_RESET:
4726 		dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
4727 		    "MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
4728 		break;
4729 	}
4730 }
4731 
4732 /**
4733  * _wait_for_commands_to_complete - reset controller
4734  * @ioc: Pointer to MPT_ADAPTER structure
4735  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4736  *
4737  * This function waiting(3s) for all pending commands to complete
4738  * prior to putting controller in reset.
4739  */
4740 static void
_wait_for_commands_to_complete(struct MPT2SAS_ADAPTER * ioc,int sleep_flag)4741 _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER *ioc, int sleep_flag)
4742 {
4743 	u32 ioc_state;
4744 	unsigned long flags;
4745 	u16 i;
4746 
4747 	ioc->pending_io_count = 0;
4748 	if (sleep_flag != CAN_SLEEP)
4749 		return;
4750 
4751 	ioc_state = mpt2sas_base_get_iocstate(ioc, 0);
4752 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4753 		return;
4754 
4755 	/* pending command count */
4756 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4757 	for (i = 0; i < ioc->scsiio_depth; i++)
4758 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4759 			ioc->pending_io_count++;
4760 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4761 
4762 	if (!ioc->pending_io_count)
4763 		return;
4764 
4765 	/* wait for pending commands to complete */
4766 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4767 }
4768 
4769 /**
4770  * mpt2sas_base_hard_reset_handler - reset controller
4771  * @ioc: Pointer to MPT_ADAPTER structure
4772  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4773  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4774  *
4775  * Returns 0 for success, non-zero for failure.
4776  */
4777 int
mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER * ioc,int sleep_flag,enum reset_type type)4778 mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER *ioc, int sleep_flag,
4779     enum reset_type type)
4780 {
4781 	int r;
4782 	unsigned long flags;
4783 
4784 	dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
4785 	    __func__));
4786 
4787 	if (ioc->pci_error_recovery) {
4788 		printk(MPT2SAS_ERR_FMT "%s: pci error recovery reset\n",
4789 		    ioc->name, __func__);
4790 		r = 0;
4791 		goto out_unlocked;
4792 	}
4793 
4794 	if (mpt2sas_fwfault_debug)
4795 		mpt2sas_halt_firmware(ioc);
4796 
4797 	/* TODO - What we really should be doing is pulling
4798 	 * out all the code associated with NO_SLEEP; its never used.
4799 	 * That is legacy code from mpt fusion driver, ported over.
4800 	 * I will leave this BUG_ON here for now till its been resolved.
4801 	 */
4802 	BUG_ON(sleep_flag == NO_SLEEP);
4803 
4804 	/* wait for an active reset in progress to complete */
4805 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4806 		do {
4807 			ssleep(1);
4808 		} while (ioc->shost_recovery == 1);
4809 		dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
4810 		    __func__));
4811 		return ioc->ioc_reset_in_progress_status;
4812 	}
4813 
4814 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4815 	ioc->shost_recovery = 1;
4816 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4817 
4818 	_base_reset_handler(ioc, MPT2_IOC_PRE_RESET);
4819 	_wait_for_commands_to_complete(ioc, sleep_flag);
4820 	_base_mask_interrupts(ioc);
4821 	r = _base_make_ioc_ready(ioc, sleep_flag, type);
4822 	if (r)
4823 		goto out;
4824 	_base_reset_handler(ioc, MPT2_IOC_AFTER_RESET);
4825 
4826 	/* If this hard reset is called while port enable is active, then
4827 	 * there is no reason to call make_ioc_operational
4828 	 */
4829 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
4830 		ioc->remove_host = 1;
4831 		r = -EFAULT;
4832 		goto out;
4833 	}
4834 
4835 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4836 	if (r)
4837 		goto out;
4838 
4839 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
4840 		panic("%s: Issue occurred with flashing controller firmware."
4841 		      "Please reboot the system and ensure that the correct"
4842 		      " firmware version is running\n", ioc->name);
4843 
4844 	r = _base_make_ioc_operational(ioc, sleep_flag);
4845 	if (!r)
4846 		_base_reset_handler(ioc, MPT2_IOC_DONE_RESET);
4847  out:
4848 	dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: %s\n",
4849 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4850 
4851 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4852 	ioc->ioc_reset_in_progress_status = r;
4853 	ioc->shost_recovery = 0;
4854 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4855 	mutex_unlock(&ioc->reset_in_progress_mutex);
4856 
4857  out_unlocked:
4858 	dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: exit\n", ioc->name,
4859 	    __func__));
4860 	return r;
4861 }
4862