1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
d_hash(const struct dentry * parent,unsigned int hash)105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
get_nr_dentry(void)134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
get_nr_dentry_unused(void)143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
external_name(struct dentry * dentry)246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
__d_free(struct rcu_head * head)251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 kmem_cache_free(dentry_cache, dentry);
256 }
257
__d_free_external(struct rcu_head * head)258 static void __d_free_external(struct rcu_head *head)
259 {
260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
261 kfree(external_name(dentry));
262 kmem_cache_free(dentry_cache, dentry);
263 }
264
dname_external(const struct dentry * dentry)265 static inline int dname_external(const struct dentry *dentry)
266 {
267 return dentry->d_name.name != dentry->d_iname;
268 }
269
dentry_free(struct dentry * dentry)270 static void dentry_free(struct dentry *dentry)
271 {
272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
273 if (unlikely(dname_external(dentry))) {
274 struct external_name *p = external_name(dentry);
275 if (likely(atomic_dec_and_test(&p->u.count))) {
276 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 return;
278 }
279 }
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 __d_free(&dentry->d_u.d_rcu);
283 else
284 call_rcu(&dentry->d_u.d_rcu, __d_free);
285 }
286
287 /**
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
293 */
dentry_rcuwalk_barrier(struct dentry * dentry)294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
295 {
296 assert_spin_locked(&dentry->d_lock);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry->d_seq);
299 }
300
301 /*
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
304 * and is unhashed.
305 */
dentry_iput(struct dentry * dentry)306 static void dentry_iput(struct dentry * dentry)
307 __releases(dentry->d_lock)
308 __releases(dentry->d_inode->i_lock)
309 {
310 struct inode *inode = dentry->d_inode;
311 if (inode) {
312 dentry->d_inode = NULL;
313 hlist_del_init(&dentry->d_u.d_alias);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&inode->i_lock);
316 if (!inode->i_nlink)
317 fsnotify_inoderemove(inode);
318 if (dentry->d_op && dentry->d_op->d_iput)
319 dentry->d_op->d_iput(dentry, inode);
320 else
321 iput(inode);
322 } else {
323 spin_unlock(&dentry->d_lock);
324 }
325 }
326
327 /*
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
330 */
dentry_unlink_inode(struct dentry * dentry)331 static void dentry_unlink_inode(struct dentry * dentry)
332 __releases(dentry->d_lock)
333 __releases(dentry->d_inode->i_lock)
334 {
335 struct inode *inode = dentry->d_inode;
336 __d_clear_type(dentry);
337 dentry->d_inode = NULL;
338 hlist_del_init(&dentry->d_u.d_alias);
339 dentry_rcuwalk_barrier(dentry);
340 spin_unlock(&dentry->d_lock);
341 spin_unlock(&inode->i_lock);
342 if (!inode->i_nlink)
343 fsnotify_inoderemove(inode);
344 if (dentry->d_op && dentry->d_op->d_iput)
345 dentry->d_op->d_iput(dentry, inode);
346 else
347 iput(inode);
348 }
349
350 /*
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
354 *
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
357 *
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
360 *
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
363 */
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)365 static void d_lru_add(struct dentry *dentry)
366 {
367 D_FLAG_VERIFY(dentry, 0);
368 dentry->d_flags |= DCACHE_LRU_LIST;
369 this_cpu_inc(nr_dentry_unused);
370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
371 }
372
d_lru_del(struct dentry * dentry)373 static void d_lru_del(struct dentry *dentry)
374 {
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
379 }
380
d_shrink_del(struct dentry * dentry)381 static void d_shrink_del(struct dentry *dentry)
382 {
383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 list_del_init(&dentry->d_lru);
385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 this_cpu_dec(nr_dentry_unused);
387 }
388
d_shrink_add(struct dentry * dentry,struct list_head * list)389 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
390 {
391 D_FLAG_VERIFY(dentry, 0);
392 list_add(&dentry->d_lru, list);
393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 }
396
397 /*
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
401 * private list.
402 */
d_lru_isolate(struct dentry * dentry)403 static void d_lru_isolate(struct dentry *dentry)
404 {
405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 dentry->d_flags &= ~DCACHE_LRU_LIST;
407 this_cpu_dec(nr_dentry_unused);
408 list_del_init(&dentry->d_lru);
409 }
410
d_lru_shrink_move(struct dentry * dentry,struct list_head * list)411 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
412 {
413 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
414 dentry->d_flags |= DCACHE_SHRINK_LIST;
415 list_move_tail(&dentry->d_lru, list);
416 }
417
418 /*
419 * dentry_lru_(add|del)_list) must be called with d_lock held.
420 */
dentry_lru_add(struct dentry * dentry)421 static void dentry_lru_add(struct dentry *dentry)
422 {
423 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
424 d_lru_add(dentry);
425 }
426
427 /**
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
430 *
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
436 *
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
439 *
440 * __d_drop requires dentry->d_lock.
441 */
__d_drop(struct dentry * dentry)442 void __d_drop(struct dentry *dentry)
443 {
444 if (!d_unhashed(dentry)) {
445 struct hlist_bl_head *b;
446 /*
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
450 */
451 if (unlikely(IS_ROOT(dentry)))
452 b = &dentry->d_sb->s_anon;
453 else
454 b = d_hash(dentry->d_parent, dentry->d_name.hash);
455
456 hlist_bl_lock(b);
457 __hlist_bl_del(&dentry->d_hash);
458 dentry->d_hash.pprev = NULL;
459 hlist_bl_unlock(b);
460 dentry_rcuwalk_barrier(dentry);
461 }
462 }
463 EXPORT_SYMBOL(__d_drop);
464
d_drop(struct dentry * dentry)465 void d_drop(struct dentry *dentry)
466 {
467 spin_lock(&dentry->d_lock);
468 __d_drop(dentry);
469 spin_unlock(&dentry->d_lock);
470 }
471 EXPORT_SYMBOL(d_drop);
472
__dentry_kill(struct dentry * dentry)473 static void __dentry_kill(struct dentry *dentry)
474 {
475 struct dentry *parent = NULL;
476 bool can_free = true;
477 if (!IS_ROOT(dentry))
478 parent = dentry->d_parent;
479
480 /*
481 * The dentry is now unrecoverably dead to the world.
482 */
483 lockref_mark_dead(&dentry->d_lockref);
484
485 /*
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
488 */
489 if (dentry->d_flags & DCACHE_OP_PRUNE)
490 dentry->d_op->d_prune(dentry);
491
492 if (dentry->d_flags & DCACHE_LRU_LIST) {
493 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
494 d_lru_del(dentry);
495 }
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
498 __list_del_entry(&dentry->d_child);
499 /*
500 * Inform d_walk() that we are no longer attached to the
501 * dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (parent)
505 spin_unlock(&parent->d_lock);
506 dentry_iput(dentry);
507 /*
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
510 */
511 BUG_ON(dentry->d_lockref.count > 0);
512 this_cpu_dec(nr_dentry);
513 if (dentry->d_op && dentry->d_op->d_release)
514 dentry->d_op->d_release(dentry);
515
516 spin_lock(&dentry->d_lock);
517 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
518 dentry->d_flags |= DCACHE_MAY_FREE;
519 can_free = false;
520 }
521 spin_unlock(&dentry->d_lock);
522 if (likely(can_free))
523 dentry_free(dentry);
524 }
525
526 /*
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
531 */
dentry_kill(struct dentry * dentry)532 static struct dentry *dentry_kill(struct dentry *dentry)
533 __releases(dentry->d_lock)
534 {
535 struct inode *inode = dentry->d_inode;
536 struct dentry *parent = NULL;
537
538 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
539 goto failed;
540
541 if (!IS_ROOT(dentry)) {
542 parent = dentry->d_parent;
543 if (unlikely(!spin_trylock(&parent->d_lock))) {
544 if (inode)
545 spin_unlock(&inode->i_lock);
546 goto failed;
547 }
548 }
549
550 __dentry_kill(dentry);
551 return parent;
552
553 failed:
554 spin_unlock(&dentry->d_lock);
555 return dentry; /* try again with same dentry */
556 }
557
lock_parent(struct dentry * dentry)558 static inline struct dentry *lock_parent(struct dentry *dentry)
559 {
560 struct dentry *parent = dentry->d_parent;
561 if (IS_ROOT(dentry))
562 return NULL;
563 if (unlikely(dentry->d_lockref.count < 0))
564 return NULL;
565 if (likely(spin_trylock(&parent->d_lock)))
566 return parent;
567 rcu_read_lock();
568 spin_unlock(&dentry->d_lock);
569 again:
570 parent = ACCESS_ONCE(dentry->d_parent);
571 spin_lock(&parent->d_lock);
572 /*
573 * We can't blindly lock dentry until we are sure
574 * that we won't violate the locking order.
575 * Any changes of dentry->d_parent must have
576 * been done with parent->d_lock held, so
577 * spin_lock() above is enough of a barrier
578 * for checking if it's still our child.
579 */
580 if (unlikely(parent != dentry->d_parent)) {
581 spin_unlock(&parent->d_lock);
582 goto again;
583 }
584 rcu_read_unlock();
585 if (parent != dentry)
586 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
587 else
588 parent = NULL;
589 return parent;
590 }
591
592 /*
593 * Try to do a lockless dput(), and return whether that was successful.
594 *
595 * If unsuccessful, we return false, having already taken the dentry lock.
596 *
597 * The caller needs to hold the RCU read lock, so that the dentry is
598 * guaranteed to stay around even if the refcount goes down to zero!
599 */
fast_dput(struct dentry * dentry)600 static inline bool fast_dput(struct dentry *dentry)
601 {
602 int ret;
603 unsigned int d_flags;
604
605 /*
606 * If we have a d_op->d_delete() operation, we sould not
607 * let the dentry count go to zero, so use "put__or_lock".
608 */
609 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
610 return lockref_put_or_lock(&dentry->d_lockref);
611
612 /*
613 * .. otherwise, we can try to just decrement the
614 * lockref optimistically.
615 */
616 ret = lockref_put_return(&dentry->d_lockref);
617
618 /*
619 * If the lockref_put_return() failed due to the lock being held
620 * by somebody else, the fast path has failed. We will need to
621 * get the lock, and then check the count again.
622 */
623 if (unlikely(ret < 0)) {
624 spin_lock(&dentry->d_lock);
625 if (dentry->d_lockref.count > 1) {
626 dentry->d_lockref.count--;
627 spin_unlock(&dentry->d_lock);
628 return 1;
629 }
630 return 0;
631 }
632
633 /*
634 * If we weren't the last ref, we're done.
635 */
636 if (ret)
637 return 1;
638
639 /*
640 * Careful, careful. The reference count went down
641 * to zero, but we don't hold the dentry lock, so
642 * somebody else could get it again, and do another
643 * dput(), and we need to not race with that.
644 *
645 * However, there is a very special and common case
646 * where we don't care, because there is nothing to
647 * do: the dentry is still hashed, it does not have
648 * a 'delete' op, and it's referenced and already on
649 * the LRU list.
650 *
651 * NOTE! Since we aren't locked, these values are
652 * not "stable". However, it is sufficient that at
653 * some point after we dropped the reference the
654 * dentry was hashed and the flags had the proper
655 * value. Other dentry users may have re-gotten
656 * a reference to the dentry and change that, but
657 * our work is done - we can leave the dentry
658 * around with a zero refcount.
659 */
660 smp_rmb();
661 d_flags = ACCESS_ONCE(dentry->d_flags);
662 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
663
664 /* Nothing to do? Dropping the reference was all we needed? */
665 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
666 return 1;
667
668 /*
669 * Not the fast normal case? Get the lock. We've already decremented
670 * the refcount, but we'll need to re-check the situation after
671 * getting the lock.
672 */
673 spin_lock(&dentry->d_lock);
674
675 /*
676 * Did somebody else grab a reference to it in the meantime, and
677 * we're no longer the last user after all? Alternatively, somebody
678 * else could have killed it and marked it dead. Either way, we
679 * don't need to do anything else.
680 */
681 if (dentry->d_lockref.count) {
682 spin_unlock(&dentry->d_lock);
683 return 1;
684 }
685
686 /*
687 * Re-get the reference we optimistically dropped. We hold the
688 * lock, and we just tested that it was zero, so we can just
689 * set it to 1.
690 */
691 dentry->d_lockref.count = 1;
692 return 0;
693 }
694
695
696 /*
697 * This is dput
698 *
699 * This is complicated by the fact that we do not want to put
700 * dentries that are no longer on any hash chain on the unused
701 * list: we'd much rather just get rid of them immediately.
702 *
703 * However, that implies that we have to traverse the dentry
704 * tree upwards to the parents which might _also_ now be
705 * scheduled for deletion (it may have been only waiting for
706 * its last child to go away).
707 *
708 * This tail recursion is done by hand as we don't want to depend
709 * on the compiler to always get this right (gcc generally doesn't).
710 * Real recursion would eat up our stack space.
711 */
712
713 /*
714 * dput - release a dentry
715 * @dentry: dentry to release
716 *
717 * Release a dentry. This will drop the usage count and if appropriate
718 * call the dentry unlink method as well as removing it from the queues and
719 * releasing its resources. If the parent dentries were scheduled for release
720 * they too may now get deleted.
721 */
dput(struct dentry * dentry)722 void dput(struct dentry *dentry)
723 {
724 if (unlikely(!dentry))
725 return;
726
727 repeat:
728 might_sleep();
729
730 rcu_read_lock();
731 if (likely(fast_dput(dentry))) {
732 rcu_read_unlock();
733 return;
734 }
735
736 /* Slow case: now with the dentry lock held */
737 rcu_read_unlock();
738
739 /* Unreachable? Get rid of it */
740 if (unlikely(d_unhashed(dentry)))
741 goto kill_it;
742
743 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
744 goto kill_it;
745
746 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
747 if (dentry->d_op->d_delete(dentry))
748 goto kill_it;
749 }
750
751 if (!(dentry->d_flags & DCACHE_REFERENCED))
752 dentry->d_flags |= DCACHE_REFERENCED;
753 dentry_lru_add(dentry);
754
755 dentry->d_lockref.count--;
756 spin_unlock(&dentry->d_lock);
757 return;
758
759 kill_it:
760 dentry = dentry_kill(dentry);
761 if (dentry) {
762 cond_resched();
763 goto repeat;
764 }
765 }
766 EXPORT_SYMBOL(dput);
767
768
769 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)770 static inline void __dget_dlock(struct dentry *dentry)
771 {
772 dentry->d_lockref.count++;
773 }
774
__dget(struct dentry * dentry)775 static inline void __dget(struct dentry *dentry)
776 {
777 lockref_get(&dentry->d_lockref);
778 }
779
dget_parent(struct dentry * dentry)780 struct dentry *dget_parent(struct dentry *dentry)
781 {
782 int gotref;
783 struct dentry *ret;
784
785 /*
786 * Do optimistic parent lookup without any
787 * locking.
788 */
789 rcu_read_lock();
790 ret = ACCESS_ONCE(dentry->d_parent);
791 gotref = lockref_get_not_zero(&ret->d_lockref);
792 rcu_read_unlock();
793 if (likely(gotref)) {
794 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
795 return ret;
796 dput(ret);
797 }
798
799 repeat:
800 /*
801 * Don't need rcu_dereference because we re-check it was correct under
802 * the lock.
803 */
804 rcu_read_lock();
805 ret = dentry->d_parent;
806 spin_lock(&ret->d_lock);
807 if (unlikely(ret != dentry->d_parent)) {
808 spin_unlock(&ret->d_lock);
809 rcu_read_unlock();
810 goto repeat;
811 }
812 rcu_read_unlock();
813 BUG_ON(!ret->d_lockref.count);
814 ret->d_lockref.count++;
815 spin_unlock(&ret->d_lock);
816 return ret;
817 }
818 EXPORT_SYMBOL(dget_parent);
819
820 /**
821 * d_find_alias - grab a hashed alias of inode
822 * @inode: inode in question
823 *
824 * If inode has a hashed alias, or is a directory and has any alias,
825 * acquire the reference to alias and return it. Otherwise return NULL.
826 * Notice that if inode is a directory there can be only one alias and
827 * it can be unhashed only if it has no children, or if it is the root
828 * of a filesystem, or if the directory was renamed and d_revalidate
829 * was the first vfs operation to notice.
830 *
831 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
832 * any other hashed alias over that one.
833 */
__d_find_alias(struct inode * inode)834 static struct dentry *__d_find_alias(struct inode *inode)
835 {
836 struct dentry *alias, *discon_alias;
837
838 again:
839 discon_alias = NULL;
840 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
841 spin_lock(&alias->d_lock);
842 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
843 if (IS_ROOT(alias) &&
844 (alias->d_flags & DCACHE_DISCONNECTED)) {
845 discon_alias = alias;
846 } else {
847 __dget_dlock(alias);
848 spin_unlock(&alias->d_lock);
849 return alias;
850 }
851 }
852 spin_unlock(&alias->d_lock);
853 }
854 if (discon_alias) {
855 alias = discon_alias;
856 spin_lock(&alias->d_lock);
857 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
858 __dget_dlock(alias);
859 spin_unlock(&alias->d_lock);
860 return alias;
861 }
862 spin_unlock(&alias->d_lock);
863 goto again;
864 }
865 return NULL;
866 }
867
d_find_alias(struct inode * inode)868 struct dentry *d_find_alias(struct inode *inode)
869 {
870 struct dentry *de = NULL;
871
872 if (!hlist_empty(&inode->i_dentry)) {
873 spin_lock(&inode->i_lock);
874 de = __d_find_alias(inode);
875 spin_unlock(&inode->i_lock);
876 }
877 return de;
878 }
879 EXPORT_SYMBOL(d_find_alias);
880
881 /*
882 * Try to kill dentries associated with this inode.
883 * WARNING: you must own a reference to inode.
884 */
d_prune_aliases(struct inode * inode)885 void d_prune_aliases(struct inode *inode)
886 {
887 struct dentry *dentry;
888 restart:
889 spin_lock(&inode->i_lock);
890 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
891 spin_lock(&dentry->d_lock);
892 if (!dentry->d_lockref.count) {
893 struct dentry *parent = lock_parent(dentry);
894 if (likely(!dentry->d_lockref.count)) {
895 __dentry_kill(dentry);
896 dput(parent);
897 goto restart;
898 }
899 if (parent)
900 spin_unlock(&parent->d_lock);
901 }
902 spin_unlock(&dentry->d_lock);
903 }
904 spin_unlock(&inode->i_lock);
905 }
906 EXPORT_SYMBOL(d_prune_aliases);
907
shrink_dentry_list(struct list_head * list)908 static void shrink_dentry_list(struct list_head *list)
909 {
910 struct dentry *dentry, *parent;
911
912 while (!list_empty(list)) {
913 struct inode *inode;
914 dentry = list_entry(list->prev, struct dentry, d_lru);
915 spin_lock(&dentry->d_lock);
916 parent = lock_parent(dentry);
917
918 /*
919 * The dispose list is isolated and dentries are not accounted
920 * to the LRU here, so we can simply remove it from the list
921 * here regardless of whether it is referenced or not.
922 */
923 d_shrink_del(dentry);
924
925 /*
926 * We found an inuse dentry which was not removed from
927 * the LRU because of laziness during lookup. Do not free it.
928 */
929 if (dentry->d_lockref.count > 0) {
930 spin_unlock(&dentry->d_lock);
931 if (parent)
932 spin_unlock(&parent->d_lock);
933 continue;
934 }
935
936
937 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
938 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
939 spin_unlock(&dentry->d_lock);
940 if (parent)
941 spin_unlock(&parent->d_lock);
942 if (can_free)
943 dentry_free(dentry);
944 continue;
945 }
946
947 inode = dentry->d_inode;
948 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
949 d_shrink_add(dentry, list);
950 spin_unlock(&dentry->d_lock);
951 if (parent)
952 spin_unlock(&parent->d_lock);
953 continue;
954 }
955
956 __dentry_kill(dentry);
957
958 /*
959 * We need to prune ancestors too. This is necessary to prevent
960 * quadratic behavior of shrink_dcache_parent(), but is also
961 * expected to be beneficial in reducing dentry cache
962 * fragmentation.
963 */
964 dentry = parent;
965 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
966 parent = lock_parent(dentry);
967 if (dentry->d_lockref.count != 1) {
968 dentry->d_lockref.count--;
969 spin_unlock(&dentry->d_lock);
970 if (parent)
971 spin_unlock(&parent->d_lock);
972 break;
973 }
974 inode = dentry->d_inode; /* can't be NULL */
975 if (unlikely(!spin_trylock(&inode->i_lock))) {
976 spin_unlock(&dentry->d_lock);
977 if (parent)
978 spin_unlock(&parent->d_lock);
979 cpu_relax();
980 continue;
981 }
982 __dentry_kill(dentry);
983 dentry = parent;
984 }
985 }
986 }
987
988 static enum lru_status
dentry_lru_isolate(struct list_head * item,spinlock_t * lru_lock,void * arg)989 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
990 {
991 struct list_head *freeable = arg;
992 struct dentry *dentry = container_of(item, struct dentry, d_lru);
993
994
995 /*
996 * we are inverting the lru lock/dentry->d_lock here,
997 * so use a trylock. If we fail to get the lock, just skip
998 * it
999 */
1000 if (!spin_trylock(&dentry->d_lock))
1001 return LRU_SKIP;
1002
1003 /*
1004 * Referenced dentries are still in use. If they have active
1005 * counts, just remove them from the LRU. Otherwise give them
1006 * another pass through the LRU.
1007 */
1008 if (dentry->d_lockref.count) {
1009 d_lru_isolate(dentry);
1010 spin_unlock(&dentry->d_lock);
1011 return LRU_REMOVED;
1012 }
1013
1014 if (dentry->d_flags & DCACHE_REFERENCED) {
1015 dentry->d_flags &= ~DCACHE_REFERENCED;
1016 spin_unlock(&dentry->d_lock);
1017
1018 /*
1019 * The list move itself will be made by the common LRU code. At
1020 * this point, we've dropped the dentry->d_lock but keep the
1021 * lru lock. This is safe to do, since every list movement is
1022 * protected by the lru lock even if both locks are held.
1023 *
1024 * This is guaranteed by the fact that all LRU management
1025 * functions are intermediated by the LRU API calls like
1026 * list_lru_add and list_lru_del. List movement in this file
1027 * only ever occur through this functions or through callbacks
1028 * like this one, that are called from the LRU API.
1029 *
1030 * The only exceptions to this are functions like
1031 * shrink_dentry_list, and code that first checks for the
1032 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1033 * operating only with stack provided lists after they are
1034 * properly isolated from the main list. It is thus, always a
1035 * local access.
1036 */
1037 return LRU_ROTATE;
1038 }
1039
1040 d_lru_shrink_move(dentry, freeable);
1041 spin_unlock(&dentry->d_lock);
1042
1043 return LRU_REMOVED;
1044 }
1045
1046 /**
1047 * prune_dcache_sb - shrink the dcache
1048 * @sb: superblock
1049 * @nr_to_scan : number of entries to try to free
1050 * @nid: which node to scan for freeable entities
1051 *
1052 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1053 * done when we need more memory an called from the superblock shrinker
1054 * function.
1055 *
1056 * This function may fail to free any resources if all the dentries are in
1057 * use.
1058 */
prune_dcache_sb(struct super_block * sb,unsigned long nr_to_scan,int nid)1059 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1060 int nid)
1061 {
1062 LIST_HEAD(dispose);
1063 long freed;
1064
1065 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1066 &dispose, &nr_to_scan);
1067 shrink_dentry_list(&dispose);
1068 return freed;
1069 }
1070
dentry_lru_isolate_shrink(struct list_head * item,spinlock_t * lru_lock,void * arg)1071 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1072 spinlock_t *lru_lock, void *arg)
1073 {
1074 struct list_head *freeable = arg;
1075 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1076
1077 /*
1078 * we are inverting the lru lock/dentry->d_lock here,
1079 * so use a trylock. If we fail to get the lock, just skip
1080 * it
1081 */
1082 if (!spin_trylock(&dentry->d_lock))
1083 return LRU_SKIP;
1084
1085 d_lru_shrink_move(dentry, freeable);
1086 spin_unlock(&dentry->d_lock);
1087
1088 return LRU_REMOVED;
1089 }
1090
1091
1092 /**
1093 * shrink_dcache_sb - shrink dcache for a superblock
1094 * @sb: superblock
1095 *
1096 * Shrink the dcache for the specified super block. This is used to free
1097 * the dcache before unmounting a file system.
1098 */
shrink_dcache_sb(struct super_block * sb)1099 void shrink_dcache_sb(struct super_block *sb)
1100 {
1101 long freed;
1102
1103 do {
1104 LIST_HEAD(dispose);
1105
1106 freed = list_lru_walk(&sb->s_dentry_lru,
1107 dentry_lru_isolate_shrink, &dispose, 1024);
1108
1109 this_cpu_sub(nr_dentry_unused, freed);
1110 shrink_dentry_list(&dispose);
1111 cond_resched();
1112 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1113 }
1114 EXPORT_SYMBOL(shrink_dcache_sb);
1115
1116 /**
1117 * enum d_walk_ret - action to talke during tree walk
1118 * @D_WALK_CONTINUE: contrinue walk
1119 * @D_WALK_QUIT: quit walk
1120 * @D_WALK_NORETRY: quit when retry is needed
1121 * @D_WALK_SKIP: skip this dentry and its children
1122 */
1123 enum d_walk_ret {
1124 D_WALK_CONTINUE,
1125 D_WALK_QUIT,
1126 D_WALK_NORETRY,
1127 D_WALK_SKIP,
1128 };
1129
1130 /**
1131 * d_walk - walk the dentry tree
1132 * @parent: start of walk
1133 * @data: data passed to @enter() and @finish()
1134 * @enter: callback when first entering the dentry
1135 * @finish: callback when successfully finished the walk
1136 *
1137 * The @enter() and @finish() callbacks are called with d_lock held.
1138 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1139 static void d_walk(struct dentry *parent, void *data,
1140 enum d_walk_ret (*enter)(void *, struct dentry *),
1141 void (*finish)(void *))
1142 {
1143 struct dentry *this_parent;
1144 struct list_head *next;
1145 unsigned seq = 0;
1146 enum d_walk_ret ret;
1147 bool retry = true;
1148
1149 again:
1150 read_seqbegin_or_lock(&rename_lock, &seq);
1151 this_parent = parent;
1152 spin_lock(&this_parent->d_lock);
1153
1154 ret = enter(data, this_parent);
1155 switch (ret) {
1156 case D_WALK_CONTINUE:
1157 break;
1158 case D_WALK_QUIT:
1159 case D_WALK_SKIP:
1160 goto out_unlock;
1161 case D_WALK_NORETRY:
1162 retry = false;
1163 break;
1164 }
1165 repeat:
1166 next = this_parent->d_subdirs.next;
1167 resume:
1168 while (next != &this_parent->d_subdirs) {
1169 struct list_head *tmp = next;
1170 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1171 next = tmp->next;
1172
1173 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1174
1175 ret = enter(data, dentry);
1176 switch (ret) {
1177 case D_WALK_CONTINUE:
1178 break;
1179 case D_WALK_QUIT:
1180 spin_unlock(&dentry->d_lock);
1181 goto out_unlock;
1182 case D_WALK_NORETRY:
1183 retry = false;
1184 break;
1185 case D_WALK_SKIP:
1186 spin_unlock(&dentry->d_lock);
1187 continue;
1188 }
1189
1190 if (!list_empty(&dentry->d_subdirs)) {
1191 spin_unlock(&this_parent->d_lock);
1192 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1193 this_parent = dentry;
1194 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1195 goto repeat;
1196 }
1197 spin_unlock(&dentry->d_lock);
1198 }
1199 /*
1200 * All done at this level ... ascend and resume the search.
1201 */
1202 rcu_read_lock();
1203 ascend:
1204 if (this_parent != parent) {
1205 struct dentry *child = this_parent;
1206 this_parent = child->d_parent;
1207
1208 spin_unlock(&child->d_lock);
1209 spin_lock(&this_parent->d_lock);
1210
1211 /* might go back up the wrong parent if we have had a rename. */
1212 if (need_seqretry(&rename_lock, seq))
1213 goto rename_retry;
1214 /* go into the first sibling still alive */
1215 do {
1216 next = child->d_child.next;
1217 if (next == &this_parent->d_subdirs)
1218 goto ascend;
1219 child = list_entry(next, struct dentry, d_child);
1220 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1221 rcu_read_unlock();
1222 goto resume;
1223 }
1224 if (need_seqretry(&rename_lock, seq))
1225 goto rename_retry;
1226 rcu_read_unlock();
1227 if (finish)
1228 finish(data);
1229
1230 out_unlock:
1231 spin_unlock(&this_parent->d_lock);
1232 done_seqretry(&rename_lock, seq);
1233 return;
1234
1235 rename_retry:
1236 spin_unlock(&this_parent->d_lock);
1237 rcu_read_unlock();
1238 BUG_ON(seq & 1);
1239 if (!retry)
1240 return;
1241 seq = 1;
1242 goto again;
1243 }
1244
1245 /*
1246 * Search for at least 1 mount point in the dentry's subdirs.
1247 * We descend to the next level whenever the d_subdirs
1248 * list is non-empty and continue searching.
1249 */
1250
check_mount(void * data,struct dentry * dentry)1251 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1252 {
1253 int *ret = data;
1254 if (d_mountpoint(dentry)) {
1255 *ret = 1;
1256 return D_WALK_QUIT;
1257 }
1258 return D_WALK_CONTINUE;
1259 }
1260
1261 /**
1262 * have_submounts - check for mounts over a dentry
1263 * @parent: dentry to check.
1264 *
1265 * Return true if the parent or its subdirectories contain
1266 * a mount point
1267 */
have_submounts(struct dentry * parent)1268 int have_submounts(struct dentry *parent)
1269 {
1270 int ret = 0;
1271
1272 d_walk(parent, &ret, check_mount, NULL);
1273
1274 return ret;
1275 }
1276 EXPORT_SYMBOL(have_submounts);
1277
1278 /*
1279 * Called by mount code to set a mountpoint and check if the mountpoint is
1280 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1281 * subtree can become unreachable).
1282 *
1283 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1284 * this reason take rename_lock and d_lock on dentry and ancestors.
1285 */
d_set_mounted(struct dentry * dentry)1286 int d_set_mounted(struct dentry *dentry)
1287 {
1288 struct dentry *p;
1289 int ret = -ENOENT;
1290 write_seqlock(&rename_lock);
1291 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1292 /* Need exclusion wrt. d_invalidate() */
1293 spin_lock(&p->d_lock);
1294 if (unlikely(d_unhashed(p))) {
1295 spin_unlock(&p->d_lock);
1296 goto out;
1297 }
1298 spin_unlock(&p->d_lock);
1299 }
1300 spin_lock(&dentry->d_lock);
1301 if (!d_unlinked(dentry)) {
1302 dentry->d_flags |= DCACHE_MOUNTED;
1303 ret = 0;
1304 }
1305 spin_unlock(&dentry->d_lock);
1306 out:
1307 write_sequnlock(&rename_lock);
1308 return ret;
1309 }
1310
1311 /*
1312 * Search the dentry child list of the specified parent,
1313 * and move any unused dentries to the end of the unused
1314 * list for prune_dcache(). We descend to the next level
1315 * whenever the d_subdirs list is non-empty and continue
1316 * searching.
1317 *
1318 * It returns zero iff there are no unused children,
1319 * otherwise it returns the number of children moved to
1320 * the end of the unused list. This may not be the total
1321 * number of unused children, because select_parent can
1322 * drop the lock and return early due to latency
1323 * constraints.
1324 */
1325
1326 struct select_data {
1327 struct dentry *start;
1328 struct list_head dispose;
1329 int found;
1330 };
1331
select_collect(void * _data,struct dentry * dentry)1332 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1333 {
1334 struct select_data *data = _data;
1335 enum d_walk_ret ret = D_WALK_CONTINUE;
1336
1337 if (data->start == dentry)
1338 goto out;
1339
1340 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1341 data->found++;
1342 } else {
1343 if (dentry->d_flags & DCACHE_LRU_LIST)
1344 d_lru_del(dentry);
1345 if (!dentry->d_lockref.count) {
1346 d_shrink_add(dentry, &data->dispose);
1347 data->found++;
1348 }
1349 }
1350 /*
1351 * We can return to the caller if we have found some (this
1352 * ensures forward progress). We'll be coming back to find
1353 * the rest.
1354 */
1355 if (!list_empty(&data->dispose))
1356 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1357 out:
1358 return ret;
1359 }
1360
1361 /**
1362 * shrink_dcache_parent - prune dcache
1363 * @parent: parent of entries to prune
1364 *
1365 * Prune the dcache to remove unused children of the parent dentry.
1366 */
shrink_dcache_parent(struct dentry * parent)1367 void shrink_dcache_parent(struct dentry *parent)
1368 {
1369 for (;;) {
1370 struct select_data data;
1371
1372 INIT_LIST_HEAD(&data.dispose);
1373 data.start = parent;
1374 data.found = 0;
1375
1376 d_walk(parent, &data, select_collect, NULL);
1377 if (!data.found)
1378 break;
1379
1380 shrink_dentry_list(&data.dispose);
1381 cond_resched();
1382 }
1383 }
1384 EXPORT_SYMBOL(shrink_dcache_parent);
1385
umount_check(void * _data,struct dentry * dentry)1386 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1387 {
1388 /* it has busy descendents; complain about those instead */
1389 if (!list_empty(&dentry->d_subdirs))
1390 return D_WALK_CONTINUE;
1391
1392 /* root with refcount 1 is fine */
1393 if (dentry == _data && dentry->d_lockref.count == 1)
1394 return D_WALK_CONTINUE;
1395
1396 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1397 " still in use (%d) [unmount of %s %s]\n",
1398 dentry,
1399 dentry->d_inode ?
1400 dentry->d_inode->i_ino : 0UL,
1401 dentry,
1402 dentry->d_lockref.count,
1403 dentry->d_sb->s_type->name,
1404 dentry->d_sb->s_id);
1405 WARN_ON(1);
1406 return D_WALK_CONTINUE;
1407 }
1408
do_one_tree(struct dentry * dentry)1409 static void do_one_tree(struct dentry *dentry)
1410 {
1411 shrink_dcache_parent(dentry);
1412 d_walk(dentry, dentry, umount_check, NULL);
1413 d_drop(dentry);
1414 dput(dentry);
1415 }
1416
1417 /*
1418 * destroy the dentries attached to a superblock on unmounting
1419 */
shrink_dcache_for_umount(struct super_block * sb)1420 void shrink_dcache_for_umount(struct super_block *sb)
1421 {
1422 struct dentry *dentry;
1423
1424 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1425
1426 dentry = sb->s_root;
1427 sb->s_root = NULL;
1428 do_one_tree(dentry);
1429
1430 while (!hlist_bl_empty(&sb->s_anon)) {
1431 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1432 do_one_tree(dentry);
1433 }
1434 }
1435
1436 struct detach_data {
1437 struct select_data select;
1438 struct dentry *mountpoint;
1439 };
detach_and_collect(void * _data,struct dentry * dentry)1440 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1441 {
1442 struct detach_data *data = _data;
1443
1444 if (d_mountpoint(dentry)) {
1445 __dget_dlock(dentry);
1446 data->mountpoint = dentry;
1447 return D_WALK_QUIT;
1448 }
1449
1450 return select_collect(&data->select, dentry);
1451 }
1452
check_and_drop(void * _data)1453 static void check_and_drop(void *_data)
1454 {
1455 struct detach_data *data = _data;
1456
1457 if (!data->mountpoint && !data->select.found)
1458 __d_drop(data->select.start);
1459 }
1460
1461 /**
1462 * d_invalidate - detach submounts, prune dcache, and drop
1463 * @dentry: dentry to invalidate (aka detach, prune and drop)
1464 *
1465 * no dcache lock.
1466 *
1467 * The final d_drop is done as an atomic operation relative to
1468 * rename_lock ensuring there are no races with d_set_mounted. This
1469 * ensures there are no unhashed dentries on the path to a mountpoint.
1470 */
d_invalidate(struct dentry * dentry)1471 void d_invalidate(struct dentry *dentry)
1472 {
1473 /*
1474 * If it's already been dropped, return OK.
1475 */
1476 spin_lock(&dentry->d_lock);
1477 if (d_unhashed(dentry)) {
1478 spin_unlock(&dentry->d_lock);
1479 return;
1480 }
1481 spin_unlock(&dentry->d_lock);
1482
1483 /* Negative dentries can be dropped without further checks */
1484 if (!dentry->d_inode) {
1485 d_drop(dentry);
1486 return;
1487 }
1488
1489 for (;;) {
1490 struct detach_data data;
1491
1492 data.mountpoint = NULL;
1493 INIT_LIST_HEAD(&data.select.dispose);
1494 data.select.start = dentry;
1495 data.select.found = 0;
1496
1497 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1498
1499 if (data.select.found)
1500 shrink_dentry_list(&data.select.dispose);
1501
1502 if (data.mountpoint) {
1503 detach_mounts(data.mountpoint);
1504 dput(data.mountpoint);
1505 }
1506
1507 if (!data.mountpoint && !data.select.found)
1508 break;
1509
1510 cond_resched();
1511 }
1512 }
1513 EXPORT_SYMBOL(d_invalidate);
1514
1515 /**
1516 * __d_alloc - allocate a dcache entry
1517 * @sb: filesystem it will belong to
1518 * @name: qstr of the name
1519 *
1520 * Allocates a dentry. It returns %NULL if there is insufficient memory
1521 * available. On a success the dentry is returned. The name passed in is
1522 * copied and the copy passed in may be reused after this call.
1523 */
1524
__d_alloc(struct super_block * sb,const struct qstr * name)1525 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1526 {
1527 struct dentry *dentry;
1528 char *dname;
1529
1530 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1531 if (!dentry)
1532 return NULL;
1533
1534 /*
1535 * We guarantee that the inline name is always NUL-terminated.
1536 * This way the memcpy() done by the name switching in rename
1537 * will still always have a NUL at the end, even if we might
1538 * be overwriting an internal NUL character
1539 */
1540 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1541 if (name->len > DNAME_INLINE_LEN-1) {
1542 size_t size = offsetof(struct external_name, name[1]);
1543 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1544 if (!p) {
1545 kmem_cache_free(dentry_cache, dentry);
1546 return NULL;
1547 }
1548 atomic_set(&p->u.count, 1);
1549 dname = p->name;
1550 } else {
1551 dname = dentry->d_iname;
1552 }
1553
1554 dentry->d_name.len = name->len;
1555 dentry->d_name.hash = name->hash;
1556 memcpy(dname, name->name, name->len);
1557 dname[name->len] = 0;
1558
1559 /* Make sure we always see the terminating NUL character */
1560 smp_wmb();
1561 dentry->d_name.name = dname;
1562
1563 dentry->d_lockref.count = 1;
1564 dentry->d_flags = 0;
1565 spin_lock_init(&dentry->d_lock);
1566 seqcount_init(&dentry->d_seq);
1567 dentry->d_inode = NULL;
1568 dentry->d_parent = dentry;
1569 dentry->d_sb = sb;
1570 dentry->d_op = NULL;
1571 dentry->d_fsdata = NULL;
1572 INIT_HLIST_BL_NODE(&dentry->d_hash);
1573 INIT_LIST_HEAD(&dentry->d_lru);
1574 INIT_LIST_HEAD(&dentry->d_subdirs);
1575 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1576 INIT_LIST_HEAD(&dentry->d_child);
1577 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1578
1579 this_cpu_inc(nr_dentry);
1580
1581 return dentry;
1582 }
1583
1584 /**
1585 * d_alloc - allocate a dcache entry
1586 * @parent: parent of entry to allocate
1587 * @name: qstr of the name
1588 *
1589 * Allocates a dentry. It returns %NULL if there is insufficient memory
1590 * available. On a success the dentry is returned. The name passed in is
1591 * copied and the copy passed in may be reused after this call.
1592 */
d_alloc(struct dentry * parent,const struct qstr * name)1593 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1594 {
1595 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1596 if (!dentry)
1597 return NULL;
1598 dentry->d_flags |= DCACHE_RCUACCESS;
1599 spin_lock(&parent->d_lock);
1600 /*
1601 * don't need child lock because it is not subject
1602 * to concurrency here
1603 */
1604 __dget_dlock(parent);
1605 dentry->d_parent = parent;
1606 list_add(&dentry->d_child, &parent->d_subdirs);
1607 spin_unlock(&parent->d_lock);
1608
1609 return dentry;
1610 }
1611 EXPORT_SYMBOL(d_alloc);
1612
1613 /**
1614 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1615 * @sb: the superblock
1616 * @name: qstr of the name
1617 *
1618 * For a filesystem that just pins its dentries in memory and never
1619 * performs lookups at all, return an unhashed IS_ROOT dentry.
1620 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1621 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1622 {
1623 return __d_alloc(sb, name);
1624 }
1625 EXPORT_SYMBOL(d_alloc_pseudo);
1626
d_alloc_name(struct dentry * parent,const char * name)1627 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1628 {
1629 struct qstr q;
1630
1631 q.name = name;
1632 q.len = strlen(name);
1633 q.hash = full_name_hash(q.name, q.len);
1634 return d_alloc(parent, &q);
1635 }
1636 EXPORT_SYMBOL(d_alloc_name);
1637
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1638 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1639 {
1640 WARN_ON_ONCE(dentry->d_op);
1641 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1642 DCACHE_OP_COMPARE |
1643 DCACHE_OP_REVALIDATE |
1644 DCACHE_OP_WEAK_REVALIDATE |
1645 DCACHE_OP_DELETE |
1646 DCACHE_OP_SELECT_INODE));
1647 dentry->d_op = op;
1648 if (!op)
1649 return;
1650 if (op->d_hash)
1651 dentry->d_flags |= DCACHE_OP_HASH;
1652 if (op->d_compare)
1653 dentry->d_flags |= DCACHE_OP_COMPARE;
1654 if (op->d_revalidate)
1655 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1656 if (op->d_weak_revalidate)
1657 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1658 if (op->d_delete)
1659 dentry->d_flags |= DCACHE_OP_DELETE;
1660 if (op->d_prune)
1661 dentry->d_flags |= DCACHE_OP_PRUNE;
1662 if (op->d_select_inode)
1663 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1664
1665 }
1666 EXPORT_SYMBOL(d_set_d_op);
1667
d_flags_for_inode(struct inode * inode)1668 static unsigned d_flags_for_inode(struct inode *inode)
1669 {
1670 unsigned add_flags = DCACHE_FILE_TYPE;
1671
1672 if (!inode)
1673 return DCACHE_MISS_TYPE;
1674
1675 if (S_ISDIR(inode->i_mode)) {
1676 add_flags = DCACHE_DIRECTORY_TYPE;
1677 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1678 if (unlikely(!inode->i_op->lookup))
1679 add_flags = DCACHE_AUTODIR_TYPE;
1680 else
1681 inode->i_opflags |= IOP_LOOKUP;
1682 }
1683 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1684 if (unlikely(inode->i_op->follow_link))
1685 add_flags = DCACHE_SYMLINK_TYPE;
1686 else
1687 inode->i_opflags |= IOP_NOFOLLOW;
1688 }
1689
1690 if (unlikely(IS_AUTOMOUNT(inode)))
1691 add_flags |= DCACHE_NEED_AUTOMOUNT;
1692 return add_flags;
1693 }
1694
__d_instantiate(struct dentry * dentry,struct inode * inode)1695 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1696 {
1697 unsigned add_flags = d_flags_for_inode(inode);
1698
1699 spin_lock(&dentry->d_lock);
1700 __d_set_type(dentry, add_flags);
1701 if (inode)
1702 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1703 dentry->d_inode = inode;
1704 dentry_rcuwalk_barrier(dentry);
1705 spin_unlock(&dentry->d_lock);
1706 fsnotify_d_instantiate(dentry, inode);
1707 }
1708
1709 /**
1710 * d_instantiate - fill in inode information for a dentry
1711 * @entry: dentry to complete
1712 * @inode: inode to attach to this dentry
1713 *
1714 * Fill in inode information in the entry.
1715 *
1716 * This turns negative dentries into productive full members
1717 * of society.
1718 *
1719 * NOTE! This assumes that the inode count has been incremented
1720 * (or otherwise set) by the caller to indicate that it is now
1721 * in use by the dcache.
1722 */
1723
d_instantiate(struct dentry * entry,struct inode * inode)1724 void d_instantiate(struct dentry *entry, struct inode * inode)
1725 {
1726 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1727 if (inode)
1728 spin_lock(&inode->i_lock);
1729 __d_instantiate(entry, inode);
1730 if (inode)
1731 spin_unlock(&inode->i_lock);
1732 security_d_instantiate(entry, inode);
1733 }
1734 EXPORT_SYMBOL(d_instantiate);
1735
1736 /**
1737 * d_instantiate_unique - instantiate a non-aliased dentry
1738 * @entry: dentry to instantiate
1739 * @inode: inode to attach to this dentry
1740 *
1741 * Fill in inode information in the entry. On success, it returns NULL.
1742 * If an unhashed alias of "entry" already exists, then we return the
1743 * aliased dentry instead and drop one reference to inode.
1744 *
1745 * Note that in order to avoid conflicts with rename() etc, the caller
1746 * had better be holding the parent directory semaphore.
1747 *
1748 * This also assumes that the inode count has been incremented
1749 * (or otherwise set) by the caller to indicate that it is now
1750 * in use by the dcache.
1751 */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1752 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1753 struct inode *inode)
1754 {
1755 struct dentry *alias;
1756 int len = entry->d_name.len;
1757 const char *name = entry->d_name.name;
1758 unsigned int hash = entry->d_name.hash;
1759
1760 if (!inode) {
1761 __d_instantiate(entry, NULL);
1762 return NULL;
1763 }
1764
1765 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1766 /*
1767 * Don't need alias->d_lock here, because aliases with
1768 * d_parent == entry->d_parent are not subject to name or
1769 * parent changes, because the parent inode i_mutex is held.
1770 */
1771 if (alias->d_name.hash != hash)
1772 continue;
1773 if (alias->d_parent != entry->d_parent)
1774 continue;
1775 if (alias->d_name.len != len)
1776 continue;
1777 if (dentry_cmp(alias, name, len))
1778 continue;
1779 __dget(alias);
1780 return alias;
1781 }
1782
1783 __d_instantiate(entry, inode);
1784 return NULL;
1785 }
1786
d_instantiate_unique(struct dentry * entry,struct inode * inode)1787 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1788 {
1789 struct dentry *result;
1790
1791 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1792
1793 if (inode)
1794 spin_lock(&inode->i_lock);
1795 result = __d_instantiate_unique(entry, inode);
1796 if (inode)
1797 spin_unlock(&inode->i_lock);
1798
1799 if (!result) {
1800 security_d_instantiate(entry, inode);
1801 return NULL;
1802 }
1803
1804 BUG_ON(!d_unhashed(result));
1805 iput(inode);
1806 return result;
1807 }
1808
1809 EXPORT_SYMBOL(d_instantiate_unique);
1810
1811 /**
1812 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1813 * @entry: dentry to complete
1814 * @inode: inode to attach to this dentry
1815 *
1816 * Fill in inode information in the entry. If a directory alias is found, then
1817 * return an error (and drop inode). Together with d_materialise_unique() this
1818 * guarantees that a directory inode may never have more than one alias.
1819 */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1820 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1821 {
1822 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1823
1824 spin_lock(&inode->i_lock);
1825 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1826 spin_unlock(&inode->i_lock);
1827 iput(inode);
1828 return -EBUSY;
1829 }
1830 __d_instantiate(entry, inode);
1831 spin_unlock(&inode->i_lock);
1832 security_d_instantiate(entry, inode);
1833
1834 return 0;
1835 }
1836 EXPORT_SYMBOL(d_instantiate_no_diralias);
1837
d_make_root(struct inode * root_inode)1838 struct dentry *d_make_root(struct inode *root_inode)
1839 {
1840 struct dentry *res = NULL;
1841
1842 if (root_inode) {
1843 static const struct qstr name = QSTR_INIT("/", 1);
1844
1845 res = __d_alloc(root_inode->i_sb, &name);
1846 if (res)
1847 d_instantiate(res, root_inode);
1848 else
1849 iput(root_inode);
1850 }
1851 return res;
1852 }
1853 EXPORT_SYMBOL(d_make_root);
1854
__d_find_any_alias(struct inode * inode)1855 static struct dentry * __d_find_any_alias(struct inode *inode)
1856 {
1857 struct dentry *alias;
1858
1859 if (hlist_empty(&inode->i_dentry))
1860 return NULL;
1861 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1862 __dget(alias);
1863 return alias;
1864 }
1865
1866 /**
1867 * d_find_any_alias - find any alias for a given inode
1868 * @inode: inode to find an alias for
1869 *
1870 * If any aliases exist for the given inode, take and return a
1871 * reference for one of them. If no aliases exist, return %NULL.
1872 */
d_find_any_alias(struct inode * inode)1873 struct dentry *d_find_any_alias(struct inode *inode)
1874 {
1875 struct dentry *de;
1876
1877 spin_lock(&inode->i_lock);
1878 de = __d_find_any_alias(inode);
1879 spin_unlock(&inode->i_lock);
1880 return de;
1881 }
1882 EXPORT_SYMBOL(d_find_any_alias);
1883
__d_obtain_alias(struct inode * inode,int disconnected)1884 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1885 {
1886 static const struct qstr anonstring = QSTR_INIT("/", 1);
1887 struct dentry *tmp;
1888 struct dentry *res;
1889 unsigned add_flags;
1890
1891 if (!inode)
1892 return ERR_PTR(-ESTALE);
1893 if (IS_ERR(inode))
1894 return ERR_CAST(inode);
1895
1896 res = d_find_any_alias(inode);
1897 if (res)
1898 goto out_iput;
1899
1900 tmp = __d_alloc(inode->i_sb, &anonstring);
1901 if (!tmp) {
1902 res = ERR_PTR(-ENOMEM);
1903 goto out_iput;
1904 }
1905
1906 spin_lock(&inode->i_lock);
1907 res = __d_find_any_alias(inode);
1908 if (res) {
1909 spin_unlock(&inode->i_lock);
1910 dput(tmp);
1911 goto out_iput;
1912 }
1913
1914 /* attach a disconnected dentry */
1915 add_flags = d_flags_for_inode(inode);
1916
1917 if (disconnected)
1918 add_flags |= DCACHE_DISCONNECTED;
1919
1920 spin_lock(&tmp->d_lock);
1921 tmp->d_inode = inode;
1922 tmp->d_flags |= add_flags;
1923 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1924 hlist_bl_lock(&tmp->d_sb->s_anon);
1925 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1926 hlist_bl_unlock(&tmp->d_sb->s_anon);
1927 spin_unlock(&tmp->d_lock);
1928 spin_unlock(&inode->i_lock);
1929 security_d_instantiate(tmp, inode);
1930
1931 return tmp;
1932
1933 out_iput:
1934 if (res && !IS_ERR(res))
1935 security_d_instantiate(res, inode);
1936 iput(inode);
1937 return res;
1938 }
1939
1940 /**
1941 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1942 * @inode: inode to allocate the dentry for
1943 *
1944 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1945 * similar open by handle operations. The returned dentry may be anonymous,
1946 * or may have a full name (if the inode was already in the cache).
1947 *
1948 * When called on a directory inode, we must ensure that the inode only ever
1949 * has one dentry. If a dentry is found, that is returned instead of
1950 * allocating a new one.
1951 *
1952 * On successful return, the reference to the inode has been transferred
1953 * to the dentry. In case of an error the reference on the inode is released.
1954 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1955 * be passed in and the error will be propagated to the return value,
1956 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1957 */
d_obtain_alias(struct inode * inode)1958 struct dentry *d_obtain_alias(struct inode *inode)
1959 {
1960 return __d_obtain_alias(inode, 1);
1961 }
1962 EXPORT_SYMBOL(d_obtain_alias);
1963
1964 /**
1965 * d_obtain_root - find or allocate a dentry for a given inode
1966 * @inode: inode to allocate the dentry for
1967 *
1968 * Obtain an IS_ROOT dentry for the root of a filesystem.
1969 *
1970 * We must ensure that directory inodes only ever have one dentry. If a
1971 * dentry is found, that is returned instead of allocating a new one.
1972 *
1973 * On successful return, the reference to the inode has been transferred
1974 * to the dentry. In case of an error the reference on the inode is
1975 * released. A %NULL or IS_ERR inode may be passed in and will be the
1976 * error will be propagate to the return value, with a %NULL @inode
1977 * replaced by ERR_PTR(-ESTALE).
1978 */
d_obtain_root(struct inode * inode)1979 struct dentry *d_obtain_root(struct inode *inode)
1980 {
1981 return __d_obtain_alias(inode, 0);
1982 }
1983 EXPORT_SYMBOL(d_obtain_root);
1984
1985 /**
1986 * d_add_ci - lookup or allocate new dentry with case-exact name
1987 * @inode: the inode case-insensitive lookup has found
1988 * @dentry: the negative dentry that was passed to the parent's lookup func
1989 * @name: the case-exact name to be associated with the returned dentry
1990 *
1991 * This is to avoid filling the dcache with case-insensitive names to the
1992 * same inode, only the actual correct case is stored in the dcache for
1993 * case-insensitive filesystems.
1994 *
1995 * For a case-insensitive lookup match and if the the case-exact dentry
1996 * already exists in in the dcache, use it and return it.
1997 *
1998 * If no entry exists with the exact case name, allocate new dentry with
1999 * the exact case, and return the spliced entry.
2000 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2001 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2002 struct qstr *name)
2003 {
2004 struct dentry *found;
2005 struct dentry *new;
2006
2007 /*
2008 * First check if a dentry matching the name already exists,
2009 * if not go ahead and create it now.
2010 */
2011 found = d_hash_and_lookup(dentry->d_parent, name);
2012 if (unlikely(IS_ERR(found)))
2013 goto err_out;
2014 if (!found) {
2015 new = d_alloc(dentry->d_parent, name);
2016 if (!new) {
2017 found = ERR_PTR(-ENOMEM);
2018 goto err_out;
2019 }
2020
2021 found = d_splice_alias(inode, new);
2022 if (found) {
2023 dput(new);
2024 return found;
2025 }
2026 return new;
2027 }
2028
2029 /*
2030 * If a matching dentry exists, and it's not negative use it.
2031 *
2032 * Decrement the reference count to balance the iget() done
2033 * earlier on.
2034 */
2035 if (found->d_inode) {
2036 if (unlikely(found->d_inode != inode)) {
2037 /* This can't happen because bad inodes are unhashed. */
2038 BUG_ON(!is_bad_inode(inode));
2039 BUG_ON(!is_bad_inode(found->d_inode));
2040 }
2041 iput(inode);
2042 return found;
2043 }
2044
2045 /*
2046 * Negative dentry: instantiate it unless the inode is a directory and
2047 * already has a dentry.
2048 */
2049 new = d_splice_alias(inode, found);
2050 if (new) {
2051 dput(found);
2052 found = new;
2053 }
2054 return found;
2055
2056 err_out:
2057 iput(inode);
2058 return found;
2059 }
2060 EXPORT_SYMBOL(d_add_ci);
2061
2062 /*
2063 * Do the slow-case of the dentry name compare.
2064 *
2065 * Unlike the dentry_cmp() function, we need to atomically
2066 * load the name and length information, so that the
2067 * filesystem can rely on them, and can use the 'name' and
2068 * 'len' information without worrying about walking off the
2069 * end of memory etc.
2070 *
2071 * Thus the read_seqcount_retry() and the "duplicate" info
2072 * in arguments (the low-level filesystem should not look
2073 * at the dentry inode or name contents directly, since
2074 * rename can change them while we're in RCU mode).
2075 */
2076 enum slow_d_compare {
2077 D_COMP_OK,
2078 D_COMP_NOMATCH,
2079 D_COMP_SEQRETRY,
2080 };
2081
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2082 static noinline enum slow_d_compare slow_dentry_cmp(
2083 const struct dentry *parent,
2084 struct dentry *dentry,
2085 unsigned int seq,
2086 const struct qstr *name)
2087 {
2088 int tlen = dentry->d_name.len;
2089 const char *tname = dentry->d_name.name;
2090
2091 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2092 cpu_relax();
2093 return D_COMP_SEQRETRY;
2094 }
2095 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2096 return D_COMP_NOMATCH;
2097 return D_COMP_OK;
2098 }
2099
2100 /**
2101 * __d_lookup_rcu - search for a dentry (racy, store-free)
2102 * @parent: parent dentry
2103 * @name: qstr of name we wish to find
2104 * @seqp: returns d_seq value at the point where the dentry was found
2105 * Returns: dentry, or NULL
2106 *
2107 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2108 * resolution (store-free path walking) design described in
2109 * Documentation/filesystems/path-lookup.txt.
2110 *
2111 * This is not to be used outside core vfs.
2112 *
2113 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2114 * held, and rcu_read_lock held. The returned dentry must not be stored into
2115 * without taking d_lock and checking d_seq sequence count against @seq
2116 * returned here.
2117 *
2118 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2119 * function.
2120 *
2121 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2122 * the returned dentry, so long as its parent's seqlock is checked after the
2123 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2124 * is formed, giving integrity down the path walk.
2125 *
2126 * NOTE! The caller *has* to check the resulting dentry against the sequence
2127 * number we've returned before using any of the resulting dentry state!
2128 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2129 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2130 const struct qstr *name,
2131 unsigned *seqp)
2132 {
2133 u64 hashlen = name->hash_len;
2134 const unsigned char *str = name->name;
2135 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2136 struct hlist_bl_node *node;
2137 struct dentry *dentry;
2138
2139 /*
2140 * Note: There is significant duplication with __d_lookup_rcu which is
2141 * required to prevent single threaded performance regressions
2142 * especially on architectures where smp_rmb (in seqcounts) are costly.
2143 * Keep the two functions in sync.
2144 */
2145
2146 /*
2147 * The hash list is protected using RCU.
2148 *
2149 * Carefully use d_seq when comparing a candidate dentry, to avoid
2150 * races with d_move().
2151 *
2152 * It is possible that concurrent renames can mess up our list
2153 * walk here and result in missing our dentry, resulting in the
2154 * false-negative result. d_lookup() protects against concurrent
2155 * renames using rename_lock seqlock.
2156 *
2157 * See Documentation/filesystems/path-lookup.txt for more details.
2158 */
2159 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2160 unsigned seq;
2161
2162 seqretry:
2163 /*
2164 * The dentry sequence count protects us from concurrent
2165 * renames, and thus protects parent and name fields.
2166 *
2167 * The caller must perform a seqcount check in order
2168 * to do anything useful with the returned dentry.
2169 *
2170 * NOTE! We do a "raw" seqcount_begin here. That means that
2171 * we don't wait for the sequence count to stabilize if it
2172 * is in the middle of a sequence change. If we do the slow
2173 * dentry compare, we will do seqretries until it is stable,
2174 * and if we end up with a successful lookup, we actually
2175 * want to exit RCU lookup anyway.
2176 */
2177 seq = raw_seqcount_begin(&dentry->d_seq);
2178 if (dentry->d_parent != parent)
2179 continue;
2180 if (d_unhashed(dentry))
2181 continue;
2182
2183 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2184 if (dentry->d_name.hash != hashlen_hash(hashlen))
2185 continue;
2186 *seqp = seq;
2187 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2188 case D_COMP_OK:
2189 return dentry;
2190 case D_COMP_NOMATCH:
2191 continue;
2192 default:
2193 goto seqretry;
2194 }
2195 }
2196
2197 if (dentry->d_name.hash_len != hashlen)
2198 continue;
2199 *seqp = seq;
2200 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2201 return dentry;
2202 }
2203 return NULL;
2204 }
2205
2206 /**
2207 * d_lookup - search for a dentry
2208 * @parent: parent dentry
2209 * @name: qstr of name we wish to find
2210 * Returns: dentry, or NULL
2211 *
2212 * d_lookup searches the children of the parent dentry for the name in
2213 * question. If the dentry is found its reference count is incremented and the
2214 * dentry is returned. The caller must use dput to free the entry when it has
2215 * finished using it. %NULL is returned if the dentry does not exist.
2216 */
d_lookup(const struct dentry * parent,const struct qstr * name)2217 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2218 {
2219 struct dentry *dentry;
2220 unsigned seq;
2221
2222 do {
2223 seq = read_seqbegin(&rename_lock);
2224 dentry = __d_lookup(parent, name);
2225 if (dentry)
2226 break;
2227 } while (read_seqretry(&rename_lock, seq));
2228 return dentry;
2229 }
2230 EXPORT_SYMBOL(d_lookup);
2231
2232 /**
2233 * __d_lookup - search for a dentry (racy)
2234 * @parent: parent dentry
2235 * @name: qstr of name we wish to find
2236 * Returns: dentry, or NULL
2237 *
2238 * __d_lookup is like d_lookup, however it may (rarely) return a
2239 * false-negative result due to unrelated rename activity.
2240 *
2241 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2242 * however it must be used carefully, eg. with a following d_lookup in
2243 * the case of failure.
2244 *
2245 * __d_lookup callers must be commented.
2246 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2247 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2248 {
2249 unsigned int len = name->len;
2250 unsigned int hash = name->hash;
2251 const unsigned char *str = name->name;
2252 struct hlist_bl_head *b = d_hash(parent, hash);
2253 struct hlist_bl_node *node;
2254 struct dentry *found = NULL;
2255 struct dentry *dentry;
2256
2257 /*
2258 * Note: There is significant duplication with __d_lookup_rcu which is
2259 * required to prevent single threaded performance regressions
2260 * especially on architectures where smp_rmb (in seqcounts) are costly.
2261 * Keep the two functions in sync.
2262 */
2263
2264 /*
2265 * The hash list is protected using RCU.
2266 *
2267 * Take d_lock when comparing a candidate dentry, to avoid races
2268 * with d_move().
2269 *
2270 * It is possible that concurrent renames can mess up our list
2271 * walk here and result in missing our dentry, resulting in the
2272 * false-negative result. d_lookup() protects against concurrent
2273 * renames using rename_lock seqlock.
2274 *
2275 * See Documentation/filesystems/path-lookup.txt for more details.
2276 */
2277 rcu_read_lock();
2278
2279 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2280
2281 if (dentry->d_name.hash != hash)
2282 continue;
2283
2284 spin_lock(&dentry->d_lock);
2285 if (dentry->d_parent != parent)
2286 goto next;
2287 if (d_unhashed(dentry))
2288 goto next;
2289
2290 /*
2291 * It is safe to compare names since d_move() cannot
2292 * change the qstr (protected by d_lock).
2293 */
2294 if (parent->d_flags & DCACHE_OP_COMPARE) {
2295 int tlen = dentry->d_name.len;
2296 const char *tname = dentry->d_name.name;
2297 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2298 goto next;
2299 } else {
2300 if (dentry->d_name.len != len)
2301 goto next;
2302 if (dentry_cmp(dentry, str, len))
2303 goto next;
2304 }
2305
2306 dentry->d_lockref.count++;
2307 found = dentry;
2308 spin_unlock(&dentry->d_lock);
2309 break;
2310 next:
2311 spin_unlock(&dentry->d_lock);
2312 }
2313 rcu_read_unlock();
2314
2315 return found;
2316 }
2317
2318 /**
2319 * d_hash_and_lookup - hash the qstr then search for a dentry
2320 * @dir: Directory to search in
2321 * @name: qstr of name we wish to find
2322 *
2323 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2324 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2325 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2326 {
2327 /*
2328 * Check for a fs-specific hash function. Note that we must
2329 * calculate the standard hash first, as the d_op->d_hash()
2330 * routine may choose to leave the hash value unchanged.
2331 */
2332 name->hash = full_name_hash(name->name, name->len);
2333 if (dir->d_flags & DCACHE_OP_HASH) {
2334 int err = dir->d_op->d_hash(dir, name);
2335 if (unlikely(err < 0))
2336 return ERR_PTR(err);
2337 }
2338 return d_lookup(dir, name);
2339 }
2340 EXPORT_SYMBOL(d_hash_and_lookup);
2341
2342 /**
2343 * d_validate - verify dentry provided from insecure source (deprecated)
2344 * @dentry: The dentry alleged to be valid child of @dparent
2345 * @dparent: The parent dentry (known to be valid)
2346 *
2347 * An insecure source has sent us a dentry, here we verify it and dget() it.
2348 * This is used by ncpfs in its readdir implementation.
2349 * Zero is returned in the dentry is invalid.
2350 *
2351 * This function is slow for big directories, and deprecated, do not use it.
2352 */
d_validate(struct dentry * dentry,struct dentry * dparent)2353 int d_validate(struct dentry *dentry, struct dentry *dparent)
2354 {
2355 struct dentry *child;
2356
2357 spin_lock(&dparent->d_lock);
2358 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2359 if (dentry == child) {
2360 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2361 __dget_dlock(dentry);
2362 spin_unlock(&dentry->d_lock);
2363 spin_unlock(&dparent->d_lock);
2364 return 1;
2365 }
2366 }
2367 spin_unlock(&dparent->d_lock);
2368
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(d_validate);
2372
2373 /*
2374 * When a file is deleted, we have two options:
2375 * - turn this dentry into a negative dentry
2376 * - unhash this dentry and free it.
2377 *
2378 * Usually, we want to just turn this into
2379 * a negative dentry, but if anybody else is
2380 * currently using the dentry or the inode
2381 * we can't do that and we fall back on removing
2382 * it from the hash queues and waiting for
2383 * it to be deleted later when it has no users
2384 */
2385
2386 /**
2387 * d_delete - delete a dentry
2388 * @dentry: The dentry to delete
2389 *
2390 * Turn the dentry into a negative dentry if possible, otherwise
2391 * remove it from the hash queues so it can be deleted later
2392 */
2393
d_delete(struct dentry * dentry)2394 void d_delete(struct dentry * dentry)
2395 {
2396 struct inode *inode;
2397 int isdir = 0;
2398 /*
2399 * Are we the only user?
2400 */
2401 again:
2402 spin_lock(&dentry->d_lock);
2403 inode = dentry->d_inode;
2404 isdir = S_ISDIR(inode->i_mode);
2405 if (dentry->d_lockref.count == 1) {
2406 if (!spin_trylock(&inode->i_lock)) {
2407 spin_unlock(&dentry->d_lock);
2408 cpu_relax();
2409 goto again;
2410 }
2411 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2412 dentry_unlink_inode(dentry);
2413 fsnotify_nameremove(dentry, isdir);
2414 return;
2415 }
2416
2417 if (!d_unhashed(dentry))
2418 __d_drop(dentry);
2419
2420 spin_unlock(&dentry->d_lock);
2421
2422 fsnotify_nameremove(dentry, isdir);
2423 }
2424 EXPORT_SYMBOL(d_delete);
2425
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2426 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2427 {
2428 BUG_ON(!d_unhashed(entry));
2429 hlist_bl_lock(b);
2430 hlist_bl_add_head_rcu(&entry->d_hash, b);
2431 hlist_bl_unlock(b);
2432 }
2433
_d_rehash(struct dentry * entry)2434 static void _d_rehash(struct dentry * entry)
2435 {
2436 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2437 }
2438
2439 /**
2440 * d_rehash - add an entry back to the hash
2441 * @entry: dentry to add to the hash
2442 *
2443 * Adds a dentry to the hash according to its name.
2444 */
2445
d_rehash(struct dentry * entry)2446 void d_rehash(struct dentry * entry)
2447 {
2448 spin_lock(&entry->d_lock);
2449 _d_rehash(entry);
2450 spin_unlock(&entry->d_lock);
2451 }
2452 EXPORT_SYMBOL(d_rehash);
2453
2454 /**
2455 * dentry_update_name_case - update case insensitive dentry with a new name
2456 * @dentry: dentry to be updated
2457 * @name: new name
2458 *
2459 * Update a case insensitive dentry with new case of name.
2460 *
2461 * dentry must have been returned by d_lookup with name @name. Old and new
2462 * name lengths must match (ie. no d_compare which allows mismatched name
2463 * lengths).
2464 *
2465 * Parent inode i_mutex must be held over d_lookup and into this call (to
2466 * keep renames and concurrent inserts, and readdir(2) away).
2467 */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2468 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2469 {
2470 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2471 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2472
2473 spin_lock(&dentry->d_lock);
2474 write_seqcount_begin(&dentry->d_seq);
2475 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2476 write_seqcount_end(&dentry->d_seq);
2477 spin_unlock(&dentry->d_lock);
2478 }
2479 EXPORT_SYMBOL(dentry_update_name_case);
2480
swap_names(struct dentry * dentry,struct dentry * target)2481 static void swap_names(struct dentry *dentry, struct dentry *target)
2482 {
2483 if (unlikely(dname_external(target))) {
2484 if (unlikely(dname_external(dentry))) {
2485 /*
2486 * Both external: swap the pointers
2487 */
2488 swap(target->d_name.name, dentry->d_name.name);
2489 } else {
2490 /*
2491 * dentry:internal, target:external. Steal target's
2492 * storage and make target internal.
2493 */
2494 memcpy(target->d_iname, dentry->d_name.name,
2495 dentry->d_name.len + 1);
2496 dentry->d_name.name = target->d_name.name;
2497 target->d_name.name = target->d_iname;
2498 }
2499 } else {
2500 if (unlikely(dname_external(dentry))) {
2501 /*
2502 * dentry:external, target:internal. Give dentry's
2503 * storage to target and make dentry internal
2504 */
2505 memcpy(dentry->d_iname, target->d_name.name,
2506 target->d_name.len + 1);
2507 target->d_name.name = dentry->d_name.name;
2508 dentry->d_name.name = dentry->d_iname;
2509 } else {
2510 /*
2511 * Both are internal.
2512 */
2513 unsigned int i;
2514 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2515 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2516 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2517 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2518 swap(((long *) &dentry->d_iname)[i],
2519 ((long *) &target->d_iname)[i]);
2520 }
2521 }
2522 }
2523 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2524 }
2525
copy_name(struct dentry * dentry,struct dentry * target)2526 static void copy_name(struct dentry *dentry, struct dentry *target)
2527 {
2528 struct external_name *old_name = NULL;
2529 if (unlikely(dname_external(dentry)))
2530 old_name = external_name(dentry);
2531 if (unlikely(dname_external(target))) {
2532 atomic_inc(&external_name(target)->u.count);
2533 dentry->d_name = target->d_name;
2534 } else {
2535 memcpy(dentry->d_iname, target->d_name.name,
2536 target->d_name.len + 1);
2537 dentry->d_name.name = dentry->d_iname;
2538 dentry->d_name.hash_len = target->d_name.hash_len;
2539 }
2540 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2541 kfree_rcu(old_name, u.head);
2542 }
2543
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2544 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2545 {
2546 /*
2547 * XXXX: do we really need to take target->d_lock?
2548 */
2549 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2550 spin_lock(&target->d_parent->d_lock);
2551 else {
2552 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2553 spin_lock(&dentry->d_parent->d_lock);
2554 spin_lock_nested(&target->d_parent->d_lock,
2555 DENTRY_D_LOCK_NESTED);
2556 } else {
2557 spin_lock(&target->d_parent->d_lock);
2558 spin_lock_nested(&dentry->d_parent->d_lock,
2559 DENTRY_D_LOCK_NESTED);
2560 }
2561 }
2562 if (target < dentry) {
2563 spin_lock_nested(&target->d_lock, 2);
2564 spin_lock_nested(&dentry->d_lock, 3);
2565 } else {
2566 spin_lock_nested(&dentry->d_lock, 2);
2567 spin_lock_nested(&target->d_lock, 3);
2568 }
2569 }
2570
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2571 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2572 {
2573 if (target->d_parent != dentry->d_parent)
2574 spin_unlock(&dentry->d_parent->d_lock);
2575 if (target->d_parent != target)
2576 spin_unlock(&target->d_parent->d_lock);
2577 spin_unlock(&target->d_lock);
2578 spin_unlock(&dentry->d_lock);
2579 }
2580
2581 /*
2582 * When switching names, the actual string doesn't strictly have to
2583 * be preserved in the target - because we're dropping the target
2584 * anyway. As such, we can just do a simple memcpy() to copy over
2585 * the new name before we switch, unless we are going to rehash
2586 * it. Note that if we *do* unhash the target, we are not allowed
2587 * to rehash it without giving it a new name/hash key - whether
2588 * we swap or overwrite the names here, resulting name won't match
2589 * the reality in filesystem; it's only there for d_path() purposes.
2590 * Note that all of this is happening under rename_lock, so the
2591 * any hash lookup seeing it in the middle of manipulations will
2592 * be discarded anyway. So we do not care what happens to the hash
2593 * key in that case.
2594 */
2595 /*
2596 * __d_move - move a dentry
2597 * @dentry: entry to move
2598 * @target: new dentry
2599 * @exchange: exchange the two dentries
2600 *
2601 * Update the dcache to reflect the move of a file name. Negative
2602 * dcache entries should not be moved in this way. Caller must hold
2603 * rename_lock, the i_mutex of the source and target directories,
2604 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2605 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2606 static void __d_move(struct dentry *dentry, struct dentry *target,
2607 bool exchange)
2608 {
2609 if (!dentry->d_inode)
2610 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2611
2612 BUG_ON(d_ancestor(dentry, target));
2613 BUG_ON(d_ancestor(target, dentry));
2614
2615 dentry_lock_for_move(dentry, target);
2616
2617 write_seqcount_begin(&dentry->d_seq);
2618 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2619
2620 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2621
2622 /*
2623 * Move the dentry to the target hash queue. Don't bother checking
2624 * for the same hash queue because of how unlikely it is.
2625 */
2626 __d_drop(dentry);
2627 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2628
2629 /*
2630 * Unhash the target (d_delete() is not usable here). If exchanging
2631 * the two dentries, then rehash onto the other's hash queue.
2632 */
2633 __d_drop(target);
2634 if (exchange) {
2635 __d_rehash(target,
2636 d_hash(dentry->d_parent, dentry->d_name.hash));
2637 }
2638
2639 /* Switch the names.. */
2640 if (exchange)
2641 swap_names(dentry, target);
2642 else
2643 copy_name(dentry, target);
2644
2645 /* ... and switch them in the tree */
2646 if (IS_ROOT(dentry)) {
2647 /* splicing a tree */
2648 dentry->d_flags |= DCACHE_RCUACCESS;
2649 dentry->d_parent = target->d_parent;
2650 target->d_parent = target;
2651 list_del_init(&target->d_child);
2652 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2653 } else {
2654 /* swapping two dentries */
2655 swap(dentry->d_parent, target->d_parent);
2656 list_move(&target->d_child, &target->d_parent->d_subdirs);
2657 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2658 if (exchange)
2659 fsnotify_d_move(target);
2660 fsnotify_d_move(dentry);
2661 }
2662
2663 write_seqcount_end(&target->d_seq);
2664 write_seqcount_end(&dentry->d_seq);
2665
2666 dentry_unlock_for_move(dentry, target);
2667 }
2668
2669 /*
2670 * d_move - move a dentry
2671 * @dentry: entry to move
2672 * @target: new dentry
2673 *
2674 * Update the dcache to reflect the move of a file name. Negative
2675 * dcache entries should not be moved in this way. See the locking
2676 * requirements for __d_move.
2677 */
d_move(struct dentry * dentry,struct dentry * target)2678 void d_move(struct dentry *dentry, struct dentry *target)
2679 {
2680 write_seqlock(&rename_lock);
2681 __d_move(dentry, target, false);
2682 write_sequnlock(&rename_lock);
2683 }
2684 EXPORT_SYMBOL(d_move);
2685
2686 /*
2687 * d_exchange - exchange two dentries
2688 * @dentry1: first dentry
2689 * @dentry2: second dentry
2690 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2691 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2692 {
2693 write_seqlock(&rename_lock);
2694
2695 WARN_ON(!dentry1->d_inode);
2696 WARN_ON(!dentry2->d_inode);
2697 WARN_ON(IS_ROOT(dentry1));
2698 WARN_ON(IS_ROOT(dentry2));
2699
2700 __d_move(dentry1, dentry2, true);
2701
2702 write_sequnlock(&rename_lock);
2703 }
2704
2705 /**
2706 * d_ancestor - search for an ancestor
2707 * @p1: ancestor dentry
2708 * @p2: child dentry
2709 *
2710 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2711 * an ancestor of p2, else NULL.
2712 */
d_ancestor(struct dentry * p1,struct dentry * p2)2713 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2714 {
2715 struct dentry *p;
2716
2717 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2718 if (p->d_parent == p1)
2719 return p;
2720 }
2721 return NULL;
2722 }
2723
2724 /*
2725 * This helper attempts to cope with remotely renamed directories
2726 *
2727 * It assumes that the caller is already holding
2728 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2729 *
2730 * Note: If ever the locking in lock_rename() changes, then please
2731 * remember to update this too...
2732 */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2733 static int __d_unalias(struct inode *inode,
2734 struct dentry *dentry, struct dentry *alias)
2735 {
2736 struct mutex *m1 = NULL, *m2 = NULL;
2737 int ret = -EBUSY;
2738
2739 /* If alias and dentry share a parent, then no extra locks required */
2740 if (alias->d_parent == dentry->d_parent)
2741 goto out_unalias;
2742
2743 /* See lock_rename() */
2744 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2745 goto out_err;
2746 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2747 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2748 goto out_err;
2749 m2 = &alias->d_parent->d_inode->i_mutex;
2750 out_unalias:
2751 __d_move(alias, dentry, false);
2752 ret = 0;
2753 out_err:
2754 spin_unlock(&inode->i_lock);
2755 if (m2)
2756 mutex_unlock(m2);
2757 if (m1)
2758 mutex_unlock(m1);
2759 return ret;
2760 }
2761
2762 /**
2763 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2764 * @inode: the inode which may have a disconnected dentry
2765 * @dentry: a negative dentry which we want to point to the inode.
2766 *
2767 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2768 * place of the given dentry and return it, else simply d_add the inode
2769 * to the dentry and return NULL.
2770 *
2771 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2772 * we should error out: directories can't have multiple aliases.
2773 *
2774 * This is needed in the lookup routine of any filesystem that is exportable
2775 * (via knfsd) so that we can build dcache paths to directories effectively.
2776 *
2777 * If a dentry was found and moved, then it is returned. Otherwise NULL
2778 * is returned. This matches the expected return value of ->lookup.
2779 *
2780 * Cluster filesystems may call this function with a negative, hashed dentry.
2781 * In that case, we know that the inode will be a regular file, and also this
2782 * will only occur during atomic_open. So we need to check for the dentry
2783 * being already hashed only in the final case.
2784 */
d_splice_alias(struct inode * inode,struct dentry * dentry)2785 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2786 {
2787 if (IS_ERR(inode))
2788 return ERR_CAST(inode);
2789
2790 BUG_ON(!d_unhashed(dentry));
2791
2792 if (!inode) {
2793 __d_instantiate(dentry, NULL);
2794 goto out;
2795 }
2796 spin_lock(&inode->i_lock);
2797 if (S_ISDIR(inode->i_mode)) {
2798 struct dentry *new = __d_find_any_alias(inode);
2799 if (unlikely(new)) {
2800 write_seqlock(&rename_lock);
2801 if (unlikely(d_ancestor(new, dentry))) {
2802 write_sequnlock(&rename_lock);
2803 spin_unlock(&inode->i_lock);
2804 dput(new);
2805 new = ERR_PTR(-ELOOP);
2806 pr_warn_ratelimited(
2807 "VFS: Lookup of '%s' in %s %s"
2808 " would have caused loop\n",
2809 dentry->d_name.name,
2810 inode->i_sb->s_type->name,
2811 inode->i_sb->s_id);
2812 } else if (!IS_ROOT(new)) {
2813 int err = __d_unalias(inode, dentry, new);
2814 write_sequnlock(&rename_lock);
2815 if (err) {
2816 dput(new);
2817 new = ERR_PTR(err);
2818 }
2819 } else {
2820 __d_move(new, dentry, false);
2821 write_sequnlock(&rename_lock);
2822 spin_unlock(&inode->i_lock);
2823 security_d_instantiate(new, inode);
2824 }
2825 iput(inode);
2826 return new;
2827 }
2828 }
2829 /* already taking inode->i_lock, so d_add() by hand */
2830 __d_instantiate(dentry, inode);
2831 spin_unlock(&inode->i_lock);
2832 out:
2833 security_d_instantiate(dentry, inode);
2834 d_rehash(dentry);
2835 return NULL;
2836 }
2837 EXPORT_SYMBOL(d_splice_alias);
2838
prepend(char ** buffer,int * buflen,const char * str,int namelen)2839 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2840 {
2841 *buflen -= namelen;
2842 if (*buflen < 0)
2843 return -ENAMETOOLONG;
2844 *buffer -= namelen;
2845 memcpy(*buffer, str, namelen);
2846 return 0;
2847 }
2848
2849 /**
2850 * prepend_name - prepend a pathname in front of current buffer pointer
2851 * @buffer: buffer pointer
2852 * @buflen: allocated length of the buffer
2853 * @name: name string and length qstr structure
2854 *
2855 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2856 * make sure that either the old or the new name pointer and length are
2857 * fetched. However, there may be mismatch between length and pointer.
2858 * The length cannot be trusted, we need to copy it byte-by-byte until
2859 * the length is reached or a null byte is found. It also prepends "/" at
2860 * the beginning of the name. The sequence number check at the caller will
2861 * retry it again when a d_move() does happen. So any garbage in the buffer
2862 * due to mismatched pointer and length will be discarded.
2863 *
2864 * Data dependency barrier is needed to make sure that we see that terminating
2865 * NUL. Alpha strikes again, film at 11...
2866 */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2867 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2868 {
2869 const char *dname = ACCESS_ONCE(name->name);
2870 u32 dlen = ACCESS_ONCE(name->len);
2871 char *p;
2872
2873 smp_read_barrier_depends();
2874
2875 *buflen -= dlen + 1;
2876 if (*buflen < 0)
2877 return -ENAMETOOLONG;
2878 p = *buffer -= dlen + 1;
2879 *p++ = '/';
2880 while (dlen--) {
2881 char c = *dname++;
2882 if (!c)
2883 break;
2884 *p++ = c;
2885 }
2886 return 0;
2887 }
2888
2889 /**
2890 * prepend_path - Prepend path string to a buffer
2891 * @path: the dentry/vfsmount to report
2892 * @root: root vfsmnt/dentry
2893 * @buffer: pointer to the end of the buffer
2894 * @buflen: pointer to buffer length
2895 *
2896 * The function will first try to write out the pathname without taking any
2897 * lock other than the RCU read lock to make sure that dentries won't go away.
2898 * It only checks the sequence number of the global rename_lock as any change
2899 * in the dentry's d_seq will be preceded by changes in the rename_lock
2900 * sequence number. If the sequence number had been changed, it will restart
2901 * the whole pathname back-tracing sequence again by taking the rename_lock.
2902 * In this case, there is no need to take the RCU read lock as the recursive
2903 * parent pointer references will keep the dentry chain alive as long as no
2904 * rename operation is performed.
2905 */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2906 static int prepend_path(const struct path *path,
2907 const struct path *root,
2908 char **buffer, int *buflen)
2909 {
2910 struct dentry *dentry;
2911 struct vfsmount *vfsmnt;
2912 struct mount *mnt;
2913 int error = 0;
2914 unsigned seq, m_seq = 0;
2915 char *bptr;
2916 int blen;
2917
2918 rcu_read_lock();
2919 restart_mnt:
2920 read_seqbegin_or_lock(&mount_lock, &m_seq);
2921 seq = 0;
2922 rcu_read_lock();
2923 restart:
2924 bptr = *buffer;
2925 blen = *buflen;
2926 error = 0;
2927 dentry = path->dentry;
2928 vfsmnt = path->mnt;
2929 mnt = real_mount(vfsmnt);
2930 read_seqbegin_or_lock(&rename_lock, &seq);
2931 while (dentry != root->dentry || vfsmnt != root->mnt) {
2932 struct dentry * parent;
2933
2934 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2935 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2936 /* Escaped? */
2937 if (dentry != vfsmnt->mnt_root) {
2938 bptr = *buffer;
2939 blen = *buflen;
2940 error = 3;
2941 break;
2942 }
2943 /* Global root? */
2944 if (mnt != parent) {
2945 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2946 mnt = parent;
2947 vfsmnt = &mnt->mnt;
2948 continue;
2949 }
2950 if (!error)
2951 error = is_mounted(vfsmnt) ? 1 : 2;
2952 break;
2953 }
2954 parent = dentry->d_parent;
2955 prefetch(parent);
2956 error = prepend_name(&bptr, &blen, &dentry->d_name);
2957 if (error)
2958 break;
2959
2960 dentry = parent;
2961 }
2962 if (!(seq & 1))
2963 rcu_read_unlock();
2964 if (need_seqretry(&rename_lock, seq)) {
2965 seq = 1;
2966 goto restart;
2967 }
2968 done_seqretry(&rename_lock, seq);
2969
2970 if (!(m_seq & 1))
2971 rcu_read_unlock();
2972 if (need_seqretry(&mount_lock, m_seq)) {
2973 m_seq = 1;
2974 goto restart_mnt;
2975 }
2976 done_seqretry(&mount_lock, m_seq);
2977
2978 if (error >= 0 && bptr == *buffer) {
2979 if (--blen < 0)
2980 error = -ENAMETOOLONG;
2981 else
2982 *--bptr = '/';
2983 }
2984 *buffer = bptr;
2985 *buflen = blen;
2986 return error;
2987 }
2988
2989 /**
2990 * __d_path - return the path of a dentry
2991 * @path: the dentry/vfsmount to report
2992 * @root: root vfsmnt/dentry
2993 * @buf: buffer to return value in
2994 * @buflen: buffer length
2995 *
2996 * Convert a dentry into an ASCII path name.
2997 *
2998 * Returns a pointer into the buffer or an error code if the
2999 * path was too long.
3000 *
3001 * "buflen" should be positive.
3002 *
3003 * If the path is not reachable from the supplied root, return %NULL.
3004 */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3005 char *__d_path(const struct path *path,
3006 const struct path *root,
3007 char *buf, int buflen)
3008 {
3009 char *res = buf + buflen;
3010 int error;
3011
3012 prepend(&res, &buflen, "\0", 1);
3013 error = prepend_path(path, root, &res, &buflen);
3014
3015 if (error < 0)
3016 return ERR_PTR(error);
3017 if (error > 0)
3018 return NULL;
3019 return res;
3020 }
3021
d_absolute_path(const struct path * path,char * buf,int buflen)3022 char *d_absolute_path(const struct path *path,
3023 char *buf, int buflen)
3024 {
3025 struct path root = {};
3026 char *res = buf + buflen;
3027 int error;
3028
3029 prepend(&res, &buflen, "\0", 1);
3030 error = prepend_path(path, &root, &res, &buflen);
3031
3032 if (error > 1)
3033 error = -EINVAL;
3034 if (error < 0)
3035 return ERR_PTR(error);
3036 return res;
3037 }
3038
3039 /*
3040 * same as __d_path but appends "(deleted)" for unlinked files.
3041 */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3042 static int path_with_deleted(const struct path *path,
3043 const struct path *root,
3044 char **buf, int *buflen)
3045 {
3046 prepend(buf, buflen, "\0", 1);
3047 if (d_unlinked(path->dentry)) {
3048 int error = prepend(buf, buflen, " (deleted)", 10);
3049 if (error)
3050 return error;
3051 }
3052
3053 return prepend_path(path, root, buf, buflen);
3054 }
3055
prepend_unreachable(char ** buffer,int * buflen)3056 static int prepend_unreachable(char **buffer, int *buflen)
3057 {
3058 return prepend(buffer, buflen, "(unreachable)", 13);
3059 }
3060
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3061 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3062 {
3063 unsigned seq;
3064
3065 do {
3066 seq = read_seqcount_begin(&fs->seq);
3067 *root = fs->root;
3068 } while (read_seqcount_retry(&fs->seq, seq));
3069 }
3070
3071 /**
3072 * d_path - return the path of a dentry
3073 * @path: path to report
3074 * @buf: buffer to return value in
3075 * @buflen: buffer length
3076 *
3077 * Convert a dentry into an ASCII path name. If the entry has been deleted
3078 * the string " (deleted)" is appended. Note that this is ambiguous.
3079 *
3080 * Returns a pointer into the buffer or an error code if the path was
3081 * too long. Note: Callers should use the returned pointer, not the passed
3082 * in buffer, to use the name! The implementation often starts at an offset
3083 * into the buffer, and may leave 0 bytes at the start.
3084 *
3085 * "buflen" should be positive.
3086 */
d_path(const struct path * path,char * buf,int buflen)3087 char *d_path(const struct path *path, char *buf, int buflen)
3088 {
3089 char *res = buf + buflen;
3090 struct path root;
3091 int error;
3092
3093 /*
3094 * We have various synthetic filesystems that never get mounted. On
3095 * these filesystems dentries are never used for lookup purposes, and
3096 * thus don't need to be hashed. They also don't need a name until a
3097 * user wants to identify the object in /proc/pid/fd/. The little hack
3098 * below allows us to generate a name for these objects on demand:
3099 *
3100 * Some pseudo inodes are mountable. When they are mounted
3101 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3102 * and instead have d_path return the mounted path.
3103 */
3104 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3105 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3106 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3107
3108 rcu_read_lock();
3109 get_fs_root_rcu(current->fs, &root);
3110 error = path_with_deleted(path, &root, &res, &buflen);
3111 rcu_read_unlock();
3112
3113 if (error < 0)
3114 res = ERR_PTR(error);
3115 return res;
3116 }
3117 EXPORT_SYMBOL(d_path);
3118
3119 /*
3120 * Helper function for dentry_operations.d_dname() members
3121 */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3122 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3123 const char *fmt, ...)
3124 {
3125 va_list args;
3126 char temp[64];
3127 int sz;
3128
3129 va_start(args, fmt);
3130 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3131 va_end(args);
3132
3133 if (sz > sizeof(temp) || sz > buflen)
3134 return ERR_PTR(-ENAMETOOLONG);
3135
3136 buffer += buflen - sz;
3137 return memcpy(buffer, temp, sz);
3138 }
3139
simple_dname(struct dentry * dentry,char * buffer,int buflen)3140 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3141 {
3142 char *end = buffer + buflen;
3143 /* these dentries are never renamed, so d_lock is not needed */
3144 if (prepend(&end, &buflen, " (deleted)", 11) ||
3145 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3146 prepend(&end, &buflen, "/", 1))
3147 end = ERR_PTR(-ENAMETOOLONG);
3148 return end;
3149 }
3150 EXPORT_SYMBOL(simple_dname);
3151
3152 /*
3153 * Write full pathname from the root of the filesystem into the buffer.
3154 */
__dentry_path(struct dentry * d,char * buf,int buflen)3155 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3156 {
3157 struct dentry *dentry;
3158 char *end, *retval;
3159 int len, seq = 0;
3160 int error = 0;
3161
3162 if (buflen < 2)
3163 goto Elong;
3164
3165 rcu_read_lock();
3166 restart:
3167 dentry = d;
3168 end = buf + buflen;
3169 len = buflen;
3170 prepend(&end, &len, "\0", 1);
3171 /* Get '/' right */
3172 retval = end-1;
3173 *retval = '/';
3174 read_seqbegin_or_lock(&rename_lock, &seq);
3175 while (!IS_ROOT(dentry)) {
3176 struct dentry *parent = dentry->d_parent;
3177
3178 prefetch(parent);
3179 error = prepend_name(&end, &len, &dentry->d_name);
3180 if (error)
3181 break;
3182
3183 retval = end;
3184 dentry = parent;
3185 }
3186 if (!(seq & 1))
3187 rcu_read_unlock();
3188 if (need_seqretry(&rename_lock, seq)) {
3189 seq = 1;
3190 goto restart;
3191 }
3192 done_seqretry(&rename_lock, seq);
3193 if (error)
3194 goto Elong;
3195 return retval;
3196 Elong:
3197 return ERR_PTR(-ENAMETOOLONG);
3198 }
3199
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3200 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3201 {
3202 return __dentry_path(dentry, buf, buflen);
3203 }
3204 EXPORT_SYMBOL(dentry_path_raw);
3205
dentry_path(struct dentry * dentry,char * buf,int buflen)3206 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3207 {
3208 char *p = NULL;
3209 char *retval;
3210
3211 if (d_unlinked(dentry)) {
3212 p = buf + buflen;
3213 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3214 goto Elong;
3215 buflen++;
3216 }
3217 retval = __dentry_path(dentry, buf, buflen);
3218 if (!IS_ERR(retval) && p)
3219 *p = '/'; /* restore '/' overriden with '\0' */
3220 return retval;
3221 Elong:
3222 return ERR_PTR(-ENAMETOOLONG);
3223 }
3224
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3225 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3226 struct path *pwd)
3227 {
3228 unsigned seq;
3229
3230 do {
3231 seq = read_seqcount_begin(&fs->seq);
3232 *root = fs->root;
3233 *pwd = fs->pwd;
3234 } while (read_seqcount_retry(&fs->seq, seq));
3235 }
3236
3237 /*
3238 * NOTE! The user-level library version returns a
3239 * character pointer. The kernel system call just
3240 * returns the length of the buffer filled (which
3241 * includes the ending '\0' character), or a negative
3242 * error value. So libc would do something like
3243 *
3244 * char *getcwd(char * buf, size_t size)
3245 * {
3246 * int retval;
3247 *
3248 * retval = sys_getcwd(buf, size);
3249 * if (retval >= 0)
3250 * return buf;
3251 * errno = -retval;
3252 * return NULL;
3253 * }
3254 */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3255 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3256 {
3257 int error;
3258 struct path pwd, root;
3259 char *page = __getname();
3260
3261 if (!page)
3262 return -ENOMEM;
3263
3264 rcu_read_lock();
3265 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3266
3267 error = -ENOENT;
3268 if (!d_unlinked(pwd.dentry)) {
3269 unsigned long len;
3270 char *cwd = page + PATH_MAX;
3271 int buflen = PATH_MAX;
3272
3273 prepend(&cwd, &buflen, "\0", 1);
3274 error = prepend_path(&pwd, &root, &cwd, &buflen);
3275 rcu_read_unlock();
3276
3277 if (error < 0)
3278 goto out;
3279
3280 /* Unreachable from current root */
3281 if (error > 0) {
3282 error = prepend_unreachable(&cwd, &buflen);
3283 if (error)
3284 goto out;
3285 }
3286
3287 error = -ERANGE;
3288 len = PATH_MAX + page - cwd;
3289 if (len <= size) {
3290 error = len;
3291 if (copy_to_user(buf, cwd, len))
3292 error = -EFAULT;
3293 }
3294 } else {
3295 rcu_read_unlock();
3296 }
3297
3298 out:
3299 __putname(page);
3300 return error;
3301 }
3302
3303 /*
3304 * Test whether new_dentry is a subdirectory of old_dentry.
3305 *
3306 * Trivially implemented using the dcache structure
3307 */
3308
3309 /**
3310 * is_subdir - is new dentry a subdirectory of old_dentry
3311 * @new_dentry: new dentry
3312 * @old_dentry: old dentry
3313 *
3314 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3315 * Returns 0 otherwise.
3316 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3317 */
3318
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3319 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3320 {
3321 int result;
3322 unsigned seq;
3323
3324 if (new_dentry == old_dentry)
3325 return 1;
3326
3327 do {
3328 /* for restarting inner loop in case of seq retry */
3329 seq = read_seqbegin(&rename_lock);
3330 /*
3331 * Need rcu_readlock to protect against the d_parent trashing
3332 * due to d_move
3333 */
3334 rcu_read_lock();
3335 if (d_ancestor(old_dentry, new_dentry))
3336 result = 1;
3337 else
3338 result = 0;
3339 rcu_read_unlock();
3340 } while (read_seqretry(&rename_lock, seq));
3341
3342 return result;
3343 }
3344
d_genocide_kill(void * data,struct dentry * dentry)3345 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3346 {
3347 struct dentry *root = data;
3348 if (dentry != root) {
3349 if (d_unhashed(dentry) || !dentry->d_inode)
3350 return D_WALK_SKIP;
3351
3352 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3353 dentry->d_flags |= DCACHE_GENOCIDE;
3354 dentry->d_lockref.count--;
3355 }
3356 }
3357 return D_WALK_CONTINUE;
3358 }
3359
d_genocide(struct dentry * parent)3360 void d_genocide(struct dentry *parent)
3361 {
3362 d_walk(parent, parent, d_genocide_kill, NULL);
3363 }
3364
d_tmpfile(struct dentry * dentry,struct inode * inode)3365 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3366 {
3367 inode_dec_link_count(inode);
3368 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3369 !hlist_unhashed(&dentry->d_u.d_alias) ||
3370 !d_unlinked(dentry));
3371 spin_lock(&dentry->d_parent->d_lock);
3372 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3373 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3374 (unsigned long long)inode->i_ino);
3375 spin_unlock(&dentry->d_lock);
3376 spin_unlock(&dentry->d_parent->d_lock);
3377 d_instantiate(dentry, inode);
3378 }
3379 EXPORT_SYMBOL(d_tmpfile);
3380
3381 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3382 static int __init set_dhash_entries(char *str)
3383 {
3384 if (!str)
3385 return 0;
3386 dhash_entries = simple_strtoul(str, &str, 0);
3387 return 1;
3388 }
3389 __setup("dhash_entries=", set_dhash_entries);
3390
dcache_init_early(void)3391 static void __init dcache_init_early(void)
3392 {
3393 unsigned int loop;
3394
3395 /* If hashes are distributed across NUMA nodes, defer
3396 * hash allocation until vmalloc space is available.
3397 */
3398 if (hashdist)
3399 return;
3400
3401 dentry_hashtable =
3402 alloc_large_system_hash("Dentry cache",
3403 sizeof(struct hlist_bl_head),
3404 dhash_entries,
3405 13,
3406 HASH_EARLY,
3407 &d_hash_shift,
3408 &d_hash_mask,
3409 0,
3410 0);
3411
3412 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3413 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3414 }
3415
dcache_init(void)3416 static void __init dcache_init(void)
3417 {
3418 unsigned int loop;
3419
3420 /*
3421 * A constructor could be added for stable state like the lists,
3422 * but it is probably not worth it because of the cache nature
3423 * of the dcache.
3424 */
3425 dentry_cache = KMEM_CACHE(dentry,
3426 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3427
3428 /* Hash may have been set up in dcache_init_early */
3429 if (!hashdist)
3430 return;
3431
3432 dentry_hashtable =
3433 alloc_large_system_hash("Dentry cache",
3434 sizeof(struct hlist_bl_head),
3435 dhash_entries,
3436 13,
3437 0,
3438 &d_hash_shift,
3439 &d_hash_mask,
3440 0,
3441 0);
3442
3443 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3444 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3445 }
3446
3447 /* SLAB cache for __getname() consumers */
3448 struct kmem_cache *names_cachep __read_mostly;
3449 EXPORT_SYMBOL(names_cachep);
3450
3451 EXPORT_SYMBOL(d_genocide);
3452
vfs_caches_init_early(void)3453 void __init vfs_caches_init_early(void)
3454 {
3455 dcache_init_early();
3456 inode_init_early();
3457 }
3458
vfs_caches_init(unsigned long mempages)3459 void __init vfs_caches_init(unsigned long mempages)
3460 {
3461 unsigned long reserve;
3462
3463 /* Base hash sizes on available memory, with a reserve equal to
3464 150% of current kernel size */
3465
3466 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3467 mempages -= reserve;
3468
3469 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3470 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3471
3472 dcache_init();
3473 inode_init();
3474 files_init(mempages);
3475 mnt_init();
3476 bdev_cache_init();
3477 chrdev_init();
3478 }
3479
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)3480 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
3481 {
3482 spin_lock(&dentry->d_lock);
3483 if (unlikely(dname_external(dentry))) {
3484 struct external_name *p = external_name(dentry);
3485 atomic_inc(&p->u.count);
3486 spin_unlock(&dentry->d_lock);
3487 name->name = p->name;
3488 } else {
3489 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
3490 spin_unlock(&dentry->d_lock);
3491 name->name = name->inline_name;
3492 }
3493 }
3494 EXPORT_SYMBOL(take_dentry_name_snapshot);
3495
release_dentry_name_snapshot(struct name_snapshot * name)3496 void release_dentry_name_snapshot(struct name_snapshot *name)
3497 {
3498 if (unlikely(name->name != name->inline_name)) {
3499 struct external_name *p;
3500 p = container_of(name->name, struct external_name, name[0]);
3501 if (unlikely(atomic_dec_and_test(&p->u.count)))
3502 kfree_rcu(p, u.head);
3503 }
3504 }
3505 EXPORT_SYMBOL(release_dentry_name_snapshot);
3506