• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * core.c - DesignWare HS OTG Controller common routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * The Core code provides basic services for accessing and managing the
39  * DWC_otg hardware. These services are used by both the Host Controller
40  * Driver and the Peripheral Controller Driver.
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 /**
60  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
61  * used in both device and host modes
62  *
63  * @hsotg: Programming view of the DWC_otg controller
64  */
dwc2_enable_common_interrupts(struct dwc2_hsotg * hsotg)65 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
66 {
67 	u32 intmsk;
68 
69 	/* Clear any pending OTG Interrupts */
70 	writel(0xffffffff, hsotg->regs + GOTGINT);
71 
72 	/* Clear any pending interrupts */
73 	writel(0xffffffff, hsotg->regs + GINTSTS);
74 
75 	/* Enable the interrupts in the GINTMSK */
76 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
77 
78 	if (hsotg->core_params->dma_enable <= 0)
79 		intmsk |= GINTSTS_RXFLVL;
80 
81 	intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP |
82 		  GINTSTS_SESSREQINT;
83 
84 	writel(intmsk, hsotg->regs + GINTMSK);
85 }
86 
87 /*
88  * Initializes the FSLSPClkSel field of the HCFG register depending on the
89  * PHY type
90  */
dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg * hsotg)91 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
92 {
93 	u32 hcfg, val;
94 
95 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
96 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
97 	     hsotg->core_params->ulpi_fs_ls > 0) ||
98 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
99 		/* Full speed PHY */
100 		val = HCFG_FSLSPCLKSEL_48_MHZ;
101 	} else {
102 		/* High speed PHY running at full speed or high speed */
103 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
104 	}
105 
106 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
107 	hcfg = readl(hsotg->regs + HCFG);
108 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
109 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
110 	writel(hcfg, hsotg->regs + HCFG);
111 }
112 
113 /*
114  * Do core a soft reset of the core.  Be careful with this because it
115  * resets all the internal state machines of the core.
116  */
dwc2_core_reset(struct dwc2_hsotg * hsotg)117 static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
118 {
119 	u32 greset;
120 	int count = 0;
121 	u32 gusbcfg;
122 
123 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
124 
125 	/* Wait for AHB master IDLE state */
126 	do {
127 		usleep_range(20000, 40000);
128 		greset = readl(hsotg->regs + GRSTCTL);
129 		if (++count > 50) {
130 			dev_warn(hsotg->dev,
131 				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
132 				 __func__, greset);
133 			return -EBUSY;
134 		}
135 	} while (!(greset & GRSTCTL_AHBIDLE));
136 
137 	/* Core Soft Reset */
138 	count = 0;
139 	greset |= GRSTCTL_CSFTRST;
140 	writel(greset, hsotg->regs + GRSTCTL);
141 	do {
142 		usleep_range(20000, 40000);
143 		greset = readl(hsotg->regs + GRSTCTL);
144 		if (++count > 50) {
145 			dev_warn(hsotg->dev,
146 				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
147 				 __func__, greset);
148 			return -EBUSY;
149 		}
150 	} while (greset & GRSTCTL_CSFTRST);
151 
152 	if (hsotg->dr_mode == USB_DR_MODE_HOST) {
153 		gusbcfg = readl(hsotg->regs + GUSBCFG);
154 		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
155 		gusbcfg |= GUSBCFG_FORCEHOSTMODE;
156 		writel(gusbcfg, hsotg->regs + GUSBCFG);
157 	} else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
158 		gusbcfg = readl(hsotg->regs + GUSBCFG);
159 		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
160 		gusbcfg |= GUSBCFG_FORCEDEVMODE;
161 		writel(gusbcfg, hsotg->regs + GUSBCFG);
162 	} else if (hsotg->dr_mode == USB_DR_MODE_OTG) {
163 		gusbcfg = readl(hsotg->regs + GUSBCFG);
164 		gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
165 		gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
166 		writel(gusbcfg, hsotg->regs + GUSBCFG);
167 	}
168 
169 	/*
170 	 * NOTE: This long sleep is _very_ important, otherwise the core will
171 	 * not stay in host mode after a connector ID change!
172 	 */
173 	usleep_range(150000, 200000);
174 
175 	return 0;
176 }
177 
dwc2_fs_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)178 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
179 {
180 	u32 usbcfg, i2cctl;
181 	int retval = 0;
182 
183 	/*
184 	 * core_init() is now called on every switch so only call the
185 	 * following for the first time through
186 	 */
187 	if (select_phy) {
188 		dev_dbg(hsotg->dev, "FS PHY selected\n");
189 		usbcfg = readl(hsotg->regs + GUSBCFG);
190 		usbcfg |= GUSBCFG_PHYSEL;
191 		writel(usbcfg, hsotg->regs + GUSBCFG);
192 
193 		/* Reset after a PHY select */
194 		retval = dwc2_core_reset(hsotg);
195 		if (retval) {
196 			dev_err(hsotg->dev, "%s() Reset failed, aborting",
197 					__func__);
198 			return retval;
199 		}
200 	}
201 
202 	/*
203 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
204 	 * do this on HNP Dev/Host mode switches (done in dev_init and
205 	 * host_init).
206 	 */
207 	if (dwc2_is_host_mode(hsotg))
208 		dwc2_init_fs_ls_pclk_sel(hsotg);
209 
210 	if (hsotg->core_params->i2c_enable > 0) {
211 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
212 
213 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
214 		usbcfg = readl(hsotg->regs + GUSBCFG);
215 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
216 		writel(usbcfg, hsotg->regs + GUSBCFG);
217 
218 		/* Program GI2CCTL.I2CEn */
219 		i2cctl = readl(hsotg->regs + GI2CCTL);
220 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
221 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
222 		i2cctl &= ~GI2CCTL_I2CEN;
223 		writel(i2cctl, hsotg->regs + GI2CCTL);
224 		i2cctl |= GI2CCTL_I2CEN;
225 		writel(i2cctl, hsotg->regs + GI2CCTL);
226 	}
227 
228 	return retval;
229 }
230 
dwc2_hs_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)231 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
232 {
233 	u32 usbcfg;
234 	int retval = 0;
235 
236 	if (!select_phy)
237 		return 0;
238 
239 	usbcfg = readl(hsotg->regs + GUSBCFG);
240 
241 	/*
242 	 * HS PHY parameters. These parameters are preserved during soft reset
243 	 * so only program the first time. Do a soft reset immediately after
244 	 * setting phyif.
245 	 */
246 	switch (hsotg->core_params->phy_type) {
247 	case DWC2_PHY_TYPE_PARAM_ULPI:
248 		/* ULPI interface */
249 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
250 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
251 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
252 		if (hsotg->core_params->phy_ulpi_ddr > 0)
253 			usbcfg |= GUSBCFG_DDRSEL;
254 		break;
255 	case DWC2_PHY_TYPE_PARAM_UTMI:
256 		/* UTMI+ interface */
257 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
258 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
259 		if (hsotg->core_params->phy_utmi_width == 16)
260 			usbcfg |= GUSBCFG_PHYIF16;
261 		break;
262 	default:
263 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
264 		break;
265 	}
266 
267 	writel(usbcfg, hsotg->regs + GUSBCFG);
268 
269 	/* Reset after setting the PHY parameters */
270 	retval = dwc2_core_reset(hsotg);
271 	if (retval) {
272 		dev_err(hsotg->dev, "%s() Reset failed, aborting",
273 				__func__);
274 		return retval;
275 	}
276 
277 	return retval;
278 }
279 
dwc2_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)280 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
281 {
282 	u32 usbcfg;
283 	int retval = 0;
284 
285 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
286 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
287 		/* If FS mode with FS PHY */
288 		retval = dwc2_fs_phy_init(hsotg, select_phy);
289 		if (retval)
290 			return retval;
291 	} else {
292 		/* High speed PHY */
293 		retval = dwc2_hs_phy_init(hsotg, select_phy);
294 		if (retval)
295 			return retval;
296 	}
297 
298 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
299 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
300 	    hsotg->core_params->ulpi_fs_ls > 0) {
301 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
302 		usbcfg = readl(hsotg->regs + GUSBCFG);
303 		usbcfg |= GUSBCFG_ULPI_FS_LS;
304 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
305 		writel(usbcfg, hsotg->regs + GUSBCFG);
306 	} else {
307 		usbcfg = readl(hsotg->regs + GUSBCFG);
308 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
309 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
310 		writel(usbcfg, hsotg->regs + GUSBCFG);
311 	}
312 
313 	return retval;
314 }
315 
dwc2_gahbcfg_init(struct dwc2_hsotg * hsotg)316 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
317 {
318 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
319 
320 	switch (hsotg->hw_params.arch) {
321 	case GHWCFG2_EXT_DMA_ARCH:
322 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
323 		return -EINVAL;
324 
325 	case GHWCFG2_INT_DMA_ARCH:
326 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
327 		if (hsotg->core_params->ahbcfg != -1) {
328 			ahbcfg &= GAHBCFG_CTRL_MASK;
329 			ahbcfg |= hsotg->core_params->ahbcfg &
330 				  ~GAHBCFG_CTRL_MASK;
331 		}
332 		break;
333 
334 	case GHWCFG2_SLAVE_ONLY_ARCH:
335 	default:
336 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
337 		break;
338 	}
339 
340 	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
341 		hsotg->core_params->dma_enable,
342 		hsotg->core_params->dma_desc_enable);
343 
344 	if (hsotg->core_params->dma_enable > 0) {
345 		if (hsotg->core_params->dma_desc_enable > 0)
346 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
347 		else
348 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
349 	} else {
350 		dev_dbg(hsotg->dev, "Using Slave mode\n");
351 		hsotg->core_params->dma_desc_enable = 0;
352 	}
353 
354 	if (hsotg->core_params->dma_enable > 0)
355 		ahbcfg |= GAHBCFG_DMA_EN;
356 
357 	writel(ahbcfg, hsotg->regs + GAHBCFG);
358 
359 	return 0;
360 }
361 
dwc2_gusbcfg_init(struct dwc2_hsotg * hsotg)362 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
363 {
364 	u32 usbcfg;
365 
366 	usbcfg = readl(hsotg->regs + GUSBCFG);
367 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
368 
369 	switch (hsotg->hw_params.op_mode) {
370 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
371 		if (hsotg->core_params->otg_cap ==
372 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
373 			usbcfg |= GUSBCFG_HNPCAP;
374 		if (hsotg->core_params->otg_cap !=
375 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
376 			usbcfg |= GUSBCFG_SRPCAP;
377 		break;
378 
379 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
380 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
381 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
382 		if (hsotg->core_params->otg_cap !=
383 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
384 			usbcfg |= GUSBCFG_SRPCAP;
385 		break;
386 
387 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
388 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
389 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
390 	default:
391 		break;
392 	}
393 
394 	writel(usbcfg, hsotg->regs + GUSBCFG);
395 }
396 
397 /**
398  * dwc2_core_init() - Initializes the DWC_otg controller registers and
399  * prepares the core for device mode or host mode operation
400  *
401  * @hsotg:      Programming view of the DWC_otg controller
402  * @select_phy: If true then also set the Phy type
403  * @irq:        If >= 0, the irq to register
404  */
dwc2_core_init(struct dwc2_hsotg * hsotg,bool select_phy,int irq)405 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
406 {
407 	u32 usbcfg, otgctl;
408 	int retval;
409 
410 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
411 
412 	usbcfg = readl(hsotg->regs + GUSBCFG);
413 
414 	/* Set ULPI External VBUS bit if needed */
415 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
416 	if (hsotg->core_params->phy_ulpi_ext_vbus ==
417 				DWC2_PHY_ULPI_EXTERNAL_VBUS)
418 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
419 
420 	/* Set external TS Dline pulsing bit if needed */
421 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
422 	if (hsotg->core_params->ts_dline > 0)
423 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
424 
425 	writel(usbcfg, hsotg->regs + GUSBCFG);
426 
427 	/* Reset the Controller */
428 	retval = dwc2_core_reset(hsotg);
429 	if (retval) {
430 		dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
431 				__func__);
432 		return retval;
433 	}
434 
435 	/*
436 	 * This needs to happen in FS mode before any other programming occurs
437 	 */
438 	retval = dwc2_phy_init(hsotg, select_phy);
439 	if (retval)
440 		return retval;
441 
442 	/* Program the GAHBCFG Register */
443 	retval = dwc2_gahbcfg_init(hsotg);
444 	if (retval)
445 		return retval;
446 
447 	/* Program the GUSBCFG register */
448 	dwc2_gusbcfg_init(hsotg);
449 
450 	/* Program the GOTGCTL register */
451 	otgctl = readl(hsotg->regs + GOTGCTL);
452 	otgctl &= ~GOTGCTL_OTGVER;
453 	if (hsotg->core_params->otg_ver > 0)
454 		otgctl |= GOTGCTL_OTGVER;
455 	writel(otgctl, hsotg->regs + GOTGCTL);
456 	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
457 
458 	/* Clear the SRP success bit for FS-I2c */
459 	hsotg->srp_success = 0;
460 
461 	if (irq >= 0) {
462 		dev_dbg(hsotg->dev, "registering common handler for irq%d\n",
463 			irq);
464 		retval = devm_request_irq(hsotg->dev, irq,
465 					  dwc2_handle_common_intr, IRQF_SHARED,
466 					  dev_name(hsotg->dev), hsotg);
467 		if (retval)
468 			return retval;
469 	}
470 
471 	/* Enable common interrupts */
472 	dwc2_enable_common_interrupts(hsotg);
473 
474 	/*
475 	 * Do device or host intialization based on mode during PCD and
476 	 * HCD initialization
477 	 */
478 	if (dwc2_is_host_mode(hsotg)) {
479 		dev_dbg(hsotg->dev, "Host Mode\n");
480 		hsotg->op_state = OTG_STATE_A_HOST;
481 	} else {
482 		dev_dbg(hsotg->dev, "Device Mode\n");
483 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
484 	}
485 
486 	return 0;
487 }
488 
489 /**
490  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
491  *
492  * @hsotg: Programming view of DWC_otg controller
493  */
dwc2_enable_host_interrupts(struct dwc2_hsotg * hsotg)494 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
495 {
496 	u32 intmsk;
497 
498 	dev_dbg(hsotg->dev, "%s()\n", __func__);
499 
500 	/* Disable all interrupts */
501 	writel(0, hsotg->regs + GINTMSK);
502 	writel(0, hsotg->regs + HAINTMSK);
503 
504 	/* Enable the common interrupts */
505 	dwc2_enable_common_interrupts(hsotg);
506 
507 	/* Enable host mode interrupts without disturbing common interrupts */
508 	intmsk = readl(hsotg->regs + GINTMSK);
509 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
510 	writel(intmsk, hsotg->regs + GINTMSK);
511 }
512 
513 /**
514  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
515  *
516  * @hsotg: Programming view of DWC_otg controller
517  */
dwc2_disable_host_interrupts(struct dwc2_hsotg * hsotg)518 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
519 {
520 	u32 intmsk = readl(hsotg->regs + GINTMSK);
521 
522 	/* Disable host mode interrupts without disturbing common interrupts */
523 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
524 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
525 	writel(intmsk, hsotg->regs + GINTMSK);
526 }
527 
528 /*
529  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
530  * For system that have a total fifo depth that is smaller than the default
531  * RX + TX fifo size.
532  *
533  * @hsotg: Programming view of DWC_otg controller
534  */
dwc2_calculate_dynamic_fifo(struct dwc2_hsotg * hsotg)535 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
536 {
537 	struct dwc2_core_params *params = hsotg->core_params;
538 	struct dwc2_hw_params *hw = &hsotg->hw_params;
539 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
540 
541 	total_fifo_size = hw->total_fifo_size;
542 	rxfsiz = params->host_rx_fifo_size;
543 	nptxfsiz = params->host_nperio_tx_fifo_size;
544 	ptxfsiz = params->host_perio_tx_fifo_size;
545 
546 	/*
547 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
548 	 * allocation with support for high bandwidth endpoints. Synopsys
549 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
550 	 * non-periodic as 512.
551 	 */
552 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
553 		/*
554 		 * For Buffer DMA mode/Scatter Gather DMA mode
555 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
556 		 * with n = number of host channel.
557 		 * 2 * ((1024/4) + 2) = 516
558 		 */
559 		rxfsiz = 516 + hw->host_channels;
560 
561 		/*
562 		 * min non-periodic tx fifo depth
563 		 * 2 * (largest non-periodic USB packet used / 4)
564 		 * 2 * (512/4) = 256
565 		 */
566 		nptxfsiz = 256;
567 
568 		/*
569 		 * min periodic tx fifo depth
570 		 * (largest packet size*MC)/4
571 		 * (1024 * 3)/4 = 768
572 		 */
573 		ptxfsiz = 768;
574 
575 		params->host_rx_fifo_size = rxfsiz;
576 		params->host_nperio_tx_fifo_size = nptxfsiz;
577 		params->host_perio_tx_fifo_size = ptxfsiz;
578 	}
579 
580 	/*
581 	 * If the summation of RX, NPTX and PTX fifo sizes is still
582 	 * bigger than the total_fifo_size, then we have a problem.
583 	 *
584 	 * We won't be able to allocate as many endpoints. Right now,
585 	 * we're just printing an error message, but ideally this FIFO
586 	 * allocation algorithm would be improved in the future.
587 	 *
588 	 * FIXME improve this FIFO allocation algorithm.
589 	 */
590 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
591 		dev_err(hsotg->dev, "invalid fifo sizes\n");
592 }
593 
dwc2_config_fifos(struct dwc2_hsotg * hsotg)594 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
595 {
596 	struct dwc2_core_params *params = hsotg->core_params;
597 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
598 
599 	if (!params->enable_dynamic_fifo)
600 		return;
601 
602 	dwc2_calculate_dynamic_fifo(hsotg);
603 
604 	/* Rx FIFO */
605 	grxfsiz = readl(hsotg->regs + GRXFSIZ);
606 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
607 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
608 	grxfsiz |= params->host_rx_fifo_size <<
609 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
610 	writel(grxfsiz, hsotg->regs + GRXFSIZ);
611 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
612 
613 	/* Non-periodic Tx FIFO */
614 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
615 		readl(hsotg->regs + GNPTXFSIZ));
616 	nptxfsiz = params->host_nperio_tx_fifo_size <<
617 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
618 	nptxfsiz |= params->host_rx_fifo_size <<
619 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
620 	writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
621 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
622 		readl(hsotg->regs + GNPTXFSIZ));
623 
624 	/* Periodic Tx FIFO */
625 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
626 		readl(hsotg->regs + HPTXFSIZ));
627 	hptxfsiz = params->host_perio_tx_fifo_size <<
628 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
629 	hptxfsiz |= (params->host_rx_fifo_size +
630 		     params->host_nperio_tx_fifo_size) <<
631 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
632 	writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
633 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
634 		readl(hsotg->regs + HPTXFSIZ));
635 
636 	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
637 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
638 		/*
639 		 * Global DFIFOCFG calculation for Host mode -
640 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
641 		 */
642 		dfifocfg = readl(hsotg->regs + GDFIFOCFG);
643 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
644 		dfifocfg |= (params->host_rx_fifo_size +
645 			     params->host_nperio_tx_fifo_size +
646 			     params->host_perio_tx_fifo_size) <<
647 			    GDFIFOCFG_EPINFOBASE_SHIFT &
648 			    GDFIFOCFG_EPINFOBASE_MASK;
649 		writel(dfifocfg, hsotg->regs + GDFIFOCFG);
650 	}
651 }
652 
653 /**
654  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
655  * Host mode
656  *
657  * @hsotg: Programming view of DWC_otg controller
658  *
659  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
660  * request queues. Host channels are reset to ensure that they are ready for
661  * performing transfers.
662  */
dwc2_core_host_init(struct dwc2_hsotg * hsotg)663 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
664 {
665 	u32 hcfg, hfir, otgctl;
666 
667 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
668 
669 	/* Restart the Phy Clock */
670 	writel(0, hsotg->regs + PCGCTL);
671 
672 	/* Initialize Host Configuration Register */
673 	dwc2_init_fs_ls_pclk_sel(hsotg);
674 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
675 		hcfg = readl(hsotg->regs + HCFG);
676 		hcfg |= HCFG_FSLSSUPP;
677 		writel(hcfg, hsotg->regs + HCFG);
678 	}
679 
680 	/*
681 	 * This bit allows dynamic reloading of the HFIR register during
682 	 * runtime. This bit needs to be programmed during initial configuration
683 	 * and its value must not be changed during runtime.
684 	 */
685 	if (hsotg->core_params->reload_ctl > 0) {
686 		hfir = readl(hsotg->regs + HFIR);
687 		hfir |= HFIR_RLDCTRL;
688 		writel(hfir, hsotg->regs + HFIR);
689 	}
690 
691 	if (hsotg->core_params->dma_desc_enable > 0) {
692 		u32 op_mode = hsotg->hw_params.op_mode;
693 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
694 		    !hsotg->hw_params.dma_desc_enable ||
695 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
696 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
697 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
698 			dev_err(hsotg->dev,
699 				"Hardware does not support descriptor DMA mode -\n");
700 			dev_err(hsotg->dev,
701 				"falling back to buffer DMA mode.\n");
702 			hsotg->core_params->dma_desc_enable = 0;
703 		} else {
704 			hcfg = readl(hsotg->regs + HCFG);
705 			hcfg |= HCFG_DESCDMA;
706 			writel(hcfg, hsotg->regs + HCFG);
707 		}
708 	}
709 
710 	/* Configure data FIFO sizes */
711 	dwc2_config_fifos(hsotg);
712 
713 	/* TODO - check this */
714 	/* Clear Host Set HNP Enable in the OTG Control Register */
715 	otgctl = readl(hsotg->regs + GOTGCTL);
716 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
717 	writel(otgctl, hsotg->regs + GOTGCTL);
718 
719 	/* Make sure the FIFOs are flushed */
720 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
721 	dwc2_flush_rx_fifo(hsotg);
722 
723 	/* Clear Host Set HNP Enable in the OTG Control Register */
724 	otgctl = readl(hsotg->regs + GOTGCTL);
725 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
726 	writel(otgctl, hsotg->regs + GOTGCTL);
727 
728 	if (hsotg->core_params->dma_desc_enable <= 0) {
729 		int num_channels, i;
730 		u32 hcchar;
731 
732 		/* Flush out any leftover queued requests */
733 		num_channels = hsotg->core_params->host_channels;
734 		for (i = 0; i < num_channels; i++) {
735 			hcchar = readl(hsotg->regs + HCCHAR(i));
736 			hcchar &= ~HCCHAR_CHENA;
737 			hcchar |= HCCHAR_CHDIS;
738 			hcchar &= ~HCCHAR_EPDIR;
739 			writel(hcchar, hsotg->regs + HCCHAR(i));
740 		}
741 
742 		/* Halt all channels to put them into a known state */
743 		for (i = 0; i < num_channels; i++) {
744 			int count = 0;
745 
746 			hcchar = readl(hsotg->regs + HCCHAR(i));
747 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
748 			hcchar &= ~HCCHAR_EPDIR;
749 			writel(hcchar, hsotg->regs + HCCHAR(i));
750 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
751 				__func__, i);
752 			do {
753 				hcchar = readl(hsotg->regs + HCCHAR(i));
754 				if (++count > 1000) {
755 					dev_err(hsotg->dev,
756 						"Unable to clear enable on channel %d\n",
757 						i);
758 					break;
759 				}
760 				udelay(1);
761 			} while (hcchar & HCCHAR_CHENA);
762 		}
763 	}
764 
765 	/* Turn on the vbus power */
766 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
767 	if (hsotg->op_state == OTG_STATE_A_HOST) {
768 		u32 hprt0 = dwc2_read_hprt0(hsotg);
769 
770 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
771 			!!(hprt0 & HPRT0_PWR));
772 		if (!(hprt0 & HPRT0_PWR)) {
773 			hprt0 |= HPRT0_PWR;
774 			writel(hprt0, hsotg->regs + HPRT0);
775 		}
776 	}
777 
778 	dwc2_enable_host_interrupts(hsotg);
779 }
780 
dwc2_hc_enable_slave_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)781 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
782 				      struct dwc2_host_chan *chan)
783 {
784 	u32 hcintmsk = HCINTMSK_CHHLTD;
785 
786 	switch (chan->ep_type) {
787 	case USB_ENDPOINT_XFER_CONTROL:
788 	case USB_ENDPOINT_XFER_BULK:
789 		dev_vdbg(hsotg->dev, "control/bulk\n");
790 		hcintmsk |= HCINTMSK_XFERCOMPL;
791 		hcintmsk |= HCINTMSK_STALL;
792 		hcintmsk |= HCINTMSK_XACTERR;
793 		hcintmsk |= HCINTMSK_DATATGLERR;
794 		if (chan->ep_is_in) {
795 			hcintmsk |= HCINTMSK_BBLERR;
796 		} else {
797 			hcintmsk |= HCINTMSK_NAK;
798 			hcintmsk |= HCINTMSK_NYET;
799 			if (chan->do_ping)
800 				hcintmsk |= HCINTMSK_ACK;
801 		}
802 
803 		if (chan->do_split) {
804 			hcintmsk |= HCINTMSK_NAK;
805 			if (chan->complete_split)
806 				hcintmsk |= HCINTMSK_NYET;
807 			else
808 				hcintmsk |= HCINTMSK_ACK;
809 		}
810 
811 		if (chan->error_state)
812 			hcintmsk |= HCINTMSK_ACK;
813 		break;
814 
815 	case USB_ENDPOINT_XFER_INT:
816 		if (dbg_perio())
817 			dev_vdbg(hsotg->dev, "intr\n");
818 		hcintmsk |= HCINTMSK_XFERCOMPL;
819 		hcintmsk |= HCINTMSK_NAK;
820 		hcintmsk |= HCINTMSK_STALL;
821 		hcintmsk |= HCINTMSK_XACTERR;
822 		hcintmsk |= HCINTMSK_DATATGLERR;
823 		hcintmsk |= HCINTMSK_FRMOVRUN;
824 
825 		if (chan->ep_is_in)
826 			hcintmsk |= HCINTMSK_BBLERR;
827 		if (chan->error_state)
828 			hcintmsk |= HCINTMSK_ACK;
829 		if (chan->do_split) {
830 			if (chan->complete_split)
831 				hcintmsk |= HCINTMSK_NYET;
832 			else
833 				hcintmsk |= HCINTMSK_ACK;
834 		}
835 		break;
836 
837 	case USB_ENDPOINT_XFER_ISOC:
838 		if (dbg_perio())
839 			dev_vdbg(hsotg->dev, "isoc\n");
840 		hcintmsk |= HCINTMSK_XFERCOMPL;
841 		hcintmsk |= HCINTMSK_FRMOVRUN;
842 		hcintmsk |= HCINTMSK_ACK;
843 
844 		if (chan->ep_is_in) {
845 			hcintmsk |= HCINTMSK_XACTERR;
846 			hcintmsk |= HCINTMSK_BBLERR;
847 		}
848 		break;
849 	default:
850 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
851 		break;
852 	}
853 
854 	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
855 	if (dbg_hc(chan))
856 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
857 }
858 
dwc2_hc_enable_dma_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)859 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
860 				    struct dwc2_host_chan *chan)
861 {
862 	u32 hcintmsk = HCINTMSK_CHHLTD;
863 
864 	/*
865 	 * For Descriptor DMA mode core halts the channel on AHB error.
866 	 * Interrupt is not required.
867 	 */
868 	if (hsotg->core_params->dma_desc_enable <= 0) {
869 		if (dbg_hc(chan))
870 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
871 		hcintmsk |= HCINTMSK_AHBERR;
872 	} else {
873 		if (dbg_hc(chan))
874 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
875 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
876 			hcintmsk |= HCINTMSK_XFERCOMPL;
877 	}
878 
879 	if (chan->error_state && !chan->do_split &&
880 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
881 		if (dbg_hc(chan))
882 			dev_vdbg(hsotg->dev, "setting ACK\n");
883 		hcintmsk |= HCINTMSK_ACK;
884 		if (chan->ep_is_in) {
885 			hcintmsk |= HCINTMSK_DATATGLERR;
886 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
887 				hcintmsk |= HCINTMSK_NAK;
888 		}
889 	}
890 
891 	writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
892 	if (dbg_hc(chan))
893 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
894 }
895 
dwc2_hc_enable_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)896 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
897 				struct dwc2_host_chan *chan)
898 {
899 	u32 intmsk;
900 
901 	if (hsotg->core_params->dma_enable > 0) {
902 		if (dbg_hc(chan))
903 			dev_vdbg(hsotg->dev, "DMA enabled\n");
904 		dwc2_hc_enable_dma_ints(hsotg, chan);
905 	} else {
906 		if (dbg_hc(chan))
907 			dev_vdbg(hsotg->dev, "DMA disabled\n");
908 		dwc2_hc_enable_slave_ints(hsotg, chan);
909 	}
910 
911 	/* Enable the top level host channel interrupt */
912 	intmsk = readl(hsotg->regs + HAINTMSK);
913 	intmsk |= 1 << chan->hc_num;
914 	writel(intmsk, hsotg->regs + HAINTMSK);
915 	if (dbg_hc(chan))
916 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
917 
918 	/* Make sure host channel interrupts are enabled */
919 	intmsk = readl(hsotg->regs + GINTMSK);
920 	intmsk |= GINTSTS_HCHINT;
921 	writel(intmsk, hsotg->regs + GINTMSK);
922 	if (dbg_hc(chan))
923 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
924 }
925 
926 /**
927  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
928  * a specific endpoint
929  *
930  * @hsotg: Programming view of DWC_otg controller
931  * @chan:  Information needed to initialize the host channel
932  *
933  * The HCCHARn register is set up with the characteristics specified in chan.
934  * Host channel interrupts that may need to be serviced while this transfer is
935  * in progress are enabled.
936  */
dwc2_hc_init(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)937 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
938 {
939 	u8 hc_num = chan->hc_num;
940 	u32 hcintmsk;
941 	u32 hcchar;
942 	u32 hcsplt = 0;
943 
944 	if (dbg_hc(chan))
945 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
946 
947 	/* Clear old interrupt conditions for this host channel */
948 	hcintmsk = 0xffffffff;
949 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
950 	writel(hcintmsk, hsotg->regs + HCINT(hc_num));
951 
952 	/* Enable channel interrupts required for this transfer */
953 	dwc2_hc_enable_ints(hsotg, chan);
954 
955 	/*
956 	 * Program the HCCHARn register with the endpoint characteristics for
957 	 * the current transfer
958 	 */
959 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
960 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
961 	if (chan->ep_is_in)
962 		hcchar |= HCCHAR_EPDIR;
963 	if (chan->speed == USB_SPEED_LOW)
964 		hcchar |= HCCHAR_LSPDDEV;
965 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
966 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
967 	writel(hcchar, hsotg->regs + HCCHAR(hc_num));
968 	if (dbg_hc(chan)) {
969 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
970 			 hc_num, hcchar);
971 
972 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
973 			 __func__, hc_num);
974 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
975 			 chan->dev_addr);
976 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
977 			 chan->ep_num);
978 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
979 			 chan->ep_is_in);
980 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
981 			 chan->speed == USB_SPEED_LOW);
982 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
983 			 chan->ep_type);
984 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
985 			 chan->max_packet);
986 	}
987 
988 	/* Program the HCSPLT register for SPLITs */
989 	if (chan->do_split) {
990 		if (dbg_hc(chan))
991 			dev_vdbg(hsotg->dev,
992 				 "Programming HC %d with split --> %s\n",
993 				 hc_num,
994 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
995 		if (chan->complete_split)
996 			hcsplt |= HCSPLT_COMPSPLT;
997 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
998 			  HCSPLT_XACTPOS_MASK;
999 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1000 			  HCSPLT_HUBADDR_MASK;
1001 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1002 			  HCSPLT_PRTADDR_MASK;
1003 		if (dbg_hc(chan)) {
1004 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
1005 				 chan->complete_split);
1006 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
1007 				 chan->xact_pos);
1008 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
1009 				 chan->hub_addr);
1010 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
1011 				 chan->hub_port);
1012 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
1013 				 chan->ep_is_in);
1014 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
1015 				 chan->max_packet);
1016 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
1017 				 chan->xfer_len);
1018 		}
1019 	}
1020 
1021 	writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1022 }
1023 
1024 /**
1025  * dwc2_hc_halt() - Attempts to halt a host channel
1026  *
1027  * @hsotg:       Controller register interface
1028  * @chan:        Host channel to halt
1029  * @halt_status: Reason for halting the channel
1030  *
1031  * This function should only be called in Slave mode or to abort a transfer in
1032  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1033  * controller halts the channel when the transfer is complete or a condition
1034  * occurs that requires application intervention.
1035  *
1036  * In slave mode, checks for a free request queue entry, then sets the Channel
1037  * Enable and Channel Disable bits of the Host Channel Characteristics
1038  * register of the specified channel to intiate the halt. If there is no free
1039  * request queue entry, sets only the Channel Disable bit of the HCCHARn
1040  * register to flush requests for this channel. In the latter case, sets a
1041  * flag to indicate that the host channel needs to be halted when a request
1042  * queue slot is open.
1043  *
1044  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1045  * HCCHARn register. The controller ensures there is space in the request
1046  * queue before submitting the halt request.
1047  *
1048  * Some time may elapse before the core flushes any posted requests for this
1049  * host channel and halts. The Channel Halted interrupt handler completes the
1050  * deactivation of the host channel.
1051  */
dwc2_hc_halt(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,enum dwc2_halt_status halt_status)1052 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1053 		  enum dwc2_halt_status halt_status)
1054 {
1055 	u32 nptxsts, hptxsts, hcchar;
1056 
1057 	if (dbg_hc(chan))
1058 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1059 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1060 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1061 
1062 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1063 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1064 		/*
1065 		 * Disable all channel interrupts except Ch Halted. The QTD
1066 		 * and QH state associated with this transfer has been cleared
1067 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1068 		 * shut down carefully to prevent crashes.
1069 		 */
1070 		u32 hcintmsk = HCINTMSK_CHHLTD;
1071 
1072 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1073 		writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1074 
1075 		/*
1076 		 * Make sure no other interrupts besides halt are currently
1077 		 * pending. Handling another interrupt could cause a crash due
1078 		 * to the QTD and QH state.
1079 		 */
1080 		writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1081 
1082 		/*
1083 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1084 		 * even if the channel was already halted for some other
1085 		 * reason
1086 		 */
1087 		chan->halt_status = halt_status;
1088 
1089 		hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1090 		if (!(hcchar & HCCHAR_CHENA)) {
1091 			/*
1092 			 * The channel is either already halted or it hasn't
1093 			 * started yet. In DMA mode, the transfer may halt if
1094 			 * it finishes normally or a condition occurs that
1095 			 * requires driver intervention. Don't want to halt
1096 			 * the channel again. In either Slave or DMA mode,
1097 			 * it's possible that the transfer has been assigned
1098 			 * to a channel, but not started yet when an URB is
1099 			 * dequeued. Don't want to halt a channel that hasn't
1100 			 * started yet.
1101 			 */
1102 			return;
1103 		}
1104 	}
1105 	if (chan->halt_pending) {
1106 		/*
1107 		 * A halt has already been issued for this channel. This might
1108 		 * happen when a transfer is aborted by a higher level in
1109 		 * the stack.
1110 		 */
1111 		dev_vdbg(hsotg->dev,
1112 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1113 			 __func__, chan->hc_num);
1114 		return;
1115 	}
1116 
1117 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1118 
1119 	/* No need to set the bit in DDMA for disabling the channel */
1120 	/* TODO check it everywhere channel is disabled */
1121 	if (hsotg->core_params->dma_desc_enable <= 0) {
1122 		if (dbg_hc(chan))
1123 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1124 		hcchar |= HCCHAR_CHENA;
1125 	} else {
1126 		if (dbg_hc(chan))
1127 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1128 	}
1129 	hcchar |= HCCHAR_CHDIS;
1130 
1131 	if (hsotg->core_params->dma_enable <= 0) {
1132 		if (dbg_hc(chan))
1133 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1134 		hcchar |= HCCHAR_CHENA;
1135 
1136 		/* Check for space in the request queue to issue the halt */
1137 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1138 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1139 			dev_vdbg(hsotg->dev, "control/bulk\n");
1140 			nptxsts = readl(hsotg->regs + GNPTXSTS);
1141 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1142 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1143 				hcchar &= ~HCCHAR_CHENA;
1144 			}
1145 		} else {
1146 			if (dbg_perio())
1147 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1148 			hptxsts = readl(hsotg->regs + HPTXSTS);
1149 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1150 			    hsotg->queuing_high_bandwidth) {
1151 				if (dbg_perio())
1152 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1153 				hcchar &= ~HCCHAR_CHENA;
1154 			}
1155 		}
1156 	} else {
1157 		if (dbg_hc(chan))
1158 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1159 	}
1160 
1161 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1162 	chan->halt_status = halt_status;
1163 
1164 	if (hcchar & HCCHAR_CHENA) {
1165 		if (dbg_hc(chan))
1166 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1167 		chan->halt_pending = 1;
1168 		chan->halt_on_queue = 0;
1169 	} else {
1170 		if (dbg_hc(chan))
1171 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1172 		chan->halt_on_queue = 1;
1173 	}
1174 
1175 	if (dbg_hc(chan)) {
1176 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1177 			 chan->hc_num);
1178 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1179 			 hcchar);
1180 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1181 			 chan->halt_pending);
1182 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1183 			 chan->halt_on_queue);
1184 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1185 			 chan->halt_status);
1186 	}
1187 }
1188 
1189 /**
1190  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1191  *
1192  * @hsotg: Programming view of DWC_otg controller
1193  * @chan:  Identifies the host channel to clean up
1194  *
1195  * This function is normally called after a transfer is done and the host
1196  * channel is being released
1197  */
dwc2_hc_cleanup(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1198 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1199 {
1200 	u32 hcintmsk;
1201 
1202 	chan->xfer_started = 0;
1203 
1204 	/*
1205 	 * Clear channel interrupt enables and any unhandled channel interrupt
1206 	 * conditions
1207 	 */
1208 	writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1209 	hcintmsk = 0xffffffff;
1210 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1211 	writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1212 }
1213 
1214 /**
1215  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1216  * which frame a periodic transfer should occur
1217  *
1218  * @hsotg:  Programming view of DWC_otg controller
1219  * @chan:   Identifies the host channel to set up and its properties
1220  * @hcchar: Current value of the HCCHAR register for the specified host channel
1221  *
1222  * This function has no effect on non-periodic transfers
1223  */
dwc2_hc_set_even_odd_frame(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u32 * hcchar)1224 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1225 				       struct dwc2_host_chan *chan, u32 *hcchar)
1226 {
1227 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1228 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1229 		/* 1 if _next_ frame is odd, 0 if it's even */
1230 		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1231 			*hcchar |= HCCHAR_ODDFRM;
1232 	}
1233 }
1234 
dwc2_set_pid_isoc(struct dwc2_host_chan * chan)1235 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1236 {
1237 	/* Set up the initial PID for the transfer */
1238 	if (chan->speed == USB_SPEED_HIGH) {
1239 		if (chan->ep_is_in) {
1240 			if (chan->multi_count == 1)
1241 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1242 			else if (chan->multi_count == 2)
1243 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1244 			else
1245 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1246 		} else {
1247 			if (chan->multi_count == 1)
1248 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1249 			else
1250 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1251 		}
1252 	} else {
1253 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1254 	}
1255 }
1256 
1257 /**
1258  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1259  * the Host Channel
1260  *
1261  * @hsotg: Programming view of DWC_otg controller
1262  * @chan:  Information needed to initialize the host channel
1263  *
1264  * This function should only be called in Slave mode. For a channel associated
1265  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1266  * associated with a periodic EP, the periodic Tx FIFO is written.
1267  *
1268  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1269  * the number of bytes written to the Tx FIFO.
1270  */
dwc2_hc_write_packet(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1271 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1272 				 struct dwc2_host_chan *chan)
1273 {
1274 	u32 i;
1275 	u32 remaining_count;
1276 	u32 byte_count;
1277 	u32 dword_count;
1278 	u32 __iomem *data_fifo;
1279 	u32 *data_buf = (u32 *)chan->xfer_buf;
1280 
1281 	if (dbg_hc(chan))
1282 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1283 
1284 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1285 
1286 	remaining_count = chan->xfer_len - chan->xfer_count;
1287 	if (remaining_count > chan->max_packet)
1288 		byte_count = chan->max_packet;
1289 	else
1290 		byte_count = remaining_count;
1291 
1292 	dword_count = (byte_count + 3) / 4;
1293 
1294 	if (((unsigned long)data_buf & 0x3) == 0) {
1295 		/* xfer_buf is DWORD aligned */
1296 		for (i = 0; i < dword_count; i++, data_buf++)
1297 			writel(*data_buf, data_fifo);
1298 	} else {
1299 		/* xfer_buf is not DWORD aligned */
1300 		for (i = 0; i < dword_count; i++, data_buf++) {
1301 			u32 data = data_buf[0] | data_buf[1] << 8 |
1302 				   data_buf[2] << 16 | data_buf[3] << 24;
1303 			writel(data, data_fifo);
1304 		}
1305 	}
1306 
1307 	chan->xfer_count += byte_count;
1308 	chan->xfer_buf += byte_count;
1309 }
1310 
1311 /**
1312  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1313  * channel and starts the transfer
1314  *
1315  * @hsotg: Programming view of DWC_otg controller
1316  * @chan:  Information needed to initialize the host channel. The xfer_len value
1317  *         may be reduced to accommodate the max widths of the XferSize and
1318  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1319  *         changed to reflect the final xfer_len value.
1320  *
1321  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1322  * the caller must ensure that there is sufficient space in the request queue
1323  * and Tx Data FIFO.
1324  *
1325  * For an OUT transfer in Slave mode, it loads a data packet into the
1326  * appropriate FIFO. If necessary, additional data packets are loaded in the
1327  * Host ISR.
1328  *
1329  * For an IN transfer in Slave mode, a data packet is requested. The data
1330  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1331  * additional data packets are requested in the Host ISR.
1332  *
1333  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1334  * register along with a packet count of 1 and the channel is enabled. This
1335  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1336  * simply set to 0 since no data transfer occurs in this case.
1337  *
1338  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1339  * all the information required to perform the subsequent data transfer. In
1340  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1341  * controller performs the entire PING protocol, then starts the data
1342  * transfer.
1343  */
dwc2_hc_start_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1344 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1345 			    struct dwc2_host_chan *chan)
1346 {
1347 	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1348 	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1349 	u32 hcchar;
1350 	u32 hctsiz = 0;
1351 	u16 num_packets;
1352 
1353 	if (dbg_hc(chan))
1354 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1355 
1356 	if (chan->do_ping) {
1357 		if (hsotg->core_params->dma_enable <= 0) {
1358 			if (dbg_hc(chan))
1359 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1360 			dwc2_hc_do_ping(hsotg, chan);
1361 			chan->xfer_started = 1;
1362 			return;
1363 		} else {
1364 			if (dbg_hc(chan))
1365 				dev_vdbg(hsotg->dev, "ping, DMA\n");
1366 			hctsiz |= TSIZ_DOPNG;
1367 		}
1368 	}
1369 
1370 	if (chan->do_split) {
1371 		if (dbg_hc(chan))
1372 			dev_vdbg(hsotg->dev, "split\n");
1373 		num_packets = 1;
1374 
1375 		if (chan->complete_split && !chan->ep_is_in)
1376 			/*
1377 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1378 			 * core doesn't expect any data written to the FIFO
1379 			 */
1380 			chan->xfer_len = 0;
1381 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1382 			chan->xfer_len = chan->max_packet;
1383 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1384 			chan->xfer_len = 188;
1385 
1386 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1387 			  TSIZ_XFERSIZE_MASK;
1388 	} else {
1389 		if (dbg_hc(chan))
1390 			dev_vdbg(hsotg->dev, "no split\n");
1391 		/*
1392 		 * Ensure that the transfer length and packet count will fit
1393 		 * in the widths allocated for them in the HCTSIZn register
1394 		 */
1395 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1396 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1397 			/*
1398 			 * Make sure the transfer size is no larger than one
1399 			 * (micro)frame's worth of data. (A check was done
1400 			 * when the periodic transfer was accepted to ensure
1401 			 * that a (micro)frame's worth of data can be
1402 			 * programmed into a channel.)
1403 			 */
1404 			u32 max_periodic_len =
1405 				chan->multi_count * chan->max_packet;
1406 
1407 			if (chan->xfer_len > max_periodic_len)
1408 				chan->xfer_len = max_periodic_len;
1409 		} else if (chan->xfer_len > max_hc_xfer_size) {
1410 			/*
1411 			 * Make sure that xfer_len is a multiple of max packet
1412 			 * size
1413 			 */
1414 			chan->xfer_len =
1415 				max_hc_xfer_size - chan->max_packet + 1;
1416 		}
1417 
1418 		if (chan->xfer_len > 0) {
1419 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1420 					chan->max_packet;
1421 			if (num_packets > max_hc_pkt_count) {
1422 				num_packets = max_hc_pkt_count;
1423 				chan->xfer_len = num_packets * chan->max_packet;
1424 			}
1425 		} else {
1426 			/* Need 1 packet for transfer length of 0 */
1427 			num_packets = 1;
1428 		}
1429 
1430 		if (chan->ep_is_in)
1431 			/*
1432 			 * Always program an integral # of max packets for IN
1433 			 * transfers
1434 			 */
1435 			chan->xfer_len = num_packets * chan->max_packet;
1436 
1437 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1438 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1439 			/*
1440 			 * Make sure that the multi_count field matches the
1441 			 * actual transfer length
1442 			 */
1443 			chan->multi_count = num_packets;
1444 
1445 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1446 			dwc2_set_pid_isoc(chan);
1447 
1448 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1449 			  TSIZ_XFERSIZE_MASK;
1450 	}
1451 
1452 	chan->start_pkt_count = num_packets;
1453 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1454 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455 		  TSIZ_SC_MC_PID_MASK;
1456 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1457 	if (dbg_hc(chan)) {
1458 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1459 			 hctsiz, chan->hc_num);
1460 
1461 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1462 			 chan->hc_num);
1463 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1464 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1465 			 TSIZ_XFERSIZE_SHIFT);
1466 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1467 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1468 			 TSIZ_PKTCNT_SHIFT);
1469 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1470 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1471 			 TSIZ_SC_MC_PID_SHIFT);
1472 	}
1473 
1474 	if (hsotg->core_params->dma_enable > 0) {
1475 		dma_addr_t dma_addr;
1476 
1477 		if (chan->align_buf) {
1478 			if (dbg_hc(chan))
1479 				dev_vdbg(hsotg->dev, "align_buf\n");
1480 			dma_addr = chan->align_buf;
1481 		} else {
1482 			dma_addr = chan->xfer_dma;
1483 		}
1484 		writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1485 		if (dbg_hc(chan))
1486 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1487 				 (unsigned long)dma_addr, chan->hc_num);
1488 	}
1489 
1490 	/* Start the split */
1491 	if (chan->do_split) {
1492 		u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
1493 
1494 		hcsplt |= HCSPLT_SPLTENA;
1495 		writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1496 	}
1497 
1498 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1499 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1500 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1501 		  HCCHAR_MULTICNT_MASK;
1502 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1503 
1504 	if (hcchar & HCCHAR_CHDIS)
1505 		dev_warn(hsotg->dev,
1506 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1507 			 __func__, chan->hc_num, hcchar);
1508 
1509 	/* Set host channel enable after all other setup is complete */
1510 	hcchar |= HCCHAR_CHENA;
1511 	hcchar &= ~HCCHAR_CHDIS;
1512 
1513 	if (dbg_hc(chan))
1514 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1515 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1516 			 HCCHAR_MULTICNT_SHIFT);
1517 
1518 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1519 	if (dbg_hc(chan))
1520 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1521 			 chan->hc_num);
1522 
1523 	chan->xfer_started = 1;
1524 	chan->requests++;
1525 
1526 	if (hsotg->core_params->dma_enable <= 0 &&
1527 	    !chan->ep_is_in && chan->xfer_len > 0)
1528 		/* Load OUT packet into the appropriate Tx FIFO */
1529 		dwc2_hc_write_packet(hsotg, chan);
1530 }
1531 
1532 /**
1533  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1534  * host channel and starts the transfer in Descriptor DMA mode
1535  *
1536  * @hsotg: Programming view of DWC_otg controller
1537  * @chan:  Information needed to initialize the host channel
1538  *
1539  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1540  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1541  * with micro-frame bitmap.
1542  *
1543  * Initializes HCDMA register with descriptor list address and CTD value then
1544  * starts the transfer via enabling the channel.
1545  */
dwc2_hc_start_transfer_ddma(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1546 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1547 				 struct dwc2_host_chan *chan)
1548 {
1549 	u32 hcchar;
1550 	u32 hc_dma;
1551 	u32 hctsiz = 0;
1552 
1553 	if (chan->do_ping)
1554 		hctsiz |= TSIZ_DOPNG;
1555 
1556 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1557 		dwc2_set_pid_isoc(chan);
1558 
1559 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1560 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1561 		  TSIZ_SC_MC_PID_MASK;
1562 
1563 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1564 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1565 
1566 	/* Non-zero only for high-speed interrupt endpoints */
1567 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1568 
1569 	if (dbg_hc(chan)) {
1570 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1571 			 chan->hc_num);
1572 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1573 			 chan->data_pid_start);
1574 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1575 	}
1576 
1577 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1578 
1579 	hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
1580 
1581 	/* Always start from first descriptor */
1582 	hc_dma &= ~HCDMA_CTD_MASK;
1583 	writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
1584 	if (dbg_hc(chan))
1585 		dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
1586 			 hc_dma, chan->hc_num);
1587 
1588 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1589 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1590 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1591 		  HCCHAR_MULTICNT_MASK;
1592 
1593 	if (hcchar & HCCHAR_CHDIS)
1594 		dev_warn(hsotg->dev,
1595 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1596 			 __func__, chan->hc_num, hcchar);
1597 
1598 	/* Set host channel enable after all other setup is complete */
1599 	hcchar |= HCCHAR_CHENA;
1600 	hcchar &= ~HCCHAR_CHDIS;
1601 
1602 	if (dbg_hc(chan))
1603 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1604 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1605 			 HCCHAR_MULTICNT_SHIFT);
1606 
1607 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1608 	if (dbg_hc(chan))
1609 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1610 			 chan->hc_num);
1611 
1612 	chan->xfer_started = 1;
1613 	chan->requests++;
1614 }
1615 
1616 /**
1617  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1618  * a previous call to dwc2_hc_start_transfer()
1619  *
1620  * @hsotg: Programming view of DWC_otg controller
1621  * @chan:  Information needed to initialize the host channel
1622  *
1623  * The caller must ensure there is sufficient space in the request queue and Tx
1624  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1625  * the controller acts autonomously to complete transfers programmed to a host
1626  * channel.
1627  *
1628  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1629  * if there is any data remaining to be queued. For an IN transfer, another
1630  * data packet is always requested. For the SETUP phase of a control transfer,
1631  * this function does nothing.
1632  *
1633  * Return: 1 if a new request is queued, 0 if no more requests are required
1634  * for this transfer
1635  */
dwc2_hc_continue_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1636 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1637 			      struct dwc2_host_chan *chan)
1638 {
1639 	if (dbg_hc(chan))
1640 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1641 			 chan->hc_num);
1642 
1643 	if (chan->do_split)
1644 		/* SPLITs always queue just once per channel */
1645 		return 0;
1646 
1647 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1648 		/* SETUPs are queued only once since they can't be NAK'd */
1649 		return 0;
1650 
1651 	if (chan->ep_is_in) {
1652 		/*
1653 		 * Always queue another request for other IN transfers. If
1654 		 * back-to-back INs are issued and NAKs are received for both,
1655 		 * the driver may still be processing the first NAK when the
1656 		 * second NAK is received. When the interrupt handler clears
1657 		 * the NAK interrupt for the first NAK, the second NAK will
1658 		 * not be seen. So we can't depend on the NAK interrupt
1659 		 * handler to requeue a NAK'd request. Instead, IN requests
1660 		 * are issued each time this function is called. When the
1661 		 * transfer completes, the extra requests for the channel will
1662 		 * be flushed.
1663 		 */
1664 		u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1665 
1666 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1667 		hcchar |= HCCHAR_CHENA;
1668 		hcchar &= ~HCCHAR_CHDIS;
1669 		if (dbg_hc(chan))
1670 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1671 				 hcchar);
1672 		writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1673 		chan->requests++;
1674 		return 1;
1675 	}
1676 
1677 	/* OUT transfers */
1678 
1679 	if (chan->xfer_count < chan->xfer_len) {
1680 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1681 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1682 			u32 hcchar = readl(hsotg->regs +
1683 					   HCCHAR(chan->hc_num));
1684 
1685 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1686 						   &hcchar);
1687 		}
1688 
1689 		/* Load OUT packet into the appropriate Tx FIFO */
1690 		dwc2_hc_write_packet(hsotg, chan);
1691 		chan->requests++;
1692 		return 1;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * dwc2_hc_do_ping() - Starts a PING transfer
1700  *
1701  * @hsotg: Programming view of DWC_otg controller
1702  * @chan:  Information needed to initialize the host channel
1703  *
1704  * This function should only be called in Slave mode. The Do Ping bit is set in
1705  * the HCTSIZ register, then the channel is enabled.
1706  */
dwc2_hc_do_ping(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1707 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1708 {
1709 	u32 hcchar;
1710 	u32 hctsiz;
1711 
1712 	if (dbg_hc(chan))
1713 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1714 			 chan->hc_num);
1715 
1716 
1717 	hctsiz = TSIZ_DOPNG;
1718 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1719 	writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1720 
1721 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1722 	hcchar |= HCCHAR_CHENA;
1723 	hcchar &= ~HCCHAR_CHDIS;
1724 	writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1725 }
1726 
1727 /**
1728  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
1729  * the HFIR register according to PHY type and speed
1730  *
1731  * @hsotg: Programming view of DWC_otg controller
1732  *
1733  * NOTE: The caller can modify the value of the HFIR register only after the
1734  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
1735  * has been set
1736  */
dwc2_calc_frame_interval(struct dwc2_hsotg * hsotg)1737 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
1738 {
1739 	u32 usbcfg;
1740 	u32 hprt0;
1741 	int clock = 60;	/* default value */
1742 
1743 	usbcfg = readl(hsotg->regs + GUSBCFG);
1744 	hprt0 = readl(hsotg->regs + HPRT0);
1745 
1746 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
1747 	    !(usbcfg & GUSBCFG_PHYIF16))
1748 		clock = 60;
1749 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
1750 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
1751 		clock = 48;
1752 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1753 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
1754 		clock = 30;
1755 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1756 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
1757 		clock = 60;
1758 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1759 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
1760 		clock = 48;
1761 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
1762 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
1763 		clock = 48;
1764 	if ((usbcfg & GUSBCFG_PHYSEL) &&
1765 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
1766 		clock = 48;
1767 
1768 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
1769 		/* High speed case */
1770 		return 125 * clock;
1771 	else
1772 		/* FS/LS case */
1773 		return 1000 * clock;
1774 }
1775 
1776 /**
1777  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
1778  * buffer
1779  *
1780  * @core_if: Programming view of DWC_otg controller
1781  * @dest:    Destination buffer for the packet
1782  * @bytes:   Number of bytes to copy to the destination
1783  */
dwc2_read_packet(struct dwc2_hsotg * hsotg,u8 * dest,u16 bytes)1784 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
1785 {
1786 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
1787 	u32 *data_buf = (u32 *)dest;
1788 	int word_count = (bytes + 3) / 4;
1789 	int i;
1790 
1791 	/*
1792 	 * Todo: Account for the case where dest is not dword aligned. This
1793 	 * requires reading data from the FIFO into a u32 temp buffer, then
1794 	 * moving it into the data buffer.
1795 	 */
1796 
1797 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
1798 
1799 	for (i = 0; i < word_count; i++, data_buf++)
1800 		*data_buf = readl(fifo);
1801 }
1802 
1803 /**
1804  * dwc2_dump_host_registers() - Prints the host registers
1805  *
1806  * @hsotg: Programming view of DWC_otg controller
1807  *
1808  * NOTE: This function will be removed once the peripheral controller code
1809  * is integrated and the driver is stable
1810  */
dwc2_dump_host_registers(struct dwc2_hsotg * hsotg)1811 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
1812 {
1813 #ifdef DEBUG
1814 	u32 __iomem *addr;
1815 	int i;
1816 
1817 	dev_dbg(hsotg->dev, "Host Global Registers\n");
1818 	addr = hsotg->regs + HCFG;
1819 	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
1820 		(unsigned long)addr, readl(addr));
1821 	addr = hsotg->regs + HFIR;
1822 	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
1823 		(unsigned long)addr, readl(addr));
1824 	addr = hsotg->regs + HFNUM;
1825 	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
1826 		(unsigned long)addr, readl(addr));
1827 	addr = hsotg->regs + HPTXSTS;
1828 	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
1829 		(unsigned long)addr, readl(addr));
1830 	addr = hsotg->regs + HAINT;
1831 	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
1832 		(unsigned long)addr, readl(addr));
1833 	addr = hsotg->regs + HAINTMSK;
1834 	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
1835 		(unsigned long)addr, readl(addr));
1836 	if (hsotg->core_params->dma_desc_enable > 0) {
1837 		addr = hsotg->regs + HFLBADDR;
1838 		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
1839 			(unsigned long)addr, readl(addr));
1840 	}
1841 
1842 	addr = hsotg->regs + HPRT0;
1843 	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
1844 		(unsigned long)addr, readl(addr));
1845 
1846 	for (i = 0; i < hsotg->core_params->host_channels; i++) {
1847 		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
1848 		addr = hsotg->regs + HCCHAR(i);
1849 		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
1850 			(unsigned long)addr, readl(addr));
1851 		addr = hsotg->regs + HCSPLT(i);
1852 		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
1853 			(unsigned long)addr, readl(addr));
1854 		addr = hsotg->regs + HCINT(i);
1855 		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
1856 			(unsigned long)addr, readl(addr));
1857 		addr = hsotg->regs + HCINTMSK(i);
1858 		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
1859 			(unsigned long)addr, readl(addr));
1860 		addr = hsotg->regs + HCTSIZ(i);
1861 		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
1862 			(unsigned long)addr, readl(addr));
1863 		addr = hsotg->regs + HCDMA(i);
1864 		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
1865 			(unsigned long)addr, readl(addr));
1866 		if (hsotg->core_params->dma_desc_enable > 0) {
1867 			addr = hsotg->regs + HCDMAB(i);
1868 			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
1869 				(unsigned long)addr, readl(addr));
1870 		}
1871 	}
1872 #endif
1873 }
1874 
1875 /**
1876  * dwc2_dump_global_registers() - Prints the core global registers
1877  *
1878  * @hsotg: Programming view of DWC_otg controller
1879  *
1880  * NOTE: This function will be removed once the peripheral controller code
1881  * is integrated and the driver is stable
1882  */
dwc2_dump_global_registers(struct dwc2_hsotg * hsotg)1883 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
1884 {
1885 #ifdef DEBUG
1886 	u32 __iomem *addr;
1887 
1888 	dev_dbg(hsotg->dev, "Core Global Registers\n");
1889 	addr = hsotg->regs + GOTGCTL;
1890 	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
1891 		(unsigned long)addr, readl(addr));
1892 	addr = hsotg->regs + GOTGINT;
1893 	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
1894 		(unsigned long)addr, readl(addr));
1895 	addr = hsotg->regs + GAHBCFG;
1896 	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
1897 		(unsigned long)addr, readl(addr));
1898 	addr = hsotg->regs + GUSBCFG;
1899 	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
1900 		(unsigned long)addr, readl(addr));
1901 	addr = hsotg->regs + GRSTCTL;
1902 	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
1903 		(unsigned long)addr, readl(addr));
1904 	addr = hsotg->regs + GINTSTS;
1905 	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
1906 		(unsigned long)addr, readl(addr));
1907 	addr = hsotg->regs + GINTMSK;
1908 	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
1909 		(unsigned long)addr, readl(addr));
1910 	addr = hsotg->regs + GRXSTSR;
1911 	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
1912 		(unsigned long)addr, readl(addr));
1913 	addr = hsotg->regs + GRXFSIZ;
1914 	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
1915 		(unsigned long)addr, readl(addr));
1916 	addr = hsotg->regs + GNPTXFSIZ;
1917 	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
1918 		(unsigned long)addr, readl(addr));
1919 	addr = hsotg->regs + GNPTXSTS;
1920 	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
1921 		(unsigned long)addr, readl(addr));
1922 	addr = hsotg->regs + GI2CCTL;
1923 	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
1924 		(unsigned long)addr, readl(addr));
1925 	addr = hsotg->regs + GPVNDCTL;
1926 	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
1927 		(unsigned long)addr, readl(addr));
1928 	addr = hsotg->regs + GGPIO;
1929 	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
1930 		(unsigned long)addr, readl(addr));
1931 	addr = hsotg->regs + GUID;
1932 	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
1933 		(unsigned long)addr, readl(addr));
1934 	addr = hsotg->regs + GSNPSID;
1935 	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
1936 		(unsigned long)addr, readl(addr));
1937 	addr = hsotg->regs + GHWCFG1;
1938 	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
1939 		(unsigned long)addr, readl(addr));
1940 	addr = hsotg->regs + GHWCFG2;
1941 	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
1942 		(unsigned long)addr, readl(addr));
1943 	addr = hsotg->regs + GHWCFG3;
1944 	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
1945 		(unsigned long)addr, readl(addr));
1946 	addr = hsotg->regs + GHWCFG4;
1947 	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
1948 		(unsigned long)addr, readl(addr));
1949 	addr = hsotg->regs + GLPMCFG;
1950 	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
1951 		(unsigned long)addr, readl(addr));
1952 	addr = hsotg->regs + GPWRDN;
1953 	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
1954 		(unsigned long)addr, readl(addr));
1955 	addr = hsotg->regs + GDFIFOCFG;
1956 	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
1957 		(unsigned long)addr, readl(addr));
1958 	addr = hsotg->regs + HPTXFSIZ;
1959 	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
1960 		(unsigned long)addr, readl(addr));
1961 
1962 	addr = hsotg->regs + PCGCTL;
1963 	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
1964 		(unsigned long)addr, readl(addr));
1965 #endif
1966 }
1967 
1968 /**
1969  * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
1970  *
1971  * @hsotg: Programming view of DWC_otg controller
1972  * @num:   Tx FIFO to flush
1973  */
dwc2_flush_tx_fifo(struct dwc2_hsotg * hsotg,const int num)1974 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
1975 {
1976 	u32 greset;
1977 	int count = 0;
1978 
1979 	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
1980 
1981 	greset = GRSTCTL_TXFFLSH;
1982 	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
1983 	writel(greset, hsotg->regs + GRSTCTL);
1984 
1985 	do {
1986 		greset = readl(hsotg->regs + GRSTCTL);
1987 		if (++count > 10000) {
1988 			dev_warn(hsotg->dev,
1989 				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
1990 				 __func__, greset,
1991 				 readl(hsotg->regs + GNPTXSTS));
1992 			break;
1993 		}
1994 		udelay(1);
1995 	} while (greset & GRSTCTL_TXFFLSH);
1996 
1997 	/* Wait for at least 3 PHY Clocks */
1998 	udelay(1);
1999 }
2000 
2001 /**
2002  * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
2003  *
2004  * @hsotg: Programming view of DWC_otg controller
2005  */
dwc2_flush_rx_fifo(struct dwc2_hsotg * hsotg)2006 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
2007 {
2008 	u32 greset;
2009 	int count = 0;
2010 
2011 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
2012 
2013 	greset = GRSTCTL_RXFFLSH;
2014 	writel(greset, hsotg->regs + GRSTCTL);
2015 
2016 	do {
2017 		greset = readl(hsotg->regs + GRSTCTL);
2018 		if (++count > 10000) {
2019 			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
2020 				 __func__, greset);
2021 			break;
2022 		}
2023 		udelay(1);
2024 	} while (greset & GRSTCTL_RXFFLSH);
2025 
2026 	/* Wait for at least 3 PHY Clocks */
2027 	udelay(1);
2028 }
2029 
2030 #define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
2031 
2032 /* Parameter access functions */
dwc2_set_param_otg_cap(struct dwc2_hsotg * hsotg,int val)2033 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
2034 {
2035 	int valid = 1;
2036 
2037 	switch (val) {
2038 	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
2039 		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
2040 			valid = 0;
2041 		break;
2042 	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
2043 		switch (hsotg->hw_params.op_mode) {
2044 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2045 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2046 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2047 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2048 			break;
2049 		default:
2050 			valid = 0;
2051 			break;
2052 		}
2053 		break;
2054 	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
2055 		/* always valid */
2056 		break;
2057 	default:
2058 		valid = 0;
2059 		break;
2060 	}
2061 
2062 	if (!valid) {
2063 		if (val >= 0)
2064 			dev_err(hsotg->dev,
2065 				"%d invalid for otg_cap parameter. Check HW configuration.\n",
2066 				val);
2067 		switch (hsotg->hw_params.op_mode) {
2068 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
2069 			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
2070 			break;
2071 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
2072 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
2073 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
2074 			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
2075 			break;
2076 		default:
2077 			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
2078 			break;
2079 		}
2080 		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
2081 	}
2082 
2083 	hsotg->core_params->otg_cap = val;
2084 }
2085 
dwc2_set_param_dma_enable(struct dwc2_hsotg * hsotg,int val)2086 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2087 {
2088 	int valid = 1;
2089 
2090 	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2091 		valid = 0;
2092 	if (val < 0)
2093 		valid = 0;
2094 
2095 	if (!valid) {
2096 		if (val >= 0)
2097 			dev_err(hsotg->dev,
2098 				"%d invalid for dma_enable parameter. Check HW configuration.\n",
2099 				val);
2100 		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2101 		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
2102 	}
2103 
2104 	hsotg->core_params->dma_enable = val;
2105 }
2106 
dwc2_set_param_dma_desc_enable(struct dwc2_hsotg * hsotg,int val)2107 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2108 {
2109 	int valid = 1;
2110 
2111 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2112 			!hsotg->hw_params.dma_desc_enable))
2113 		valid = 0;
2114 	if (val < 0)
2115 		valid = 0;
2116 
2117 	if (!valid) {
2118 		if (val >= 0)
2119 			dev_err(hsotg->dev,
2120 				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2121 				val);
2122 		val = (hsotg->core_params->dma_enable > 0 &&
2123 			hsotg->hw_params.dma_desc_enable);
2124 		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
2125 	}
2126 
2127 	hsotg->core_params->dma_desc_enable = val;
2128 }
2129 
dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg * hsotg,int val)2130 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2131 						 int val)
2132 {
2133 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2134 		if (val >= 0) {
2135 			dev_err(hsotg->dev,
2136 				"Wrong value for host_support_fs_low_power\n");
2137 			dev_err(hsotg->dev,
2138 				"host_support_fs_low_power must be 0 or 1\n");
2139 		}
2140 		val = 0;
2141 		dev_dbg(hsotg->dev,
2142 			"Setting host_support_fs_low_power to %d\n", val);
2143 	}
2144 
2145 	hsotg->core_params->host_support_fs_ls_low_power = val;
2146 }
2147 
dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg * hsotg,int val)2148 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2149 {
2150 	int valid = 1;
2151 
2152 	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2153 		valid = 0;
2154 	if (val < 0)
2155 		valid = 0;
2156 
2157 	if (!valid) {
2158 		if (val >= 0)
2159 			dev_err(hsotg->dev,
2160 				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2161 				val);
2162 		val = hsotg->hw_params.enable_dynamic_fifo;
2163 		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
2164 	}
2165 
2166 	hsotg->core_params->enable_dynamic_fifo = val;
2167 }
2168 
dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg * hsotg,int val)2169 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2170 {
2171 	int valid = 1;
2172 
2173 	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2174 		valid = 0;
2175 
2176 	if (!valid) {
2177 		if (val >= 0)
2178 			dev_err(hsotg->dev,
2179 				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2180 				val);
2181 		val = hsotg->hw_params.host_rx_fifo_size;
2182 		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
2183 	}
2184 
2185 	hsotg->core_params->host_rx_fifo_size = val;
2186 }
2187 
dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg * hsotg,int val)2188 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2189 {
2190 	int valid = 1;
2191 
2192 	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2193 		valid = 0;
2194 
2195 	if (!valid) {
2196 		if (val >= 0)
2197 			dev_err(hsotg->dev,
2198 				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2199 				val);
2200 		val = hsotg->hw_params.host_nperio_tx_fifo_size;
2201 		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2202 			val);
2203 	}
2204 
2205 	hsotg->core_params->host_nperio_tx_fifo_size = val;
2206 }
2207 
dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg * hsotg,int val)2208 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2209 {
2210 	int valid = 1;
2211 
2212 	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2213 		valid = 0;
2214 
2215 	if (!valid) {
2216 		if (val >= 0)
2217 			dev_err(hsotg->dev,
2218 				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2219 				val);
2220 		val = hsotg->hw_params.host_perio_tx_fifo_size;
2221 		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2222 			val);
2223 	}
2224 
2225 	hsotg->core_params->host_perio_tx_fifo_size = val;
2226 }
2227 
dwc2_set_param_max_transfer_size(struct dwc2_hsotg * hsotg,int val)2228 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2229 {
2230 	int valid = 1;
2231 
2232 	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2233 		valid = 0;
2234 
2235 	if (!valid) {
2236 		if (val >= 0)
2237 			dev_err(hsotg->dev,
2238 				"%d invalid for max_transfer_size. Check HW configuration.\n",
2239 				val);
2240 		val = hsotg->hw_params.max_transfer_size;
2241 		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
2242 	}
2243 
2244 	hsotg->core_params->max_transfer_size = val;
2245 }
2246 
dwc2_set_param_max_packet_count(struct dwc2_hsotg * hsotg,int val)2247 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2248 {
2249 	int valid = 1;
2250 
2251 	if (val < 15 || val > hsotg->hw_params.max_packet_count)
2252 		valid = 0;
2253 
2254 	if (!valid) {
2255 		if (val >= 0)
2256 			dev_err(hsotg->dev,
2257 				"%d invalid for max_packet_count. Check HW configuration.\n",
2258 				val);
2259 		val = hsotg->hw_params.max_packet_count;
2260 		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
2261 	}
2262 
2263 	hsotg->core_params->max_packet_count = val;
2264 }
2265 
dwc2_set_param_host_channels(struct dwc2_hsotg * hsotg,int val)2266 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2267 {
2268 	int valid = 1;
2269 
2270 	if (val < 1 || val > hsotg->hw_params.host_channels)
2271 		valid = 0;
2272 
2273 	if (!valid) {
2274 		if (val >= 0)
2275 			dev_err(hsotg->dev,
2276 				"%d invalid for host_channels. Check HW configuration.\n",
2277 				val);
2278 		val = hsotg->hw_params.host_channels;
2279 		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
2280 	}
2281 
2282 	hsotg->core_params->host_channels = val;
2283 }
2284 
dwc2_set_param_phy_type(struct dwc2_hsotg * hsotg,int val)2285 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2286 {
2287 	int valid = 0;
2288 	u32 hs_phy_type, fs_phy_type;
2289 
2290 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2291 			       DWC2_PHY_TYPE_PARAM_ULPI)) {
2292 		if (val >= 0) {
2293 			dev_err(hsotg->dev, "Wrong value for phy_type\n");
2294 			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2295 		}
2296 
2297 		valid = 0;
2298 	}
2299 
2300 	hs_phy_type = hsotg->hw_params.hs_phy_type;
2301 	fs_phy_type = hsotg->hw_params.fs_phy_type;
2302 	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2303 	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2304 	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2305 		valid = 1;
2306 	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2307 		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2308 		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2309 		valid = 1;
2310 	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2311 		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2312 		valid = 1;
2313 
2314 	if (!valid) {
2315 		if (val >= 0)
2316 			dev_err(hsotg->dev,
2317 				"%d invalid for phy_type. Check HW configuration.\n",
2318 				val);
2319 		val = DWC2_PHY_TYPE_PARAM_FS;
2320 		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2321 			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2322 			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2323 				val = DWC2_PHY_TYPE_PARAM_UTMI;
2324 			else
2325 				val = DWC2_PHY_TYPE_PARAM_ULPI;
2326 		}
2327 		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
2328 	}
2329 
2330 	hsotg->core_params->phy_type = val;
2331 }
2332 
dwc2_get_param_phy_type(struct dwc2_hsotg * hsotg)2333 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2334 {
2335 	return hsotg->core_params->phy_type;
2336 }
2337 
dwc2_set_param_speed(struct dwc2_hsotg * hsotg,int val)2338 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2339 {
2340 	int valid = 1;
2341 
2342 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2343 		if (val >= 0) {
2344 			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2345 			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2346 		}
2347 		valid = 0;
2348 	}
2349 
2350 	if (val == DWC2_SPEED_PARAM_HIGH &&
2351 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2352 		valid = 0;
2353 
2354 	if (!valid) {
2355 		if (val >= 0)
2356 			dev_err(hsotg->dev,
2357 				"%d invalid for speed parameter. Check HW configuration.\n",
2358 				val);
2359 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2360 				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2361 		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
2362 	}
2363 
2364 	hsotg->core_params->speed = val;
2365 }
2366 
dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg * hsotg,int val)2367 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2368 {
2369 	int valid = 1;
2370 
2371 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2372 			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2373 		if (val >= 0) {
2374 			dev_err(hsotg->dev,
2375 				"Wrong value for host_ls_low_power_phy_clk parameter\n");
2376 			dev_err(hsotg->dev,
2377 				"host_ls_low_power_phy_clk must be 0 or 1\n");
2378 		}
2379 		valid = 0;
2380 	}
2381 
2382 	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2383 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2384 		valid = 0;
2385 
2386 	if (!valid) {
2387 		if (val >= 0)
2388 			dev_err(hsotg->dev,
2389 				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2390 				val);
2391 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2392 			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2393 			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2394 		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2395 			val);
2396 	}
2397 
2398 	hsotg->core_params->host_ls_low_power_phy_clk = val;
2399 }
2400 
dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg * hsotg,int val)2401 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2402 {
2403 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2404 		if (val >= 0) {
2405 			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2406 			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2407 		}
2408 		val = 0;
2409 		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
2410 	}
2411 
2412 	hsotg->core_params->phy_ulpi_ddr = val;
2413 }
2414 
dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg * hsotg,int val)2415 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2416 {
2417 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2418 		if (val >= 0) {
2419 			dev_err(hsotg->dev,
2420 				"Wrong value for phy_ulpi_ext_vbus\n");
2421 			dev_err(hsotg->dev,
2422 				"phy_ulpi_ext_vbus must be 0 or 1\n");
2423 		}
2424 		val = 0;
2425 		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
2426 	}
2427 
2428 	hsotg->core_params->phy_ulpi_ext_vbus = val;
2429 }
2430 
dwc2_set_param_phy_utmi_width(struct dwc2_hsotg * hsotg,int val)2431 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2432 {
2433 	int valid = 0;
2434 
2435 	switch (hsotg->hw_params.utmi_phy_data_width) {
2436 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2437 		valid = (val == 8);
2438 		break;
2439 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2440 		valid = (val == 16);
2441 		break;
2442 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2443 		valid = (val == 8 || val == 16);
2444 		break;
2445 	}
2446 
2447 	if (!valid) {
2448 		if (val >= 0) {
2449 			dev_err(hsotg->dev,
2450 				"%d invalid for phy_utmi_width. Check HW configuration.\n",
2451 				val);
2452 		}
2453 		val = (hsotg->hw_params.utmi_phy_data_width ==
2454 		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2455 		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
2456 	}
2457 
2458 	hsotg->core_params->phy_utmi_width = val;
2459 }
2460 
dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg * hsotg,int val)2461 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2462 {
2463 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2464 		if (val >= 0) {
2465 			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2466 			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2467 		}
2468 		val = 0;
2469 		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
2470 	}
2471 
2472 	hsotg->core_params->ulpi_fs_ls = val;
2473 }
2474 
dwc2_set_param_ts_dline(struct dwc2_hsotg * hsotg,int val)2475 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2476 {
2477 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2478 		if (val >= 0) {
2479 			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2480 			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2481 		}
2482 		val = 0;
2483 		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
2484 	}
2485 
2486 	hsotg->core_params->ts_dline = val;
2487 }
2488 
dwc2_set_param_i2c_enable(struct dwc2_hsotg * hsotg,int val)2489 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2490 {
2491 	int valid = 1;
2492 
2493 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2494 		if (val >= 0) {
2495 			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
2496 			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
2497 		}
2498 
2499 		valid = 0;
2500 	}
2501 
2502 	if (val == 1 && !(hsotg->hw_params.i2c_enable))
2503 		valid = 0;
2504 
2505 	if (!valid) {
2506 		if (val >= 0)
2507 			dev_err(hsotg->dev,
2508 				"%d invalid for i2c_enable. Check HW configuration.\n",
2509 				val);
2510 		val = hsotg->hw_params.i2c_enable;
2511 		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
2512 	}
2513 
2514 	hsotg->core_params->i2c_enable = val;
2515 }
2516 
dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg * hsotg,int val)2517 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2518 {
2519 	int valid = 1;
2520 
2521 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2522 		if (val >= 0) {
2523 			dev_err(hsotg->dev,
2524 				"Wrong value for en_multiple_tx_fifo,\n");
2525 			dev_err(hsotg->dev,
2526 				"en_multiple_tx_fifo must be 0 or 1\n");
2527 		}
2528 		valid = 0;
2529 	}
2530 
2531 	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2532 		valid = 0;
2533 
2534 	if (!valid) {
2535 		if (val >= 0)
2536 			dev_err(hsotg->dev,
2537 				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
2538 				val);
2539 		val = hsotg->hw_params.en_multiple_tx_fifo;
2540 		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
2541 	}
2542 
2543 	hsotg->core_params->en_multiple_tx_fifo = val;
2544 }
2545 
dwc2_set_param_reload_ctl(struct dwc2_hsotg * hsotg,int val)2546 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2547 {
2548 	int valid = 1;
2549 
2550 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2551 		if (val >= 0) {
2552 			dev_err(hsotg->dev,
2553 				"'%d' invalid for parameter reload_ctl\n", val);
2554 			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
2555 		}
2556 		valid = 0;
2557 	}
2558 
2559 	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2560 		valid = 0;
2561 
2562 	if (!valid) {
2563 		if (val >= 0)
2564 			dev_err(hsotg->dev,
2565 				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
2566 				val);
2567 		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2568 		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
2569 	}
2570 
2571 	hsotg->core_params->reload_ctl = val;
2572 }
2573 
dwc2_set_param_ahbcfg(struct dwc2_hsotg * hsotg,int val)2574 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2575 {
2576 	if (val != -1)
2577 		hsotg->core_params->ahbcfg = val;
2578 	else
2579 		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2580 						GAHBCFG_HBSTLEN_SHIFT;
2581 }
2582 
dwc2_set_param_otg_ver(struct dwc2_hsotg * hsotg,int val)2583 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2584 {
2585 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2586 		if (val >= 0) {
2587 			dev_err(hsotg->dev,
2588 				"'%d' invalid for parameter otg_ver\n", val);
2589 			dev_err(hsotg->dev,
2590 				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
2591 		}
2592 		val = 0;
2593 		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
2594 	}
2595 
2596 	hsotg->core_params->otg_ver = val;
2597 }
2598 
dwc2_set_param_uframe_sched(struct dwc2_hsotg * hsotg,int val)2599 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
2600 {
2601 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2602 		if (val >= 0) {
2603 			dev_err(hsotg->dev,
2604 				"'%d' invalid for parameter uframe_sched\n",
2605 				val);
2606 			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
2607 		}
2608 		val = 1;
2609 		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
2610 	}
2611 
2612 	hsotg->core_params->uframe_sched = val;
2613 }
2614 
2615 /*
2616  * This function is called during module intialization to pass module parameters
2617  * for the DWC_otg core.
2618  */
dwc2_set_parameters(struct dwc2_hsotg * hsotg,const struct dwc2_core_params * params)2619 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
2620 			 const struct dwc2_core_params *params)
2621 {
2622 	dev_dbg(hsotg->dev, "%s()\n", __func__);
2623 
2624 	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
2625 	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
2626 	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
2627 	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
2628 			params->host_support_fs_ls_low_power);
2629 	dwc2_set_param_enable_dynamic_fifo(hsotg,
2630 			params->enable_dynamic_fifo);
2631 	dwc2_set_param_host_rx_fifo_size(hsotg,
2632 			params->host_rx_fifo_size);
2633 	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
2634 			params->host_nperio_tx_fifo_size);
2635 	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
2636 			params->host_perio_tx_fifo_size);
2637 	dwc2_set_param_max_transfer_size(hsotg,
2638 			params->max_transfer_size);
2639 	dwc2_set_param_max_packet_count(hsotg,
2640 			params->max_packet_count);
2641 	dwc2_set_param_host_channels(hsotg, params->host_channels);
2642 	dwc2_set_param_phy_type(hsotg, params->phy_type);
2643 	dwc2_set_param_speed(hsotg, params->speed);
2644 	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
2645 			params->host_ls_low_power_phy_clk);
2646 	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
2647 	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
2648 			params->phy_ulpi_ext_vbus);
2649 	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
2650 	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
2651 	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
2652 	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
2653 	dwc2_set_param_en_multiple_tx_fifo(hsotg,
2654 			params->en_multiple_tx_fifo);
2655 	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
2656 	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
2657 	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
2658 	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
2659 }
2660 
2661 /**
2662  * During device initialization, read various hardware configuration
2663  * registers and interpret the contents.
2664  */
dwc2_get_hwparams(struct dwc2_hsotg * hsotg)2665 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
2666 {
2667 	struct dwc2_hw_params *hw = &hsotg->hw_params;
2668 	unsigned width;
2669 	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
2670 	u32 hptxfsiz, grxfsiz, gnptxfsiz;
2671 	u32 gusbcfg;
2672 
2673 	/*
2674 	 * Attempt to ensure this device is really a DWC_otg Controller.
2675 	 * Read and verify the GSNPSID register contents. The value should be
2676 	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
2677 	 * as in "OTG version 2.xx" or "OTG version 3.xx".
2678 	 */
2679 	hw->snpsid = readl(hsotg->regs + GSNPSID);
2680 	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
2681 	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
2682 		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
2683 			hw->snpsid);
2684 		return -ENODEV;
2685 	}
2686 
2687 	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
2688 		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
2689 		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
2690 
2691 	hwcfg1 = readl(hsotg->regs + GHWCFG1);
2692 	hwcfg2 = readl(hsotg->regs + GHWCFG2);
2693 	hwcfg3 = readl(hsotg->regs + GHWCFG3);
2694 	hwcfg4 = readl(hsotg->regs + GHWCFG4);
2695 	grxfsiz = readl(hsotg->regs + GRXFSIZ);
2696 
2697 	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
2698 	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
2699 	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
2700 	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
2701 	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
2702 
2703 	/* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */
2704 	gusbcfg = readl(hsotg->regs + GUSBCFG);
2705 	gusbcfg |= GUSBCFG_FORCEHOSTMODE;
2706 	writel(gusbcfg, hsotg->regs + GUSBCFG);
2707 	usleep_range(100000, 150000);
2708 
2709 	gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
2710 	hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
2711 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
2712 	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
2713 	gusbcfg = readl(hsotg->regs + GUSBCFG);
2714 	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
2715 	writel(gusbcfg, hsotg->regs + GUSBCFG);
2716 	usleep_range(100000, 150000);
2717 
2718 	/* hwcfg2 */
2719 	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
2720 		      GHWCFG2_OP_MODE_SHIFT;
2721 	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
2722 		   GHWCFG2_ARCHITECTURE_SHIFT;
2723 	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
2724 	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
2725 				GHWCFG2_NUM_HOST_CHAN_SHIFT);
2726 	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
2727 			  GHWCFG2_HS_PHY_TYPE_SHIFT;
2728 	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
2729 			  GHWCFG2_FS_PHY_TYPE_SHIFT;
2730 	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
2731 			 GHWCFG2_NUM_DEV_EP_SHIFT;
2732 	hw->nperio_tx_q_depth =
2733 		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
2734 		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
2735 	hw->host_perio_tx_q_depth =
2736 		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
2737 		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
2738 	hw->dev_token_q_depth =
2739 		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
2740 		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
2741 
2742 	/* hwcfg3 */
2743 	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
2744 		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
2745 	hw->max_transfer_size = (1 << (width + 11)) - 1;
2746 	/*
2747 	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
2748 	 * coherent buffers with this size, and if it's too large we can
2749 	 * exhaust the coherent DMA pool.
2750 	 */
2751 	if (hw->max_transfer_size > 65535)
2752 		hw->max_transfer_size = 65535;
2753 	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
2754 		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
2755 	hw->max_packet_count = (1 << (width + 4)) - 1;
2756 	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
2757 	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
2758 			      GHWCFG3_DFIFO_DEPTH_SHIFT;
2759 
2760 	/* hwcfg4 */
2761 	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
2762 	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
2763 				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
2764 	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
2765 	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
2766 	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
2767 				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
2768 
2769 	/* fifo sizes */
2770 	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
2771 				GRXFSIZ_DEPTH_SHIFT;
2772 	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
2773 				       FIFOSIZE_DEPTH_SHIFT;
2774 	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
2775 				      FIFOSIZE_DEPTH_SHIFT;
2776 
2777 	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
2778 	dev_dbg(hsotg->dev, "  op_mode=%d\n",
2779 		hw->op_mode);
2780 	dev_dbg(hsotg->dev, "  arch=%d\n",
2781 		hw->arch);
2782 	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
2783 		hw->dma_desc_enable);
2784 	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
2785 		hw->power_optimized);
2786 	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
2787 		hw->i2c_enable);
2788 	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
2789 		hw->hs_phy_type);
2790 	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
2791 		hw->fs_phy_type);
2792 	dev_dbg(hsotg->dev, "  utmi_phy_data_wdith=%d\n",
2793 		hw->utmi_phy_data_width);
2794 	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
2795 		hw->num_dev_ep);
2796 	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
2797 		hw->num_dev_perio_in_ep);
2798 	dev_dbg(hsotg->dev, "  host_channels=%d\n",
2799 		hw->host_channels);
2800 	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
2801 		hw->max_transfer_size);
2802 	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
2803 		hw->max_packet_count);
2804 	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
2805 		hw->nperio_tx_q_depth);
2806 	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
2807 		hw->host_perio_tx_q_depth);
2808 	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
2809 		hw->dev_token_q_depth);
2810 	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
2811 		hw->enable_dynamic_fifo);
2812 	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
2813 		hw->en_multiple_tx_fifo);
2814 	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
2815 		hw->total_fifo_size);
2816 	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
2817 		hw->host_rx_fifo_size);
2818 	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
2819 		hw->host_nperio_tx_fifo_size);
2820 	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
2821 		hw->host_perio_tx_fifo_size);
2822 	dev_dbg(hsotg->dev, "\n");
2823 
2824 	return 0;
2825 }
2826 
dwc2_get_otg_version(struct dwc2_hsotg * hsotg)2827 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
2828 {
2829 	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
2830 }
2831 
dwc2_is_controller_alive(struct dwc2_hsotg * hsotg)2832 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
2833 {
2834 	if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
2835 		return false;
2836 	else
2837 		return true;
2838 }
2839 
2840 /**
2841  * dwc2_enable_global_interrupts() - Enables the controller's Global
2842  * Interrupt in the AHB Config register
2843  *
2844  * @hsotg: Programming view of DWC_otg controller
2845  */
dwc2_enable_global_interrupts(struct dwc2_hsotg * hsotg)2846 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
2847 {
2848 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
2849 
2850 	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
2851 	writel(ahbcfg, hsotg->regs + GAHBCFG);
2852 }
2853 
2854 /**
2855  * dwc2_disable_global_interrupts() - Disables the controller's Global
2856  * Interrupt in the AHB Config register
2857  *
2858  * @hsotg: Programming view of DWC_otg controller
2859  */
dwc2_disable_global_interrupts(struct dwc2_hsotg * hsotg)2860 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
2861 {
2862 	u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
2863 
2864 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
2865 	writel(ahbcfg, hsotg->regs + GAHBCFG);
2866 }
2867 
2868 MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
2869 MODULE_AUTHOR("Synopsys, Inc.");
2870 MODULE_LICENSE("Dual BSD/GPL");
2871