• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *	- make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/module.h>
40 
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60 
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63 
64 #define LCD_MINOR		156
65 #define KEYPAD_MINOR		185
66 
67 #define PANEL_VERSION		"0.9.5"
68 
69 #define LCD_MAXBYTES		256	/* max burst write */
70 
71 #define KEYPAD_BUFFER		64
72 
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME		(HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START	(10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY	(2)
79 
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO	(200)
82 
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
85 
86 #define PNL_PBUSY		0x80	/* inverted input, active low */
87 #define PNL_PACK		0x40	/* direct input, active low */
88 #define PNL_POUTPA		0x20	/* direct input, active high */
89 #define PNL_PSELECD		0x10	/* direct input, active high */
90 #define PNL_PERRORP		0x08	/* direct input, active low */
91 
92 #define PNL_PBIDIR		0x20	/* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN		0x10
95 #define PNL_PSELECP		0x08	/* inverted output, active low */
96 #define PNL_PINITP		0x04	/* direct output, active low */
97 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
98 #define PNL_PSTROBE		0x01	/* inverted output */
99 
100 #define PNL_PD0			0x01
101 #define PNL_PD1			0x02
102 #define PNL_PD2			0x04
103 #define PNL_PD3			0x08
104 #define PNL_PD4			0x10
105 #define PNL_PD5			0x20
106 #define PNL_PD6			0x40
107 #define PNL_PD7			0x80
108 
109 #define PIN_NONE		0
110 #define PIN_STROBE		1
111 #define PIN_D0			2
112 #define PIN_D1			3
113 #define PIN_D2			4
114 #define PIN_D3			5
115 #define PIN_D4			6
116 #define PIN_D5			7
117 #define PIN_D6			8
118 #define PIN_D7			9
119 #define PIN_AUTOLF		14
120 #define PIN_INITP		16
121 #define PIN_SELECP		17
122 #define PIN_NOT_SET		127
123 
124 #define LCD_FLAG_S		0x0001
125 #define LCD_FLAG_ID		0x0002
126 #define LCD_FLAG_B		0x0004	/* blink on */
127 #define LCD_FLAG_C		0x0008	/* cursor on */
128 #define LCD_FLAG_D		0x0010	/* display on */
129 #define LCD_FLAG_F		0x0020	/* large font mode */
130 #define LCD_FLAG_N		0x0040	/* 2-rows mode */
131 #define LCD_FLAG_L		0x0080	/* backlight enabled */
132 
133 #define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
135 
136 /* macros to simplify use of the parallel port */
137 #define r_ctr(x)        (parport_read_control((x)->port))
138 #define r_dtr(x)        (parport_read_data((x)->port))
139 #define r_str(x)        (parport_read_status((x)->port))
140 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
141 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
142 
143 /* this defines which bits are to be used and which ones to be ignored */
144 /* logical or of the output bits involved in the scan matrix */
145 static __u8 scan_mask_o;
146 /* logical or of the input bits involved in the scan matrix */
147 static __u8 scan_mask_i;
148 
149 typedef __u64 pmask_t;
150 
151 enum input_type {
152 	INPUT_TYPE_STD,
153 	INPUT_TYPE_KBD,
154 };
155 
156 enum input_state {
157 	INPUT_ST_LOW,
158 	INPUT_ST_RISING,
159 	INPUT_ST_HIGH,
160 	INPUT_ST_FALLING,
161 };
162 
163 struct logical_input {
164 	struct list_head list;
165 	pmask_t mask;
166 	pmask_t value;
167 	enum input_type type;
168 	enum input_state state;
169 	__u8 rise_time, fall_time;
170 	__u8 rise_timer, fall_timer, high_timer;
171 
172 	union {
173 		struct {	/* valid when type == INPUT_TYPE_STD */
174 			void (*press_fct)(int);
175 			void (*release_fct)(int);
176 			int press_data;
177 			int release_data;
178 		} std;
179 		struct {	/* valid when type == INPUT_TYPE_KBD */
180 			/* strings can be non null-terminated */
181 			char press_str[sizeof(void *) + sizeof(int)];
182 			char repeat_str[sizeof(void *) + sizeof(int)];
183 			char release_str[sizeof(void *) + sizeof(int)];
184 		} kbd;
185 	} u;
186 };
187 
188 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
189 
190 /* physical contacts history
191  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
192  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
193  * corresponds to the ground.
194  * Within each group, bits are stored in the same order as read on the port :
195  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
196  * So, each __u64 (or pmask_t) is represented like this :
197  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
198  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199  */
200 
201 /* what has just been read from the I/O ports */
202 static pmask_t phys_read;
203 /* previous phys_read */
204 static pmask_t phys_read_prev;
205 /* stabilized phys_read (phys_read|phys_read_prev) */
206 static pmask_t phys_curr;
207 /* previous phys_curr */
208 static pmask_t phys_prev;
209 /* 0 means that at least one logical signal needs be computed */
210 static char inputs_stable;
211 
212 /* these variables are specific to the keypad */
213 static char keypad_buffer[KEYPAD_BUFFER];
214 static int keypad_buflen;
215 static int keypad_start;
216 static char keypressed;
217 static wait_queue_head_t keypad_read_wait;
218 
219 /* lcd-specific variables */
220 
221 /* contains the LCD config state */
222 static unsigned long int lcd_flags;
223 /* contains the LCD X offset */
224 static unsigned long int lcd_addr_x;
225 /* contains the LCD Y offset */
226 static unsigned long int lcd_addr_y;
227 /* current escape sequence, 0 terminated */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1];
229 /* not in escape state. >=0 = escape cmd len */
230 static int lcd_escape_len = -1;
231 
232 /*
233  * Bit masks to convert LCD signals to parallel port outputs.
234  * _d_ are values for data port, _c_ are for control port.
235  * [0] = signal OFF, [1] = signal ON, [2] = mask
236  */
237 #define BIT_CLR		0
238 #define BIT_SET		1
239 #define BIT_MSK		2
240 #define BIT_STATES	3
241 /*
242  * one entry for each bit on the LCD
243  */
244 #define LCD_BIT_E	0
245 #define LCD_BIT_RS	1
246 #define LCD_BIT_RW	2
247 #define LCD_BIT_BL	3
248 #define LCD_BIT_CL	4
249 #define LCD_BIT_DA	5
250 #define LCD_BITS	6
251 
252 /*
253  * each bit can be either connected to a DATA or CTRL port
254  */
255 #define LCD_PORT_C	0
256 #define LCD_PORT_D	1
257 #define LCD_PORTS	2
258 
259 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260 
261 /*
262  * LCD protocols
263  */
264 #define LCD_PROTO_PARALLEL      0
265 #define LCD_PROTO_SERIAL        1
266 #define LCD_PROTO_TI_DA8XX_LCD	2
267 
268 /*
269  * LCD character sets
270  */
271 #define LCD_CHARSET_NORMAL      0
272 #define LCD_CHARSET_KS0074      1
273 
274 /*
275  * LCD types
276  */
277 #define LCD_TYPE_NONE		0
278 #define LCD_TYPE_CUSTOM		1
279 #define LCD_TYPE_OLD		2
280 #define LCD_TYPE_KS0074		3
281 #define LCD_TYPE_HANTRONIX	4
282 #define LCD_TYPE_NEXCOM		5
283 
284 /*
285  * keypad types
286  */
287 #define KEYPAD_TYPE_NONE	0
288 #define KEYPAD_TYPE_OLD		1
289 #define KEYPAD_TYPE_NEW		2
290 #define KEYPAD_TYPE_NEXCOM	3
291 
292 /*
293  * panel profiles
294  */
295 #define PANEL_PROFILE_CUSTOM	0
296 #define PANEL_PROFILE_OLD	1
297 #define PANEL_PROFILE_NEW	2
298 #define PANEL_PROFILE_HANTRONIX	3
299 #define PANEL_PROFILE_NEXCOM	4
300 #define PANEL_PROFILE_LARGE	5
301 
302 /*
303  * Construct custom config from the kernel's configuration
304  */
305 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
306 #define DEFAULT_PARPORT         0
307 #define DEFAULT_LCD             LCD_TYPE_OLD
308 #define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
309 #define DEFAULT_LCD_WIDTH       40
310 #define DEFAULT_LCD_BWIDTH      40
311 #define DEFAULT_LCD_HWIDTH      64
312 #define DEFAULT_LCD_HEIGHT      2
313 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
314 
315 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
316 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
317 #define DEFAULT_LCD_PIN_RW      PIN_INITP
318 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
319 #define DEFAULT_LCD_PIN_SDA     PIN_D0
320 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
321 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
322 
323 #ifdef CONFIG_PANEL_PROFILE
324 #undef DEFAULT_PROFILE
325 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
326 #endif
327 
328 #ifdef CONFIG_PANEL_PARPORT
329 #undef DEFAULT_PARPORT
330 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
331 #endif
332 
333 #if DEFAULT_PROFILE == 0	/* custom */
334 #ifdef CONFIG_PANEL_KEYPAD
335 #undef DEFAULT_KEYPAD
336 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
337 #endif
338 
339 #ifdef CONFIG_PANEL_LCD
340 #undef DEFAULT_LCD
341 #define DEFAULT_LCD CONFIG_PANEL_LCD
342 #endif
343 
344 #ifdef CONFIG_PANEL_LCD_WIDTH
345 #undef DEFAULT_LCD_WIDTH
346 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
347 #endif
348 
349 #ifdef CONFIG_PANEL_LCD_BWIDTH
350 #undef DEFAULT_LCD_BWIDTH
351 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
352 #endif
353 
354 #ifdef CONFIG_PANEL_LCD_HWIDTH
355 #undef DEFAULT_LCD_HWIDTH
356 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
357 #endif
358 
359 #ifdef CONFIG_PANEL_LCD_HEIGHT
360 #undef DEFAULT_LCD_HEIGHT
361 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
362 #endif
363 
364 #ifdef CONFIG_PANEL_LCD_PROTO
365 #undef DEFAULT_LCD_PROTO
366 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
367 #endif
368 
369 #ifdef CONFIG_PANEL_LCD_PIN_E
370 #undef DEFAULT_LCD_PIN_E
371 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
372 #endif
373 
374 #ifdef CONFIG_PANEL_LCD_PIN_RS
375 #undef DEFAULT_LCD_PIN_RS
376 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
377 #endif
378 
379 #ifdef CONFIG_PANEL_LCD_PIN_RW
380 #undef DEFAULT_LCD_PIN_RW
381 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
382 #endif
383 
384 #ifdef CONFIG_PANEL_LCD_PIN_SCL
385 #undef DEFAULT_LCD_PIN_SCL
386 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
387 #endif
388 
389 #ifdef CONFIG_PANEL_LCD_PIN_SDA
390 #undef DEFAULT_LCD_PIN_SDA
391 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
392 #endif
393 
394 #ifdef CONFIG_PANEL_LCD_PIN_BL
395 #undef DEFAULT_LCD_PIN_BL
396 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
397 #endif
398 
399 #ifdef CONFIG_PANEL_LCD_CHARSET
400 #undef DEFAULT_LCD_CHARSET
401 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
402 #endif
403 
404 #endif /* DEFAULT_PROFILE == 0 */
405 
406 /* global variables */
407 static int keypad_open_cnt;	/* #times opened */
408 static int lcd_open_cnt;	/* #times opened */
409 static struct pardevice *pprt;
410 
411 static int lcd_initialized;
412 static int keypad_initialized;
413 
414 static int light_tempo;
415 
416 static char lcd_must_clear;
417 static char lcd_left_shift;
418 static char init_in_progress;
419 
420 static void (*lcd_write_cmd)(int);
421 static void (*lcd_write_data)(int);
422 static void (*lcd_clear_fast)(void);
423 
424 static DEFINE_SPINLOCK(pprt_lock);
425 static struct timer_list scan_timer;
426 
427 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428 
429 static int parport = -1;
430 module_param(parport, int, 0000);
431 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432 
433 static int lcd_height = -1;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436 
437 static int lcd_width = -1;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440 
441 static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444 
445 static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448 
449 static int lcd_enabled = -1;
450 module_param(lcd_enabled, int, 0000);
451 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452 
453 static int keypad_enabled = -1;
454 module_param(keypad_enabled, int, 0000);
455 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456 
457 static int lcd_type = -1;
458 module_param(lcd_type, int, 0000);
459 MODULE_PARM_DESC(lcd_type,
460 		 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
461 
462 static int lcd_proto = -1;
463 module_param(lcd_proto, int, 0000);
464 MODULE_PARM_DESC(lcd_proto,
465 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
466 
467 static int lcd_charset = -1;
468 module_param(lcd_charset, int, 0000);
469 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
470 
471 static int keypad_type = -1;
472 module_param(keypad_type, int, 0000);
473 MODULE_PARM_DESC(keypad_type,
474 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
475 
476 static int profile = DEFAULT_PROFILE;
477 module_param(profile, int, 0000);
478 MODULE_PARM_DESC(profile,
479 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
480 		 "4=16x2 nexcom; default=40x2, old kp");
481 
482 /*
483  * These are the parallel port pins the LCD control signals are connected to.
484  * Set this to 0 if the signal is not used. Set it to its opposite value
485  * (negative) if the signal is negated. -MAXINT is used to indicate that the
486  * pin has not been explicitly specified.
487  *
488  * WARNING! no check will be performed about collisions with keypad !
489  */
490 
491 static int lcd_e_pin  = PIN_NOT_SET;
492 module_param(lcd_e_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_e_pin,
494 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
495 
496 static int lcd_rs_pin = PIN_NOT_SET;
497 module_param(lcd_rs_pin, int, 0000);
498 MODULE_PARM_DESC(lcd_rs_pin,
499 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
500 
501 static int lcd_rw_pin = PIN_NOT_SET;
502 module_param(lcd_rw_pin, int, 0000);
503 MODULE_PARM_DESC(lcd_rw_pin,
504 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
505 
506 static int lcd_bl_pin = PIN_NOT_SET;
507 module_param(lcd_bl_pin, int, 0000);
508 MODULE_PARM_DESC(lcd_bl_pin,
509 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
510 
511 static int lcd_da_pin = PIN_NOT_SET;
512 module_param(lcd_da_pin, int, 0000);
513 MODULE_PARM_DESC(lcd_da_pin,
514 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
515 
516 static int lcd_cl_pin = PIN_NOT_SET;
517 module_param(lcd_cl_pin, int, 0000);
518 MODULE_PARM_DESC(lcd_cl_pin,
519 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
520 
521 static const unsigned char *lcd_char_conv;
522 
523 /* for some LCD drivers (ks0074) we need a charset conversion table. */
524 static const unsigned char lcd_char_conv_ks0074[256] = {
525 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
526 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
527 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
528 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
529 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
530 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
531 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
532 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
533 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
534 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
535 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
536 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
537 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
538 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
539 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
540 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
541 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
542 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
543 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
544 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
545 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
546 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
547 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
548 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
549 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
550 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
551 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
552 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
553 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
554 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
555 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
556 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
557 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
558 };
559 
560 static const char old_keypad_profile[][4][9] = {
561 	{"S0", "Left\n", "Left\n", ""},
562 	{"S1", "Down\n", "Down\n", ""},
563 	{"S2", "Up\n", "Up\n", ""},
564 	{"S3", "Right\n", "Right\n", ""},
565 	{"S4", "Esc\n", "Esc\n", ""},
566 	{"S5", "Ret\n", "Ret\n", ""},
567 	{"", "", "", ""}
568 };
569 
570 /* signals, press, repeat, release */
571 static const char new_keypad_profile[][4][9] = {
572 	{"S0", "Left\n", "Left\n", ""},
573 	{"S1", "Down\n", "Down\n", ""},
574 	{"S2", "Up\n", "Up\n", ""},
575 	{"S3", "Right\n", "Right\n", ""},
576 	{"S4s5", "", "Esc\n", "Esc\n"},
577 	{"s4S5", "", "Ret\n", "Ret\n"},
578 	{"S4S5", "Help\n", "", ""},
579 	/* add new signals above this line */
580 	{"", "", "", ""}
581 };
582 
583 /* signals, press, repeat, release */
584 static const char nexcom_keypad_profile[][4][9] = {
585 	{"a-p-e-", "Down\n", "Down\n", ""},
586 	{"a-p-E-", "Ret\n", "Ret\n", ""},
587 	{"a-P-E-", "Esc\n", "Esc\n", ""},
588 	{"a-P-e-", "Up\n", "Up\n", ""},
589 	/* add new signals above this line */
590 	{"", "", "", ""}
591 };
592 
593 static const char (*keypad_profile)[4][9] = old_keypad_profile;
594 
595 /* FIXME: this should be converted to a bit array containing signals states */
596 static struct {
597 	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
598 	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
599 	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
600 	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
601 	unsigned char cl; /* serial LCD clock (latch on rising edge) */
602 	unsigned char da; /* serial LCD data */
603 } bits;
604 
605 static void init_scan_timer(void);
606 
607 /* sets data port bits according to current signals values */
set_data_bits(void)608 static int set_data_bits(void)
609 {
610 	int val, bit;
611 
612 	val = r_dtr(pprt);
613 	for (bit = 0; bit < LCD_BITS; bit++)
614 		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
615 
616 	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
617 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
618 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
619 	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
620 	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
621 	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
622 
623 	w_dtr(pprt, val);
624 	return val;
625 }
626 
627 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)628 static int set_ctrl_bits(void)
629 {
630 	int val, bit;
631 
632 	val = r_ctr(pprt);
633 	for (bit = 0; bit < LCD_BITS; bit++)
634 		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
635 
636 	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
637 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
638 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
639 	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
640 	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
641 	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
642 
643 	w_ctr(pprt, val);
644 	return val;
645 }
646 
647 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)648 static void panel_set_bits(void)
649 {
650 	set_data_bits();
651 	set_ctrl_bits();
652 }
653 
654 /*
655  * Converts a parallel port pin (from -25 to 25) to data and control ports
656  * masks, and data and control port bits. The signal will be considered
657  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
658  *
659  * Result will be used this way :
660  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
661  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
662  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)663 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
664 {
665 	int d_bit, c_bit, inv;
666 
667 	d_val[0] = 0;
668 	c_val[0] = 0;
669 	d_val[1] = 0;
670 	c_val[1] = 0;
671 	d_val[2] = 0xFF;
672 	c_val[2] = 0xFF;
673 
674 	if (pin == 0)
675 		return;
676 
677 	inv = (pin < 0);
678 	if (inv)
679 		pin = -pin;
680 
681 	d_bit = 0;
682 	c_bit = 0;
683 
684 	switch (pin) {
685 	case PIN_STROBE:	/* strobe, inverted */
686 		c_bit = PNL_PSTROBE;
687 		inv = !inv;
688 		break;
689 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
690 		d_bit = 1 << (pin - 2);
691 		break;
692 	case PIN_AUTOLF:	/* autofeed, inverted */
693 		c_bit = PNL_PAUTOLF;
694 		inv = !inv;
695 		break;
696 	case PIN_INITP:		/* init, direct */
697 		c_bit = PNL_PINITP;
698 		break;
699 	case PIN_SELECP:	/* select_in, inverted */
700 		c_bit = PNL_PSELECP;
701 		inv = !inv;
702 		break;
703 	default:		/* unknown pin, ignore */
704 		break;
705 	}
706 
707 	if (c_bit) {
708 		c_val[2] &= ~c_bit;
709 		c_val[!inv] = c_bit;
710 	} else if (d_bit) {
711 		d_val[2] &= ~d_bit;
712 		d_val[!inv] = d_bit;
713 	}
714 }
715 
716 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)717 static void long_sleep(int ms)
718 {
719 	if (in_interrupt()) {
720 		mdelay(ms);
721 	} else {
722 		current->state = TASK_INTERRUPTIBLE;
723 		schedule_timeout((ms * HZ + 999) / 1000);
724 	}
725 }
726 
727 /* send a serial byte to the LCD panel. The caller is responsible for locking
728    if needed. */
lcd_send_serial(int byte)729 static void lcd_send_serial(int byte)
730 {
731 	int bit;
732 
733 	/* the data bit is set on D0, and the clock on STROBE.
734 	 * LCD reads D0 on STROBE's rising edge. */
735 	for (bit = 0; bit < 8; bit++) {
736 		bits.cl = BIT_CLR;	/* CLK low */
737 		panel_set_bits();
738 		bits.da = byte & 1;
739 		panel_set_bits();
740 		udelay(2);  /* maintain the data during 2 us before CLK up */
741 		bits.cl = BIT_SET;	/* CLK high */
742 		panel_set_bits();
743 		udelay(1);  /* maintain the strobe during 1 us */
744 		byte >>= 1;
745 	}
746 }
747 
748 /* turn the backlight on or off */
lcd_backlight(int on)749 static void lcd_backlight(int on)
750 {
751 	if (lcd_bl_pin == PIN_NONE)
752 		return;
753 
754 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
755 	spin_lock_irq(&pprt_lock);
756 	bits.bl = on;
757 	panel_set_bits();
758 	spin_unlock_irq(&pprt_lock);
759 }
760 
761 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)762 static void lcd_write_cmd_s(int cmd)
763 {
764 	spin_lock_irq(&pprt_lock);
765 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
766 	lcd_send_serial(cmd & 0x0F);
767 	lcd_send_serial((cmd >> 4) & 0x0F);
768 	udelay(40);		/* the shortest command takes at least 40 us */
769 	spin_unlock_irq(&pprt_lock);
770 }
771 
772 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)773 static void lcd_write_data_s(int data)
774 {
775 	spin_lock_irq(&pprt_lock);
776 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
777 	lcd_send_serial(data & 0x0F);
778 	lcd_send_serial((data >> 4) & 0x0F);
779 	udelay(40);		/* the shortest data takes at least 40 us */
780 	spin_unlock_irq(&pprt_lock);
781 }
782 
783 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)784 static void lcd_write_cmd_p8(int cmd)
785 {
786 	spin_lock_irq(&pprt_lock);
787 	/* present the data to the data port */
788 	w_dtr(pprt, cmd);
789 	udelay(20);	/* maintain the data during 20 us before the strobe */
790 
791 	bits.e = BIT_SET;
792 	bits.rs = BIT_CLR;
793 	bits.rw = BIT_CLR;
794 	set_ctrl_bits();
795 
796 	udelay(40);	/* maintain the strobe during 40 us */
797 
798 	bits.e = BIT_CLR;
799 	set_ctrl_bits();
800 
801 	udelay(120);	/* the shortest command takes at least 120 us */
802 	spin_unlock_irq(&pprt_lock);
803 }
804 
805 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)806 static void lcd_write_data_p8(int data)
807 {
808 	spin_lock_irq(&pprt_lock);
809 	/* present the data to the data port */
810 	w_dtr(pprt, data);
811 	udelay(20);	/* maintain the data during 20 us before the strobe */
812 
813 	bits.e = BIT_SET;
814 	bits.rs = BIT_SET;
815 	bits.rw = BIT_CLR;
816 	set_ctrl_bits();
817 
818 	udelay(40);	/* maintain the strobe during 40 us */
819 
820 	bits.e = BIT_CLR;
821 	set_ctrl_bits();
822 
823 	udelay(45);	/* the shortest data takes at least 45 us */
824 	spin_unlock_irq(&pprt_lock);
825 }
826 
827 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)828 static void lcd_write_cmd_tilcd(int cmd)
829 {
830 	spin_lock_irq(&pprt_lock);
831 	/* present the data to the control port */
832 	w_ctr(pprt, cmd);
833 	udelay(60);
834 	spin_unlock_irq(&pprt_lock);
835 }
836 
837 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)838 static void lcd_write_data_tilcd(int data)
839 {
840 	spin_lock_irq(&pprt_lock);
841 	/* present the data to the data port */
842 	w_dtr(pprt, data);
843 	udelay(60);
844 	spin_unlock_irq(&pprt_lock);
845 }
846 
lcd_gotoxy(void)847 static void lcd_gotoxy(void)
848 {
849 	lcd_write_cmd(0x80	/* set DDRAM address */
850 		      | (lcd_addr_y ? lcd_hwidth : 0)
851 		      /* we force the cursor to stay at the end of the
852 			 line if it wants to go farther */
853 		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
854 			 (lcd_hwidth - 1) : lcd_bwidth - 1));
855 }
856 
lcd_print(char c)857 static void lcd_print(char c)
858 {
859 	if (lcd_addr_x < lcd_bwidth) {
860 		if (lcd_char_conv != NULL)
861 			c = lcd_char_conv[(unsigned char)c];
862 		lcd_write_data(c);
863 		lcd_addr_x++;
864 	}
865 	/* prevents the cursor from wrapping onto the next line */
866 	if (lcd_addr_x == lcd_bwidth)
867 		lcd_gotoxy();
868 }
869 
870 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)871 static void lcd_clear_fast_s(void)
872 {
873 	int pos;
874 
875 	lcd_addr_x = 0;
876 	lcd_addr_y = 0;
877 	lcd_gotoxy();
878 
879 	spin_lock_irq(&pprt_lock);
880 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
881 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
882 		lcd_send_serial(' ' & 0x0F);
883 		lcd_send_serial((' ' >> 4) & 0x0F);
884 		udelay(40);	/* the shortest data takes at least 40 us */
885 	}
886 	spin_unlock_irq(&pprt_lock);
887 
888 	lcd_addr_x = 0;
889 	lcd_addr_y = 0;
890 	lcd_gotoxy();
891 }
892 
893 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)894 static void lcd_clear_fast_p8(void)
895 {
896 	int pos;
897 
898 	lcd_addr_x = 0;
899 	lcd_addr_y = 0;
900 	lcd_gotoxy();
901 
902 	spin_lock_irq(&pprt_lock);
903 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904 		/* present the data to the data port */
905 		w_dtr(pprt, ' ');
906 
907 		/* maintain the data during 20 us before the strobe */
908 		udelay(20);
909 
910 		bits.e = BIT_SET;
911 		bits.rs = BIT_SET;
912 		bits.rw = BIT_CLR;
913 		set_ctrl_bits();
914 
915 		/* maintain the strobe during 40 us */
916 		udelay(40);
917 
918 		bits.e = BIT_CLR;
919 		set_ctrl_bits();
920 
921 		/* the shortest data takes at least 45 us */
922 		udelay(45);
923 	}
924 	spin_unlock_irq(&pprt_lock);
925 
926 	lcd_addr_x = 0;
927 	lcd_addr_y = 0;
928 	lcd_gotoxy();
929 }
930 
931 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)932 static void lcd_clear_fast_tilcd(void)
933 {
934 	int pos;
935 
936 	lcd_addr_x = 0;
937 	lcd_addr_y = 0;
938 	lcd_gotoxy();
939 
940 	spin_lock_irq(&pprt_lock);
941 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
942 		/* present the data to the data port */
943 		w_dtr(pprt, ' ');
944 		udelay(60);
945 	}
946 
947 	spin_unlock_irq(&pprt_lock);
948 
949 	lcd_addr_x = 0;
950 	lcd_addr_y = 0;
951 	lcd_gotoxy();
952 }
953 
954 /* clears the display and resets X/Y */
lcd_clear_display(void)955 static void lcd_clear_display(void)
956 {
957 	lcd_write_cmd(0x01);	/* clear display */
958 	lcd_addr_x = 0;
959 	lcd_addr_y = 0;
960 	/* we must wait a few milliseconds (15) */
961 	long_sleep(15);
962 }
963 
lcd_init_display(void)964 static void lcd_init_display(void)
965 {
966 	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
967 	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
968 
969 	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
970 
971 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
972 	long_sleep(10);
973 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
974 	long_sleep(10);
975 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
976 	long_sleep(10);
977 
978 	lcd_write_cmd(0x30	/* set font height and lines number */
979 		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
980 		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
981 	    );
982 	long_sleep(10);
983 
984 	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
985 	long_sleep(10);
986 
987 	lcd_write_cmd(0x08	/* set display mode */
988 		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
989 		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
990 		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
991 	    );
992 
993 	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
994 
995 	long_sleep(10);
996 
997 	/* entry mode set : increment, cursor shifting */
998 	lcd_write_cmd(0x06);
999 
1000 	lcd_clear_display();
1001 }
1002 
1003 /*
1004  * These are the file operation function for user access to /dev/lcd
1005  * This function can also be called from inside the kernel, by
1006  * setting file and ppos to NULL.
1007  *
1008  */
1009 
handle_lcd_special_code(void)1010 static inline int handle_lcd_special_code(void)
1011 {
1012 	/* LCD special codes */
1013 
1014 	int processed = 0;
1015 
1016 	char *esc = lcd_escape + 2;
1017 	int oldflags = lcd_flags;
1018 
1019 	/* check for display mode flags */
1020 	switch (*esc) {
1021 	case 'D':	/* Display ON */
1022 		lcd_flags |= LCD_FLAG_D;
1023 		processed = 1;
1024 		break;
1025 	case 'd':	/* Display OFF */
1026 		lcd_flags &= ~LCD_FLAG_D;
1027 		processed = 1;
1028 		break;
1029 	case 'C':	/* Cursor ON */
1030 		lcd_flags |= LCD_FLAG_C;
1031 		processed = 1;
1032 		break;
1033 	case 'c':	/* Cursor OFF */
1034 		lcd_flags &= ~LCD_FLAG_C;
1035 		processed = 1;
1036 		break;
1037 	case 'B':	/* Blink ON */
1038 		lcd_flags |= LCD_FLAG_B;
1039 		processed = 1;
1040 		break;
1041 	case 'b':	/* Blink OFF */
1042 		lcd_flags &= ~LCD_FLAG_B;
1043 		processed = 1;
1044 		break;
1045 	case '+':	/* Back light ON */
1046 		lcd_flags |= LCD_FLAG_L;
1047 		processed = 1;
1048 		break;
1049 	case '-':	/* Back light OFF */
1050 		lcd_flags &= ~LCD_FLAG_L;
1051 		processed = 1;
1052 		break;
1053 	case '*':
1054 		/* flash back light using the keypad timer */
1055 		if (scan_timer.function != NULL) {
1056 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1057 				lcd_backlight(1);
1058 			light_tempo = FLASH_LIGHT_TEMPO;
1059 		}
1060 		processed = 1;
1061 		break;
1062 	case 'f':	/* Small Font */
1063 		lcd_flags &= ~LCD_FLAG_F;
1064 		processed = 1;
1065 		break;
1066 	case 'F':	/* Large Font */
1067 		lcd_flags |= LCD_FLAG_F;
1068 		processed = 1;
1069 		break;
1070 	case 'n':	/* One Line */
1071 		lcd_flags &= ~LCD_FLAG_N;
1072 		processed = 1;
1073 		break;
1074 	case 'N':	/* Two Lines */
1075 		lcd_flags |= LCD_FLAG_N;
1076 		break;
1077 	case 'l':	/* Shift Cursor Left */
1078 		if (lcd_addr_x > 0) {
1079 			/* back one char if not at end of line */
1080 			if (lcd_addr_x < lcd_bwidth)
1081 				lcd_write_cmd(0x10);
1082 			lcd_addr_x--;
1083 		}
1084 		processed = 1;
1085 		break;
1086 	case 'r':	/* shift cursor right */
1087 		if (lcd_addr_x < lcd_width) {
1088 			/* allow the cursor to pass the end of the line */
1089 			if (lcd_addr_x <
1090 			    (lcd_bwidth - 1))
1091 				lcd_write_cmd(0x14);
1092 			lcd_addr_x++;
1093 		}
1094 		processed = 1;
1095 		break;
1096 	case 'L':	/* shift display left */
1097 		lcd_left_shift++;
1098 		lcd_write_cmd(0x18);
1099 		processed = 1;
1100 		break;
1101 	case 'R':	/* shift display right */
1102 		lcd_left_shift--;
1103 		lcd_write_cmd(0x1C);
1104 		processed = 1;
1105 		break;
1106 	case 'k': {	/* kill end of line */
1107 		int x;
1108 
1109 		for (x = lcd_addr_x; x < lcd_bwidth; x++)
1110 			lcd_write_data(' ');
1111 
1112 		/* restore cursor position */
1113 		lcd_gotoxy();
1114 		processed = 1;
1115 		break;
1116 	}
1117 	case 'I':	/* reinitialize display */
1118 		lcd_init_display();
1119 		lcd_left_shift = 0;
1120 		processed = 1;
1121 		break;
1122 	case 'G': {
1123 		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1124 		 * and '7', representing the numerical ASCII code of the
1125 		 * redefined character, and <xx...xx> a sequence of 16
1126 		 * hex digits representing 8 bytes for each character.
1127 		 * Most LCDs will only use 5 lower bits of the 7 first
1128 		 * bytes.
1129 		 */
1130 
1131 		unsigned char cgbytes[8];
1132 		unsigned char cgaddr;
1133 		int cgoffset;
1134 		int shift;
1135 		char value;
1136 		int addr;
1137 
1138 		if (strchr(esc, ';') == NULL)
1139 			break;
1140 
1141 		esc++;
1142 
1143 		cgaddr = *(esc++) - '0';
1144 		if (cgaddr > 7) {
1145 			processed = 1;
1146 			break;
1147 		}
1148 
1149 		cgoffset = 0;
1150 		shift = 0;
1151 		value = 0;
1152 		while (*esc && cgoffset < 8) {
1153 			shift ^= 4;
1154 			if (*esc >= '0' && *esc <= '9') {
1155 				value |= (*esc - '0') << shift;
1156 			} else if (*esc >= 'A' && *esc <= 'Z') {
1157 				value |= (*esc - 'A' + 10) << shift;
1158 			} else if (*esc >= 'a' && *esc <= 'z') {
1159 				value |= (*esc - 'a' + 10) << shift;
1160 			} else {
1161 				esc++;
1162 				continue;
1163 			}
1164 
1165 			if (shift == 0) {
1166 				cgbytes[cgoffset++] = value;
1167 				value = 0;
1168 			}
1169 
1170 			esc++;
1171 		}
1172 
1173 		lcd_write_cmd(0x40 | (cgaddr * 8));
1174 		for (addr = 0; addr < cgoffset; addr++)
1175 			lcd_write_data(cgbytes[addr]);
1176 
1177 		/* ensures that we stop writing to CGRAM */
1178 		lcd_gotoxy();
1179 		processed = 1;
1180 		break;
1181 	}
1182 	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1183 	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1184 		if (strchr(esc, ';') == NULL)
1185 			break;
1186 
1187 		while (*esc) {
1188 			if (*esc == 'x') {
1189 				esc++;
1190 				if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1191 					break;
1192 			} else if (*esc == 'y') {
1193 				esc++;
1194 				if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1195 					break;
1196 			} else {
1197 				break;
1198 			}
1199 		}
1200 
1201 		lcd_gotoxy();
1202 		processed = 1;
1203 		break;
1204 	}
1205 
1206 	/* Check whether one flag was changed */
1207 	if (oldflags != lcd_flags) {
1208 		/* check whether one of B,C,D flags were changed */
1209 		if ((oldflags ^ lcd_flags) &
1210 		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1211 			/* set display mode */
1212 			lcd_write_cmd(0x08
1213 				      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1214 				      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1215 				      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1216 		/* check whether one of F,N flags was changed */
1217 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1218 			lcd_write_cmd(0x30
1219 				      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1220 				      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1221 		/* check whether L flag was changed */
1222 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1223 			if (lcd_flags & (LCD_FLAG_L))
1224 				lcd_backlight(1);
1225 			else if (light_tempo == 0)
1226 				/* switch off the light only when the tempo
1227 				   lighting is gone */
1228 				lcd_backlight(0);
1229 		}
1230 	}
1231 
1232 	return processed;
1233 }
1234 
lcd_write_char(char c)1235 static void lcd_write_char(char c)
1236 {
1237 	/* first, we'll test if we're in escape mode */
1238 	if ((c != '\n') && lcd_escape_len >= 0) {
1239 		/* yes, let's add this char to the buffer */
1240 		lcd_escape[lcd_escape_len++] = c;
1241 		lcd_escape[lcd_escape_len] = 0;
1242 	} else {
1243 		/* aborts any previous escape sequence */
1244 		lcd_escape_len = -1;
1245 
1246 		switch (c) {
1247 		case LCD_ESCAPE_CHAR:
1248 			/* start of an escape sequence */
1249 			lcd_escape_len = 0;
1250 			lcd_escape[lcd_escape_len] = 0;
1251 			break;
1252 		case '\b':
1253 			/* go back one char and clear it */
1254 			if (lcd_addr_x > 0) {
1255 				/* check if we're not at the
1256 				   end of the line */
1257 				if (lcd_addr_x < lcd_bwidth)
1258 					/* back one char */
1259 					lcd_write_cmd(0x10);
1260 				lcd_addr_x--;
1261 			}
1262 			/* replace with a space */
1263 			lcd_write_data(' ');
1264 			/* back one char again */
1265 			lcd_write_cmd(0x10);
1266 			break;
1267 		case '\014':
1268 			/* quickly clear the display */
1269 			lcd_clear_fast();
1270 			break;
1271 		case '\n':
1272 			/* flush the remainder of the current line and
1273 			   go to the beginning of the next line */
1274 			for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1275 				lcd_write_data(' ');
1276 			lcd_addr_x = 0;
1277 			lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1278 			lcd_gotoxy();
1279 			break;
1280 		case '\r':
1281 			/* go to the beginning of the same line */
1282 			lcd_addr_x = 0;
1283 			lcd_gotoxy();
1284 			break;
1285 		case '\t':
1286 			/* print a space instead of the tab */
1287 			lcd_print(' ');
1288 			break;
1289 		default:
1290 			/* simply print this char */
1291 			lcd_print(c);
1292 			break;
1293 		}
1294 	}
1295 
1296 	/* now we'll see if we're in an escape mode and if the current
1297 	   escape sequence can be understood. */
1298 	if (lcd_escape_len >= 2) {
1299 		int processed = 0;
1300 
1301 		if (!strcmp(lcd_escape, "[2J")) {
1302 			/* clear the display */
1303 			lcd_clear_fast();
1304 			processed = 1;
1305 		} else if (!strcmp(lcd_escape, "[H")) {
1306 			/* cursor to home */
1307 			lcd_addr_x = 0;
1308 			lcd_addr_y = 0;
1309 			lcd_gotoxy();
1310 			processed = 1;
1311 		}
1312 		/* codes starting with ^[[L */
1313 		else if ((lcd_escape_len >= 3) &&
1314 			 (lcd_escape[0] == '[') &&
1315 			 (lcd_escape[1] == 'L')) {
1316 			processed = handle_lcd_special_code();
1317 		}
1318 
1319 		/* LCD special escape codes */
1320 		/* flush the escape sequence if it's been processed
1321 		   or if it is getting too long. */
1322 		if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1323 			lcd_escape_len = -1;
1324 	} /* escape codes */
1325 }
1326 
lcd_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1327 static ssize_t lcd_write(struct file *file,
1328 			 const char __user *buf, size_t count, loff_t *ppos)
1329 {
1330 	const char __user *tmp = buf;
1331 	char c;
1332 
1333 	for (; count-- > 0; (*ppos)++, tmp++) {
1334 		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1335 			/* let's be a little nice with other processes
1336 			   that need some CPU */
1337 			schedule();
1338 
1339 		if (get_user(c, tmp))
1340 			return -EFAULT;
1341 
1342 		lcd_write_char(c);
1343 	}
1344 
1345 	return tmp - buf;
1346 }
1347 
lcd_open(struct inode * inode,struct file * file)1348 static int lcd_open(struct inode *inode, struct file *file)
1349 {
1350 	if (lcd_open_cnt)
1351 		return -EBUSY;	/* open only once at a time */
1352 
1353 	if (file->f_mode & FMODE_READ)	/* device is write-only */
1354 		return -EPERM;
1355 
1356 	if (lcd_must_clear) {
1357 		lcd_clear_display();
1358 		lcd_must_clear = 0;
1359 	}
1360 	lcd_open_cnt++;
1361 	return nonseekable_open(inode, file);
1362 }
1363 
lcd_release(struct inode * inode,struct file * file)1364 static int lcd_release(struct inode *inode, struct file *file)
1365 {
1366 	lcd_open_cnt--;
1367 	return 0;
1368 }
1369 
1370 static const struct file_operations lcd_fops = {
1371 	.write   = lcd_write,
1372 	.open    = lcd_open,
1373 	.release = lcd_release,
1374 	.llseek  = no_llseek,
1375 };
1376 
1377 static struct miscdevice lcd_dev = {
1378 	LCD_MINOR,
1379 	"lcd",
1380 	&lcd_fops
1381 };
1382 
1383 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1384 static void panel_lcd_print(const char *s)
1385 {
1386 	const char *tmp = s;
1387 	int count = strlen(s);
1388 
1389 	if (lcd_enabled && lcd_initialized) {
1390 		for (; count-- > 0; tmp++) {
1391 			if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1392 				/* let's be a little nice with other processes
1393 				   that need some CPU */
1394 				schedule();
1395 
1396 			lcd_write_char(*tmp);
1397 		}
1398 	}
1399 }
1400 
1401 /* initialize the LCD driver */
lcd_init(void)1402 static void lcd_init(void)
1403 {
1404 	switch (lcd_type) {
1405 	case LCD_TYPE_OLD:
1406 		/* parallel mode, 8 bits */
1407 		if (lcd_proto < 0)
1408 			lcd_proto = LCD_PROTO_PARALLEL;
1409 		if (lcd_charset < 0)
1410 			lcd_charset = LCD_CHARSET_NORMAL;
1411 		if (lcd_e_pin == PIN_NOT_SET)
1412 			lcd_e_pin = PIN_STROBE;
1413 		if (lcd_rs_pin == PIN_NOT_SET)
1414 			lcd_rs_pin = PIN_AUTOLF;
1415 
1416 		if (lcd_width < 0)
1417 			lcd_width = 40;
1418 		if (lcd_bwidth < 0)
1419 			lcd_bwidth = 40;
1420 		if (lcd_hwidth < 0)
1421 			lcd_hwidth = 64;
1422 		if (lcd_height < 0)
1423 			lcd_height = 2;
1424 		break;
1425 	case LCD_TYPE_KS0074:
1426 		/* serial mode, ks0074 */
1427 		if (lcd_proto < 0)
1428 			lcd_proto = LCD_PROTO_SERIAL;
1429 		if (lcd_charset < 0)
1430 			lcd_charset = LCD_CHARSET_KS0074;
1431 		if (lcd_bl_pin == PIN_NOT_SET)
1432 			lcd_bl_pin = PIN_AUTOLF;
1433 		if (lcd_cl_pin == PIN_NOT_SET)
1434 			lcd_cl_pin = PIN_STROBE;
1435 		if (lcd_da_pin == PIN_NOT_SET)
1436 			lcd_da_pin = PIN_D0;
1437 
1438 		if (lcd_width < 0)
1439 			lcd_width = 16;
1440 		if (lcd_bwidth < 0)
1441 			lcd_bwidth = 40;
1442 		if (lcd_hwidth < 0)
1443 			lcd_hwidth = 16;
1444 		if (lcd_height < 0)
1445 			lcd_height = 2;
1446 		break;
1447 	case LCD_TYPE_NEXCOM:
1448 		/* parallel mode, 8 bits, generic */
1449 		if (lcd_proto < 0)
1450 			lcd_proto = LCD_PROTO_PARALLEL;
1451 		if (lcd_charset < 0)
1452 			lcd_charset = LCD_CHARSET_NORMAL;
1453 		if (lcd_e_pin == PIN_NOT_SET)
1454 			lcd_e_pin = PIN_AUTOLF;
1455 		if (lcd_rs_pin == PIN_NOT_SET)
1456 			lcd_rs_pin = PIN_SELECP;
1457 		if (lcd_rw_pin == PIN_NOT_SET)
1458 			lcd_rw_pin = PIN_INITP;
1459 
1460 		if (lcd_width < 0)
1461 			lcd_width = 16;
1462 		if (lcd_bwidth < 0)
1463 			lcd_bwidth = 40;
1464 		if (lcd_hwidth < 0)
1465 			lcd_hwidth = 64;
1466 		if (lcd_height < 0)
1467 			lcd_height = 2;
1468 		break;
1469 	case LCD_TYPE_CUSTOM:
1470 		/* customer-defined */
1471 		if (lcd_proto < 0)
1472 			lcd_proto = DEFAULT_LCD_PROTO;
1473 		if (lcd_charset < 0)
1474 			lcd_charset = DEFAULT_LCD_CHARSET;
1475 		/* default geometry will be set later */
1476 		break;
1477 	case LCD_TYPE_HANTRONIX:
1478 		/* parallel mode, 8 bits, hantronix-like */
1479 	default:
1480 		if (lcd_proto < 0)
1481 			lcd_proto = LCD_PROTO_PARALLEL;
1482 		if (lcd_charset < 0)
1483 			lcd_charset = LCD_CHARSET_NORMAL;
1484 		if (lcd_e_pin == PIN_NOT_SET)
1485 			lcd_e_pin = PIN_STROBE;
1486 		if (lcd_rs_pin == PIN_NOT_SET)
1487 			lcd_rs_pin = PIN_SELECP;
1488 
1489 		if (lcd_width < 0)
1490 			lcd_width = 16;
1491 		if (lcd_bwidth < 0)
1492 			lcd_bwidth = 40;
1493 		if (lcd_hwidth < 0)
1494 			lcd_hwidth = 64;
1495 		if (lcd_height < 0)
1496 			lcd_height = 2;
1497 		break;
1498 	}
1499 
1500 	/* this is used to catch wrong and default values */
1501 	if (lcd_width <= 0)
1502 		lcd_width = DEFAULT_LCD_WIDTH;
1503 	if (lcd_bwidth <= 0)
1504 		lcd_bwidth = DEFAULT_LCD_BWIDTH;
1505 	if (lcd_hwidth <= 0)
1506 		lcd_hwidth = DEFAULT_LCD_HWIDTH;
1507 	if (lcd_height <= 0)
1508 		lcd_height = DEFAULT_LCD_HEIGHT;
1509 
1510 	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1511 		lcd_write_cmd = lcd_write_cmd_s;
1512 		lcd_write_data = lcd_write_data_s;
1513 		lcd_clear_fast = lcd_clear_fast_s;
1514 
1515 		if (lcd_cl_pin == PIN_NOT_SET)
1516 			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1517 		if (lcd_da_pin == PIN_NOT_SET)
1518 			lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1519 
1520 	} else if (lcd_proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1521 		lcd_write_cmd = lcd_write_cmd_p8;
1522 		lcd_write_data = lcd_write_data_p8;
1523 		lcd_clear_fast = lcd_clear_fast_p8;
1524 
1525 		if (lcd_e_pin == PIN_NOT_SET)
1526 			lcd_e_pin = DEFAULT_LCD_PIN_E;
1527 		if (lcd_rs_pin == PIN_NOT_SET)
1528 			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1529 		if (lcd_rw_pin == PIN_NOT_SET)
1530 			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1531 	} else {
1532 		lcd_write_cmd = lcd_write_cmd_tilcd;
1533 		lcd_write_data = lcd_write_data_tilcd;
1534 		lcd_clear_fast = lcd_clear_fast_tilcd;
1535 	}
1536 
1537 	if (lcd_bl_pin == PIN_NOT_SET)
1538 		lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1539 
1540 	if (lcd_e_pin == PIN_NOT_SET)
1541 		lcd_e_pin = PIN_NONE;
1542 	if (lcd_rs_pin == PIN_NOT_SET)
1543 		lcd_rs_pin = PIN_NONE;
1544 	if (lcd_rw_pin == PIN_NOT_SET)
1545 		lcd_rw_pin = PIN_NONE;
1546 	if (lcd_bl_pin == PIN_NOT_SET)
1547 		lcd_bl_pin = PIN_NONE;
1548 	if (lcd_cl_pin == PIN_NOT_SET)
1549 		lcd_cl_pin = PIN_NONE;
1550 	if (lcd_da_pin == PIN_NOT_SET)
1551 		lcd_da_pin = PIN_NONE;
1552 
1553 	if (lcd_charset < 0)
1554 		lcd_charset = DEFAULT_LCD_CHARSET;
1555 
1556 	if (lcd_charset == LCD_CHARSET_KS0074)
1557 		lcd_char_conv = lcd_char_conv_ks0074;
1558 	else
1559 		lcd_char_conv = NULL;
1560 
1561 	if (lcd_bl_pin != PIN_NONE)
1562 		init_scan_timer();
1563 
1564 	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1565 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1566 	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1567 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1568 	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1569 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1570 	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1571 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1572 	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1573 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1574 	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1575 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1576 
1577 	/* before this line, we must NOT send anything to the display.
1578 	 * Since lcd_init_display() needs to write data, we have to
1579 	 * enable mark the LCD initialized just before. */
1580 	lcd_initialized = 1;
1581 	lcd_init_display();
1582 
1583 	/* display a short message */
1584 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1585 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1586 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1587 #endif
1588 #else
1589 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1590 			PANEL_VERSION);
1591 #endif
1592 	lcd_addr_x = 0;
1593 	lcd_addr_y = 0;
1594 	/* clear the display on the next device opening */
1595 	lcd_must_clear = 1;
1596 	lcd_gotoxy();
1597 }
1598 
1599 /*
1600  * These are the file operation function for user access to /dev/keypad
1601  */
1602 
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1603 static ssize_t keypad_read(struct file *file,
1604 			   char __user *buf, size_t count, loff_t *ppos)
1605 {
1606 	unsigned i = *ppos;
1607 	char __user *tmp = buf;
1608 
1609 	if (keypad_buflen == 0) {
1610 		if (file->f_flags & O_NONBLOCK)
1611 			return -EAGAIN;
1612 
1613 		if (wait_event_interruptible(keypad_read_wait,
1614 					     keypad_buflen != 0))
1615 			return -EINTR;
1616 	}
1617 
1618 	for (; count-- > 0 && (keypad_buflen > 0);
1619 	     ++i, ++tmp, --keypad_buflen) {
1620 		put_user(keypad_buffer[keypad_start], tmp);
1621 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1622 	}
1623 	*ppos = i;
1624 
1625 	return tmp - buf;
1626 }
1627 
keypad_open(struct inode * inode,struct file * file)1628 static int keypad_open(struct inode *inode, struct file *file)
1629 {
1630 	if (keypad_open_cnt)
1631 		return -EBUSY;	/* open only once at a time */
1632 
1633 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1634 		return -EPERM;
1635 
1636 	keypad_buflen = 0;	/* flush the buffer on opening */
1637 	keypad_open_cnt++;
1638 	return 0;
1639 }
1640 
keypad_release(struct inode * inode,struct file * file)1641 static int keypad_release(struct inode *inode, struct file *file)
1642 {
1643 	keypad_open_cnt--;
1644 	return 0;
1645 }
1646 
1647 static const struct file_operations keypad_fops = {
1648 	.read    = keypad_read,		/* read */
1649 	.open    = keypad_open,		/* open */
1650 	.release = keypad_release,	/* close */
1651 	.llseek  = default_llseek,
1652 };
1653 
1654 static struct miscdevice keypad_dev = {
1655 	KEYPAD_MINOR,
1656 	"keypad",
1657 	&keypad_fops
1658 };
1659 
keypad_send_key(const char * string,int max_len)1660 static void keypad_send_key(const char *string, int max_len)
1661 {
1662 	if (init_in_progress)
1663 		return;
1664 
1665 	/* send the key to the device only if a process is attached to it. */
1666 	if (keypad_open_cnt > 0) {
1667 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1668 			keypad_buffer[(keypad_start + keypad_buflen++) %
1669 				      KEYPAD_BUFFER] = *string++;
1670 		}
1671 		wake_up_interruptible(&keypad_read_wait);
1672 	}
1673 }
1674 
1675 /* this function scans all the bits involving at least one logical signal,
1676  * and puts the results in the bitfield "phys_read" (one bit per established
1677  * contact), and sets "phys_read_prev" to "phys_read".
1678  *
1679  * Note: to debounce input signals, we will only consider as switched a signal
1680  * which is stable across 2 measures. Signals which are different between two
1681  * reads will be kept as they previously were in their logical form (phys_prev).
1682  * A signal which has just switched will have a 1 in
1683  * (phys_read ^ phys_read_prev).
1684  */
phys_scan_contacts(void)1685 static void phys_scan_contacts(void)
1686 {
1687 	int bit, bitval;
1688 	char oldval;
1689 	char bitmask;
1690 	char gndmask;
1691 
1692 	phys_prev = phys_curr;
1693 	phys_read_prev = phys_read;
1694 	phys_read = 0;		/* flush all signals */
1695 
1696 	/* keep track of old value, with all outputs disabled */
1697 	oldval = r_dtr(pprt) | scan_mask_o;
1698 	/* activate all keyboard outputs (active low) */
1699 	w_dtr(pprt, oldval & ~scan_mask_o);
1700 
1701 	/* will have a 1 for each bit set to gnd */
1702 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1703 	/* disable all matrix signals */
1704 	w_dtr(pprt, oldval);
1705 
1706 	/* now that all outputs are cleared, the only active input bits are
1707 	 * directly connected to the ground
1708 	 */
1709 
1710 	/* 1 for each grounded input */
1711 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1712 
1713 	/* grounded inputs are signals 40-44 */
1714 	phys_read |= (pmask_t) gndmask << 40;
1715 
1716 	if (bitmask != gndmask) {
1717 		/* since clearing the outputs changed some inputs, we know
1718 		 * that some input signals are currently tied to some outputs.
1719 		 * So we'll scan them.
1720 		 */
1721 		for (bit = 0; bit < 8; bit++) {
1722 			bitval = 1 << bit;
1723 
1724 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1725 				continue;
1726 
1727 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1728 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1729 			phys_read |= (pmask_t) bitmask << (5 * bit);
1730 		}
1731 		w_dtr(pprt, oldval);	/* disable all outputs */
1732 	}
1733 	/* this is easy: use old bits when they are flapping,
1734 	 * use new ones when stable */
1735 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1736 		    (phys_read & ~(phys_read ^ phys_read_prev));
1737 }
1738 
input_state_high(struct logical_input * input)1739 static inline int input_state_high(struct logical_input *input)
1740 {
1741 #if 0
1742 	/* FIXME:
1743 	 * this is an invalid test. It tries to catch
1744 	 * transitions from single-key to multiple-key, but
1745 	 * doesn't take into account the contacts polarity.
1746 	 * The only solution to the problem is to parse keys
1747 	 * from the most complex to the simplest combinations,
1748 	 * and mark them as 'caught' once a combination
1749 	 * matches, then unmatch it for all other ones.
1750 	 */
1751 
1752 	/* try to catch dangerous transitions cases :
1753 	 * someone adds a bit, so this signal was a false
1754 	 * positive resulting from a transition. We should
1755 	 * invalidate the signal immediately and not call the
1756 	 * release function.
1757 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1758 	 */
1759 	if (((phys_prev & input->mask) == input->value) &&
1760 	    ((phys_curr & input->mask) >  input->value)) {
1761 		input->state = INPUT_ST_LOW; /* invalidate */
1762 		return 1;
1763 	}
1764 #endif
1765 
1766 	if ((phys_curr & input->mask) == input->value) {
1767 		if ((input->type == INPUT_TYPE_STD) &&
1768 		    (input->high_timer == 0)) {
1769 			input->high_timer++;
1770 			if (input->u.std.press_fct != NULL)
1771 				input->u.std.press_fct(input->u.std.press_data);
1772 		} else if (input->type == INPUT_TYPE_KBD) {
1773 			/* will turn on the light */
1774 			keypressed = 1;
1775 
1776 			if (input->high_timer == 0) {
1777 				char *press_str = input->u.kbd.press_str;
1778 
1779 				if (press_str[0]) {
1780 					int s = sizeof(input->u.kbd.press_str);
1781 
1782 					keypad_send_key(press_str, s);
1783 				}
1784 			}
1785 
1786 			if (input->u.kbd.repeat_str[0]) {
1787 				char *repeat_str = input->u.kbd.repeat_str;
1788 
1789 				if (input->high_timer >= KEYPAD_REP_START) {
1790 					int s = sizeof(input->u.kbd.repeat_str);
1791 
1792 					input->high_timer -= KEYPAD_REP_DELAY;
1793 					keypad_send_key(repeat_str, s);
1794 				}
1795 				/* we will need to come back here soon */
1796 				inputs_stable = 0;
1797 			}
1798 
1799 			if (input->high_timer < 255)
1800 				input->high_timer++;
1801 		}
1802 		return 1;
1803 	}
1804 
1805 	/* else signal falling down. Let's fall through. */
1806 	input->state = INPUT_ST_FALLING;
1807 	input->fall_timer = 0;
1808 
1809 	return 0;
1810 }
1811 
input_state_falling(struct logical_input * input)1812 static inline void input_state_falling(struct logical_input *input)
1813 {
1814 #if 0
1815 	/* FIXME !!! same comment as in input_state_high */
1816 	if (((phys_prev & input->mask) == input->value) &&
1817 	    ((phys_curr & input->mask) >  input->value)) {
1818 		input->state = INPUT_ST_LOW;	/* invalidate */
1819 		return;
1820 	}
1821 #endif
1822 
1823 	if ((phys_curr & input->mask) == input->value) {
1824 		if (input->type == INPUT_TYPE_KBD) {
1825 			/* will turn on the light */
1826 			keypressed = 1;
1827 
1828 			if (input->u.kbd.repeat_str[0]) {
1829 				char *repeat_str = input->u.kbd.repeat_str;
1830 
1831 				if (input->high_timer >= KEYPAD_REP_START) {
1832 					int s = sizeof(input->u.kbd.repeat_str);
1833 
1834 					input->high_timer -= KEYPAD_REP_DELAY;
1835 					keypad_send_key(repeat_str, s);
1836 				}
1837 				/* we will need to come back here soon */
1838 				inputs_stable = 0;
1839 			}
1840 
1841 			if (input->high_timer < 255)
1842 				input->high_timer++;
1843 		}
1844 		input->state = INPUT_ST_HIGH;
1845 	} else if (input->fall_timer >= input->fall_time) {
1846 		/* call release event */
1847 		if (input->type == INPUT_TYPE_STD) {
1848 			void (*release_fct)(int) = input->u.std.release_fct;
1849 
1850 			if (release_fct != NULL)
1851 				release_fct(input->u.std.release_data);
1852 		} else if (input->type == INPUT_TYPE_KBD) {
1853 			char *release_str = input->u.kbd.release_str;
1854 
1855 			if (release_str[0]) {
1856 				int s = sizeof(input->u.kbd.release_str);
1857 
1858 				keypad_send_key(release_str, s);
1859 			}
1860 		}
1861 
1862 		input->state = INPUT_ST_LOW;
1863 	} else {
1864 		input->fall_timer++;
1865 		inputs_stable = 0;
1866 	}
1867 }
1868 
panel_process_inputs(void)1869 static void panel_process_inputs(void)
1870 {
1871 	struct list_head *item;
1872 	struct logical_input *input;
1873 
1874 	keypressed = 0;
1875 	inputs_stable = 1;
1876 	list_for_each(item, &logical_inputs) {
1877 		input = list_entry(item, struct logical_input, list);
1878 
1879 		switch (input->state) {
1880 		case INPUT_ST_LOW:
1881 			if ((phys_curr & input->mask) != input->value)
1882 				break;
1883 			/* if all needed ones were already set previously,
1884 			 * this means that this logical signal has been
1885 			 * activated by the releasing of another combined
1886 			 * signal, so we don't want to match.
1887 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1888 			 *     don't match A.
1889 			 */
1890 			if ((phys_prev & input->mask) == input->value)
1891 				break;
1892 			input->rise_timer = 0;
1893 			input->state = INPUT_ST_RISING;
1894 			/* no break here, fall through */
1895 		case INPUT_ST_RISING:
1896 			if ((phys_curr & input->mask) != input->value) {
1897 				input->state = INPUT_ST_LOW;
1898 				break;
1899 			}
1900 			if (input->rise_timer < input->rise_time) {
1901 				inputs_stable = 0;
1902 				input->rise_timer++;
1903 				break;
1904 			}
1905 			input->high_timer = 0;
1906 			input->state = INPUT_ST_HIGH;
1907 			/* no break here, fall through */
1908 		case INPUT_ST_HIGH:
1909 			if (input_state_high(input))
1910 				break;
1911 			/* no break here, fall through */
1912 		case INPUT_ST_FALLING:
1913 			input_state_falling(input);
1914 		}
1915 	}
1916 }
1917 
panel_scan_timer(void)1918 static void panel_scan_timer(void)
1919 {
1920 	if (keypad_enabled && keypad_initialized) {
1921 		if (spin_trylock_irq(&pprt_lock)) {
1922 			phys_scan_contacts();
1923 
1924 			/* no need for the parport anymore */
1925 			spin_unlock_irq(&pprt_lock);
1926 		}
1927 
1928 		if (!inputs_stable || phys_curr != phys_prev)
1929 			panel_process_inputs();
1930 	}
1931 
1932 	if (lcd_enabled && lcd_initialized) {
1933 		if (keypressed) {
1934 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1935 				lcd_backlight(1);
1936 			light_tempo = FLASH_LIGHT_TEMPO;
1937 		} else if (light_tempo > 0) {
1938 			light_tempo--;
1939 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1940 				lcd_backlight(0);
1941 		}
1942 	}
1943 
1944 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1945 }
1946 
init_scan_timer(void)1947 static void init_scan_timer(void)
1948 {
1949 	if (scan_timer.function != NULL)
1950 		return;		/* already started */
1951 
1952 	init_timer(&scan_timer);
1953 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1954 	scan_timer.data = 0;
1955 	scan_timer.function = (void *)&panel_scan_timer;
1956 	add_timer(&scan_timer);
1957 }
1958 
1959 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1960  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1961  * corresponding to out and in bits respectively.
1962  * returns 1 if ok, 0 if error (in which case, nothing is written).
1963  */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)1964 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1965 			   char *imask, char *omask)
1966 {
1967 	static char sigtab[10] = "EeSsPpAaBb";
1968 	char im, om;
1969 	pmask_t m, v;
1970 
1971 	om = 0ULL;
1972 	im = 0ULL;
1973 	m = 0ULL;
1974 	v = 0ULL;
1975 	while (*name) {
1976 		int in, out, bit, neg;
1977 
1978 		for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
1979 		     in++)
1980 			;
1981 
1982 		if (in >= sizeof(sigtab))
1983 			return 0;	/* input name not found */
1984 		neg = (in & 1);	/* odd (lower) names are negated */
1985 		in >>= 1;
1986 		im |= (1 << in);
1987 
1988 		name++;
1989 		if (isdigit(*name)) {
1990 			out = *name - '0';
1991 			om |= (1 << out);
1992 		} else if (*name == '-') {
1993 			out = 8;
1994 		} else {
1995 			return 0;	/* unknown bit name */
1996 		}
1997 
1998 		bit = (out * 5) + in;
1999 
2000 		m |= 1ULL << bit;
2001 		if (!neg)
2002 			v |= 1ULL << bit;
2003 		name++;
2004 	}
2005 	*mask = m;
2006 	*value = v;
2007 	if (imask)
2008 		*imask |= im;
2009 	if (omask)
2010 		*omask |= om;
2011 	return 1;
2012 }
2013 
2014 /* tries to bind a key to the signal name <name>. The key will send the
2015  * strings <press>, <repeat>, <release> for these respective events.
2016  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2017  */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)2018 static struct logical_input *panel_bind_key(const char *name, const char *press,
2019 					    const char *repeat,
2020 					    const char *release)
2021 {
2022 	struct logical_input *key;
2023 
2024 	key = kzalloc(sizeof(*key), GFP_KERNEL);
2025 	if (!key)
2026 		return NULL;
2027 
2028 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2029 			     &scan_mask_o)) {
2030 		kfree(key);
2031 		return NULL;
2032 	}
2033 
2034 	key->type = INPUT_TYPE_KBD;
2035 	key->state = INPUT_ST_LOW;
2036 	key->rise_time = 1;
2037 	key->fall_time = 1;
2038 
2039 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2040 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2041 	strncpy(key->u.kbd.release_str, release,
2042 		sizeof(key->u.kbd.release_str));
2043 	list_add(&key->list, &logical_inputs);
2044 	return key;
2045 }
2046 
2047 #if 0
2048 /* tries to bind a callback function to the signal name <name>. The function
2049  * <press_fct> will be called with the <press_data> arg when the signal is
2050  * activated, and so on for <release_fct>/<release_data>
2051  * Returns the pointer to the new signal if ok, NULL if the signal could not
2052  * be bound.
2053  */
2054 static struct logical_input *panel_bind_callback(char *name,
2055 						 void (*press_fct)(int),
2056 						 int press_data,
2057 						 void (*release_fct)(int),
2058 						 int release_data)
2059 {
2060 	struct logical_input *callback;
2061 
2062 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2063 	if (!callback)
2064 		return NULL;
2065 
2066 	memset(callback, 0, sizeof(struct logical_input));
2067 	if (!input_name2mask(name, &callback->mask, &callback->value,
2068 			     &scan_mask_i, &scan_mask_o))
2069 		return NULL;
2070 
2071 	callback->type = INPUT_TYPE_STD;
2072 	callback->state = INPUT_ST_LOW;
2073 	callback->rise_time = 1;
2074 	callback->fall_time = 1;
2075 	callback->u.std.press_fct = press_fct;
2076 	callback->u.std.press_data = press_data;
2077 	callback->u.std.release_fct = release_fct;
2078 	callback->u.std.release_data = release_data;
2079 	list_add(&callback->list, &logical_inputs);
2080 	return callback;
2081 }
2082 #endif
2083 
keypad_init(void)2084 static void keypad_init(void)
2085 {
2086 	int keynum;
2087 
2088 	init_waitqueue_head(&keypad_read_wait);
2089 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2090 
2091 	/* Let's create all known keys */
2092 
2093 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2094 		panel_bind_key(keypad_profile[keynum][0],
2095 			       keypad_profile[keynum][1],
2096 			       keypad_profile[keynum][2],
2097 			       keypad_profile[keynum][3]);
2098 	}
2099 
2100 	init_scan_timer();
2101 	keypad_initialized = 1;
2102 }
2103 
2104 /**************************************************/
2105 /* device initialization                          */
2106 /**************************************************/
2107 
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2108 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2109 			    void *unused)
2110 {
2111 	if (lcd_enabled && lcd_initialized) {
2112 		switch (code) {
2113 		case SYS_DOWN:
2114 			panel_lcd_print
2115 			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2116 			break;
2117 		case SYS_HALT:
2118 			panel_lcd_print
2119 			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2120 			break;
2121 		case SYS_POWER_OFF:
2122 			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2123 			break;
2124 		default:
2125 			break;
2126 		}
2127 	}
2128 	return NOTIFY_DONE;
2129 }
2130 
2131 static struct notifier_block panel_notifier = {
2132 	panel_notify_sys,
2133 	NULL,
2134 	0
2135 };
2136 
panel_attach(struct parport * port)2137 static void panel_attach(struct parport *port)
2138 {
2139 	if (port->number != parport)
2140 		return;
2141 
2142 	if (pprt) {
2143 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2144 		       __func__, port->number, parport);
2145 		return;
2146 	}
2147 
2148 	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2149 				       NULL,
2150 				       /*PARPORT_DEV_EXCL */
2151 				       0, (void *)&pprt);
2152 	if (pprt == NULL) {
2153 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2154 		       __func__, port->number, parport);
2155 		return;
2156 	}
2157 
2158 	if (parport_claim(pprt)) {
2159 		pr_err("could not claim access to parport%d. Aborting.\n",
2160 		       parport);
2161 		goto err_unreg_device;
2162 	}
2163 
2164 	/* must init LCD first, just in case an IRQ from the keypad is
2165 	 * generated at keypad init
2166 	 */
2167 	if (lcd_enabled) {
2168 		lcd_init();
2169 		if (misc_register(&lcd_dev))
2170 			goto err_unreg_device;
2171 	}
2172 
2173 	if (keypad_enabled) {
2174 		keypad_init();
2175 		if (misc_register(&keypad_dev))
2176 			goto err_lcd_unreg;
2177 	}
2178 	return;
2179 
2180 err_lcd_unreg:
2181 	if (lcd_enabled)
2182 		misc_deregister(&lcd_dev);
2183 err_unreg_device:
2184 	parport_unregister_device(pprt);
2185 	pprt = NULL;
2186 }
2187 
panel_detach(struct parport * port)2188 static void panel_detach(struct parport *port)
2189 {
2190 	if (port->number != parport)
2191 		return;
2192 
2193 	if (!pprt) {
2194 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2195 		       __func__, port->number, parport);
2196 		return;
2197 	}
2198 
2199 	if (keypad_enabled && keypad_initialized) {
2200 		misc_deregister(&keypad_dev);
2201 		keypad_initialized = 0;
2202 	}
2203 
2204 	if (lcd_enabled && lcd_initialized) {
2205 		misc_deregister(&lcd_dev);
2206 		lcd_initialized = 0;
2207 	}
2208 
2209 	parport_release(pprt);
2210 	parport_unregister_device(pprt);
2211 	pprt = NULL;
2212 }
2213 
2214 static struct parport_driver panel_driver = {
2215 	.name = "panel",
2216 	.attach = panel_attach,
2217 	.detach = panel_detach,
2218 };
2219 
2220 /* init function */
panel_init(void)2221 static int panel_init(void)
2222 {
2223 	/* for backwards compatibility */
2224 	if (keypad_type < 0)
2225 		keypad_type = keypad_enabled;
2226 
2227 	if (lcd_type < 0)
2228 		lcd_type = lcd_enabled;
2229 
2230 	if (parport < 0)
2231 		parport = DEFAULT_PARPORT;
2232 
2233 	/* take care of an eventual profile */
2234 	switch (profile) {
2235 	case PANEL_PROFILE_CUSTOM:
2236 		/* custom profile */
2237 		if (keypad_type < 0)
2238 			keypad_type = DEFAULT_KEYPAD;
2239 		if (lcd_type < 0)
2240 			lcd_type = DEFAULT_LCD;
2241 		break;
2242 	case PANEL_PROFILE_OLD:
2243 		/* 8 bits, 2*16, old keypad */
2244 		if (keypad_type < 0)
2245 			keypad_type = KEYPAD_TYPE_OLD;
2246 		if (lcd_type < 0)
2247 			lcd_type = LCD_TYPE_OLD;
2248 		if (lcd_width < 0)
2249 			lcd_width = 16;
2250 		if (lcd_hwidth < 0)
2251 			lcd_hwidth = 16;
2252 		break;
2253 	case PANEL_PROFILE_NEW:
2254 		/* serial, 2*16, new keypad */
2255 		if (keypad_type < 0)
2256 			keypad_type = KEYPAD_TYPE_NEW;
2257 		if (lcd_type < 0)
2258 			lcd_type = LCD_TYPE_KS0074;
2259 		break;
2260 	case PANEL_PROFILE_HANTRONIX:
2261 		/* 8 bits, 2*16 hantronix-like, no keypad */
2262 		if (keypad_type < 0)
2263 			keypad_type = KEYPAD_TYPE_NONE;
2264 		if (lcd_type < 0)
2265 			lcd_type = LCD_TYPE_HANTRONIX;
2266 		break;
2267 	case PANEL_PROFILE_NEXCOM:
2268 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2269 		if (keypad_type < 0)
2270 			keypad_type = KEYPAD_TYPE_NEXCOM;
2271 		if (lcd_type < 0)
2272 			lcd_type = LCD_TYPE_NEXCOM;
2273 		break;
2274 	case PANEL_PROFILE_LARGE:
2275 		/* 8 bits, 2*40, old keypad */
2276 		if (keypad_type < 0)
2277 			keypad_type = KEYPAD_TYPE_OLD;
2278 		if (lcd_type < 0)
2279 			lcd_type = LCD_TYPE_OLD;
2280 		break;
2281 	}
2282 
2283 	lcd_enabled = (lcd_type > 0);
2284 	keypad_enabled = (keypad_type > 0);
2285 
2286 	switch (keypad_type) {
2287 	case KEYPAD_TYPE_OLD:
2288 		keypad_profile = old_keypad_profile;
2289 		break;
2290 	case KEYPAD_TYPE_NEW:
2291 		keypad_profile = new_keypad_profile;
2292 		break;
2293 	case KEYPAD_TYPE_NEXCOM:
2294 		keypad_profile = nexcom_keypad_profile;
2295 		break;
2296 	default:
2297 		keypad_profile = NULL;
2298 		break;
2299 	}
2300 
2301 	/* tells various subsystems about the fact that we are initializing */
2302 	init_in_progress = 1;
2303 
2304 	if (parport_register_driver(&panel_driver)) {
2305 		pr_err("could not register with parport. Aborting.\n");
2306 		return -EIO;
2307 	}
2308 
2309 	if (!lcd_enabled && !keypad_enabled) {
2310 		/* no device enabled, let's release the parport */
2311 		if (pprt) {
2312 			parport_release(pprt);
2313 			parport_unregister_device(pprt);
2314 			pprt = NULL;
2315 		}
2316 		parport_unregister_driver(&panel_driver);
2317 		pr_err("driver version " PANEL_VERSION " disabled.\n");
2318 		return -ENODEV;
2319 	}
2320 
2321 	register_reboot_notifier(&panel_notifier);
2322 
2323 	if (pprt)
2324 		pr_info("driver version " PANEL_VERSION
2325 			" registered on parport%d (io=0x%lx).\n", parport,
2326 			pprt->port->base);
2327 	else
2328 		pr_info("driver version " PANEL_VERSION
2329 			" not yet registered\n");
2330 	/* tells various subsystems about the fact that initialization
2331 	   is finished */
2332 	init_in_progress = 0;
2333 	return 0;
2334 }
2335 
panel_init_module(void)2336 static int __init panel_init_module(void)
2337 {
2338 	return panel_init();
2339 }
2340 
panel_cleanup_module(void)2341 static void __exit panel_cleanup_module(void)
2342 {
2343 	unregister_reboot_notifier(&panel_notifier);
2344 
2345 	if (scan_timer.function != NULL)
2346 		del_timer_sync(&scan_timer);
2347 
2348 	if (pprt != NULL) {
2349 		if (keypad_enabled) {
2350 			misc_deregister(&keypad_dev);
2351 			keypad_initialized = 0;
2352 		}
2353 
2354 		if (lcd_enabled) {
2355 			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2356 					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2357 			misc_deregister(&lcd_dev);
2358 			lcd_initialized = 0;
2359 		}
2360 
2361 		/* TODO: free all input signals */
2362 		parport_release(pprt);
2363 		parport_unregister_device(pprt);
2364 		pprt = NULL;
2365 	}
2366 	parport_unregister_driver(&panel_driver);
2367 }
2368 
2369 module_init(panel_init_module);
2370 module_exit(panel_cleanup_module);
2371 MODULE_AUTHOR("Willy Tarreau");
2372 MODULE_LICENSE("GPL");
2373 
2374 /*
2375  * Local variables:
2376  *  c-indent-level: 4
2377  *  tab-width: 8
2378  * End:
2379  */
2380