• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  *
3  * Driver for the IFX 6x60 spi modem.
4  *
5  * Copyright (C) 2008 Option International
6  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7  *		      Denis Joseph Barrow <d.barow@option.com>
8  *		      Jan Dumon <j.dumon@option.com>
9  *
10  * Copyright (C) 2009, 2010 Intel Corp
11  * Russ Gorby <russ.gorby@intel.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25  * USA
26  *
27  * Driver modified by Intel from Option gtm501l_spi.c
28  *
29  * Notes
30  * o	The driver currently assumes a single device only. If you need to
31  *	change this then look for saved_ifx_dev and add a device lookup
32  * o	The driver is intended to be big-endian safe but has never been
33  *	tested that way (no suitable hardware). There are a couple of FIXME
34  *	notes by areas that may need addressing
35  * o	Some of the GPIO naming/setup assumptions may need revisiting if
36  *	you need to use this driver for another platform.
37  *
38  *****************************************************************************/
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/termios.h>
42 #include <linux/tty.h>
43 #include <linux/device.h>
44 #include <linux/spi/spi.h>
45 #include <linux/kfifo.h>
46 #include <linux/tty_flip.h>
47 #include <linux/timer.h>
48 #include <linux/serial.h>
49 #include <linux/interrupt.h>
50 #include <linux/irq.h>
51 #include <linux/rfkill.h>
52 #include <linux/fs.h>
53 #include <linux/ip.h>
54 #include <linux/dmapool.h>
55 #include <linux/gpio.h>
56 #include <linux/sched.h>
57 #include <linux/time.h>
58 #include <linux/wait.h>
59 #include <linux/pm.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spi/ifx_modem.h>
62 #include <linux/delay.h>
63 #include <linux/reboot.h>
64 
65 #include "ifx6x60.h"
66 
67 #define IFX_SPI_MORE_MASK		0x10
68 #define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
69 #define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
70 #define IFX_SPI_MODE			SPI_MODE_1
71 #define IFX_SPI_TTY_ID			0
72 #define IFX_SPI_TIMEOUT_SEC		2
73 #define IFX_SPI_HEADER_0		(-1)
74 #define IFX_SPI_HEADER_F		(-2)
75 
76 #define PO_POST_DELAY		200
77 #define IFX_MDM_RST_PMU	4
78 
79 /* forward reference */
80 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
81 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
82 				unsigned long event, void *data);
83 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
84 
85 /* local variables */
86 static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
87 static struct tty_driver *tty_drv;
88 static struct ifx_spi_device *saved_ifx_dev;
89 static struct lock_class_key ifx_spi_key;
90 
91 static struct notifier_block ifx_modem_reboot_notifier_block = {
92 	.notifier_call = ifx_modem_reboot_callback,
93 };
94 
ifx_modem_power_off(struct ifx_spi_device * ifx_dev)95 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
96 {
97 	gpio_set_value(IFX_MDM_RST_PMU, 1);
98 	msleep(PO_POST_DELAY);
99 
100 	return 0;
101 }
102 
ifx_modem_reboot_callback(struct notifier_block * nfb,unsigned long event,void * data)103 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
104 				 unsigned long event, void *data)
105 {
106 	if (saved_ifx_dev)
107 		ifx_modem_power_off(saved_ifx_dev);
108 	else
109 		pr_warn("no ifx modem active;\n");
110 
111 	return NOTIFY_OK;
112 }
113 
114 /* GPIO/GPE settings */
115 
116 /**
117  *	mrdy_set_high		-	set MRDY GPIO
118  *	@ifx: device we are controlling
119  *
120  */
mrdy_set_high(struct ifx_spi_device * ifx)121 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
122 {
123 	gpio_set_value(ifx->gpio.mrdy, 1);
124 }
125 
126 /**
127  *	mrdy_set_low		-	clear MRDY GPIO
128  *	@ifx: device we are controlling
129  *
130  */
mrdy_set_low(struct ifx_spi_device * ifx)131 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
132 {
133 	gpio_set_value(ifx->gpio.mrdy, 0);
134 }
135 
136 /**
137  *	ifx_spi_power_state_set
138  *	@ifx_dev: our SPI device
139  *	@val: bits to set
140  *
141  *	Set bit in power status and signal power system if status becomes non-0
142  */
143 static void
ifx_spi_power_state_set(struct ifx_spi_device * ifx_dev,unsigned char val)144 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
145 {
146 	unsigned long flags;
147 
148 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
149 
150 	/*
151 	 * if power status is already non-0, just update, else
152 	 * tell power system
153 	 */
154 	if (!ifx_dev->power_status)
155 		pm_runtime_get(&ifx_dev->spi_dev->dev);
156 	ifx_dev->power_status |= val;
157 
158 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
159 }
160 
161 /**
162  *	ifx_spi_power_state_clear	-	clear power bit
163  *	@ifx_dev: our SPI device
164  *	@val: bits to clear
165  *
166  *	clear bit in power status and signal power system if status becomes 0
167  */
168 static void
ifx_spi_power_state_clear(struct ifx_spi_device * ifx_dev,unsigned char val)169 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
170 {
171 	unsigned long flags;
172 
173 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
174 
175 	if (ifx_dev->power_status) {
176 		ifx_dev->power_status &= ~val;
177 		if (!ifx_dev->power_status)
178 			pm_runtime_put(&ifx_dev->spi_dev->dev);
179 	}
180 
181 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
182 }
183 
184 /**
185  *	swap_buf_8
186  *	@buf: our buffer
187  *	@len : number of bytes (not words) in the buffer
188  *	@end: end of buffer
189  *
190  *	Swap the contents of a buffer into big endian format
191  */
swap_buf_8(unsigned char * buf,int len,void * end)192 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
193 {
194 	/* don't swap buffer if SPI word width is 8 bits */
195 	return;
196 }
197 
198 /**
199  *	swap_buf_16
200  *	@buf: our buffer
201  *	@len : number of bytes (not words) in the buffer
202  *	@end: end of buffer
203  *
204  *	Swap the contents of a buffer into big endian format
205  */
swap_buf_16(unsigned char * buf,int len,void * end)206 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
207 {
208 	int n;
209 
210 	u16 *buf_16 = (u16 *)buf;
211 	len = ((len + 1) >> 1);
212 	if ((void *)&buf_16[len] > end) {
213 		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
214 		       &buf_16[len], end);
215 		return;
216 	}
217 	for (n = 0; n < len; n++) {
218 		*buf_16 = cpu_to_be16(*buf_16);
219 		buf_16++;
220 	}
221 }
222 
223 /**
224  *	swap_buf_32
225  *	@buf: our buffer
226  *	@len : number of bytes (not words) in the buffer
227  *	@end: end of buffer
228  *
229  *	Swap the contents of a buffer into big endian format
230  */
swap_buf_32(unsigned char * buf,int len,void * end)231 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
232 {
233 	int n;
234 
235 	u32 *buf_32 = (u32 *)buf;
236 	len = (len + 3) >> 2;
237 
238 	if ((void *)&buf_32[len] > end) {
239 		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
240 		       &buf_32[len], end);
241 		return;
242 	}
243 	for (n = 0; n < len; n++) {
244 		*buf_32 = cpu_to_be32(*buf_32);
245 		buf_32++;
246 	}
247 }
248 
249 /**
250  *	mrdy_assert		-	assert MRDY line
251  *	@ifx_dev: our SPI device
252  *
253  *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
254  *	now.
255  *
256  *	FIXME: Can SRDY even go high as we are running this code ?
257  */
mrdy_assert(struct ifx_spi_device * ifx_dev)258 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
259 {
260 	int val = gpio_get_value(ifx_dev->gpio.srdy);
261 	if (!val) {
262 		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
263 				      &ifx_dev->flags)) {
264 			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
265 
266 		}
267 	}
268 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
269 	mrdy_set_high(ifx_dev);
270 }
271 
272 /**
273  *	ifx_spi_timeout		-	SPI timeout
274  *	@arg: our SPI device
275  *
276  *	The SPI has timed out: hang up the tty. Users will then see a hangup
277  *	and error events.
278  */
ifx_spi_timeout(unsigned long arg)279 static void ifx_spi_timeout(unsigned long arg)
280 {
281 	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
282 
283 	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
284 	tty_port_tty_hangup(&ifx_dev->tty_port, false);
285 	mrdy_set_low(ifx_dev);
286 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
287 }
288 
289 /* char/tty operations */
290 
291 /**
292  *	ifx_spi_tiocmget	-	get modem lines
293  *	@tty: our tty device
294  *	@filp: file handle issuing the request
295  *
296  *	Map the signal state into Linux modem flags and report the value
297  *	in Linux terms
298  */
ifx_spi_tiocmget(struct tty_struct * tty)299 static int ifx_spi_tiocmget(struct tty_struct *tty)
300 {
301 	unsigned int value;
302 	struct ifx_spi_device *ifx_dev = tty->driver_data;
303 
304 	value =
305 	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
306 	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
307 	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
308 	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
309 	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
310 	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
311 	return value;
312 }
313 
314 /**
315  *	ifx_spi_tiocmset	-	set modem bits
316  *	@tty: the tty structure
317  *	@set: bits to set
318  *	@clear: bits to clear
319  *
320  *	The IFX6x60 only supports DTR and RTS. Set them accordingly
321  *	and flag that an update to the modem is needed.
322  *
323  *	FIXME: do we need to kick the tranfers when we do this ?
324  */
ifx_spi_tiocmset(struct tty_struct * tty,unsigned int set,unsigned int clear)325 static int ifx_spi_tiocmset(struct tty_struct *tty,
326 			    unsigned int set, unsigned int clear)
327 {
328 	struct ifx_spi_device *ifx_dev = tty->driver_data;
329 
330 	if (set & TIOCM_RTS)
331 		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
332 	if (set & TIOCM_DTR)
333 		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
334 	if (clear & TIOCM_RTS)
335 		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
336 	if (clear & TIOCM_DTR)
337 		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
338 
339 	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
340 	return 0;
341 }
342 
343 /**
344  *	ifx_spi_open	-	called on tty open
345  *	@tty: our tty device
346  *	@filp: file handle being associated with the tty
347  *
348  *	Open the tty interface. We let the tty_port layer do all the work
349  *	for us.
350  *
351  *	FIXME: Remove single device assumption and saved_ifx_dev
352  */
ifx_spi_open(struct tty_struct * tty,struct file * filp)353 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
354 {
355 	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
356 }
357 
358 /**
359  *	ifx_spi_close	-	called when our tty closes
360  *	@tty: the tty being closed
361  *	@filp: the file handle being closed
362  *
363  *	Perform the close of the tty. We use the tty_port layer to do all
364  *	our hard work.
365  */
ifx_spi_close(struct tty_struct * tty,struct file * filp)366 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
367 {
368 	struct ifx_spi_device *ifx_dev = tty->driver_data;
369 	tty_port_close(&ifx_dev->tty_port, tty, filp);
370 	/* FIXME: should we do an ifx_spi_reset here ? */
371 }
372 
373 /**
374  *	ifx_decode_spi_header	-	decode received header
375  *	@buffer: the received data
376  *	@length: decoded length
377  *	@more: decoded more flag
378  *	@received_cts: status of cts we received
379  *
380  *	Note how received_cts is handled -- if header is all F it is left
381  *	the same as it was, if header is all 0 it is set to 0 otherwise it is
382  *	taken from the incoming header.
383  *
384  *	FIXME: endianness
385  */
ifx_spi_decode_spi_header(unsigned char * buffer,int * length,unsigned char * more,unsigned char * received_cts)386 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
387 			unsigned char *more, unsigned char *received_cts)
388 {
389 	u16 h1;
390 	u16 h2;
391 	u16 *in_buffer = (u16 *)buffer;
392 
393 	h1 = *in_buffer;
394 	h2 = *(in_buffer+1);
395 
396 	if (h1 == 0 && h2 == 0) {
397 		*received_cts = 0;
398 		return IFX_SPI_HEADER_0;
399 	} else if (h1 == 0xffff && h2 == 0xffff) {
400 		/* spi_slave_cts remains as it was */
401 		return IFX_SPI_HEADER_F;
402 	}
403 
404 	*length = h1 & 0xfff;	/* upper bits of byte are flags */
405 	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
406 	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
407 	return 0;
408 }
409 
410 /**
411  *	ifx_setup_spi_header	-	set header fields
412  *	@txbuffer: pointer to start of SPI buffer
413  *	@tx_count: bytes
414  *	@more: indicate if more to follow
415  *
416  *	Format up an SPI header for a transfer
417  *
418  *	FIXME: endianness?
419  */
ifx_spi_setup_spi_header(unsigned char * txbuffer,int tx_count,unsigned char more)420 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
421 					unsigned char more)
422 {
423 	*(u16 *)(txbuffer) = tx_count;
424 	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
425 	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
426 }
427 
428 /**
429  *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
430  *	@ifx_dev: our SPI device
431  *
432  *	The transmit buffr needs a header and various other bits of
433  *	information followed by as much data as we can pull from the FIFO
434  *	and transfer. This function formats up a suitable buffer in the
435  *	ifx_dev->tx_buffer
436  *
437  *	FIXME: performance - should we wake the tty when the queue is half
438  *			     empty ?
439  */
ifx_spi_prepare_tx_buffer(struct ifx_spi_device * ifx_dev)440 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
441 {
442 	int temp_count;
443 	int queue_length;
444 	int tx_count;
445 	unsigned char *tx_buffer;
446 
447 	tx_buffer = ifx_dev->tx_buffer;
448 
449 	/* make room for required SPI header */
450 	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
451 	tx_count = IFX_SPI_HEADER_OVERHEAD;
452 
453 	/* clear to signal no more data if this turns out to be the
454 	 * last buffer sent in a sequence */
455 	ifx_dev->spi_more = 0;
456 
457 	/* if modem cts is set, just send empty buffer */
458 	if (!ifx_dev->spi_slave_cts) {
459 		/* see if there's tx data */
460 		queue_length = kfifo_len(&ifx_dev->tx_fifo);
461 		if (queue_length != 0) {
462 			/* data to mux -- see if there's room for it */
463 			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
464 			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
465 					tx_buffer, temp_count,
466 					&ifx_dev->fifo_lock);
467 
468 			/* update buffer pointer and data count in message */
469 			tx_buffer += temp_count;
470 			tx_count += temp_count;
471 			if (temp_count == queue_length)
472 				/* poke port to get more data */
473 				tty_port_tty_wakeup(&ifx_dev->tty_port);
474 			else /* more data in port, use next SPI message */
475 				ifx_dev->spi_more = 1;
476 		}
477 	}
478 	/* have data and info for header -- set up SPI header in buffer */
479 	/* spi header needs payload size, not entire buffer size */
480 	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
481 					tx_count-IFX_SPI_HEADER_OVERHEAD,
482 					ifx_dev->spi_more);
483 	/* swap actual data in the buffer */
484 	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
485 		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
486 	return tx_count;
487 }
488 
489 /**
490  *	ifx_spi_write		-	line discipline write
491  *	@tty: our tty device
492  *	@buf: pointer to buffer to write (kernel space)
493  *	@count: size of buffer
494  *
495  *	Write the characters we have been given into the FIFO. If the device
496  *	is not active then activate it, when the SRDY line is asserted back
497  *	this will commence I/O
498  */
ifx_spi_write(struct tty_struct * tty,const unsigned char * buf,int count)499 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
500 			 int count)
501 {
502 	struct ifx_spi_device *ifx_dev = tty->driver_data;
503 	unsigned char *tmp_buf = (unsigned char *)buf;
504 	unsigned long flags;
505 	bool is_fifo_empty;
506 	int tx_count;
507 
508 	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
509 	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
510 	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
511 	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
512 	if (is_fifo_empty)
513 		mrdy_assert(ifx_dev);
514 
515 	return tx_count;
516 }
517 
518 /**
519  *	ifx_spi_chars_in_buffer	-	line discipline helper
520  *	@tty: our tty device
521  *
522  *	Report how much data we can accept before we drop bytes. As we use
523  *	a simple FIFO this is nice and easy.
524  */
ifx_spi_write_room(struct tty_struct * tty)525 static int ifx_spi_write_room(struct tty_struct *tty)
526 {
527 	struct ifx_spi_device *ifx_dev = tty->driver_data;
528 	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
529 }
530 
531 /**
532  *	ifx_spi_chars_in_buffer	-	line discipline helper
533  *	@tty: our tty device
534  *
535  *	Report how many characters we have buffered. In our case this is the
536  *	number of bytes sitting in our transmit FIFO.
537  */
ifx_spi_chars_in_buffer(struct tty_struct * tty)538 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
539 {
540 	struct ifx_spi_device *ifx_dev = tty->driver_data;
541 	return kfifo_len(&ifx_dev->tx_fifo);
542 }
543 
544 /**
545  *	ifx_port_hangup
546  *	@port: our tty port
547  *
548  *	tty port hang up. Called when tty_hangup processing is invoked either
549  *	by loss of carrier, or by software (eg vhangup). Serialized against
550  *	activate/shutdown by the tty layer.
551  */
ifx_spi_hangup(struct tty_struct * tty)552 static void ifx_spi_hangup(struct tty_struct *tty)
553 {
554 	struct ifx_spi_device *ifx_dev = tty->driver_data;
555 	tty_port_hangup(&ifx_dev->tty_port);
556 }
557 
558 /**
559  *	ifx_port_activate
560  *	@port: our tty port
561  *
562  *	tty port activate method - called for first open. Serialized
563  *	with hangup and shutdown by the tty layer.
564  */
ifx_port_activate(struct tty_port * port,struct tty_struct * tty)565 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
566 {
567 	struct ifx_spi_device *ifx_dev =
568 		container_of(port, struct ifx_spi_device, tty_port);
569 
570 	/* clear any old data; can't do this in 'close' */
571 	kfifo_reset(&ifx_dev->tx_fifo);
572 
573 	/* clear any flag which may be set in port shutdown procedure */
574 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
575 	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
576 
577 	/* put port data into this tty */
578 	tty->driver_data = ifx_dev;
579 
580 	/* allows flip string push from int context */
581 	port->low_latency = 1;
582 
583 	/* set flag to allows data transfer */
584 	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
585 
586 	return 0;
587 }
588 
589 /**
590  *	ifx_port_shutdown
591  *	@port: our tty port
592  *
593  *	tty port shutdown method - called for last port close. Serialized
594  *	with hangup and activate by the tty layer.
595  */
ifx_port_shutdown(struct tty_port * port)596 static void ifx_port_shutdown(struct tty_port *port)
597 {
598 	struct ifx_spi_device *ifx_dev =
599 		container_of(port, struct ifx_spi_device, tty_port);
600 
601 	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
602 	mrdy_set_low(ifx_dev);
603 	del_timer(&ifx_dev->spi_timer);
604 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
605 	tasklet_kill(&ifx_dev->io_work_tasklet);
606 }
607 
608 static const struct tty_port_operations ifx_tty_port_ops = {
609 	.activate = ifx_port_activate,
610 	.shutdown = ifx_port_shutdown,
611 };
612 
613 static const struct tty_operations ifx_spi_serial_ops = {
614 	.open = ifx_spi_open,
615 	.close = ifx_spi_close,
616 	.write = ifx_spi_write,
617 	.hangup = ifx_spi_hangup,
618 	.write_room = ifx_spi_write_room,
619 	.chars_in_buffer = ifx_spi_chars_in_buffer,
620 	.tiocmget = ifx_spi_tiocmget,
621 	.tiocmset = ifx_spi_tiocmset,
622 };
623 
624 /**
625  *	ifx_spi_insert_fip_string	-	queue received data
626  *	@ifx_ser: our SPI device
627  *	@chars: buffer we have received
628  *	@size: number of chars reeived
629  *
630  *	Queue bytes to the tty assuming the tty side is currently open. If
631  *	not the discard the data.
632  */
ifx_spi_insert_flip_string(struct ifx_spi_device * ifx_dev,unsigned char * chars,size_t size)633 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
634 				    unsigned char *chars, size_t size)
635 {
636 	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
637 	tty_flip_buffer_push(&ifx_dev->tty_port);
638 }
639 
640 /**
641  *	ifx_spi_complete	-	SPI transfer completed
642  *	@ctx: our SPI device
643  *
644  *	An SPI transfer has completed. Process any received data and kick off
645  *	any further transmits we can commence.
646  */
ifx_spi_complete(void * ctx)647 static void ifx_spi_complete(void *ctx)
648 {
649 	struct ifx_spi_device *ifx_dev = ctx;
650 	int length;
651 	int actual_length;
652 	unsigned char more;
653 	unsigned char cts;
654 	int local_write_pending = 0;
655 	int queue_length;
656 	int srdy;
657 	int decode_result;
658 
659 	mrdy_set_low(ifx_dev);
660 
661 	if (!ifx_dev->spi_msg.status) {
662 		/* check header validity, get comm flags */
663 		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
664 			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
665 		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
666 				&length, &more, &cts);
667 		if (decode_result == IFX_SPI_HEADER_0) {
668 			dev_dbg(&ifx_dev->spi_dev->dev,
669 				"ignore input: invalid header 0");
670 			ifx_dev->spi_slave_cts = 0;
671 			goto complete_exit;
672 		} else if (decode_result == IFX_SPI_HEADER_F) {
673 			dev_dbg(&ifx_dev->spi_dev->dev,
674 				"ignore input: invalid header F");
675 			goto complete_exit;
676 		}
677 
678 		ifx_dev->spi_slave_cts = cts;
679 
680 		actual_length = min((unsigned int)length,
681 					ifx_dev->spi_msg.actual_length);
682 		ifx_dev->swap_buf(
683 			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
684 			 actual_length,
685 			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
686 		ifx_spi_insert_flip_string(
687 			ifx_dev,
688 			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
689 			(size_t)actual_length);
690 	} else {
691 		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
692 		       ifx_dev->spi_msg.status);
693 	}
694 
695 complete_exit:
696 	if (ifx_dev->write_pending) {
697 		ifx_dev->write_pending = 0;
698 		local_write_pending = 1;
699 	}
700 
701 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
702 
703 	queue_length = kfifo_len(&ifx_dev->tx_fifo);
704 	srdy = gpio_get_value(ifx_dev->gpio.srdy);
705 	if (!srdy)
706 		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
707 
708 	/* schedule output if there is more to do */
709 	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
710 		tasklet_schedule(&ifx_dev->io_work_tasklet);
711 	else {
712 		if (more || ifx_dev->spi_more || queue_length > 0 ||
713 			local_write_pending) {
714 			if (ifx_dev->spi_slave_cts) {
715 				if (more)
716 					mrdy_assert(ifx_dev);
717 			} else
718 				mrdy_assert(ifx_dev);
719 		} else {
720 			/*
721 			 * poke line discipline driver if any for more data
722 			 * may or may not get more data to write
723 			 * for now, say not busy
724 			 */
725 			ifx_spi_power_state_clear(ifx_dev,
726 						  IFX_SPI_POWER_DATA_PENDING);
727 			tty_port_tty_wakeup(&ifx_dev->tty_port);
728 		}
729 	}
730 }
731 
732 /**
733  *	ifx_spio_io		-	I/O tasklet
734  *	@data: our SPI device
735  *
736  *	Queue data for transmission if possible and then kick off the
737  *	transfer.
738  */
ifx_spi_io(unsigned long data)739 static void ifx_spi_io(unsigned long data)
740 {
741 	int retval;
742 	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
743 
744 	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
745 		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
746 		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
747 			ifx_dev->gpio.unack_srdy_int_nb--;
748 
749 		ifx_spi_prepare_tx_buffer(ifx_dev);
750 
751 		spi_message_init(&ifx_dev->spi_msg);
752 		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
753 
754 		ifx_dev->spi_msg.context = ifx_dev;
755 		ifx_dev->spi_msg.complete = ifx_spi_complete;
756 
757 		/* set up our spi transfer */
758 		/* note len is BYTES, not transfers */
759 		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
760 		ifx_dev->spi_xfer.cs_change = 0;
761 		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
762 		/* ifx_dev->spi_xfer.speed_hz = 390625; */
763 		ifx_dev->spi_xfer.bits_per_word =
764 			ifx_dev->spi_dev->bits_per_word;
765 
766 		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
767 		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
768 
769 		/*
770 		 * setup dma pointers
771 		 */
772 		if (ifx_dev->use_dma) {
773 			ifx_dev->spi_msg.is_dma_mapped = 1;
774 			ifx_dev->tx_dma = ifx_dev->tx_bus;
775 			ifx_dev->rx_dma = ifx_dev->rx_bus;
776 			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
777 			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
778 		} else {
779 			ifx_dev->spi_msg.is_dma_mapped = 0;
780 			ifx_dev->tx_dma = (dma_addr_t)0;
781 			ifx_dev->rx_dma = (dma_addr_t)0;
782 			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
783 			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
784 		}
785 
786 		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
787 
788 		/* Assert MRDY. This may have already been done by the write
789 		 * routine.
790 		 */
791 		mrdy_assert(ifx_dev);
792 
793 		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
794 		if (retval) {
795 			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
796 				  &ifx_dev->flags);
797 			tasklet_schedule(&ifx_dev->io_work_tasklet);
798 			return;
799 		}
800 	} else
801 		ifx_dev->write_pending = 1;
802 }
803 
804 /**
805  *	ifx_spi_free_port	-	free up the tty side
806  *	@ifx_dev: IFX device going away
807  *
808  *	Unregister and free up a port when the device goes away
809  */
ifx_spi_free_port(struct ifx_spi_device * ifx_dev)810 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
811 {
812 	if (ifx_dev->tty_dev)
813 		tty_unregister_device(tty_drv, ifx_dev->minor);
814 	tty_port_destroy(&ifx_dev->tty_port);
815 	kfifo_free(&ifx_dev->tx_fifo);
816 }
817 
818 /**
819  *	ifx_spi_create_port	-	create a new port
820  *	@ifx_dev: our spi device
821  *
822  *	Allocate and initialise the tty port that goes with this interface
823  *	and add it to the tty layer so that it can be opened.
824  */
ifx_spi_create_port(struct ifx_spi_device * ifx_dev)825 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
826 {
827 	int ret = 0;
828 	struct tty_port *pport = &ifx_dev->tty_port;
829 
830 	spin_lock_init(&ifx_dev->fifo_lock);
831 	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
832 		&ifx_spi_key, 0);
833 
834 	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
835 		ret = -ENOMEM;
836 		goto error_ret;
837 	}
838 
839 	tty_port_init(pport);
840 	pport->ops = &ifx_tty_port_ops;
841 	ifx_dev->minor = IFX_SPI_TTY_ID;
842 	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
843 			ifx_dev->minor, &ifx_dev->spi_dev->dev);
844 	if (IS_ERR(ifx_dev->tty_dev)) {
845 		dev_dbg(&ifx_dev->spi_dev->dev,
846 			"%s: registering tty device failed", __func__);
847 		ret = PTR_ERR(ifx_dev->tty_dev);
848 		goto error_port;
849 	}
850 	return 0;
851 
852 error_port:
853 	tty_port_destroy(pport);
854 error_ret:
855 	ifx_spi_free_port(ifx_dev);
856 	return ret;
857 }
858 
859 /**
860  *	ifx_spi_handle_srdy		-	handle SRDY
861  *	@ifx_dev: device asserting SRDY
862  *
863  *	Check our device state and see what we need to kick off when SRDY
864  *	is asserted. This usually means killing the timer and firing off the
865  *	I/O processing.
866  */
ifx_spi_handle_srdy(struct ifx_spi_device * ifx_dev)867 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
868 {
869 	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
870 		del_timer(&ifx_dev->spi_timer);
871 		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
872 	}
873 
874 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
875 
876 	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
877 		tasklet_schedule(&ifx_dev->io_work_tasklet);
878 	else
879 		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
880 }
881 
882 /**
883  *	ifx_spi_srdy_interrupt	-	SRDY asserted
884  *	@irq: our IRQ number
885  *	@dev: our ifx device
886  *
887  *	The modem asserted SRDY. Handle the srdy event
888  */
ifx_spi_srdy_interrupt(int irq,void * dev)889 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
890 {
891 	struct ifx_spi_device *ifx_dev = dev;
892 	ifx_dev->gpio.unack_srdy_int_nb++;
893 	ifx_spi_handle_srdy(ifx_dev);
894 	return IRQ_HANDLED;
895 }
896 
897 /**
898  *	ifx_spi_reset_interrupt	-	Modem has changed reset state
899  *	@irq: interrupt number
900  *	@dev: our device pointer
901  *
902  *	The modem has either entered or left reset state. Check the GPIO
903  *	line to see which.
904  *
905  *	FIXME: review locking on MR_INPROGRESS versus
906  *	parallel unsolicited reset/solicited reset
907  */
ifx_spi_reset_interrupt(int irq,void * dev)908 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
909 {
910 	struct ifx_spi_device *ifx_dev = dev;
911 	int val = gpio_get_value(ifx_dev->gpio.reset_out);
912 	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
913 
914 	if (val == 0) {
915 		/* entered reset */
916 		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
917 		if (!solreset) {
918 			/* unsolicited reset  */
919 			tty_port_tty_hangup(&ifx_dev->tty_port, false);
920 		}
921 	} else {
922 		/* exited reset */
923 		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
924 		if (solreset) {
925 			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
926 			wake_up(&ifx_dev->mdm_reset_wait);
927 		}
928 	}
929 	return IRQ_HANDLED;
930 }
931 
932 /**
933  *	ifx_spi_free_device - free device
934  *	@ifx_dev: device to free
935  *
936  *	Free the IFX device
937  */
ifx_spi_free_device(struct ifx_spi_device * ifx_dev)938 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
939 {
940 	ifx_spi_free_port(ifx_dev);
941 	dma_free_coherent(&ifx_dev->spi_dev->dev,
942 				IFX_SPI_TRANSFER_SIZE,
943 				ifx_dev->tx_buffer,
944 				ifx_dev->tx_bus);
945 	dma_free_coherent(&ifx_dev->spi_dev->dev,
946 				IFX_SPI_TRANSFER_SIZE,
947 				ifx_dev->rx_buffer,
948 				ifx_dev->rx_bus);
949 }
950 
951 /**
952  *	ifx_spi_reset	-	reset modem
953  *	@ifx_dev: modem to reset
954  *
955  *	Perform a reset on the modem
956  */
ifx_spi_reset(struct ifx_spi_device * ifx_dev)957 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
958 {
959 	int ret;
960 	/*
961 	 * set up modem power, reset
962 	 *
963 	 * delays are required on some platforms for the modem
964 	 * to reset properly
965 	 */
966 	set_bit(MR_START, &ifx_dev->mdm_reset_state);
967 	gpio_set_value(ifx_dev->gpio.po, 0);
968 	gpio_set_value(ifx_dev->gpio.reset, 0);
969 	msleep(25);
970 	gpio_set_value(ifx_dev->gpio.reset, 1);
971 	msleep(1);
972 	gpio_set_value(ifx_dev->gpio.po, 1);
973 	msleep(1);
974 	gpio_set_value(ifx_dev->gpio.po, 0);
975 	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
976 				 test_bit(MR_COMPLETE,
977 					  &ifx_dev->mdm_reset_state),
978 				 IFX_RESET_TIMEOUT);
979 	if (!ret)
980 		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
981 			 ifx_dev->mdm_reset_state);
982 
983 	ifx_dev->mdm_reset_state = 0;
984 	return ret;
985 }
986 
987 /**
988  *	ifx_spi_spi_probe	-	probe callback
989  *	@spi: our possible matching SPI device
990  *
991  *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
992  *	GPIO setup.
993  *
994  *	FIXME:
995  *	-	Support for multiple devices
996  *	-	Split out MID specific GPIO handling eventually
997  */
998 
ifx_spi_spi_probe(struct spi_device * spi)999 static int ifx_spi_spi_probe(struct spi_device *spi)
1000 {
1001 	int ret;
1002 	int srdy;
1003 	struct ifx_modem_platform_data *pl_data;
1004 	struct ifx_spi_device *ifx_dev;
1005 
1006 	if (saved_ifx_dev) {
1007 		dev_dbg(&spi->dev, "ignoring subsequent detection");
1008 		return -ENODEV;
1009 	}
1010 
1011 	pl_data = dev_get_platdata(&spi->dev);
1012 	if (!pl_data) {
1013 		dev_err(&spi->dev, "missing platform data!");
1014 		return -ENODEV;
1015 	}
1016 
1017 	/* initialize structure to hold our device variables */
1018 	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1019 	if (!ifx_dev) {
1020 		dev_err(&spi->dev, "spi device allocation failed");
1021 		return -ENOMEM;
1022 	}
1023 	saved_ifx_dev = ifx_dev;
1024 	ifx_dev->spi_dev = spi;
1025 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1026 	spin_lock_init(&ifx_dev->write_lock);
1027 	spin_lock_init(&ifx_dev->power_lock);
1028 	ifx_dev->power_status = 0;
1029 	init_timer(&ifx_dev->spi_timer);
1030 	ifx_dev->spi_timer.function = ifx_spi_timeout;
1031 	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1032 	ifx_dev->modem = pl_data->modem_type;
1033 	ifx_dev->use_dma = pl_data->use_dma;
1034 	ifx_dev->max_hz = pl_data->max_hz;
1035 	/* initialize spi mode, etc */
1036 	spi->max_speed_hz = ifx_dev->max_hz;
1037 	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1038 	spi->bits_per_word = spi_bpw;
1039 	ret = spi_setup(spi);
1040 	if (ret) {
1041 		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1042 		return -ENODEV;
1043 	}
1044 
1045 	/* init swap_buf function according to word width configuration */
1046 	if (spi->bits_per_word == 32)
1047 		ifx_dev->swap_buf = swap_buf_32;
1048 	else if (spi->bits_per_word == 16)
1049 		ifx_dev->swap_buf = swap_buf_16;
1050 	else
1051 		ifx_dev->swap_buf = swap_buf_8;
1052 
1053 	/* ensure SPI protocol flags are initialized to enable transfer */
1054 	ifx_dev->spi_more = 0;
1055 	ifx_dev->spi_slave_cts = 0;
1056 
1057 	/*initialize transfer and dma buffers */
1058 	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1059 				IFX_SPI_TRANSFER_SIZE,
1060 				&ifx_dev->tx_bus,
1061 				GFP_KERNEL);
1062 	if (!ifx_dev->tx_buffer) {
1063 		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1064 		ret = -ENOMEM;
1065 		goto error_ret;
1066 	}
1067 	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1068 				IFX_SPI_TRANSFER_SIZE,
1069 				&ifx_dev->rx_bus,
1070 				GFP_KERNEL);
1071 	if (!ifx_dev->rx_buffer) {
1072 		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1073 		ret = -ENOMEM;
1074 		goto error_ret;
1075 	}
1076 
1077 	/* initialize waitq for modem reset */
1078 	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1079 
1080 	spi_set_drvdata(spi, ifx_dev);
1081 	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1082 						(unsigned long)ifx_dev);
1083 
1084 	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1085 
1086 	/* create our tty port */
1087 	ret = ifx_spi_create_port(ifx_dev);
1088 	if (ret != 0) {
1089 		dev_err(&spi->dev, "create default tty port failed");
1090 		goto error_ret;
1091 	}
1092 
1093 	ifx_dev->gpio.reset = pl_data->rst_pmu;
1094 	ifx_dev->gpio.po = pl_data->pwr_on;
1095 	ifx_dev->gpio.mrdy = pl_data->mrdy;
1096 	ifx_dev->gpio.srdy = pl_data->srdy;
1097 	ifx_dev->gpio.reset_out = pl_data->rst_out;
1098 
1099 	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1100 		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1101 		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1102 
1103 	/* Configure gpios */
1104 	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1105 	if (ret < 0) {
1106 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1107 			ifx_dev->gpio.reset);
1108 		goto error_ret;
1109 	}
1110 	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1111 	ret += gpio_export(ifx_dev->gpio.reset, 1);
1112 	if (ret) {
1113 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1114 			ifx_dev->gpio.reset);
1115 		ret = -EBUSY;
1116 		goto error_ret2;
1117 	}
1118 
1119 	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1120 	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1121 	ret += gpio_export(ifx_dev->gpio.po, 1);
1122 	if (ret) {
1123 		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1124 			ifx_dev->gpio.po);
1125 		ret = -EBUSY;
1126 		goto error_ret3;
1127 	}
1128 
1129 	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1130 	if (ret < 0) {
1131 		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1132 			ifx_dev->gpio.mrdy);
1133 		goto error_ret3;
1134 	}
1135 	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1136 	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1137 	if (ret) {
1138 		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1139 			ifx_dev->gpio.mrdy);
1140 		ret = -EBUSY;
1141 		goto error_ret4;
1142 	}
1143 
1144 	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1145 	if (ret < 0) {
1146 		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1147 			ifx_dev->gpio.srdy);
1148 		ret = -EBUSY;
1149 		goto error_ret4;
1150 	}
1151 	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1152 	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1153 	if (ret) {
1154 		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1155 			ifx_dev->gpio.srdy);
1156 		ret = -EBUSY;
1157 		goto error_ret5;
1158 	}
1159 
1160 	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1161 	if (ret < 0) {
1162 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1163 			ifx_dev->gpio.reset_out);
1164 		goto error_ret5;
1165 	}
1166 	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1167 	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1168 	if (ret) {
1169 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1170 			ifx_dev->gpio.reset_out);
1171 		ret = -EBUSY;
1172 		goto error_ret6;
1173 	}
1174 
1175 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1176 			  ifx_spi_reset_interrupt,
1177 			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1178 		(void *)ifx_dev);
1179 	if (ret) {
1180 		dev_err(&spi->dev, "Unable to get irq %x\n",
1181 			gpio_to_irq(ifx_dev->gpio.reset_out));
1182 		goto error_ret6;
1183 	}
1184 
1185 	ret = ifx_spi_reset(ifx_dev);
1186 
1187 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1188 			  ifx_spi_srdy_interrupt,
1189 			  IRQF_TRIGGER_RISING, DRVNAME,
1190 			  (void *)ifx_dev);
1191 	if (ret) {
1192 		dev_err(&spi->dev, "Unable to get irq %x",
1193 			gpio_to_irq(ifx_dev->gpio.srdy));
1194 		goto error_ret7;
1195 	}
1196 
1197 	/* set pm runtime power state and register with power system */
1198 	pm_runtime_set_active(&spi->dev);
1199 	pm_runtime_enable(&spi->dev);
1200 
1201 	/* handle case that modem is already signaling SRDY */
1202 	/* no outgoing tty open at this point, this just satisfies the
1203 	 * modem's read and should reset communication properly
1204 	 */
1205 	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1206 
1207 	if (srdy) {
1208 		mrdy_assert(ifx_dev);
1209 		ifx_spi_handle_srdy(ifx_dev);
1210 	} else
1211 		mrdy_set_low(ifx_dev);
1212 	return 0;
1213 
1214 error_ret7:
1215 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1216 error_ret6:
1217 	gpio_free(ifx_dev->gpio.srdy);
1218 error_ret5:
1219 	gpio_free(ifx_dev->gpio.mrdy);
1220 error_ret4:
1221 	gpio_free(ifx_dev->gpio.reset);
1222 error_ret3:
1223 	gpio_free(ifx_dev->gpio.po);
1224 error_ret2:
1225 	gpio_free(ifx_dev->gpio.reset_out);
1226 error_ret:
1227 	ifx_spi_free_device(ifx_dev);
1228 	saved_ifx_dev = NULL;
1229 	return ret;
1230 }
1231 
1232 /**
1233  *	ifx_spi_spi_remove	-	SPI device was removed
1234  *	@spi: SPI device
1235  *
1236  *	FIXME: We should be shutting the device down here not in
1237  *	the module unload path.
1238  */
1239 
ifx_spi_spi_remove(struct spi_device * spi)1240 static int ifx_spi_spi_remove(struct spi_device *spi)
1241 {
1242 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1243 	/* stop activity */
1244 	tasklet_kill(&ifx_dev->io_work_tasklet);
1245 	/* free irq */
1246 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1247 	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1248 
1249 	gpio_free(ifx_dev->gpio.srdy);
1250 	gpio_free(ifx_dev->gpio.mrdy);
1251 	gpio_free(ifx_dev->gpio.reset);
1252 	gpio_free(ifx_dev->gpio.po);
1253 	gpio_free(ifx_dev->gpio.reset_out);
1254 
1255 	/* free allocations */
1256 	ifx_spi_free_device(ifx_dev);
1257 
1258 	saved_ifx_dev = NULL;
1259 	return 0;
1260 }
1261 
1262 /**
1263  *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1264  *	@spi: SPI device
1265  *
1266  *	No action needs to be taken here
1267  */
1268 
ifx_spi_spi_shutdown(struct spi_device * spi)1269 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1270 {
1271 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1272 
1273 	ifx_modem_power_off(ifx_dev);
1274 }
1275 
1276 /*
1277  * various suspends and resumes have nothing to do
1278  * no hardware to save state for
1279  */
1280 
1281 /**
1282  *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1283  *	@dev: device being suspended
1284  *
1285  *	Suspend the modem. No action needed on Intel MID platforms, may
1286  *	need extending for other systems.
1287  */
ifx_spi_pm_suspend(struct device * dev)1288 static int ifx_spi_pm_suspend(struct device *dev)
1289 {
1290 	return 0;
1291 }
1292 
1293 /**
1294  *	ifx_spi_pm_resume	-	resume modem on system resume
1295  *	@dev: device being suspended
1296  *
1297  *	Allow the modem to resume. No action needed.
1298  *
1299  *	FIXME: do we need to reset anything here ?
1300  */
ifx_spi_pm_resume(struct device * dev)1301 static int ifx_spi_pm_resume(struct device *dev)
1302 {
1303 	return 0;
1304 }
1305 
1306 /**
1307  *	ifx_spi_pm_runtime_resume	-	suspend modem
1308  *	@dev: device being suspended
1309  *
1310  *	Allow the modem to resume. No action needed.
1311  */
ifx_spi_pm_runtime_resume(struct device * dev)1312 static int ifx_spi_pm_runtime_resume(struct device *dev)
1313 {
1314 	return 0;
1315 }
1316 
1317 /**
1318  *	ifx_spi_pm_runtime_suspend	-	suspend modem
1319  *	@dev: device being suspended
1320  *
1321  *	Allow the modem to suspend and thus suspend to continue up the
1322  *	device tree.
1323  */
ifx_spi_pm_runtime_suspend(struct device * dev)1324 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1325 {
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ifx_spi_pm_runtime_idle		-	check if modem idle
1331  *	@dev: our device
1332  *
1333  *	Check conditions and queue runtime suspend if idle.
1334  */
ifx_spi_pm_runtime_idle(struct device * dev)1335 static int ifx_spi_pm_runtime_idle(struct device *dev)
1336 {
1337 	struct spi_device *spi = to_spi_device(dev);
1338 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1339 
1340 	if (!ifx_dev->power_status)
1341 		pm_runtime_suspend(dev);
1342 
1343 	return 0;
1344 }
1345 
1346 static const struct dev_pm_ops ifx_spi_pm = {
1347 	.resume = ifx_spi_pm_resume,
1348 	.suspend = ifx_spi_pm_suspend,
1349 	.runtime_resume = ifx_spi_pm_runtime_resume,
1350 	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1351 	.runtime_idle = ifx_spi_pm_runtime_idle
1352 };
1353 
1354 static const struct spi_device_id ifx_id_table[] = {
1355 	{"ifx6160", 0},
1356 	{"ifx6260", 0},
1357 	{ }
1358 };
1359 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1360 
1361 /* spi operations */
1362 static struct spi_driver ifx_spi_driver = {
1363 	.driver = {
1364 		.name = DRVNAME,
1365 		.pm = &ifx_spi_pm,
1366 		.owner = THIS_MODULE},
1367 	.probe = ifx_spi_spi_probe,
1368 	.shutdown = ifx_spi_spi_shutdown,
1369 	.remove = ifx_spi_spi_remove,
1370 	.id_table = ifx_id_table
1371 };
1372 
1373 /**
1374  *	ifx_spi_exit	-	module exit
1375  *
1376  *	Unload the module.
1377  */
1378 
ifx_spi_exit(void)1379 static void __exit ifx_spi_exit(void)
1380 {
1381 	/* unregister */
1382 	spi_unregister_driver((void *)&ifx_spi_driver);
1383 	tty_unregister_driver(tty_drv);
1384 	put_tty_driver(tty_drv);
1385 	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1386 }
1387 
1388 /**
1389  *	ifx_spi_init		-	module entry point
1390  *
1391  *	Initialise the SPI and tty interfaces for the IFX SPI driver
1392  *	We need to initialize upper-edge spi driver after the tty
1393  *	driver because otherwise the spi probe will race
1394  */
1395 
ifx_spi_init(void)1396 static int __init ifx_spi_init(void)
1397 {
1398 	int result;
1399 
1400 	tty_drv = alloc_tty_driver(1);
1401 	if (!tty_drv) {
1402 		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1403 		return -ENOMEM;
1404 	}
1405 
1406 	tty_drv->driver_name = DRVNAME;
1407 	tty_drv->name = TTYNAME;
1408 	tty_drv->minor_start = IFX_SPI_TTY_ID;
1409 	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1410 	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1411 	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1412 	tty_drv->init_termios = tty_std_termios;
1413 
1414 	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1415 
1416 	result = tty_register_driver(tty_drv);
1417 	if (result) {
1418 		pr_err("%s: tty_register_driver failed(%d)",
1419 			DRVNAME, result);
1420 		goto err_free_tty;
1421 	}
1422 
1423 	result = spi_register_driver((void *)&ifx_spi_driver);
1424 	if (result) {
1425 		pr_err("%s: spi_register_driver failed(%d)",
1426 			DRVNAME, result);
1427 		goto err_unreg_tty;
1428 	}
1429 
1430 	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1431 	if (result) {
1432 		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1433 			DRVNAME, result);
1434 		goto err_unreg_spi;
1435 	}
1436 
1437 	return 0;
1438 err_unreg_spi:
1439 	spi_unregister_driver((void *)&ifx_spi_driver);
1440 err_unreg_tty:
1441 	tty_unregister_driver(tty_drv);
1442 err_free_tty:
1443 	put_tty_driver(tty_drv);
1444 
1445 	return result;
1446 }
1447 
1448 module_init(ifx_spi_init);
1449 module_exit(ifx_spi_exit);
1450 
1451 MODULE_AUTHOR("Intel");
1452 MODULE_DESCRIPTION("IFX6x60 spi driver");
1453 MODULE_LICENSE("GPL");
1454 MODULE_INFO(Version, "0.1-IFX6x60");
1455