1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Ananda Venkatarman <mansarov@us.ibm.com>
24 * Modifications:
25 * 01/19/06: changed jsm_input routine to use the dynamically allocated
26 * tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27 ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h> /* For udelay */
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34
35 #include "jsm.h"
36
37 static DECLARE_BITMAP(linemap, MAXLINES);
38
39 static void jsm_carrier(struct jsm_channel *ch);
40
jsm_get_mstat(struct jsm_channel * ch)41 static inline int jsm_get_mstat(struct jsm_channel *ch)
42 {
43 unsigned char mstat;
44 unsigned result;
45
46 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "start\n");
47
48 mstat = (ch->ch_mostat | ch->ch_mistat);
49
50 result = 0;
51
52 if (mstat & UART_MCR_DTR)
53 result |= TIOCM_DTR;
54 if (mstat & UART_MCR_RTS)
55 result |= TIOCM_RTS;
56 if (mstat & UART_MSR_CTS)
57 result |= TIOCM_CTS;
58 if (mstat & UART_MSR_DSR)
59 result |= TIOCM_DSR;
60 if (mstat & UART_MSR_RI)
61 result |= TIOCM_RI;
62 if (mstat & UART_MSR_DCD)
63 result |= TIOCM_CD;
64
65 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
66 return result;
67 }
68
jsm_tty_tx_empty(struct uart_port * port)69 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
70 {
71 return TIOCSER_TEMT;
72 }
73
74 /*
75 * Return modem signals to ld.
76 */
jsm_tty_get_mctrl(struct uart_port * port)77 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
78 {
79 int result;
80 struct jsm_channel *channel = (struct jsm_channel *)port;
81
82 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
83
84 result = jsm_get_mstat(channel);
85
86 if (result < 0)
87 return -ENXIO;
88
89 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
90
91 return result;
92 }
93
94 /*
95 * jsm_set_modem_info()
96 *
97 * Set modem signals, called by ld.
98 */
jsm_tty_set_mctrl(struct uart_port * port,unsigned int mctrl)99 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
100 {
101 struct jsm_channel *channel = (struct jsm_channel *)port;
102
103 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
104
105 if (mctrl & TIOCM_RTS)
106 channel->ch_mostat |= UART_MCR_RTS;
107 else
108 channel->ch_mostat &= ~UART_MCR_RTS;
109
110 if (mctrl & TIOCM_DTR)
111 channel->ch_mostat |= UART_MCR_DTR;
112 else
113 channel->ch_mostat &= ~UART_MCR_DTR;
114
115 channel->ch_bd->bd_ops->assert_modem_signals(channel);
116
117 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
118 udelay(10);
119 }
120
121 /*
122 * jsm_tty_write()
123 *
124 * Take data from the user or kernel and send it out to the FEP.
125 * In here exists all the Transparent Print magic as well.
126 */
jsm_tty_write(struct uart_port * port)127 static void jsm_tty_write(struct uart_port *port)
128 {
129 struct jsm_channel *channel;
130 channel = container_of(port, struct jsm_channel, uart_port);
131 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
132 }
133
jsm_tty_start_tx(struct uart_port * port)134 static void jsm_tty_start_tx(struct uart_port *port)
135 {
136 struct jsm_channel *channel = (struct jsm_channel *)port;
137
138 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
139
140 channel->ch_flags &= ~(CH_STOP);
141 jsm_tty_write(port);
142
143 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
144 }
145
jsm_tty_stop_tx(struct uart_port * port)146 static void jsm_tty_stop_tx(struct uart_port *port)
147 {
148 struct jsm_channel *channel = (struct jsm_channel *)port;
149
150 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "start\n");
151
152 channel->ch_flags |= (CH_STOP);
153
154 jsm_dbg(IOCTL, &channel->ch_bd->pci_dev, "finish\n");
155 }
156
jsm_tty_send_xchar(struct uart_port * port,char ch)157 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
158 {
159 unsigned long lock_flags;
160 struct jsm_channel *channel = (struct jsm_channel *)port;
161 struct ktermios *termios;
162
163 spin_lock_irqsave(&port->lock, lock_flags);
164 termios = &port->state->port.tty->termios;
165 if (ch == termios->c_cc[VSTART])
166 channel->ch_bd->bd_ops->send_start_character(channel);
167
168 if (ch == termios->c_cc[VSTOP])
169 channel->ch_bd->bd_ops->send_stop_character(channel);
170 spin_unlock_irqrestore(&port->lock, lock_flags);
171 }
172
jsm_tty_stop_rx(struct uart_port * port)173 static void jsm_tty_stop_rx(struct uart_port *port)
174 {
175 struct jsm_channel *channel = (struct jsm_channel *)port;
176
177 channel->ch_bd->bd_ops->disable_receiver(channel);
178 }
179
jsm_tty_break(struct uart_port * port,int break_state)180 static void jsm_tty_break(struct uart_port *port, int break_state)
181 {
182 unsigned long lock_flags;
183 struct jsm_channel *channel = (struct jsm_channel *)port;
184
185 spin_lock_irqsave(&port->lock, lock_flags);
186 if (break_state == -1)
187 channel->ch_bd->bd_ops->send_break(channel);
188 else
189 channel->ch_bd->bd_ops->clear_break(channel, 0);
190
191 spin_unlock_irqrestore(&port->lock, lock_flags);
192 }
193
jsm_tty_open(struct uart_port * port)194 static int jsm_tty_open(struct uart_port *port)
195 {
196 struct jsm_board *brd;
197 struct jsm_channel *channel = (struct jsm_channel *)port;
198 struct ktermios *termios;
199
200 /* Get board pointer from our array of majors we have allocated */
201 brd = channel->ch_bd;
202
203 /*
204 * Allocate channel buffers for read/write/error.
205 * Set flag, so we don't get trounced on.
206 */
207 channel->ch_flags |= (CH_OPENING);
208
209 /* Drop locks, as malloc with GFP_KERNEL can sleep */
210
211 if (!channel->ch_rqueue) {
212 channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
213 if (!channel->ch_rqueue) {
214 jsm_dbg(INIT, &channel->ch_bd->pci_dev,
215 "unable to allocate read queue buf\n");
216 return -ENOMEM;
217 }
218 }
219 if (!channel->ch_equeue) {
220 channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
221 if (!channel->ch_equeue) {
222 jsm_dbg(INIT, &channel->ch_bd->pci_dev,
223 "unable to allocate error queue buf\n");
224 return -ENOMEM;
225 }
226 }
227
228 channel->ch_flags &= ~(CH_OPENING);
229 /*
230 * Initialize if neither terminal is open.
231 */
232 jsm_dbg(OPEN, &channel->ch_bd->pci_dev,
233 "jsm_open: initializing channel in open...\n");
234
235 /*
236 * Flush input queues.
237 */
238 channel->ch_r_head = channel->ch_r_tail = 0;
239 channel->ch_e_head = channel->ch_e_tail = 0;
240
241 brd->bd_ops->flush_uart_write(channel);
242 brd->bd_ops->flush_uart_read(channel);
243
244 channel->ch_flags = 0;
245 channel->ch_cached_lsr = 0;
246 channel->ch_stops_sent = 0;
247
248 termios = &port->state->port.tty->termios;
249 channel->ch_c_cflag = termios->c_cflag;
250 channel->ch_c_iflag = termios->c_iflag;
251 channel->ch_c_oflag = termios->c_oflag;
252 channel->ch_c_lflag = termios->c_lflag;
253 channel->ch_startc = termios->c_cc[VSTART];
254 channel->ch_stopc = termios->c_cc[VSTOP];
255
256 /* Tell UART to init itself */
257 brd->bd_ops->uart_init(channel);
258
259 /*
260 * Run param in case we changed anything
261 */
262 brd->bd_ops->param(channel);
263
264 jsm_carrier(channel);
265
266 channel->ch_open_count++;
267
268 jsm_dbg(OPEN, &channel->ch_bd->pci_dev, "finish\n");
269 return 0;
270 }
271
jsm_tty_close(struct uart_port * port)272 static void jsm_tty_close(struct uart_port *port)
273 {
274 struct jsm_board *bd;
275 struct ktermios *ts;
276 struct jsm_channel *channel = (struct jsm_channel *)port;
277
278 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "start\n");
279
280 bd = channel->ch_bd;
281 ts = &port->state->port.tty->termios;
282
283 channel->ch_flags &= ~(CH_STOPI);
284
285 channel->ch_open_count--;
286
287 /*
288 * If we have HUPCL set, lower DTR and RTS
289 */
290 if (channel->ch_c_cflag & HUPCL) {
291 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev,
292 "Close. HUPCL set, dropping DTR/RTS\n");
293
294 /* Drop RTS/DTR */
295 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
296 bd->bd_ops->assert_modem_signals(channel);
297 }
298
299 /* Turn off UART interrupts for this port */
300 channel->ch_bd->bd_ops->uart_off(channel);
301
302 jsm_dbg(CLOSE, &channel->ch_bd->pci_dev, "finish\n");
303 }
304
jsm_tty_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old_termios)305 static void jsm_tty_set_termios(struct uart_port *port,
306 struct ktermios *termios,
307 struct ktermios *old_termios)
308 {
309 unsigned long lock_flags;
310 struct jsm_channel *channel = (struct jsm_channel *)port;
311
312 spin_lock_irqsave(&port->lock, lock_flags);
313 channel->ch_c_cflag = termios->c_cflag;
314 channel->ch_c_iflag = termios->c_iflag;
315 channel->ch_c_oflag = termios->c_oflag;
316 channel->ch_c_lflag = termios->c_lflag;
317 channel->ch_startc = termios->c_cc[VSTART];
318 channel->ch_stopc = termios->c_cc[VSTOP];
319
320 channel->ch_bd->bd_ops->param(channel);
321 jsm_carrier(channel);
322 spin_unlock_irqrestore(&port->lock, lock_flags);
323 }
324
jsm_tty_type(struct uart_port * port)325 static const char *jsm_tty_type(struct uart_port *port)
326 {
327 return "jsm";
328 }
329
jsm_tty_release_port(struct uart_port * port)330 static void jsm_tty_release_port(struct uart_port *port)
331 {
332 }
333
jsm_tty_request_port(struct uart_port * port)334 static int jsm_tty_request_port(struct uart_port *port)
335 {
336 return 0;
337 }
338
jsm_config_port(struct uart_port * port,int flags)339 static void jsm_config_port(struct uart_port *port, int flags)
340 {
341 port->type = PORT_JSM;
342 }
343
344 static struct uart_ops jsm_ops = {
345 .tx_empty = jsm_tty_tx_empty,
346 .set_mctrl = jsm_tty_set_mctrl,
347 .get_mctrl = jsm_tty_get_mctrl,
348 .stop_tx = jsm_tty_stop_tx,
349 .start_tx = jsm_tty_start_tx,
350 .send_xchar = jsm_tty_send_xchar,
351 .stop_rx = jsm_tty_stop_rx,
352 .break_ctl = jsm_tty_break,
353 .startup = jsm_tty_open,
354 .shutdown = jsm_tty_close,
355 .set_termios = jsm_tty_set_termios,
356 .type = jsm_tty_type,
357 .release_port = jsm_tty_release_port,
358 .request_port = jsm_tty_request_port,
359 .config_port = jsm_config_port,
360 };
361
362 /*
363 * jsm_tty_init()
364 *
365 * Init the tty subsystem. Called once per board after board has been
366 * downloaded and init'ed.
367 */
jsm_tty_init(struct jsm_board * brd)368 int jsm_tty_init(struct jsm_board *brd)
369 {
370 int i;
371 void __iomem *vaddr;
372 struct jsm_channel *ch;
373
374 if (!brd)
375 return -ENXIO;
376
377 jsm_dbg(INIT, &brd->pci_dev, "start\n");
378
379 /*
380 * Initialize board structure elements.
381 */
382
383 brd->nasync = brd->maxports;
384
385 /*
386 * Allocate channel memory that might not have been allocated
387 * when the driver was first loaded.
388 */
389 for (i = 0; i < brd->nasync; i++) {
390 if (!brd->channels[i]) {
391
392 /*
393 * Okay to malloc with GFP_KERNEL, we are not at
394 * interrupt context, and there are no locks held.
395 */
396 brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
397 if (!brd->channels[i]) {
398 jsm_dbg(CORE, &brd->pci_dev,
399 "%s:%d Unable to allocate memory for channel struct\n",
400 __FILE__, __LINE__);
401 }
402 }
403 }
404
405 ch = brd->channels[0];
406 vaddr = brd->re_map_membase;
407
408 /* Set up channel variables */
409 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
410
411 if (!brd->channels[i])
412 continue;
413
414 spin_lock_init(&ch->ch_lock);
415
416 if (brd->bd_uart_offset == 0x200)
417 ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
418
419 ch->ch_bd = brd;
420 ch->ch_portnum = i;
421
422 /* .25 second delay */
423 ch->ch_close_delay = 250;
424
425 init_waitqueue_head(&ch->ch_flags_wait);
426 }
427
428 jsm_dbg(INIT, &brd->pci_dev, "finish\n");
429 return 0;
430 }
431
jsm_uart_port_init(struct jsm_board * brd)432 int jsm_uart_port_init(struct jsm_board *brd)
433 {
434 int i, rc;
435 unsigned int line;
436 struct jsm_channel *ch;
437
438 if (!brd)
439 return -ENXIO;
440
441 jsm_dbg(INIT, &brd->pci_dev, "start\n");
442
443 /*
444 * Initialize board structure elements.
445 */
446
447 brd->nasync = brd->maxports;
448
449 /* Set up channel variables */
450 for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
451
452 if (!brd->channels[i])
453 continue;
454
455 brd->channels[i]->uart_port.irq = brd->irq;
456 brd->channels[i]->uart_port.uartclk = 14745600;
457 brd->channels[i]->uart_port.type = PORT_JSM;
458 brd->channels[i]->uart_port.iotype = UPIO_MEM;
459 brd->channels[i]->uart_port.membase = brd->re_map_membase;
460 brd->channels[i]->uart_port.fifosize = 16;
461 brd->channels[i]->uart_port.ops = &jsm_ops;
462 line = find_first_zero_bit(linemap, MAXLINES);
463 if (line >= MAXLINES) {
464 printk(KERN_INFO "jsm: linemap is full, added device failed\n");
465 continue;
466 } else
467 set_bit(line, linemap);
468 brd->channels[i]->uart_port.line = line;
469 rc = uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port);
470 if (rc){
471 printk(KERN_INFO "jsm: Port %d failed. Aborting...\n", i);
472 return rc;
473 }
474 else
475 printk(KERN_INFO "jsm: Port %d added\n", i);
476 }
477
478 jsm_dbg(INIT, &brd->pci_dev, "finish\n");
479 return 0;
480 }
481
jsm_remove_uart_port(struct jsm_board * brd)482 int jsm_remove_uart_port(struct jsm_board *brd)
483 {
484 int i;
485 struct jsm_channel *ch;
486
487 if (!brd)
488 return -ENXIO;
489
490 jsm_dbg(INIT, &brd->pci_dev, "start\n");
491
492 /*
493 * Initialize board structure elements.
494 */
495
496 brd->nasync = brd->maxports;
497
498 /* Set up channel variables */
499 for (i = 0; i < brd->nasync; i++) {
500
501 if (!brd->channels[i])
502 continue;
503
504 ch = brd->channels[i];
505
506 clear_bit(ch->uart_port.line, linemap);
507 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
508 }
509
510 jsm_dbg(INIT, &brd->pci_dev, "finish\n");
511 return 0;
512 }
513
jsm_input(struct jsm_channel * ch)514 void jsm_input(struct jsm_channel *ch)
515 {
516 struct jsm_board *bd;
517 struct tty_struct *tp;
518 struct tty_port *port;
519 u32 rmask;
520 u16 head;
521 u16 tail;
522 int data_len;
523 unsigned long lock_flags;
524 int len = 0;
525 int n = 0;
526 int s = 0;
527 int i = 0;
528
529 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
530
531 if (!ch)
532 return;
533
534 port = &ch->uart_port.state->port;
535 tp = port->tty;
536
537 bd = ch->ch_bd;
538 if(!bd)
539 return;
540
541 spin_lock_irqsave(&ch->ch_lock, lock_flags);
542
543 /*
544 *Figure the number of characters in the buffer.
545 *Exit immediately if none.
546 */
547
548 rmask = RQUEUEMASK;
549
550 head = ch->ch_r_head & rmask;
551 tail = ch->ch_r_tail & rmask;
552
553 data_len = (head - tail) & rmask;
554 if (data_len == 0) {
555 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
556 return;
557 }
558
559 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start\n");
560
561 /*
562 *If the device is not open, or CREAD is off, flush
563 *input data and return immediately.
564 */
565 if (!tp ||
566 !(tp->termios.c_cflag & CREAD) ) {
567
568 jsm_dbg(READ, &ch->ch_bd->pci_dev,
569 "input. dropping %d bytes on port %d...\n",
570 data_len, ch->ch_portnum);
571 ch->ch_r_head = tail;
572
573 /* Force queue flow control to be released, if needed */
574 jsm_check_queue_flow_control(ch);
575
576 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
577 return;
578 }
579
580 /*
581 * If we are throttled, simply don't read any data.
582 */
583 if (ch->ch_flags & CH_STOPI) {
584 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
585 jsm_dbg(READ, &ch->ch_bd->pci_dev,
586 "Port %d throttled, not reading any data. head: %x tail: %x\n",
587 ch->ch_portnum, head, tail);
588 return;
589 }
590
591 jsm_dbg(READ, &ch->ch_bd->pci_dev, "start 2\n");
592
593 len = tty_buffer_request_room(port, data_len);
594 n = len;
595
596 /*
597 * n now contains the most amount of data we can copy,
598 * bounded either by the flip buffer size or the amount
599 * of data the card actually has pending...
600 */
601 while (n) {
602 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
603 s = min(s, n);
604
605 if (s <= 0)
606 break;
607
608 /*
609 * If conditions are such that ld needs to see all
610 * UART errors, we will have to walk each character
611 * and error byte and send them to the buffer one at
612 * a time.
613 */
614
615 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
616 for (i = 0; i < s; i++) {
617 /*
618 * Give the Linux ld the flags in the
619 * format it likes.
620 */
621 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
622 tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_BREAK);
623 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
624 tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_PARITY);
625 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
626 tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_FRAME);
627 else
628 tty_insert_flip_char(port, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
629 }
630 } else {
631 tty_insert_flip_string(port, ch->ch_rqueue + tail, s);
632 }
633 tail += s;
634 n -= s;
635 /* Flip queue if needed */
636 tail &= rmask;
637 }
638
639 ch->ch_r_tail = tail & rmask;
640 ch->ch_e_tail = tail & rmask;
641 jsm_check_queue_flow_control(ch);
642 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
643
644 /* Tell the tty layer its okay to "eat" the data now */
645 tty_flip_buffer_push(port);
646
647 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev, "finish\n");
648 }
649
jsm_carrier(struct jsm_channel * ch)650 static void jsm_carrier(struct jsm_channel *ch)
651 {
652 struct jsm_board *bd;
653
654 int virt_carrier = 0;
655 int phys_carrier = 0;
656
657 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "start\n");
658 if (!ch)
659 return;
660
661 bd = ch->ch_bd;
662
663 if (!bd)
664 return;
665
666 if (ch->ch_mistat & UART_MSR_DCD) {
667 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n",
668 ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
669 phys_carrier = 1;
670 }
671
672 if (ch->ch_c_cflag & CLOCAL)
673 virt_carrier = 1;
674
675 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n",
676 phys_carrier, virt_carrier);
677
678 /*
679 * Test for a VIRTUAL carrier transition to HIGH.
680 */
681 if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
682
683 /*
684 * When carrier rises, wake any threads waiting
685 * for carrier in the open routine.
686 */
687
688 jsm_dbg(CARR, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n");
689
690 if (waitqueue_active(&(ch->ch_flags_wait)))
691 wake_up_interruptible(&ch->ch_flags_wait);
692 }
693
694 /*
695 * Test for a PHYSICAL carrier transition to HIGH.
696 */
697 if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
698
699 /*
700 * When carrier rises, wake any threads waiting
701 * for carrier in the open routine.
702 */
703
704 jsm_dbg(CARR, &ch->ch_bd->pci_dev,
705 "carrier: physical DCD rose\n");
706
707 if (waitqueue_active(&(ch->ch_flags_wait)))
708 wake_up_interruptible(&ch->ch_flags_wait);
709 }
710
711 /*
712 * Test for a PHYSICAL transition to low, so long as we aren't
713 * currently ignoring physical transitions (which is what "virtual
714 * carrier" indicates).
715 *
716 * The transition of the virtual carrier to low really doesn't
717 * matter... it really only means "ignore carrier state", not
718 * "make pretend that carrier is there".
719 */
720 if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
721 && (phys_carrier == 0)) {
722 /*
723 * When carrier drops:
724 *
725 * Drop carrier on all open units.
726 *
727 * Flush queues, waking up any task waiting in the
728 * line discipline.
729 *
730 * Send a hangup to the control terminal.
731 *
732 * Enable all select calls.
733 */
734 if (waitqueue_active(&(ch->ch_flags_wait)))
735 wake_up_interruptible(&ch->ch_flags_wait);
736 }
737
738 /*
739 * Make sure that our cached values reflect the current reality.
740 */
741 if (virt_carrier == 1)
742 ch->ch_flags |= CH_FCAR;
743 else
744 ch->ch_flags &= ~CH_FCAR;
745
746 if (phys_carrier == 1)
747 ch->ch_flags |= CH_CD;
748 else
749 ch->ch_flags &= ~CH_CD;
750 }
751
752
jsm_check_queue_flow_control(struct jsm_channel * ch)753 void jsm_check_queue_flow_control(struct jsm_channel *ch)
754 {
755 struct board_ops *bd_ops = ch->ch_bd->bd_ops;
756 int qleft;
757
758 /* Store how much space we have left in the queue */
759 if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
760 qleft += RQUEUEMASK + 1;
761
762 /*
763 * Check to see if we should enforce flow control on our queue because
764 * the ld (or user) isn't reading data out of our queue fast enuf.
765 *
766 * NOTE: This is done based on what the current flow control of the
767 * port is set for.
768 *
769 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
770 * This will cause the UART's FIFO to back up, and force
771 * the RTS signal to be dropped.
772 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
773 * the other side, in hopes it will stop sending data to us.
774 * 3) NONE - Nothing we can do. We will simply drop any extra data
775 * that gets sent into us when the queue fills up.
776 */
777 if (qleft < 256) {
778 /* HWFLOW */
779 if (ch->ch_c_cflag & CRTSCTS) {
780 if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
781 bd_ops->disable_receiver(ch);
782 ch->ch_flags |= (CH_RECEIVER_OFF);
783 jsm_dbg(READ, &ch->ch_bd->pci_dev,
784 "Internal queue hit hilevel mark (%d)! Turning off interrupts\n",
785 qleft);
786 }
787 }
788 /* SWFLOW */
789 else if (ch->ch_c_iflag & IXOFF) {
790 if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
791 bd_ops->send_stop_character(ch);
792 ch->ch_stops_sent++;
793 jsm_dbg(READ, &ch->ch_bd->pci_dev,
794 "Sending stop char! Times sent: %x\n",
795 ch->ch_stops_sent);
796 }
797 }
798 }
799
800 /*
801 * Check to see if we should unenforce flow control because
802 * ld (or user) finally read enuf data out of our queue.
803 *
804 * NOTE: This is done based on what the current flow control of the
805 * port is set for.
806 *
807 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
808 * This will cause the UART's FIFO to raise RTS back up,
809 * which will allow the other side to start sending data again.
810 * 2) SWFLOW (IXOFF) - Send a start character to
811 * the other side, so it will start sending data to us again.
812 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
813 * other side, we don't need to do anything now.
814 */
815 if (qleft > (RQUEUESIZE / 2)) {
816 /* HWFLOW */
817 if (ch->ch_c_cflag & CRTSCTS) {
818 if (ch->ch_flags & CH_RECEIVER_OFF) {
819 bd_ops->enable_receiver(ch);
820 ch->ch_flags &= ~(CH_RECEIVER_OFF);
821 jsm_dbg(READ, &ch->ch_bd->pci_dev,
822 "Internal queue hit lowlevel mark (%d)! Turning on interrupts\n",
823 qleft);
824 }
825 }
826 /* SWFLOW */
827 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
828 ch->ch_stops_sent = 0;
829 bd_ops->send_start_character(ch);
830 jsm_dbg(READ, &ch->ch_bd->pci_dev,
831 "Sending start char!\n");
832 }
833 }
834 }
835