• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_u.d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_u.d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
d_hash(const struct dentry * parent,unsigned int hash)105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 
122 /*
123  * Here we resort to our own counters instead of using generic per-cpu counters
124  * for consistency with what the vfs inode code does. We are expected to harvest
125  * better code and performance by having our own specialized counters.
126  *
127  * Please note that the loop is done over all possible CPUs, not over all online
128  * CPUs. The reason for this is that we don't want to play games with CPUs going
129  * on and off. If one of them goes off, we will just keep their counters.
130  *
131  * glommer: See cffbc8a for details, and if you ever intend to change this,
132  * please update all vfs counters to match.
133  */
get_nr_dentry(void)134 static long get_nr_dentry(void)
135 {
136 	int i;
137 	long sum = 0;
138 	for_each_possible_cpu(i)
139 		sum += per_cpu(nr_dentry, i);
140 	return sum < 0 ? 0 : sum;
141 }
142 
get_nr_dentry_unused(void)143 static long get_nr_dentry_unused(void)
144 {
145 	int i;
146 	long sum = 0;
147 	for_each_possible_cpu(i)
148 		sum += per_cpu(nr_dentry_unused, i);
149 	return sum < 0 ? 0 : sum;
150 }
151 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 		   size_t *lenp, loff_t *ppos)
154 {
155 	dentry_stat.nr_dentry = get_nr_dentry();
156 	dentry_stat.nr_unused = get_nr_dentry_unused();
157 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160 
161 /*
162  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163  * The strings are both count bytes long, and count is non-zero.
164  */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166 
167 #include <asm/word-at-a-time.h>
168 /*
169  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170  * aligned allocation for this particular component. We don't
171  * strictly need the load_unaligned_zeropad() safety, but it
172  * doesn't hurt either.
173  *
174  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175  * need the careful unaligned handling.
176  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 	unsigned long a,b,mask;
180 
181 	for (;;) {
182 		a = *(unsigned long *)cs;
183 		b = load_unaligned_zeropad(ct);
184 		if (tcount < sizeof(unsigned long))
185 			break;
186 		if (unlikely(a != b))
187 			return 1;
188 		cs += sizeof(unsigned long);
189 		ct += sizeof(unsigned long);
190 		tcount -= sizeof(unsigned long);
191 		if (!tcount)
192 			return 0;
193 	}
194 	mask = bytemask_from_count(tcount);
195 	return unlikely(!!((a ^ b) & mask));
196 }
197 
198 #else
199 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 	do {
203 		if (*cs != *ct)
204 			return 1;
205 		cs++;
206 		ct++;
207 		tcount--;
208 	} while (tcount);
209 	return 0;
210 }
211 
212 #endif
213 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 	const unsigned char *cs;
217 	/*
218 	 * Be careful about RCU walk racing with rename:
219 	 * use ACCESS_ONCE to fetch the name pointer.
220 	 *
221 	 * NOTE! Even if a rename will mean that the length
222 	 * was not loaded atomically, we don't care. The
223 	 * RCU walk will check the sequence count eventually,
224 	 * and catch it. And we won't overrun the buffer,
225 	 * because we're reading the name pointer atomically,
226 	 * and a dentry name is guaranteed to be properly
227 	 * terminated with a NUL byte.
228 	 *
229 	 * End result: even if 'len' is wrong, we'll exit
230 	 * early because the data cannot match (there can
231 	 * be no NUL in the ct/tcount data)
232 	 */
233 	cs = ACCESS_ONCE(dentry->d_name.name);
234 	smp_read_barrier_depends();
235 	return dentry_string_cmp(cs, ct, tcount);
236 }
237 
238 struct external_name {
239 	union {
240 		atomic_t count;
241 		struct rcu_head head;
242 	} u;
243 	unsigned char name[];
244 };
245 
external_name(struct dentry * dentry)246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 	return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250 
__d_free(struct rcu_head * head)251 static void __d_free(struct rcu_head *head)
252 {
253 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254 
255 	kmem_cache_free(dentry_cache, dentry);
256 }
257 
__d_free_external(struct rcu_head * head)258 static void __d_free_external(struct rcu_head *head)
259 {
260 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
261 	kfree(external_name(dentry));
262 	kmem_cache_free(dentry_cache, dentry);
263 }
264 
dname_external(const struct dentry * dentry)265 static inline int dname_external(const struct dentry *dentry)
266 {
267 	return dentry->d_name.name != dentry->d_iname;
268 }
269 
dentry_free(struct dentry * dentry)270 static void dentry_free(struct dentry *dentry)
271 {
272 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
273 	if (unlikely(dname_external(dentry))) {
274 		struct external_name *p = external_name(dentry);
275 		if (likely(atomic_dec_and_test(&p->u.count))) {
276 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 			return;
278 		}
279 	}
280 	/* if dentry was never visible to RCU, immediate free is OK */
281 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 		__d_free(&dentry->d_u.d_rcu);
283 	else
284 		call_rcu(&dentry->d_u.d_rcu, __d_free);
285 }
286 
287 /**
288  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289  * @dentry: the target dentry
290  * After this call, in-progress rcu-walk path lookup will fail. This
291  * should be called after unhashing, and after changing d_inode (if
292  * the dentry has not already been unhashed).
293  */
dentry_rcuwalk_barrier(struct dentry * dentry)294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
295 {
296 	assert_spin_locked(&dentry->d_lock);
297 	/* Go through a barrier */
298 	write_seqcount_barrier(&dentry->d_seq);
299 }
300 
301 /*
302  * Release the dentry's inode, using the filesystem
303  * d_iput() operation if defined. Dentry has no refcount
304  * and is unhashed.
305  */
dentry_iput(struct dentry * dentry)306 static void dentry_iput(struct dentry * dentry)
307 	__releases(dentry->d_lock)
308 	__releases(dentry->d_inode->i_lock)
309 {
310 	struct inode *inode = dentry->d_inode;
311 	if (inode) {
312 		dentry->d_inode = NULL;
313 		hlist_del_init(&dentry->d_u.d_alias);
314 		spin_unlock(&dentry->d_lock);
315 		spin_unlock(&inode->i_lock);
316 		if (!inode->i_nlink)
317 			fsnotify_inoderemove(inode);
318 		if (dentry->d_op && dentry->d_op->d_iput)
319 			dentry->d_op->d_iput(dentry, inode);
320 		else
321 			iput(inode);
322 	} else {
323 		spin_unlock(&dentry->d_lock);
324 	}
325 }
326 
327 /*
328  * Release the dentry's inode, using the filesystem
329  * d_iput() operation if defined. dentry remains in-use.
330  */
dentry_unlink_inode(struct dentry * dentry)331 static void dentry_unlink_inode(struct dentry * dentry)
332 	__releases(dentry->d_lock)
333 	__releases(dentry->d_inode->i_lock)
334 {
335 	struct inode *inode = dentry->d_inode;
336 	__d_clear_type(dentry);
337 	dentry->d_inode = NULL;
338 	hlist_del_init(&dentry->d_u.d_alias);
339 	dentry_rcuwalk_barrier(dentry);
340 	spin_unlock(&dentry->d_lock);
341 	spin_unlock(&inode->i_lock);
342 	if (!inode->i_nlink)
343 		fsnotify_inoderemove(inode);
344 	if (dentry->d_op && dentry->d_op->d_iput)
345 		dentry->d_op->d_iput(dentry, inode);
346 	else
347 		iput(inode);
348 }
349 
350 /*
351  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352  * is in use - which includes both the "real" per-superblock
353  * LRU list _and_ the DCACHE_SHRINK_LIST use.
354  *
355  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356  * on the shrink list (ie not on the superblock LRU list).
357  *
358  * The per-cpu "nr_dentry_unused" counters are updated with
359  * the DCACHE_LRU_LIST bit.
360  *
361  * These helper functions make sure we always follow the
362  * rules. d_lock must be held by the caller.
363  */
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)365 static void d_lru_add(struct dentry *dentry)
366 {
367 	D_FLAG_VERIFY(dentry, 0);
368 	dentry->d_flags |= DCACHE_LRU_LIST;
369 	this_cpu_inc(nr_dentry_unused);
370 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
371 }
372 
d_lru_del(struct dentry * dentry)373 static void d_lru_del(struct dentry *dentry)
374 {
375 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 	dentry->d_flags &= ~DCACHE_LRU_LIST;
377 	this_cpu_dec(nr_dentry_unused);
378 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
379 }
380 
d_shrink_del(struct dentry * dentry)381 static void d_shrink_del(struct dentry *dentry)
382 {
383 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 	list_del_init(&dentry->d_lru);
385 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 	this_cpu_dec(nr_dentry_unused);
387 }
388 
d_shrink_add(struct dentry * dentry,struct list_head * list)389 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
390 {
391 	D_FLAG_VERIFY(dentry, 0);
392 	list_add(&dentry->d_lru, list);
393 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 	this_cpu_inc(nr_dentry_unused);
395 }
396 
397 /*
398  * These can only be called under the global LRU lock, ie during the
399  * callback for freeing the LRU list. "isolate" removes it from the
400  * LRU lists entirely, while shrink_move moves it to the indicated
401  * private list.
402  */
d_lru_isolate(struct dentry * dentry)403 static void d_lru_isolate(struct dentry *dentry)
404 {
405 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 	dentry->d_flags &= ~DCACHE_LRU_LIST;
407 	this_cpu_dec(nr_dentry_unused);
408 	list_del_init(&dentry->d_lru);
409 }
410 
d_lru_shrink_move(struct dentry * dentry,struct list_head * list)411 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
412 {
413 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
414 	dentry->d_flags |= DCACHE_SHRINK_LIST;
415 	list_move_tail(&dentry->d_lru, list);
416 }
417 
418 /*
419  * dentry_lru_(add|del)_list) must be called with d_lock held.
420  */
dentry_lru_add(struct dentry * dentry)421 static void dentry_lru_add(struct dentry *dentry)
422 {
423 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
424 		d_lru_add(dentry);
425 }
426 
427 /**
428  * d_drop - drop a dentry
429  * @dentry: dentry to drop
430  *
431  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432  * be found through a VFS lookup any more. Note that this is different from
433  * deleting the dentry - d_delete will try to mark the dentry negative if
434  * possible, giving a successful _negative_ lookup, while d_drop will
435  * just make the cache lookup fail.
436  *
437  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438  * reason (NFS timeouts or autofs deletes).
439  *
440  * __d_drop requires dentry->d_lock.
441  */
__d_drop(struct dentry * dentry)442 void __d_drop(struct dentry *dentry)
443 {
444 	if (!d_unhashed(dentry)) {
445 		struct hlist_bl_head *b;
446 		/*
447 		 * Hashed dentries are normally on the dentry hashtable,
448 		 * with the exception of those newly allocated by
449 		 * d_obtain_alias, which are always IS_ROOT:
450 		 */
451 		if (unlikely(IS_ROOT(dentry)))
452 			b = &dentry->d_sb->s_anon;
453 		else
454 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
455 
456 		hlist_bl_lock(b);
457 		__hlist_bl_del(&dentry->d_hash);
458 		dentry->d_hash.pprev = NULL;
459 		hlist_bl_unlock(b);
460 		dentry_rcuwalk_barrier(dentry);
461 	}
462 }
463 EXPORT_SYMBOL(__d_drop);
464 
d_drop(struct dentry * dentry)465 void d_drop(struct dentry *dentry)
466 {
467 	spin_lock(&dentry->d_lock);
468 	__d_drop(dentry);
469 	spin_unlock(&dentry->d_lock);
470 }
471 EXPORT_SYMBOL(d_drop);
472 
__dentry_kill(struct dentry * dentry)473 static void __dentry_kill(struct dentry *dentry)
474 {
475 	struct dentry *parent = NULL;
476 	bool can_free = true;
477 	if (!IS_ROOT(dentry))
478 		parent = dentry->d_parent;
479 
480 	/*
481 	 * The dentry is now unrecoverably dead to the world.
482 	 */
483 	lockref_mark_dead(&dentry->d_lockref);
484 
485 	/*
486 	 * inform the fs via d_prune that this dentry is about to be
487 	 * unhashed and destroyed.
488 	 */
489 	if (dentry->d_flags & DCACHE_OP_PRUNE)
490 		dentry->d_op->d_prune(dentry);
491 
492 	if (dentry->d_flags & DCACHE_LRU_LIST) {
493 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
494 			d_lru_del(dentry);
495 	}
496 	/* if it was on the hash then remove it */
497 	__d_drop(dentry);
498 	__list_del_entry(&dentry->d_child);
499 	/*
500 	 * Inform d_walk() that we are no longer attached to the
501 	 * dentry tree
502 	 */
503 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 	if (parent)
505 		spin_unlock(&parent->d_lock);
506 	dentry_iput(dentry);
507 	/*
508 	 * dentry_iput drops the locks, at which point nobody (except
509 	 * transient RCU lookups) can reach this dentry.
510 	 */
511 	BUG_ON(dentry->d_lockref.count > 0);
512 	this_cpu_dec(nr_dentry);
513 	if (dentry->d_op && dentry->d_op->d_release)
514 		dentry->d_op->d_release(dentry);
515 
516 	spin_lock(&dentry->d_lock);
517 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
518 		dentry->d_flags |= DCACHE_MAY_FREE;
519 		can_free = false;
520 	}
521 	spin_unlock(&dentry->d_lock);
522 	if (likely(can_free))
523 		dentry_free(dentry);
524 }
525 
526 /*
527  * Finish off a dentry we've decided to kill.
528  * dentry->d_lock must be held, returns with it unlocked.
529  * If ref is non-zero, then decrement the refcount too.
530  * Returns dentry requiring refcount drop, or NULL if we're done.
531  */
dentry_kill(struct dentry * dentry)532 static struct dentry *dentry_kill(struct dentry *dentry)
533 	__releases(dentry->d_lock)
534 {
535 	struct inode *inode = dentry->d_inode;
536 	struct dentry *parent = NULL;
537 
538 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
539 		goto failed;
540 
541 	if (!IS_ROOT(dentry)) {
542 		parent = dentry->d_parent;
543 		if (unlikely(!spin_trylock(&parent->d_lock))) {
544 			if (inode)
545 				spin_unlock(&inode->i_lock);
546 			goto failed;
547 		}
548 	}
549 
550 	__dentry_kill(dentry);
551 	return parent;
552 
553 failed:
554 	spin_unlock(&dentry->d_lock);
555 	return dentry; /* try again with same dentry */
556 }
557 
lock_parent(struct dentry * dentry)558 static inline struct dentry *lock_parent(struct dentry *dentry)
559 {
560 	struct dentry *parent = dentry->d_parent;
561 	if (IS_ROOT(dentry))
562 		return NULL;
563 	if (unlikely(dentry->d_lockref.count < 0))
564 		return NULL;
565 	if (likely(spin_trylock(&parent->d_lock)))
566 		return parent;
567 	rcu_read_lock();
568 	spin_unlock(&dentry->d_lock);
569 again:
570 	parent = ACCESS_ONCE(dentry->d_parent);
571 	spin_lock(&parent->d_lock);
572 	/*
573 	 * We can't blindly lock dentry until we are sure
574 	 * that we won't violate the locking order.
575 	 * Any changes of dentry->d_parent must have
576 	 * been done with parent->d_lock held, so
577 	 * spin_lock() above is enough of a barrier
578 	 * for checking if it's still our child.
579 	 */
580 	if (unlikely(parent != dentry->d_parent)) {
581 		spin_unlock(&parent->d_lock);
582 		goto again;
583 	}
584 	rcu_read_unlock();
585 	if (parent != dentry)
586 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
587 	else
588 		parent = NULL;
589 	return parent;
590 }
591 
592 /*
593  * Try to do a lockless dput(), and return whether that was successful.
594  *
595  * If unsuccessful, we return false, having already taken the dentry lock.
596  *
597  * The caller needs to hold the RCU read lock, so that the dentry is
598  * guaranteed to stay around even if the refcount goes down to zero!
599  */
fast_dput(struct dentry * dentry)600 static inline bool fast_dput(struct dentry *dentry)
601 {
602 	int ret;
603 	unsigned int d_flags;
604 
605 	/*
606 	 * If we have a d_op->d_delete() operation, we sould not
607 	 * let the dentry count go to zero, so use "put__or_lock".
608 	 */
609 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
610 		return lockref_put_or_lock(&dentry->d_lockref);
611 
612 	/*
613 	 * .. otherwise, we can try to just decrement the
614 	 * lockref optimistically.
615 	 */
616 	ret = lockref_put_return(&dentry->d_lockref);
617 
618 	/*
619 	 * If the lockref_put_return() failed due to the lock being held
620 	 * by somebody else, the fast path has failed. We will need to
621 	 * get the lock, and then check the count again.
622 	 */
623 	if (unlikely(ret < 0)) {
624 		spin_lock(&dentry->d_lock);
625 		if (dentry->d_lockref.count > 1) {
626 			dentry->d_lockref.count--;
627 			spin_unlock(&dentry->d_lock);
628 			return 1;
629 		}
630 		return 0;
631 	}
632 
633 	/*
634 	 * If we weren't the last ref, we're done.
635 	 */
636 	if (ret)
637 		return 1;
638 
639 	/*
640 	 * Careful, careful. The reference count went down
641 	 * to zero, but we don't hold the dentry lock, so
642 	 * somebody else could get it again, and do another
643 	 * dput(), and we need to not race with that.
644 	 *
645 	 * However, there is a very special and common case
646 	 * where we don't care, because there is nothing to
647 	 * do: the dentry is still hashed, it does not have
648 	 * a 'delete' op, and it's referenced and already on
649 	 * the LRU list.
650 	 *
651 	 * NOTE! Since we aren't locked, these values are
652 	 * not "stable". However, it is sufficient that at
653 	 * some point after we dropped the reference the
654 	 * dentry was hashed and the flags had the proper
655 	 * value. Other dentry users may have re-gotten
656 	 * a reference to the dentry and change that, but
657 	 * our work is done - we can leave the dentry
658 	 * around with a zero refcount.
659 	 */
660 	smp_rmb();
661 	d_flags = ACCESS_ONCE(dentry->d_flags);
662 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
663 
664 	/* Nothing to do? Dropping the reference was all we needed? */
665 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
666 		return 1;
667 
668 	/*
669 	 * Not the fast normal case? Get the lock. We've already decremented
670 	 * the refcount, but we'll need to re-check the situation after
671 	 * getting the lock.
672 	 */
673 	spin_lock(&dentry->d_lock);
674 
675 	/*
676 	 * Did somebody else grab a reference to it in the meantime, and
677 	 * we're no longer the last user after all? Alternatively, somebody
678 	 * else could have killed it and marked it dead. Either way, we
679 	 * don't need to do anything else.
680 	 */
681 	if (dentry->d_lockref.count) {
682 		spin_unlock(&dentry->d_lock);
683 		return 1;
684 	}
685 
686 	/*
687 	 * Re-get the reference we optimistically dropped. We hold the
688 	 * lock, and we just tested that it was zero, so we can just
689 	 * set it to 1.
690 	 */
691 	dentry->d_lockref.count = 1;
692 	return 0;
693 }
694 
695 
696 /*
697  * This is dput
698  *
699  * This is complicated by the fact that we do not want to put
700  * dentries that are no longer on any hash chain on the unused
701  * list: we'd much rather just get rid of them immediately.
702  *
703  * However, that implies that we have to traverse the dentry
704  * tree upwards to the parents which might _also_ now be
705  * scheduled for deletion (it may have been only waiting for
706  * its last child to go away).
707  *
708  * This tail recursion is done by hand as we don't want to depend
709  * on the compiler to always get this right (gcc generally doesn't).
710  * Real recursion would eat up our stack space.
711  */
712 
713 /*
714  * dput - release a dentry
715  * @dentry: dentry to release
716  *
717  * Release a dentry. This will drop the usage count and if appropriate
718  * call the dentry unlink method as well as removing it from the queues and
719  * releasing its resources. If the parent dentries were scheduled for release
720  * they too may now get deleted.
721  */
dput(struct dentry * dentry)722 void dput(struct dentry *dentry)
723 {
724 	if (unlikely(!dentry))
725 		return;
726 
727 repeat:
728 	might_sleep();
729 
730 	rcu_read_lock();
731 	if (likely(fast_dput(dentry))) {
732 		rcu_read_unlock();
733 		return;
734 	}
735 
736 	/* Slow case: now with the dentry lock held */
737 	rcu_read_unlock();
738 
739 	/* Unreachable? Get rid of it */
740 	if (unlikely(d_unhashed(dentry)))
741 		goto kill_it;
742 
743 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
744 		goto kill_it;
745 
746 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
747 		if (dentry->d_op->d_delete(dentry))
748 			goto kill_it;
749 	}
750 
751 	if (!(dentry->d_flags & DCACHE_REFERENCED))
752 		dentry->d_flags |= DCACHE_REFERENCED;
753 	dentry_lru_add(dentry);
754 
755 	dentry->d_lockref.count--;
756 	spin_unlock(&dentry->d_lock);
757 	return;
758 
759 kill_it:
760 	dentry = dentry_kill(dentry);
761 	if (dentry) {
762 		cond_resched();
763 		goto repeat;
764 	}
765 }
766 EXPORT_SYMBOL(dput);
767 
768 
769 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)770 static inline void __dget_dlock(struct dentry *dentry)
771 {
772 	dentry->d_lockref.count++;
773 }
774 
__dget(struct dentry * dentry)775 static inline void __dget(struct dentry *dentry)
776 {
777 	lockref_get(&dentry->d_lockref);
778 }
779 
dget_parent(struct dentry * dentry)780 struct dentry *dget_parent(struct dentry *dentry)
781 {
782 	int gotref;
783 	struct dentry *ret;
784 
785 	/*
786 	 * Do optimistic parent lookup without any
787 	 * locking.
788 	 */
789 	rcu_read_lock();
790 	ret = ACCESS_ONCE(dentry->d_parent);
791 	gotref = lockref_get_not_zero(&ret->d_lockref);
792 	rcu_read_unlock();
793 	if (likely(gotref)) {
794 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
795 			return ret;
796 		dput(ret);
797 	}
798 
799 repeat:
800 	/*
801 	 * Don't need rcu_dereference because we re-check it was correct under
802 	 * the lock.
803 	 */
804 	rcu_read_lock();
805 	ret = dentry->d_parent;
806 	spin_lock(&ret->d_lock);
807 	if (unlikely(ret != dentry->d_parent)) {
808 		spin_unlock(&ret->d_lock);
809 		rcu_read_unlock();
810 		goto repeat;
811 	}
812 	rcu_read_unlock();
813 	BUG_ON(!ret->d_lockref.count);
814 	ret->d_lockref.count++;
815 	spin_unlock(&ret->d_lock);
816 	return ret;
817 }
818 EXPORT_SYMBOL(dget_parent);
819 
820 /**
821  * d_find_alias - grab a hashed alias of inode
822  * @inode: inode in question
823  *
824  * If inode has a hashed alias, or is a directory and has any alias,
825  * acquire the reference to alias and return it. Otherwise return NULL.
826  * Notice that if inode is a directory there can be only one alias and
827  * it can be unhashed only if it has no children, or if it is the root
828  * of a filesystem, or if the directory was renamed and d_revalidate
829  * was the first vfs operation to notice.
830  *
831  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
832  * any other hashed alias over that one.
833  */
__d_find_alias(struct inode * inode)834 static struct dentry *__d_find_alias(struct inode *inode)
835 {
836 	struct dentry *alias, *discon_alias;
837 
838 again:
839 	discon_alias = NULL;
840 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
841 		spin_lock(&alias->d_lock);
842  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
843 			if (IS_ROOT(alias) &&
844 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
845 				discon_alias = alias;
846 			} else {
847 				__dget_dlock(alias);
848 				spin_unlock(&alias->d_lock);
849 				return alias;
850 			}
851 		}
852 		spin_unlock(&alias->d_lock);
853 	}
854 	if (discon_alias) {
855 		alias = discon_alias;
856 		spin_lock(&alias->d_lock);
857 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
858 			__dget_dlock(alias);
859 			spin_unlock(&alias->d_lock);
860 			return alias;
861 		}
862 		spin_unlock(&alias->d_lock);
863 		goto again;
864 	}
865 	return NULL;
866 }
867 
d_find_alias(struct inode * inode)868 struct dentry *d_find_alias(struct inode *inode)
869 {
870 	struct dentry *de = NULL;
871 
872 	if (!hlist_empty(&inode->i_dentry)) {
873 		spin_lock(&inode->i_lock);
874 		de = __d_find_alias(inode);
875 		spin_unlock(&inode->i_lock);
876 	}
877 	return de;
878 }
879 EXPORT_SYMBOL(d_find_alias);
880 
881 /*
882  *	Try to kill dentries associated with this inode.
883  * WARNING: you must own a reference to inode.
884  */
d_prune_aliases(struct inode * inode)885 void d_prune_aliases(struct inode *inode)
886 {
887 	struct dentry *dentry;
888 restart:
889 	spin_lock(&inode->i_lock);
890 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
891 		spin_lock(&dentry->d_lock);
892 		if (!dentry->d_lockref.count) {
893 			struct dentry *parent = lock_parent(dentry);
894 			if (likely(!dentry->d_lockref.count)) {
895 				__dentry_kill(dentry);
896 				dput(parent);
897 				goto restart;
898 			}
899 			if (parent)
900 				spin_unlock(&parent->d_lock);
901 		}
902 		spin_unlock(&dentry->d_lock);
903 	}
904 	spin_unlock(&inode->i_lock);
905 }
906 EXPORT_SYMBOL(d_prune_aliases);
907 
shrink_dentry_list(struct list_head * list)908 static void shrink_dentry_list(struct list_head *list)
909 {
910 	struct dentry *dentry, *parent;
911 
912 	while (!list_empty(list)) {
913 		struct inode *inode;
914 		dentry = list_entry(list->prev, struct dentry, d_lru);
915 		spin_lock(&dentry->d_lock);
916 		parent = lock_parent(dentry);
917 
918 		/*
919 		 * The dispose list is isolated and dentries are not accounted
920 		 * to the LRU here, so we can simply remove it from the list
921 		 * here regardless of whether it is referenced or not.
922 		 */
923 		d_shrink_del(dentry);
924 
925 		/*
926 		 * We found an inuse dentry which was not removed from
927 		 * the LRU because of laziness during lookup. Do not free it.
928 		 */
929 		if (dentry->d_lockref.count > 0) {
930 			spin_unlock(&dentry->d_lock);
931 			if (parent)
932 				spin_unlock(&parent->d_lock);
933 			continue;
934 		}
935 
936 
937 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
938 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
939 			spin_unlock(&dentry->d_lock);
940 			if (parent)
941 				spin_unlock(&parent->d_lock);
942 			if (can_free)
943 				dentry_free(dentry);
944 			continue;
945 		}
946 
947 		inode = dentry->d_inode;
948 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
949 			d_shrink_add(dentry, list);
950 			spin_unlock(&dentry->d_lock);
951 			if (parent)
952 				spin_unlock(&parent->d_lock);
953 			continue;
954 		}
955 
956 		__dentry_kill(dentry);
957 
958 		/*
959 		 * We need to prune ancestors too. This is necessary to prevent
960 		 * quadratic behavior of shrink_dcache_parent(), but is also
961 		 * expected to be beneficial in reducing dentry cache
962 		 * fragmentation.
963 		 */
964 		dentry = parent;
965 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
966 			parent = lock_parent(dentry);
967 			if (dentry->d_lockref.count != 1) {
968 				dentry->d_lockref.count--;
969 				spin_unlock(&dentry->d_lock);
970 				if (parent)
971 					spin_unlock(&parent->d_lock);
972 				break;
973 			}
974 			inode = dentry->d_inode;	/* can't be NULL */
975 			if (unlikely(!spin_trylock(&inode->i_lock))) {
976 				spin_unlock(&dentry->d_lock);
977 				if (parent)
978 					spin_unlock(&parent->d_lock);
979 				cpu_relax();
980 				continue;
981 			}
982 			__dentry_kill(dentry);
983 			dentry = parent;
984 		}
985 	}
986 }
987 
988 static enum lru_status
dentry_lru_isolate(struct list_head * item,spinlock_t * lru_lock,void * arg)989 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
990 {
991 	struct list_head *freeable = arg;
992 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
993 
994 
995 	/*
996 	 * we are inverting the lru lock/dentry->d_lock here,
997 	 * so use a trylock. If we fail to get the lock, just skip
998 	 * it
999 	 */
1000 	if (!spin_trylock(&dentry->d_lock))
1001 		return LRU_SKIP;
1002 
1003 	/*
1004 	 * Referenced dentries are still in use. If they have active
1005 	 * counts, just remove them from the LRU. Otherwise give them
1006 	 * another pass through the LRU.
1007 	 */
1008 	if (dentry->d_lockref.count) {
1009 		d_lru_isolate(dentry);
1010 		spin_unlock(&dentry->d_lock);
1011 		return LRU_REMOVED;
1012 	}
1013 
1014 	if (dentry->d_flags & DCACHE_REFERENCED) {
1015 		dentry->d_flags &= ~DCACHE_REFERENCED;
1016 		spin_unlock(&dentry->d_lock);
1017 
1018 		/*
1019 		 * The list move itself will be made by the common LRU code. At
1020 		 * this point, we've dropped the dentry->d_lock but keep the
1021 		 * lru lock. This is safe to do, since every list movement is
1022 		 * protected by the lru lock even if both locks are held.
1023 		 *
1024 		 * This is guaranteed by the fact that all LRU management
1025 		 * functions are intermediated by the LRU API calls like
1026 		 * list_lru_add and list_lru_del. List movement in this file
1027 		 * only ever occur through this functions or through callbacks
1028 		 * like this one, that are called from the LRU API.
1029 		 *
1030 		 * The only exceptions to this are functions like
1031 		 * shrink_dentry_list, and code that first checks for the
1032 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1033 		 * operating only with stack provided lists after they are
1034 		 * properly isolated from the main list.  It is thus, always a
1035 		 * local access.
1036 		 */
1037 		return LRU_ROTATE;
1038 	}
1039 
1040 	d_lru_shrink_move(dentry, freeable);
1041 	spin_unlock(&dentry->d_lock);
1042 
1043 	return LRU_REMOVED;
1044 }
1045 
1046 /**
1047  * prune_dcache_sb - shrink the dcache
1048  * @sb: superblock
1049  * @nr_to_scan : number of entries to try to free
1050  * @nid: which node to scan for freeable entities
1051  *
1052  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1053  * done when we need more memory an called from the superblock shrinker
1054  * function.
1055  *
1056  * This function may fail to free any resources if all the dentries are in
1057  * use.
1058  */
prune_dcache_sb(struct super_block * sb,unsigned long nr_to_scan,int nid)1059 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1060 		     int nid)
1061 {
1062 	LIST_HEAD(dispose);
1063 	long freed;
1064 
1065 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1066 				       &dispose, &nr_to_scan);
1067 	shrink_dentry_list(&dispose);
1068 	return freed;
1069 }
1070 
dentry_lru_isolate_shrink(struct list_head * item,spinlock_t * lru_lock,void * arg)1071 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1072 						spinlock_t *lru_lock, void *arg)
1073 {
1074 	struct list_head *freeable = arg;
1075 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1076 
1077 	/*
1078 	 * we are inverting the lru lock/dentry->d_lock here,
1079 	 * so use a trylock. If we fail to get the lock, just skip
1080 	 * it
1081 	 */
1082 	if (!spin_trylock(&dentry->d_lock))
1083 		return LRU_SKIP;
1084 
1085 	d_lru_shrink_move(dentry, freeable);
1086 	spin_unlock(&dentry->d_lock);
1087 
1088 	return LRU_REMOVED;
1089 }
1090 
1091 
1092 /**
1093  * shrink_dcache_sb - shrink dcache for a superblock
1094  * @sb: superblock
1095  *
1096  * Shrink the dcache for the specified super block. This is used to free
1097  * the dcache before unmounting a file system.
1098  */
shrink_dcache_sb(struct super_block * sb)1099 void shrink_dcache_sb(struct super_block *sb)
1100 {
1101 	long freed;
1102 
1103 	do {
1104 		LIST_HEAD(dispose);
1105 
1106 		freed = list_lru_walk(&sb->s_dentry_lru,
1107 			dentry_lru_isolate_shrink, &dispose, 1024);
1108 
1109 		this_cpu_sub(nr_dentry_unused, freed);
1110 		shrink_dentry_list(&dispose);
1111 		cond_resched();
1112 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1113 }
1114 EXPORT_SYMBOL(shrink_dcache_sb);
1115 
1116 /**
1117  * enum d_walk_ret - action to talke during tree walk
1118  * @D_WALK_CONTINUE:	contrinue walk
1119  * @D_WALK_QUIT:	quit walk
1120  * @D_WALK_NORETRY:	quit when retry is needed
1121  * @D_WALK_SKIP:	skip this dentry and its children
1122  */
1123 enum d_walk_ret {
1124 	D_WALK_CONTINUE,
1125 	D_WALK_QUIT,
1126 	D_WALK_NORETRY,
1127 	D_WALK_SKIP,
1128 };
1129 
1130 /**
1131  * d_walk - walk the dentry tree
1132  * @parent:	start of walk
1133  * @data:	data passed to @enter() and @finish()
1134  * @enter:	callback when first entering the dentry
1135  * @finish:	callback when successfully finished the walk
1136  *
1137  * The @enter() and @finish() callbacks are called with d_lock held.
1138  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1139 static void d_walk(struct dentry *parent, void *data,
1140 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1141 		   void (*finish)(void *))
1142 {
1143 	struct dentry *this_parent;
1144 	struct list_head *next;
1145 	unsigned seq = 0;
1146 	enum d_walk_ret ret;
1147 	bool retry = true;
1148 
1149 again:
1150 	read_seqbegin_or_lock(&rename_lock, &seq);
1151 	this_parent = parent;
1152 	spin_lock(&this_parent->d_lock);
1153 
1154 	ret = enter(data, this_parent);
1155 	switch (ret) {
1156 	case D_WALK_CONTINUE:
1157 		break;
1158 	case D_WALK_QUIT:
1159 	case D_WALK_SKIP:
1160 		goto out_unlock;
1161 	case D_WALK_NORETRY:
1162 		retry = false;
1163 		break;
1164 	}
1165 repeat:
1166 	next = this_parent->d_subdirs.next;
1167 resume:
1168 	while (next != &this_parent->d_subdirs) {
1169 		struct list_head *tmp = next;
1170 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1171 		next = tmp->next;
1172 
1173 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1174 
1175 		ret = enter(data, dentry);
1176 		switch (ret) {
1177 		case D_WALK_CONTINUE:
1178 			break;
1179 		case D_WALK_QUIT:
1180 			spin_unlock(&dentry->d_lock);
1181 			goto out_unlock;
1182 		case D_WALK_NORETRY:
1183 			retry = false;
1184 			break;
1185 		case D_WALK_SKIP:
1186 			spin_unlock(&dentry->d_lock);
1187 			continue;
1188 		}
1189 
1190 		if (!list_empty(&dentry->d_subdirs)) {
1191 			spin_unlock(&this_parent->d_lock);
1192 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1193 			this_parent = dentry;
1194 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1195 			goto repeat;
1196 		}
1197 		spin_unlock(&dentry->d_lock);
1198 	}
1199 	/*
1200 	 * All done at this level ... ascend and resume the search.
1201 	 */
1202 	rcu_read_lock();
1203 ascend:
1204 	if (this_parent != parent) {
1205 		struct dentry *child = this_parent;
1206 		this_parent = child->d_parent;
1207 
1208 		spin_unlock(&child->d_lock);
1209 		spin_lock(&this_parent->d_lock);
1210 
1211 		/* might go back up the wrong parent if we have had a rename. */
1212 		if (need_seqretry(&rename_lock, seq))
1213 			goto rename_retry;
1214 		/* go into the first sibling still alive */
1215 		do {
1216 			next = child->d_child.next;
1217 			if (next == &this_parent->d_subdirs)
1218 				goto ascend;
1219 			child = list_entry(next, struct dentry, d_child);
1220 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1221 		rcu_read_unlock();
1222 		goto resume;
1223 	}
1224 	if (need_seqretry(&rename_lock, seq))
1225 		goto rename_retry;
1226 	rcu_read_unlock();
1227 	if (finish)
1228 		finish(data);
1229 
1230 out_unlock:
1231 	spin_unlock(&this_parent->d_lock);
1232 	done_seqretry(&rename_lock, seq);
1233 	return;
1234 
1235 rename_retry:
1236 	spin_unlock(&this_parent->d_lock);
1237 	rcu_read_unlock();
1238 	BUG_ON(seq & 1);
1239 	if (!retry)
1240 		return;
1241 	seq = 1;
1242 	goto again;
1243 }
1244 
1245 /*
1246  * Search for at least 1 mount point in the dentry's subdirs.
1247  * We descend to the next level whenever the d_subdirs
1248  * list is non-empty and continue searching.
1249  */
1250 
check_mount(void * data,struct dentry * dentry)1251 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1252 {
1253 	int *ret = data;
1254 	if (d_mountpoint(dentry)) {
1255 		*ret = 1;
1256 		return D_WALK_QUIT;
1257 	}
1258 	return D_WALK_CONTINUE;
1259 }
1260 
1261 /**
1262  * have_submounts - check for mounts over a dentry
1263  * @parent: dentry to check.
1264  *
1265  * Return true if the parent or its subdirectories contain
1266  * a mount point
1267  */
have_submounts(struct dentry * parent)1268 int have_submounts(struct dentry *parent)
1269 {
1270 	int ret = 0;
1271 
1272 	d_walk(parent, &ret, check_mount, NULL);
1273 
1274 	return ret;
1275 }
1276 EXPORT_SYMBOL(have_submounts);
1277 
1278 /*
1279  * Called by mount code to set a mountpoint and check if the mountpoint is
1280  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1281  * subtree can become unreachable).
1282  *
1283  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1284  * this reason take rename_lock and d_lock on dentry and ancestors.
1285  */
d_set_mounted(struct dentry * dentry)1286 int d_set_mounted(struct dentry *dentry)
1287 {
1288 	struct dentry *p;
1289 	int ret = -ENOENT;
1290 	write_seqlock(&rename_lock);
1291 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1292 		/* Need exclusion wrt. d_invalidate() */
1293 		spin_lock(&p->d_lock);
1294 		if (unlikely(d_unhashed(p))) {
1295 			spin_unlock(&p->d_lock);
1296 			goto out;
1297 		}
1298 		spin_unlock(&p->d_lock);
1299 	}
1300 	spin_lock(&dentry->d_lock);
1301 	if (!d_unlinked(dentry)) {
1302 		dentry->d_flags |= DCACHE_MOUNTED;
1303 		ret = 0;
1304 	}
1305  	spin_unlock(&dentry->d_lock);
1306 out:
1307 	write_sequnlock(&rename_lock);
1308 	return ret;
1309 }
1310 
1311 /*
1312  * Search the dentry child list of the specified parent,
1313  * and move any unused dentries to the end of the unused
1314  * list for prune_dcache(). We descend to the next level
1315  * whenever the d_subdirs list is non-empty and continue
1316  * searching.
1317  *
1318  * It returns zero iff there are no unused children,
1319  * otherwise  it returns the number of children moved to
1320  * the end of the unused list. This may not be the total
1321  * number of unused children, because select_parent can
1322  * drop the lock and return early due to latency
1323  * constraints.
1324  */
1325 
1326 struct select_data {
1327 	struct dentry *start;
1328 	struct list_head dispose;
1329 	int found;
1330 };
1331 
select_collect(void * _data,struct dentry * dentry)1332 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1333 {
1334 	struct select_data *data = _data;
1335 	enum d_walk_ret ret = D_WALK_CONTINUE;
1336 
1337 	if (data->start == dentry)
1338 		goto out;
1339 
1340 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1341 		data->found++;
1342 	} else {
1343 		if (dentry->d_flags & DCACHE_LRU_LIST)
1344 			d_lru_del(dentry);
1345 		if (!dentry->d_lockref.count) {
1346 			d_shrink_add(dentry, &data->dispose);
1347 			data->found++;
1348 		}
1349 	}
1350 	/*
1351 	 * We can return to the caller if we have found some (this
1352 	 * ensures forward progress). We'll be coming back to find
1353 	 * the rest.
1354 	 */
1355 	if (!list_empty(&data->dispose))
1356 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1357 out:
1358 	return ret;
1359 }
1360 
1361 /**
1362  * shrink_dcache_parent - prune dcache
1363  * @parent: parent of entries to prune
1364  *
1365  * Prune the dcache to remove unused children of the parent dentry.
1366  */
shrink_dcache_parent(struct dentry * parent)1367 void shrink_dcache_parent(struct dentry *parent)
1368 {
1369 	for (;;) {
1370 		struct select_data data;
1371 
1372 		INIT_LIST_HEAD(&data.dispose);
1373 		data.start = parent;
1374 		data.found = 0;
1375 
1376 		d_walk(parent, &data, select_collect, NULL);
1377 		if (!data.found)
1378 			break;
1379 
1380 		shrink_dentry_list(&data.dispose);
1381 		cond_resched();
1382 	}
1383 }
1384 EXPORT_SYMBOL(shrink_dcache_parent);
1385 
umount_check(void * _data,struct dentry * dentry)1386 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1387 {
1388 	/* it has busy descendents; complain about those instead */
1389 	if (!list_empty(&dentry->d_subdirs))
1390 		return D_WALK_CONTINUE;
1391 
1392 	/* root with refcount 1 is fine */
1393 	if (dentry == _data && dentry->d_lockref.count == 1)
1394 		return D_WALK_CONTINUE;
1395 
1396 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1397 			" still in use (%d) [unmount of %s %s]\n",
1398 		       dentry,
1399 		       dentry->d_inode ?
1400 		       dentry->d_inode->i_ino : 0UL,
1401 		       dentry,
1402 		       dentry->d_lockref.count,
1403 		       dentry->d_sb->s_type->name,
1404 		       dentry->d_sb->s_id);
1405 	WARN_ON(1);
1406 	return D_WALK_CONTINUE;
1407 }
1408 
do_one_tree(struct dentry * dentry)1409 static void do_one_tree(struct dentry *dentry)
1410 {
1411 	shrink_dcache_parent(dentry);
1412 	d_walk(dentry, dentry, umount_check, NULL);
1413 	d_drop(dentry);
1414 	dput(dentry);
1415 }
1416 
1417 /*
1418  * destroy the dentries attached to a superblock on unmounting
1419  */
shrink_dcache_for_umount(struct super_block * sb)1420 void shrink_dcache_for_umount(struct super_block *sb)
1421 {
1422 	struct dentry *dentry;
1423 
1424 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1425 
1426 	dentry = sb->s_root;
1427 	sb->s_root = NULL;
1428 	do_one_tree(dentry);
1429 
1430 	while (!hlist_bl_empty(&sb->s_anon)) {
1431 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1432 		do_one_tree(dentry);
1433 	}
1434 }
1435 
1436 struct detach_data {
1437 	struct select_data select;
1438 	struct dentry *mountpoint;
1439 };
detach_and_collect(void * _data,struct dentry * dentry)1440 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1441 {
1442 	struct detach_data *data = _data;
1443 
1444 	if (d_mountpoint(dentry)) {
1445 		__dget_dlock(dentry);
1446 		data->mountpoint = dentry;
1447 		return D_WALK_QUIT;
1448 	}
1449 
1450 	return select_collect(&data->select, dentry);
1451 }
1452 
check_and_drop(void * _data)1453 static void check_and_drop(void *_data)
1454 {
1455 	struct detach_data *data = _data;
1456 
1457 	if (!data->mountpoint && !data->select.found)
1458 		__d_drop(data->select.start);
1459 }
1460 
1461 /**
1462  * d_invalidate - detach submounts, prune dcache, and drop
1463  * @dentry: dentry to invalidate (aka detach, prune and drop)
1464  *
1465  * no dcache lock.
1466  *
1467  * The final d_drop is done as an atomic operation relative to
1468  * rename_lock ensuring there are no races with d_set_mounted.  This
1469  * ensures there are no unhashed dentries on the path to a mountpoint.
1470  */
d_invalidate(struct dentry * dentry)1471 void d_invalidate(struct dentry *dentry)
1472 {
1473 	/*
1474 	 * If it's already been dropped, return OK.
1475 	 */
1476 	spin_lock(&dentry->d_lock);
1477 	if (d_unhashed(dentry)) {
1478 		spin_unlock(&dentry->d_lock);
1479 		return;
1480 	}
1481 	spin_unlock(&dentry->d_lock);
1482 
1483 	/* Negative dentries can be dropped without further checks */
1484 	if (!dentry->d_inode) {
1485 		d_drop(dentry);
1486 		return;
1487 	}
1488 
1489 	for (;;) {
1490 		struct detach_data data;
1491 
1492 		data.mountpoint = NULL;
1493 		INIT_LIST_HEAD(&data.select.dispose);
1494 		data.select.start = dentry;
1495 		data.select.found = 0;
1496 
1497 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1498 
1499 		if (data.select.found)
1500 			shrink_dentry_list(&data.select.dispose);
1501 
1502 		if (data.mountpoint) {
1503 			detach_mounts(data.mountpoint);
1504 			dput(data.mountpoint);
1505 		}
1506 
1507 		if (!data.mountpoint && !data.select.found)
1508 			break;
1509 
1510 		cond_resched();
1511 	}
1512 }
1513 EXPORT_SYMBOL(d_invalidate);
1514 
1515 /**
1516  * __d_alloc	-	allocate a dcache entry
1517  * @sb: filesystem it will belong to
1518  * @name: qstr of the name
1519  *
1520  * Allocates a dentry. It returns %NULL if there is insufficient memory
1521  * available. On a success the dentry is returned. The name passed in is
1522  * copied and the copy passed in may be reused after this call.
1523  */
1524 
__d_alloc(struct super_block * sb,const struct qstr * name)1525 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1526 {
1527 	struct dentry *dentry;
1528 	char *dname;
1529 
1530 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1531 	if (!dentry)
1532 		return NULL;
1533 
1534 	/*
1535 	 * We guarantee that the inline name is always NUL-terminated.
1536 	 * This way the memcpy() done by the name switching in rename
1537 	 * will still always have a NUL at the end, even if we might
1538 	 * be overwriting an internal NUL character
1539 	 */
1540 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1541 	if (name->len > DNAME_INLINE_LEN-1) {
1542 		size_t size = offsetof(struct external_name, name[1]);
1543 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1544 		if (!p) {
1545 			kmem_cache_free(dentry_cache, dentry);
1546 			return NULL;
1547 		}
1548 		atomic_set(&p->u.count, 1);
1549 		dname = p->name;
1550 	} else  {
1551 		dname = dentry->d_iname;
1552 	}
1553 
1554 	dentry->d_name.len = name->len;
1555 	dentry->d_name.hash = name->hash;
1556 	memcpy(dname, name->name, name->len);
1557 	dname[name->len] = 0;
1558 
1559 	/* Make sure we always see the terminating NUL character */
1560 	smp_wmb();
1561 	dentry->d_name.name = dname;
1562 
1563 	dentry->d_lockref.count = 1;
1564 	dentry->d_flags = 0;
1565 	spin_lock_init(&dentry->d_lock);
1566 	seqcount_init(&dentry->d_seq);
1567 	dentry->d_inode = NULL;
1568 	dentry->d_parent = dentry;
1569 	dentry->d_sb = sb;
1570 	dentry->d_op = NULL;
1571 	dentry->d_fsdata = NULL;
1572 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1573 	INIT_LIST_HEAD(&dentry->d_lru);
1574 	INIT_LIST_HEAD(&dentry->d_subdirs);
1575 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1576 	INIT_LIST_HEAD(&dentry->d_child);
1577 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1578 
1579 	this_cpu_inc(nr_dentry);
1580 
1581 	return dentry;
1582 }
1583 
1584 /**
1585  * d_alloc	-	allocate a dcache entry
1586  * @parent: parent of entry to allocate
1587  * @name: qstr of the name
1588  *
1589  * Allocates a dentry. It returns %NULL if there is insufficient memory
1590  * available. On a success the dentry is returned. The name passed in is
1591  * copied and the copy passed in may be reused after this call.
1592  */
d_alloc(struct dentry * parent,const struct qstr * name)1593 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1594 {
1595 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1596 	if (!dentry)
1597 		return NULL;
1598 	dentry->d_flags |= DCACHE_RCUACCESS;
1599 	spin_lock(&parent->d_lock);
1600 	/*
1601 	 * don't need child lock because it is not subject
1602 	 * to concurrency here
1603 	 */
1604 	__dget_dlock(parent);
1605 	dentry->d_parent = parent;
1606 	list_add(&dentry->d_child, &parent->d_subdirs);
1607 	spin_unlock(&parent->d_lock);
1608 
1609 	return dentry;
1610 }
1611 EXPORT_SYMBOL(d_alloc);
1612 
1613 /**
1614  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1615  * @sb: the superblock
1616  * @name: qstr of the name
1617  *
1618  * For a filesystem that just pins its dentries in memory and never
1619  * performs lookups at all, return an unhashed IS_ROOT dentry.
1620  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1621 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1622 {
1623 	return __d_alloc(sb, name);
1624 }
1625 EXPORT_SYMBOL(d_alloc_pseudo);
1626 
d_alloc_name(struct dentry * parent,const char * name)1627 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1628 {
1629 	struct qstr q;
1630 
1631 	q.name = name;
1632 	q.len = strlen(name);
1633 	q.hash = full_name_hash(q.name, q.len);
1634 	return d_alloc(parent, &q);
1635 }
1636 EXPORT_SYMBOL(d_alloc_name);
1637 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1638 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1639 {
1640 	WARN_ON_ONCE(dentry->d_op);
1641 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1642 				DCACHE_OP_COMPARE	|
1643 				DCACHE_OP_REVALIDATE	|
1644 				DCACHE_OP_WEAK_REVALIDATE	|
1645 				DCACHE_OP_DELETE	|
1646 				DCACHE_OP_SELECT_INODE));
1647 	dentry->d_op = op;
1648 	if (!op)
1649 		return;
1650 	if (op->d_hash)
1651 		dentry->d_flags |= DCACHE_OP_HASH;
1652 	if (op->d_compare)
1653 		dentry->d_flags |= DCACHE_OP_COMPARE;
1654 	if (op->d_revalidate)
1655 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1656 	if (op->d_weak_revalidate)
1657 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1658 	if (op->d_delete)
1659 		dentry->d_flags |= DCACHE_OP_DELETE;
1660 	if (op->d_prune)
1661 		dentry->d_flags |= DCACHE_OP_PRUNE;
1662 	if (op->d_select_inode)
1663 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1664 
1665 }
1666 EXPORT_SYMBOL(d_set_d_op);
1667 
d_flags_for_inode(struct inode * inode)1668 static unsigned d_flags_for_inode(struct inode *inode)
1669 {
1670 	unsigned add_flags = DCACHE_FILE_TYPE;
1671 
1672 	if (!inode)
1673 		return DCACHE_MISS_TYPE;
1674 
1675 	if (S_ISDIR(inode->i_mode)) {
1676 		add_flags = DCACHE_DIRECTORY_TYPE;
1677 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1678 			if (unlikely(!inode->i_op->lookup))
1679 				add_flags = DCACHE_AUTODIR_TYPE;
1680 			else
1681 				inode->i_opflags |= IOP_LOOKUP;
1682 		}
1683 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1684 		if (unlikely(inode->i_op->follow_link))
1685 			add_flags = DCACHE_SYMLINK_TYPE;
1686 		else
1687 			inode->i_opflags |= IOP_NOFOLLOW;
1688 	}
1689 
1690 	if (unlikely(IS_AUTOMOUNT(inode)))
1691 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1692 	return add_flags;
1693 }
1694 
__d_instantiate(struct dentry * dentry,struct inode * inode)1695 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1696 {
1697 	unsigned add_flags = d_flags_for_inode(inode);
1698 
1699 	spin_lock(&dentry->d_lock);
1700 	__d_set_type(dentry, add_flags);
1701 	if (inode)
1702 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1703 	dentry->d_inode = inode;
1704 	dentry_rcuwalk_barrier(dentry);
1705 	spin_unlock(&dentry->d_lock);
1706 	fsnotify_d_instantiate(dentry, inode);
1707 }
1708 
1709 /**
1710  * d_instantiate - fill in inode information for a dentry
1711  * @entry: dentry to complete
1712  * @inode: inode to attach to this dentry
1713  *
1714  * Fill in inode information in the entry.
1715  *
1716  * This turns negative dentries into productive full members
1717  * of society.
1718  *
1719  * NOTE! This assumes that the inode count has been incremented
1720  * (or otherwise set) by the caller to indicate that it is now
1721  * in use by the dcache.
1722  */
1723 
d_instantiate(struct dentry * entry,struct inode * inode)1724 void d_instantiate(struct dentry *entry, struct inode * inode)
1725 {
1726 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1727 	if (inode)
1728 		spin_lock(&inode->i_lock);
1729 	__d_instantiate(entry, inode);
1730 	if (inode)
1731 		spin_unlock(&inode->i_lock);
1732 	security_d_instantiate(entry, inode);
1733 }
1734 EXPORT_SYMBOL(d_instantiate);
1735 
1736 /**
1737  * d_instantiate_unique - instantiate a non-aliased dentry
1738  * @entry: dentry to instantiate
1739  * @inode: inode to attach to this dentry
1740  *
1741  * Fill in inode information in the entry. On success, it returns NULL.
1742  * If an unhashed alias of "entry" already exists, then we return the
1743  * aliased dentry instead and drop one reference to inode.
1744  *
1745  * Note that in order to avoid conflicts with rename() etc, the caller
1746  * had better be holding the parent directory semaphore.
1747  *
1748  * This also assumes that the inode count has been incremented
1749  * (or otherwise set) by the caller to indicate that it is now
1750  * in use by the dcache.
1751  */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1752 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1753 					     struct inode *inode)
1754 {
1755 	struct dentry *alias;
1756 	int len = entry->d_name.len;
1757 	const char *name = entry->d_name.name;
1758 	unsigned int hash = entry->d_name.hash;
1759 
1760 	if (!inode) {
1761 		__d_instantiate(entry, NULL);
1762 		return NULL;
1763 	}
1764 
1765 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1766 		/*
1767 		 * Don't need alias->d_lock here, because aliases with
1768 		 * d_parent == entry->d_parent are not subject to name or
1769 		 * parent changes, because the parent inode i_mutex is held.
1770 		 */
1771 		if (alias->d_name.hash != hash)
1772 			continue;
1773 		if (alias->d_parent != entry->d_parent)
1774 			continue;
1775 		if (alias->d_name.len != len)
1776 			continue;
1777 		if (dentry_cmp(alias, name, len))
1778 			continue;
1779 		__dget(alias);
1780 		return alias;
1781 	}
1782 
1783 	__d_instantiate(entry, inode);
1784 	return NULL;
1785 }
1786 
d_instantiate_unique(struct dentry * entry,struct inode * inode)1787 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1788 {
1789 	struct dentry *result;
1790 
1791 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1792 
1793 	if (inode)
1794 		spin_lock(&inode->i_lock);
1795 	result = __d_instantiate_unique(entry, inode);
1796 	if (inode)
1797 		spin_unlock(&inode->i_lock);
1798 
1799 	if (!result) {
1800 		security_d_instantiate(entry, inode);
1801 		return NULL;
1802 	}
1803 
1804 	BUG_ON(!d_unhashed(result));
1805 	iput(inode);
1806 	return result;
1807 }
1808 
1809 EXPORT_SYMBOL(d_instantiate_unique);
1810 
1811 /**
1812  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1813  * @entry: dentry to complete
1814  * @inode: inode to attach to this dentry
1815  *
1816  * Fill in inode information in the entry.  If a directory alias is found, then
1817  * return an error (and drop inode).  Together with d_materialise_unique() this
1818  * guarantees that a directory inode may never have more than one alias.
1819  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1820 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1821 {
1822 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1823 
1824 	spin_lock(&inode->i_lock);
1825 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1826 		spin_unlock(&inode->i_lock);
1827 		iput(inode);
1828 		return -EBUSY;
1829 	}
1830 	__d_instantiate(entry, inode);
1831 	spin_unlock(&inode->i_lock);
1832 	security_d_instantiate(entry, inode);
1833 
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL(d_instantiate_no_diralias);
1837 
d_make_root(struct inode * root_inode)1838 struct dentry *d_make_root(struct inode *root_inode)
1839 {
1840 	struct dentry *res = NULL;
1841 
1842 	if (root_inode) {
1843 		static const struct qstr name = QSTR_INIT("/", 1);
1844 
1845 		res = __d_alloc(root_inode->i_sb, &name);
1846 		if (res)
1847 			d_instantiate(res, root_inode);
1848 		else
1849 			iput(root_inode);
1850 	}
1851 	return res;
1852 }
1853 EXPORT_SYMBOL(d_make_root);
1854 
__d_find_any_alias(struct inode * inode)1855 static struct dentry * __d_find_any_alias(struct inode *inode)
1856 {
1857 	struct dentry *alias;
1858 
1859 	if (hlist_empty(&inode->i_dentry))
1860 		return NULL;
1861 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1862 	__dget(alias);
1863 	return alias;
1864 }
1865 
1866 /**
1867  * d_find_any_alias - find any alias for a given inode
1868  * @inode: inode to find an alias for
1869  *
1870  * If any aliases exist for the given inode, take and return a
1871  * reference for one of them.  If no aliases exist, return %NULL.
1872  */
d_find_any_alias(struct inode * inode)1873 struct dentry *d_find_any_alias(struct inode *inode)
1874 {
1875 	struct dentry *de;
1876 
1877 	spin_lock(&inode->i_lock);
1878 	de = __d_find_any_alias(inode);
1879 	spin_unlock(&inode->i_lock);
1880 	return de;
1881 }
1882 EXPORT_SYMBOL(d_find_any_alias);
1883 
__d_obtain_alias(struct inode * inode,int disconnected)1884 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1885 {
1886 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1887 	struct dentry *tmp;
1888 	struct dentry *res;
1889 	unsigned add_flags;
1890 
1891 	if (!inode)
1892 		return ERR_PTR(-ESTALE);
1893 	if (IS_ERR(inode))
1894 		return ERR_CAST(inode);
1895 
1896 	res = d_find_any_alias(inode);
1897 	if (res)
1898 		goto out_iput;
1899 
1900 	tmp = __d_alloc(inode->i_sb, &anonstring);
1901 	if (!tmp) {
1902 		res = ERR_PTR(-ENOMEM);
1903 		goto out_iput;
1904 	}
1905 
1906 	spin_lock(&inode->i_lock);
1907 	res = __d_find_any_alias(inode);
1908 	if (res) {
1909 		spin_unlock(&inode->i_lock);
1910 		dput(tmp);
1911 		goto out_iput;
1912 	}
1913 
1914 	/* attach a disconnected dentry */
1915 	add_flags = d_flags_for_inode(inode);
1916 
1917 	if (disconnected)
1918 		add_flags |= DCACHE_DISCONNECTED;
1919 
1920 	spin_lock(&tmp->d_lock);
1921 	tmp->d_inode = inode;
1922 	tmp->d_flags |= add_flags;
1923 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1924 	hlist_bl_lock(&tmp->d_sb->s_anon);
1925 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1926 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1927 	spin_unlock(&tmp->d_lock);
1928 	spin_unlock(&inode->i_lock);
1929 	security_d_instantiate(tmp, inode);
1930 
1931 	return tmp;
1932 
1933  out_iput:
1934 	if (res && !IS_ERR(res))
1935 		security_d_instantiate(res, inode);
1936 	iput(inode);
1937 	return res;
1938 }
1939 
1940 /**
1941  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1942  * @inode: inode to allocate the dentry for
1943  *
1944  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1945  * similar open by handle operations.  The returned dentry may be anonymous,
1946  * or may have a full name (if the inode was already in the cache).
1947  *
1948  * When called on a directory inode, we must ensure that the inode only ever
1949  * has one dentry.  If a dentry is found, that is returned instead of
1950  * allocating a new one.
1951  *
1952  * On successful return, the reference to the inode has been transferred
1953  * to the dentry.  In case of an error the reference on the inode is released.
1954  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1955  * be passed in and the error will be propagated to the return value,
1956  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1957  */
d_obtain_alias(struct inode * inode)1958 struct dentry *d_obtain_alias(struct inode *inode)
1959 {
1960 	return __d_obtain_alias(inode, 1);
1961 }
1962 EXPORT_SYMBOL(d_obtain_alias);
1963 
1964 /**
1965  * d_obtain_root - find or allocate a dentry for a given inode
1966  * @inode: inode to allocate the dentry for
1967  *
1968  * Obtain an IS_ROOT dentry for the root of a filesystem.
1969  *
1970  * We must ensure that directory inodes only ever have one dentry.  If a
1971  * dentry is found, that is returned instead of allocating a new one.
1972  *
1973  * On successful return, the reference to the inode has been transferred
1974  * to the dentry.  In case of an error the reference on the inode is
1975  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1976  * error will be propagate to the return value, with a %NULL @inode
1977  * replaced by ERR_PTR(-ESTALE).
1978  */
d_obtain_root(struct inode * inode)1979 struct dentry *d_obtain_root(struct inode *inode)
1980 {
1981 	return __d_obtain_alias(inode, 0);
1982 }
1983 EXPORT_SYMBOL(d_obtain_root);
1984 
1985 /**
1986  * d_add_ci - lookup or allocate new dentry with case-exact name
1987  * @inode:  the inode case-insensitive lookup has found
1988  * @dentry: the negative dentry that was passed to the parent's lookup func
1989  * @name:   the case-exact name to be associated with the returned dentry
1990  *
1991  * This is to avoid filling the dcache with case-insensitive names to the
1992  * same inode, only the actual correct case is stored in the dcache for
1993  * case-insensitive filesystems.
1994  *
1995  * For a case-insensitive lookup match and if the the case-exact dentry
1996  * already exists in in the dcache, use it and return it.
1997  *
1998  * If no entry exists with the exact case name, allocate new dentry with
1999  * the exact case, and return the spliced entry.
2000  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2001 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2002 			struct qstr *name)
2003 {
2004 	struct dentry *found;
2005 	struct dentry *new;
2006 
2007 	/*
2008 	 * First check if a dentry matching the name already exists,
2009 	 * if not go ahead and create it now.
2010 	 */
2011 	found = d_hash_and_lookup(dentry->d_parent, name);
2012 	if (unlikely(IS_ERR(found)))
2013 		goto err_out;
2014 	if (!found) {
2015 		new = d_alloc(dentry->d_parent, name);
2016 		if (!new) {
2017 			found = ERR_PTR(-ENOMEM);
2018 			goto err_out;
2019 		}
2020 
2021 		found = d_splice_alias(inode, new);
2022 		if (found) {
2023 			dput(new);
2024 			return found;
2025 		}
2026 		return new;
2027 	}
2028 
2029 	/*
2030 	 * If a matching dentry exists, and it's not negative use it.
2031 	 *
2032 	 * Decrement the reference count to balance the iget() done
2033 	 * earlier on.
2034 	 */
2035 	if (found->d_inode) {
2036 		if (unlikely(found->d_inode != inode)) {
2037 			/* This can't happen because bad inodes are unhashed. */
2038 			BUG_ON(!is_bad_inode(inode));
2039 			BUG_ON(!is_bad_inode(found->d_inode));
2040 		}
2041 		iput(inode);
2042 		return found;
2043 	}
2044 
2045 	/*
2046 	 * Negative dentry: instantiate it unless the inode is a directory and
2047 	 * already has a dentry.
2048 	 */
2049 	new = d_splice_alias(inode, found);
2050 	if (new) {
2051 		dput(found);
2052 		found = new;
2053 	}
2054 	return found;
2055 
2056 err_out:
2057 	iput(inode);
2058 	return found;
2059 }
2060 EXPORT_SYMBOL(d_add_ci);
2061 
2062 /*
2063  * Do the slow-case of the dentry name compare.
2064  *
2065  * Unlike the dentry_cmp() function, we need to atomically
2066  * load the name and length information, so that the
2067  * filesystem can rely on them, and can use the 'name' and
2068  * 'len' information without worrying about walking off the
2069  * end of memory etc.
2070  *
2071  * Thus the read_seqcount_retry() and the "duplicate" info
2072  * in arguments (the low-level filesystem should not look
2073  * at the dentry inode or name contents directly, since
2074  * rename can change them while we're in RCU mode).
2075  */
2076 enum slow_d_compare {
2077 	D_COMP_OK,
2078 	D_COMP_NOMATCH,
2079 	D_COMP_SEQRETRY,
2080 };
2081 
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2082 static noinline enum slow_d_compare slow_dentry_cmp(
2083 		const struct dentry *parent,
2084 		struct dentry *dentry,
2085 		unsigned int seq,
2086 		const struct qstr *name)
2087 {
2088 	int tlen = dentry->d_name.len;
2089 	const char *tname = dentry->d_name.name;
2090 
2091 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2092 		cpu_relax();
2093 		return D_COMP_SEQRETRY;
2094 	}
2095 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2096 		return D_COMP_NOMATCH;
2097 	return D_COMP_OK;
2098 }
2099 
2100 /**
2101  * __d_lookup_rcu - search for a dentry (racy, store-free)
2102  * @parent: parent dentry
2103  * @name: qstr of name we wish to find
2104  * @seqp: returns d_seq value at the point where the dentry was found
2105  * Returns: dentry, or NULL
2106  *
2107  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2108  * resolution (store-free path walking) design described in
2109  * Documentation/filesystems/path-lookup.txt.
2110  *
2111  * This is not to be used outside core vfs.
2112  *
2113  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2114  * held, and rcu_read_lock held. The returned dentry must not be stored into
2115  * without taking d_lock and checking d_seq sequence count against @seq
2116  * returned here.
2117  *
2118  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2119  * function.
2120  *
2121  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2122  * the returned dentry, so long as its parent's seqlock is checked after the
2123  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2124  * is formed, giving integrity down the path walk.
2125  *
2126  * NOTE! The caller *has* to check the resulting dentry against the sequence
2127  * number we've returned before using any of the resulting dentry state!
2128  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2129 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2130 				const struct qstr *name,
2131 				unsigned *seqp)
2132 {
2133 	u64 hashlen = name->hash_len;
2134 	const unsigned char *str = name->name;
2135 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2136 	struct hlist_bl_node *node;
2137 	struct dentry *dentry;
2138 
2139 	/*
2140 	 * Note: There is significant duplication with __d_lookup_rcu which is
2141 	 * required to prevent single threaded performance regressions
2142 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2143 	 * Keep the two functions in sync.
2144 	 */
2145 
2146 	/*
2147 	 * The hash list is protected using RCU.
2148 	 *
2149 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2150 	 * races with d_move().
2151 	 *
2152 	 * It is possible that concurrent renames can mess up our list
2153 	 * walk here and result in missing our dentry, resulting in the
2154 	 * false-negative result. d_lookup() protects against concurrent
2155 	 * renames using rename_lock seqlock.
2156 	 *
2157 	 * See Documentation/filesystems/path-lookup.txt for more details.
2158 	 */
2159 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2160 		unsigned seq;
2161 
2162 seqretry:
2163 		/*
2164 		 * The dentry sequence count protects us from concurrent
2165 		 * renames, and thus protects parent and name fields.
2166 		 *
2167 		 * The caller must perform a seqcount check in order
2168 		 * to do anything useful with the returned dentry.
2169 		 *
2170 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2171 		 * we don't wait for the sequence count to stabilize if it
2172 		 * is in the middle of a sequence change. If we do the slow
2173 		 * dentry compare, we will do seqretries until it is stable,
2174 		 * and if we end up with a successful lookup, we actually
2175 		 * want to exit RCU lookup anyway.
2176 		 */
2177 		seq = raw_seqcount_begin(&dentry->d_seq);
2178 		if (dentry->d_parent != parent)
2179 			continue;
2180 		if (d_unhashed(dentry))
2181 			continue;
2182 
2183 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2184 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2185 				continue;
2186 			*seqp = seq;
2187 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2188 			case D_COMP_OK:
2189 				return dentry;
2190 			case D_COMP_NOMATCH:
2191 				continue;
2192 			default:
2193 				goto seqretry;
2194 			}
2195 		}
2196 
2197 		if (dentry->d_name.hash_len != hashlen)
2198 			continue;
2199 		*seqp = seq;
2200 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2201 			return dentry;
2202 	}
2203 	return NULL;
2204 }
2205 
2206 /**
2207  * d_lookup - search for a dentry
2208  * @parent: parent dentry
2209  * @name: qstr of name we wish to find
2210  * Returns: dentry, or NULL
2211  *
2212  * d_lookup searches the children of the parent dentry for the name in
2213  * question. If the dentry is found its reference count is incremented and the
2214  * dentry is returned. The caller must use dput to free the entry when it has
2215  * finished using it. %NULL is returned if the dentry does not exist.
2216  */
d_lookup(const struct dentry * parent,const struct qstr * name)2217 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2218 {
2219 	struct dentry *dentry;
2220 	unsigned seq;
2221 
2222 	do {
2223 		seq = read_seqbegin(&rename_lock);
2224 		dentry = __d_lookup(parent, name);
2225 		if (dentry)
2226 			break;
2227 	} while (read_seqretry(&rename_lock, seq));
2228 	return dentry;
2229 }
2230 EXPORT_SYMBOL(d_lookup);
2231 
2232 /**
2233  * __d_lookup - search for a dentry (racy)
2234  * @parent: parent dentry
2235  * @name: qstr of name we wish to find
2236  * Returns: dentry, or NULL
2237  *
2238  * __d_lookup is like d_lookup, however it may (rarely) return a
2239  * false-negative result due to unrelated rename activity.
2240  *
2241  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2242  * however it must be used carefully, eg. with a following d_lookup in
2243  * the case of failure.
2244  *
2245  * __d_lookup callers must be commented.
2246  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2247 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2248 {
2249 	unsigned int len = name->len;
2250 	unsigned int hash = name->hash;
2251 	const unsigned char *str = name->name;
2252 	struct hlist_bl_head *b = d_hash(parent, hash);
2253 	struct hlist_bl_node *node;
2254 	struct dentry *found = NULL;
2255 	struct dentry *dentry;
2256 
2257 	/*
2258 	 * Note: There is significant duplication with __d_lookup_rcu which is
2259 	 * required to prevent single threaded performance regressions
2260 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2261 	 * Keep the two functions in sync.
2262 	 */
2263 
2264 	/*
2265 	 * The hash list is protected using RCU.
2266 	 *
2267 	 * Take d_lock when comparing a candidate dentry, to avoid races
2268 	 * with d_move().
2269 	 *
2270 	 * It is possible that concurrent renames can mess up our list
2271 	 * walk here and result in missing our dentry, resulting in the
2272 	 * false-negative result. d_lookup() protects against concurrent
2273 	 * renames using rename_lock seqlock.
2274 	 *
2275 	 * See Documentation/filesystems/path-lookup.txt for more details.
2276 	 */
2277 	rcu_read_lock();
2278 
2279 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2280 
2281 		if (dentry->d_name.hash != hash)
2282 			continue;
2283 
2284 		spin_lock(&dentry->d_lock);
2285 		if (dentry->d_parent != parent)
2286 			goto next;
2287 		if (d_unhashed(dentry))
2288 			goto next;
2289 
2290 		/*
2291 		 * It is safe to compare names since d_move() cannot
2292 		 * change the qstr (protected by d_lock).
2293 		 */
2294 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2295 			int tlen = dentry->d_name.len;
2296 			const char *tname = dentry->d_name.name;
2297 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2298 				goto next;
2299 		} else {
2300 			if (dentry->d_name.len != len)
2301 				goto next;
2302 			if (dentry_cmp(dentry, str, len))
2303 				goto next;
2304 		}
2305 
2306 		dentry->d_lockref.count++;
2307 		found = dentry;
2308 		spin_unlock(&dentry->d_lock);
2309 		break;
2310 next:
2311 		spin_unlock(&dentry->d_lock);
2312  	}
2313  	rcu_read_unlock();
2314 
2315  	return found;
2316 }
2317 
2318 /**
2319  * d_hash_and_lookup - hash the qstr then search for a dentry
2320  * @dir: Directory to search in
2321  * @name: qstr of name we wish to find
2322  *
2323  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2324  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2325 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2326 {
2327 	/*
2328 	 * Check for a fs-specific hash function. Note that we must
2329 	 * calculate the standard hash first, as the d_op->d_hash()
2330 	 * routine may choose to leave the hash value unchanged.
2331 	 */
2332 	name->hash = full_name_hash(name->name, name->len);
2333 	if (dir->d_flags & DCACHE_OP_HASH) {
2334 		int err = dir->d_op->d_hash(dir, name);
2335 		if (unlikely(err < 0))
2336 			return ERR_PTR(err);
2337 	}
2338 	return d_lookup(dir, name);
2339 }
2340 EXPORT_SYMBOL(d_hash_and_lookup);
2341 
2342 /**
2343  * d_validate - verify dentry provided from insecure source (deprecated)
2344  * @dentry: The dentry alleged to be valid child of @dparent
2345  * @dparent: The parent dentry (known to be valid)
2346  *
2347  * An insecure source has sent us a dentry, here we verify it and dget() it.
2348  * This is used by ncpfs in its readdir implementation.
2349  * Zero is returned in the dentry is invalid.
2350  *
2351  * This function is slow for big directories, and deprecated, do not use it.
2352  */
d_validate(struct dentry * dentry,struct dentry * dparent)2353 int d_validate(struct dentry *dentry, struct dentry *dparent)
2354 {
2355 	struct dentry *child;
2356 
2357 	spin_lock(&dparent->d_lock);
2358 	list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2359 		if (dentry == child) {
2360 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2361 			__dget_dlock(dentry);
2362 			spin_unlock(&dentry->d_lock);
2363 			spin_unlock(&dparent->d_lock);
2364 			return 1;
2365 		}
2366 	}
2367 	spin_unlock(&dparent->d_lock);
2368 
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL(d_validate);
2372 
2373 /*
2374  * When a file is deleted, we have two options:
2375  * - turn this dentry into a negative dentry
2376  * - unhash this dentry and free it.
2377  *
2378  * Usually, we want to just turn this into
2379  * a negative dentry, but if anybody else is
2380  * currently using the dentry or the inode
2381  * we can't do that and we fall back on removing
2382  * it from the hash queues and waiting for
2383  * it to be deleted later when it has no users
2384  */
2385 
2386 /**
2387  * d_delete - delete a dentry
2388  * @dentry: The dentry to delete
2389  *
2390  * Turn the dentry into a negative dentry if possible, otherwise
2391  * remove it from the hash queues so it can be deleted later
2392  */
2393 
d_delete(struct dentry * dentry)2394 void d_delete(struct dentry * dentry)
2395 {
2396 	struct inode *inode;
2397 	int isdir = 0;
2398 	/*
2399 	 * Are we the only user?
2400 	 */
2401 again:
2402 	spin_lock(&dentry->d_lock);
2403 	inode = dentry->d_inode;
2404 	isdir = S_ISDIR(inode->i_mode);
2405 	if (dentry->d_lockref.count == 1) {
2406 		if (!spin_trylock(&inode->i_lock)) {
2407 			spin_unlock(&dentry->d_lock);
2408 			cpu_relax();
2409 			goto again;
2410 		}
2411 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2412 		dentry_unlink_inode(dentry);
2413 		fsnotify_nameremove(dentry, isdir);
2414 		return;
2415 	}
2416 
2417 	if (!d_unhashed(dentry))
2418 		__d_drop(dentry);
2419 
2420 	spin_unlock(&dentry->d_lock);
2421 
2422 	fsnotify_nameremove(dentry, isdir);
2423 }
2424 EXPORT_SYMBOL(d_delete);
2425 
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2426 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2427 {
2428 	BUG_ON(!d_unhashed(entry));
2429 	hlist_bl_lock(b);
2430 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2431 	hlist_bl_unlock(b);
2432 }
2433 
_d_rehash(struct dentry * entry)2434 static void _d_rehash(struct dentry * entry)
2435 {
2436 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2437 }
2438 
2439 /**
2440  * d_rehash	- add an entry back to the hash
2441  * @entry: dentry to add to the hash
2442  *
2443  * Adds a dentry to the hash according to its name.
2444  */
2445 
d_rehash(struct dentry * entry)2446 void d_rehash(struct dentry * entry)
2447 {
2448 	spin_lock(&entry->d_lock);
2449 	_d_rehash(entry);
2450 	spin_unlock(&entry->d_lock);
2451 }
2452 EXPORT_SYMBOL(d_rehash);
2453 
2454 /**
2455  * dentry_update_name_case - update case insensitive dentry with a new name
2456  * @dentry: dentry to be updated
2457  * @name: new name
2458  *
2459  * Update a case insensitive dentry with new case of name.
2460  *
2461  * dentry must have been returned by d_lookup with name @name. Old and new
2462  * name lengths must match (ie. no d_compare which allows mismatched name
2463  * lengths).
2464  *
2465  * Parent inode i_mutex must be held over d_lookup and into this call (to
2466  * keep renames and concurrent inserts, and readdir(2) away).
2467  */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2468 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2469 {
2470 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2471 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2472 
2473 	spin_lock(&dentry->d_lock);
2474 	write_seqcount_begin(&dentry->d_seq);
2475 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2476 	write_seqcount_end(&dentry->d_seq);
2477 	spin_unlock(&dentry->d_lock);
2478 }
2479 EXPORT_SYMBOL(dentry_update_name_case);
2480 
swap_names(struct dentry * dentry,struct dentry * target)2481 static void swap_names(struct dentry *dentry, struct dentry *target)
2482 {
2483 	if (unlikely(dname_external(target))) {
2484 		if (unlikely(dname_external(dentry))) {
2485 			/*
2486 			 * Both external: swap the pointers
2487 			 */
2488 			swap(target->d_name.name, dentry->d_name.name);
2489 		} else {
2490 			/*
2491 			 * dentry:internal, target:external.  Steal target's
2492 			 * storage and make target internal.
2493 			 */
2494 			memcpy(target->d_iname, dentry->d_name.name,
2495 					dentry->d_name.len + 1);
2496 			dentry->d_name.name = target->d_name.name;
2497 			target->d_name.name = target->d_iname;
2498 		}
2499 	} else {
2500 		if (unlikely(dname_external(dentry))) {
2501 			/*
2502 			 * dentry:external, target:internal.  Give dentry's
2503 			 * storage to target and make dentry internal
2504 			 */
2505 			memcpy(dentry->d_iname, target->d_name.name,
2506 					target->d_name.len + 1);
2507 			target->d_name.name = dentry->d_name.name;
2508 			dentry->d_name.name = dentry->d_iname;
2509 		} else {
2510 			/*
2511 			 * Both are internal.
2512 			 */
2513 			unsigned int i;
2514 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2515 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2516 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2517 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2518 				swap(((long *) &dentry->d_iname)[i],
2519 				     ((long *) &target->d_iname)[i]);
2520 			}
2521 		}
2522 	}
2523 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2524 }
2525 
copy_name(struct dentry * dentry,struct dentry * target)2526 static void copy_name(struct dentry *dentry, struct dentry *target)
2527 {
2528 	struct external_name *old_name = NULL;
2529 	if (unlikely(dname_external(dentry)))
2530 		old_name = external_name(dentry);
2531 	if (unlikely(dname_external(target))) {
2532 		atomic_inc(&external_name(target)->u.count);
2533 		dentry->d_name = target->d_name;
2534 	} else {
2535 		memcpy(dentry->d_iname, target->d_name.name,
2536 				target->d_name.len + 1);
2537 		dentry->d_name.name = dentry->d_iname;
2538 		dentry->d_name.hash_len = target->d_name.hash_len;
2539 	}
2540 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2541 		kfree_rcu(old_name, u.head);
2542 }
2543 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2544 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2545 {
2546 	/*
2547 	 * XXXX: do we really need to take target->d_lock?
2548 	 */
2549 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2550 		spin_lock(&target->d_parent->d_lock);
2551 	else {
2552 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2553 			spin_lock(&dentry->d_parent->d_lock);
2554 			spin_lock_nested(&target->d_parent->d_lock,
2555 						DENTRY_D_LOCK_NESTED);
2556 		} else {
2557 			spin_lock(&target->d_parent->d_lock);
2558 			spin_lock_nested(&dentry->d_parent->d_lock,
2559 						DENTRY_D_LOCK_NESTED);
2560 		}
2561 	}
2562 	if (target < dentry) {
2563 		spin_lock_nested(&target->d_lock, 2);
2564 		spin_lock_nested(&dentry->d_lock, 3);
2565 	} else {
2566 		spin_lock_nested(&dentry->d_lock, 2);
2567 		spin_lock_nested(&target->d_lock, 3);
2568 	}
2569 }
2570 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2571 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2572 {
2573 	if (target->d_parent != dentry->d_parent)
2574 		spin_unlock(&dentry->d_parent->d_lock);
2575 	if (target->d_parent != target)
2576 		spin_unlock(&target->d_parent->d_lock);
2577 	spin_unlock(&target->d_lock);
2578 	spin_unlock(&dentry->d_lock);
2579 }
2580 
2581 /*
2582  * When switching names, the actual string doesn't strictly have to
2583  * be preserved in the target - because we're dropping the target
2584  * anyway. As such, we can just do a simple memcpy() to copy over
2585  * the new name before we switch, unless we are going to rehash
2586  * it.  Note that if we *do* unhash the target, we are not allowed
2587  * to rehash it without giving it a new name/hash key - whether
2588  * we swap or overwrite the names here, resulting name won't match
2589  * the reality in filesystem; it's only there for d_path() purposes.
2590  * Note that all of this is happening under rename_lock, so the
2591  * any hash lookup seeing it in the middle of manipulations will
2592  * be discarded anyway.  So we do not care what happens to the hash
2593  * key in that case.
2594  */
2595 /*
2596  * __d_move - move a dentry
2597  * @dentry: entry to move
2598  * @target: new dentry
2599  * @exchange: exchange the two dentries
2600  *
2601  * Update the dcache to reflect the move of a file name. Negative
2602  * dcache entries should not be moved in this way. Caller must hold
2603  * rename_lock, the i_mutex of the source and target directories,
2604  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2605  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2606 static void __d_move(struct dentry *dentry, struct dentry *target,
2607 		     bool exchange)
2608 {
2609 	if (!dentry->d_inode)
2610 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2611 
2612 	BUG_ON(d_ancestor(dentry, target));
2613 	BUG_ON(d_ancestor(target, dentry));
2614 
2615 	dentry_lock_for_move(dentry, target);
2616 
2617 	write_seqcount_begin(&dentry->d_seq);
2618 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2619 
2620 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2621 
2622 	/*
2623 	 * Move the dentry to the target hash queue. Don't bother checking
2624 	 * for the same hash queue because of how unlikely it is.
2625 	 */
2626 	__d_drop(dentry);
2627 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2628 
2629 	/*
2630 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2631 	 * the two dentries, then rehash onto the other's hash queue.
2632 	 */
2633 	__d_drop(target);
2634 	if (exchange) {
2635 		__d_rehash(target,
2636 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2637 	}
2638 
2639 	/* Switch the names.. */
2640 	if (exchange)
2641 		swap_names(dentry, target);
2642 	else
2643 		copy_name(dentry, target);
2644 
2645 	/* ... and switch them in the tree */
2646 	if (IS_ROOT(dentry)) {
2647 		/* splicing a tree */
2648 		dentry->d_flags |= DCACHE_RCUACCESS;
2649 		dentry->d_parent = target->d_parent;
2650 		target->d_parent = target;
2651 		list_del_init(&target->d_child);
2652 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2653 	} else {
2654 		/* swapping two dentries */
2655 		swap(dentry->d_parent, target->d_parent);
2656 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2657 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2658 		if (exchange)
2659 			fsnotify_d_move(target);
2660 		fsnotify_d_move(dentry);
2661 	}
2662 
2663 	write_seqcount_end(&target->d_seq);
2664 	write_seqcount_end(&dentry->d_seq);
2665 
2666 	dentry_unlock_for_move(dentry, target);
2667 }
2668 
2669 /*
2670  * d_move - move a dentry
2671  * @dentry: entry to move
2672  * @target: new dentry
2673  *
2674  * Update the dcache to reflect the move of a file name. Negative
2675  * dcache entries should not be moved in this way. See the locking
2676  * requirements for __d_move.
2677  */
d_move(struct dentry * dentry,struct dentry * target)2678 void d_move(struct dentry *dentry, struct dentry *target)
2679 {
2680 	write_seqlock(&rename_lock);
2681 	__d_move(dentry, target, false);
2682 	write_sequnlock(&rename_lock);
2683 }
2684 EXPORT_SYMBOL(d_move);
2685 
2686 /*
2687  * d_exchange - exchange two dentries
2688  * @dentry1: first dentry
2689  * @dentry2: second dentry
2690  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2691 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2692 {
2693 	write_seqlock(&rename_lock);
2694 
2695 	WARN_ON(!dentry1->d_inode);
2696 	WARN_ON(!dentry2->d_inode);
2697 	WARN_ON(IS_ROOT(dentry1));
2698 	WARN_ON(IS_ROOT(dentry2));
2699 
2700 	__d_move(dentry1, dentry2, true);
2701 
2702 	write_sequnlock(&rename_lock);
2703 }
2704 
2705 /**
2706  * d_ancestor - search for an ancestor
2707  * @p1: ancestor dentry
2708  * @p2: child dentry
2709  *
2710  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2711  * an ancestor of p2, else NULL.
2712  */
d_ancestor(struct dentry * p1,struct dentry * p2)2713 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2714 {
2715 	struct dentry *p;
2716 
2717 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2718 		if (p->d_parent == p1)
2719 			return p;
2720 	}
2721 	return NULL;
2722 }
2723 
2724 /*
2725  * This helper attempts to cope with remotely renamed directories
2726  *
2727  * It assumes that the caller is already holding
2728  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2729  *
2730  * Note: If ever the locking in lock_rename() changes, then please
2731  * remember to update this too...
2732  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2733 static int __d_unalias(struct inode *inode,
2734 		struct dentry *dentry, struct dentry *alias)
2735 {
2736 	struct mutex *m1 = NULL, *m2 = NULL;
2737 	int ret = -EBUSY;
2738 
2739 	/* If alias and dentry share a parent, then no extra locks required */
2740 	if (alias->d_parent == dentry->d_parent)
2741 		goto out_unalias;
2742 
2743 	/* See lock_rename() */
2744 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2745 		goto out_err;
2746 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2747 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2748 		goto out_err;
2749 	m2 = &alias->d_parent->d_inode->i_mutex;
2750 out_unalias:
2751 	__d_move(alias, dentry, false);
2752 	ret = 0;
2753 out_err:
2754 	spin_unlock(&inode->i_lock);
2755 	if (m2)
2756 		mutex_unlock(m2);
2757 	if (m1)
2758 		mutex_unlock(m1);
2759 	return ret;
2760 }
2761 
2762 /**
2763  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2764  * @inode:  the inode which may have a disconnected dentry
2765  * @dentry: a negative dentry which we want to point to the inode.
2766  *
2767  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2768  * place of the given dentry and return it, else simply d_add the inode
2769  * to the dentry and return NULL.
2770  *
2771  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2772  * we should error out: directories can't have multiple aliases.
2773  *
2774  * This is needed in the lookup routine of any filesystem that is exportable
2775  * (via knfsd) so that we can build dcache paths to directories effectively.
2776  *
2777  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2778  * is returned.  This matches the expected return value of ->lookup.
2779  *
2780  * Cluster filesystems may call this function with a negative, hashed dentry.
2781  * In that case, we know that the inode will be a regular file, and also this
2782  * will only occur during atomic_open. So we need to check for the dentry
2783  * being already hashed only in the final case.
2784  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2785 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2786 {
2787 	if (IS_ERR(inode))
2788 		return ERR_CAST(inode);
2789 
2790 	BUG_ON(!d_unhashed(dentry));
2791 
2792 	if (!inode) {
2793 		__d_instantiate(dentry, NULL);
2794 		goto out;
2795 	}
2796 	spin_lock(&inode->i_lock);
2797 	if (S_ISDIR(inode->i_mode)) {
2798 		struct dentry *new = __d_find_any_alias(inode);
2799 		if (unlikely(new)) {
2800 			write_seqlock(&rename_lock);
2801 			if (unlikely(d_ancestor(new, dentry))) {
2802 				write_sequnlock(&rename_lock);
2803 				spin_unlock(&inode->i_lock);
2804 				dput(new);
2805 				new = ERR_PTR(-ELOOP);
2806 				pr_warn_ratelimited(
2807 					"VFS: Lookup of '%s' in %s %s"
2808 					" would have caused loop\n",
2809 					dentry->d_name.name,
2810 					inode->i_sb->s_type->name,
2811 					inode->i_sb->s_id);
2812 			} else if (!IS_ROOT(new)) {
2813 				int err = __d_unalias(inode, dentry, new);
2814 				write_sequnlock(&rename_lock);
2815 				if (err) {
2816 					dput(new);
2817 					new = ERR_PTR(err);
2818 				}
2819 			} else {
2820 				__d_move(new, dentry, false);
2821 				write_sequnlock(&rename_lock);
2822 				spin_unlock(&inode->i_lock);
2823 				security_d_instantiate(new, inode);
2824 			}
2825 			iput(inode);
2826 			return new;
2827 		}
2828 	}
2829 	/* already taking inode->i_lock, so d_add() by hand */
2830 	__d_instantiate(dentry, inode);
2831 	spin_unlock(&inode->i_lock);
2832 out:
2833 	security_d_instantiate(dentry, inode);
2834 	d_rehash(dentry);
2835 	return NULL;
2836 }
2837 EXPORT_SYMBOL(d_splice_alias);
2838 
prepend(char ** buffer,int * buflen,const char * str,int namelen)2839 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2840 {
2841 	*buflen -= namelen;
2842 	if (*buflen < 0)
2843 		return -ENAMETOOLONG;
2844 	*buffer -= namelen;
2845 	memcpy(*buffer, str, namelen);
2846 	return 0;
2847 }
2848 
2849 /**
2850  * prepend_name - prepend a pathname in front of current buffer pointer
2851  * @buffer: buffer pointer
2852  * @buflen: allocated length of the buffer
2853  * @name:   name string and length qstr structure
2854  *
2855  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2856  * make sure that either the old or the new name pointer and length are
2857  * fetched. However, there may be mismatch between length and pointer.
2858  * The length cannot be trusted, we need to copy it byte-by-byte until
2859  * the length is reached or a null byte is found. It also prepends "/" at
2860  * the beginning of the name. The sequence number check at the caller will
2861  * retry it again when a d_move() does happen. So any garbage in the buffer
2862  * due to mismatched pointer and length will be discarded.
2863  *
2864  * Data dependency barrier is needed to make sure that we see that terminating
2865  * NUL.  Alpha strikes again, film at 11...
2866  */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2867 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2868 {
2869 	const char *dname = ACCESS_ONCE(name->name);
2870 	u32 dlen = ACCESS_ONCE(name->len);
2871 	char *p;
2872 
2873 	smp_read_barrier_depends();
2874 
2875 	*buflen -= dlen + 1;
2876 	if (*buflen < 0)
2877 		return -ENAMETOOLONG;
2878 	p = *buffer -= dlen + 1;
2879 	*p++ = '/';
2880 	while (dlen--) {
2881 		char c = *dname++;
2882 		if (!c)
2883 			break;
2884 		*p++ = c;
2885 	}
2886 	return 0;
2887 }
2888 
2889 /**
2890  * prepend_path - Prepend path string to a buffer
2891  * @path: the dentry/vfsmount to report
2892  * @root: root vfsmnt/dentry
2893  * @buffer: pointer to the end of the buffer
2894  * @buflen: pointer to buffer length
2895  *
2896  * The function will first try to write out the pathname without taking any
2897  * lock other than the RCU read lock to make sure that dentries won't go away.
2898  * It only checks the sequence number of the global rename_lock as any change
2899  * in the dentry's d_seq will be preceded by changes in the rename_lock
2900  * sequence number. If the sequence number had been changed, it will restart
2901  * the whole pathname back-tracing sequence again by taking the rename_lock.
2902  * In this case, there is no need to take the RCU read lock as the recursive
2903  * parent pointer references will keep the dentry chain alive as long as no
2904  * rename operation is performed.
2905  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2906 static int prepend_path(const struct path *path,
2907 			const struct path *root,
2908 			char **buffer, int *buflen)
2909 {
2910 	struct dentry *dentry;
2911 	struct vfsmount *vfsmnt;
2912 	struct mount *mnt;
2913 	int error = 0;
2914 	unsigned seq, m_seq = 0;
2915 	char *bptr;
2916 	int blen;
2917 
2918 	rcu_read_lock();
2919 restart_mnt:
2920 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2921 	seq = 0;
2922 	rcu_read_lock();
2923 restart:
2924 	bptr = *buffer;
2925 	blen = *buflen;
2926 	error = 0;
2927 	dentry = path->dentry;
2928 	vfsmnt = path->mnt;
2929 	mnt = real_mount(vfsmnt);
2930 	read_seqbegin_or_lock(&rename_lock, &seq);
2931 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2932 		struct dentry * parent;
2933 
2934 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2935 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2936 			/* Escaped? */
2937 			if (dentry != vfsmnt->mnt_root) {
2938 				bptr = *buffer;
2939 				blen = *buflen;
2940 				error = 3;
2941 				break;
2942 			}
2943 			/* Global root? */
2944 			if (mnt != parent) {
2945 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2946 				mnt = parent;
2947 				vfsmnt = &mnt->mnt;
2948 				continue;
2949 			}
2950 			if (!error)
2951 				error = is_mounted(vfsmnt) ? 1 : 2;
2952 			break;
2953 		}
2954 		parent = dentry->d_parent;
2955 		prefetch(parent);
2956 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2957 		if (error)
2958 			break;
2959 
2960 		dentry = parent;
2961 	}
2962 	if (!(seq & 1))
2963 		rcu_read_unlock();
2964 	if (need_seqretry(&rename_lock, seq)) {
2965 		seq = 1;
2966 		goto restart;
2967 	}
2968 	done_seqretry(&rename_lock, seq);
2969 
2970 	if (!(m_seq & 1))
2971 		rcu_read_unlock();
2972 	if (need_seqretry(&mount_lock, m_seq)) {
2973 		m_seq = 1;
2974 		goto restart_mnt;
2975 	}
2976 	done_seqretry(&mount_lock, m_seq);
2977 
2978 	if (error >= 0 && bptr == *buffer) {
2979 		if (--blen < 0)
2980 			error = -ENAMETOOLONG;
2981 		else
2982 			*--bptr = '/';
2983 	}
2984 	*buffer = bptr;
2985 	*buflen = blen;
2986 	return error;
2987 }
2988 
2989 /**
2990  * __d_path - return the path of a dentry
2991  * @path: the dentry/vfsmount to report
2992  * @root: root vfsmnt/dentry
2993  * @buf: buffer to return value in
2994  * @buflen: buffer length
2995  *
2996  * Convert a dentry into an ASCII path name.
2997  *
2998  * Returns a pointer into the buffer or an error code if the
2999  * path was too long.
3000  *
3001  * "buflen" should be positive.
3002  *
3003  * If the path is not reachable from the supplied root, return %NULL.
3004  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3005 char *__d_path(const struct path *path,
3006 	       const struct path *root,
3007 	       char *buf, int buflen)
3008 {
3009 	char *res = buf + buflen;
3010 	int error;
3011 
3012 	prepend(&res, &buflen, "\0", 1);
3013 	error = prepend_path(path, root, &res, &buflen);
3014 
3015 	if (error < 0)
3016 		return ERR_PTR(error);
3017 	if (error > 0)
3018 		return NULL;
3019 	return res;
3020 }
3021 
d_absolute_path(const struct path * path,char * buf,int buflen)3022 char *d_absolute_path(const struct path *path,
3023 	       char *buf, int buflen)
3024 {
3025 	struct path root = {};
3026 	char *res = buf + buflen;
3027 	int error;
3028 
3029 	prepend(&res, &buflen, "\0", 1);
3030 	error = prepend_path(path, &root, &res, &buflen);
3031 
3032 	if (error > 1)
3033 		error = -EINVAL;
3034 	if (error < 0)
3035 		return ERR_PTR(error);
3036 	return res;
3037 }
3038 
3039 /*
3040  * same as __d_path but appends "(deleted)" for unlinked files.
3041  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3042 static int path_with_deleted(const struct path *path,
3043 			     const struct path *root,
3044 			     char **buf, int *buflen)
3045 {
3046 	prepend(buf, buflen, "\0", 1);
3047 	if (d_unlinked(path->dentry)) {
3048 		int error = prepend(buf, buflen, " (deleted)", 10);
3049 		if (error)
3050 			return error;
3051 	}
3052 
3053 	return prepend_path(path, root, buf, buflen);
3054 }
3055 
prepend_unreachable(char ** buffer,int * buflen)3056 static int prepend_unreachable(char **buffer, int *buflen)
3057 {
3058 	return prepend(buffer, buflen, "(unreachable)", 13);
3059 }
3060 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3061 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3062 {
3063 	unsigned seq;
3064 
3065 	do {
3066 		seq = read_seqcount_begin(&fs->seq);
3067 		*root = fs->root;
3068 	} while (read_seqcount_retry(&fs->seq, seq));
3069 }
3070 
3071 /**
3072  * d_path - return the path of a dentry
3073  * @path: path to report
3074  * @buf: buffer to return value in
3075  * @buflen: buffer length
3076  *
3077  * Convert a dentry into an ASCII path name. If the entry has been deleted
3078  * the string " (deleted)" is appended. Note that this is ambiguous.
3079  *
3080  * Returns a pointer into the buffer or an error code if the path was
3081  * too long. Note: Callers should use the returned pointer, not the passed
3082  * in buffer, to use the name! The implementation often starts at an offset
3083  * into the buffer, and may leave 0 bytes at the start.
3084  *
3085  * "buflen" should be positive.
3086  */
d_path(const struct path * path,char * buf,int buflen)3087 char *d_path(const struct path *path, char *buf, int buflen)
3088 {
3089 	char *res = buf + buflen;
3090 	struct path root;
3091 	int error;
3092 
3093 	/*
3094 	 * We have various synthetic filesystems that never get mounted.  On
3095 	 * these filesystems dentries are never used for lookup purposes, and
3096 	 * thus don't need to be hashed.  They also don't need a name until a
3097 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3098 	 * below allows us to generate a name for these objects on demand:
3099 	 *
3100 	 * Some pseudo inodes are mountable.  When they are mounted
3101 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3102 	 * and instead have d_path return the mounted path.
3103 	 */
3104 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3105 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3106 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3107 
3108 	rcu_read_lock();
3109 	get_fs_root_rcu(current->fs, &root);
3110 	error = path_with_deleted(path, &root, &res, &buflen);
3111 	rcu_read_unlock();
3112 
3113 	if (error < 0)
3114 		res = ERR_PTR(error);
3115 	return res;
3116 }
3117 EXPORT_SYMBOL(d_path);
3118 
3119 /*
3120  * Helper function for dentry_operations.d_dname() members
3121  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3122 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3123 			const char *fmt, ...)
3124 {
3125 	va_list args;
3126 	char temp[64];
3127 	int sz;
3128 
3129 	va_start(args, fmt);
3130 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3131 	va_end(args);
3132 
3133 	if (sz > sizeof(temp) || sz > buflen)
3134 		return ERR_PTR(-ENAMETOOLONG);
3135 
3136 	buffer += buflen - sz;
3137 	return memcpy(buffer, temp, sz);
3138 }
3139 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3140 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3141 {
3142 	char *end = buffer + buflen;
3143 	/* these dentries are never renamed, so d_lock is not needed */
3144 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3145 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3146 	    prepend(&end, &buflen, "/", 1))
3147 		end = ERR_PTR(-ENAMETOOLONG);
3148 	return end;
3149 }
3150 EXPORT_SYMBOL(simple_dname);
3151 
3152 /*
3153  * Write full pathname from the root of the filesystem into the buffer.
3154  */
__dentry_path(struct dentry * d,char * buf,int buflen)3155 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3156 {
3157 	struct dentry *dentry;
3158 	char *end, *retval;
3159 	int len, seq = 0;
3160 	int error = 0;
3161 
3162 	if (buflen < 2)
3163 		goto Elong;
3164 
3165 	rcu_read_lock();
3166 restart:
3167 	dentry = d;
3168 	end = buf + buflen;
3169 	len = buflen;
3170 	prepend(&end, &len, "\0", 1);
3171 	/* Get '/' right */
3172 	retval = end-1;
3173 	*retval = '/';
3174 	read_seqbegin_or_lock(&rename_lock, &seq);
3175 	while (!IS_ROOT(dentry)) {
3176 		struct dentry *parent = dentry->d_parent;
3177 
3178 		prefetch(parent);
3179 		error = prepend_name(&end, &len, &dentry->d_name);
3180 		if (error)
3181 			break;
3182 
3183 		retval = end;
3184 		dentry = parent;
3185 	}
3186 	if (!(seq & 1))
3187 		rcu_read_unlock();
3188 	if (need_seqretry(&rename_lock, seq)) {
3189 		seq = 1;
3190 		goto restart;
3191 	}
3192 	done_seqretry(&rename_lock, seq);
3193 	if (error)
3194 		goto Elong;
3195 	return retval;
3196 Elong:
3197 	return ERR_PTR(-ENAMETOOLONG);
3198 }
3199 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3200 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3201 {
3202 	return __dentry_path(dentry, buf, buflen);
3203 }
3204 EXPORT_SYMBOL(dentry_path_raw);
3205 
dentry_path(struct dentry * dentry,char * buf,int buflen)3206 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3207 {
3208 	char *p = NULL;
3209 	char *retval;
3210 
3211 	if (d_unlinked(dentry)) {
3212 		p = buf + buflen;
3213 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3214 			goto Elong;
3215 		buflen++;
3216 	}
3217 	retval = __dentry_path(dentry, buf, buflen);
3218 	if (!IS_ERR(retval) && p)
3219 		*p = '/';	/* restore '/' overriden with '\0' */
3220 	return retval;
3221 Elong:
3222 	return ERR_PTR(-ENAMETOOLONG);
3223 }
3224 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3225 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3226 				    struct path *pwd)
3227 {
3228 	unsigned seq;
3229 
3230 	do {
3231 		seq = read_seqcount_begin(&fs->seq);
3232 		*root = fs->root;
3233 		*pwd = fs->pwd;
3234 	} while (read_seqcount_retry(&fs->seq, seq));
3235 }
3236 
3237 /*
3238  * NOTE! The user-level library version returns a
3239  * character pointer. The kernel system call just
3240  * returns the length of the buffer filled (which
3241  * includes the ending '\0' character), or a negative
3242  * error value. So libc would do something like
3243  *
3244  *	char *getcwd(char * buf, size_t size)
3245  *	{
3246  *		int retval;
3247  *
3248  *		retval = sys_getcwd(buf, size);
3249  *		if (retval >= 0)
3250  *			return buf;
3251  *		errno = -retval;
3252  *		return NULL;
3253  *	}
3254  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3255 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3256 {
3257 	int error;
3258 	struct path pwd, root;
3259 	char *page = __getname();
3260 
3261 	if (!page)
3262 		return -ENOMEM;
3263 
3264 	rcu_read_lock();
3265 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3266 
3267 	error = -ENOENT;
3268 	if (!d_unlinked(pwd.dentry)) {
3269 		unsigned long len;
3270 		char *cwd = page + PATH_MAX;
3271 		int buflen = PATH_MAX;
3272 
3273 		prepend(&cwd, &buflen, "\0", 1);
3274 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3275 		rcu_read_unlock();
3276 
3277 		if (error < 0)
3278 			goto out;
3279 
3280 		/* Unreachable from current root */
3281 		if (error > 0) {
3282 			error = prepend_unreachable(&cwd, &buflen);
3283 			if (error)
3284 				goto out;
3285 		}
3286 
3287 		error = -ERANGE;
3288 		len = PATH_MAX + page - cwd;
3289 		if (len <= size) {
3290 			error = len;
3291 			if (copy_to_user(buf, cwd, len))
3292 				error = -EFAULT;
3293 		}
3294 	} else {
3295 		rcu_read_unlock();
3296 	}
3297 
3298 out:
3299 	__putname(page);
3300 	return error;
3301 }
3302 
3303 /*
3304  * Test whether new_dentry is a subdirectory of old_dentry.
3305  *
3306  * Trivially implemented using the dcache structure
3307  */
3308 
3309 /**
3310  * is_subdir - is new dentry a subdirectory of old_dentry
3311  * @new_dentry: new dentry
3312  * @old_dentry: old dentry
3313  *
3314  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3315  * Returns 0 otherwise.
3316  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3317  */
3318 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3319 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3320 {
3321 	int result;
3322 	unsigned seq;
3323 
3324 	if (new_dentry == old_dentry)
3325 		return 1;
3326 
3327 	do {
3328 		/* for restarting inner loop in case of seq retry */
3329 		seq = read_seqbegin(&rename_lock);
3330 		/*
3331 		 * Need rcu_readlock to protect against the d_parent trashing
3332 		 * due to d_move
3333 		 */
3334 		rcu_read_lock();
3335 		if (d_ancestor(old_dentry, new_dentry))
3336 			result = 1;
3337 		else
3338 			result = 0;
3339 		rcu_read_unlock();
3340 	} while (read_seqretry(&rename_lock, seq));
3341 
3342 	return result;
3343 }
3344 
d_genocide_kill(void * data,struct dentry * dentry)3345 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3346 {
3347 	struct dentry *root = data;
3348 	if (dentry != root) {
3349 		if (d_unhashed(dentry) || !dentry->d_inode)
3350 			return D_WALK_SKIP;
3351 
3352 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3353 			dentry->d_flags |= DCACHE_GENOCIDE;
3354 			dentry->d_lockref.count--;
3355 		}
3356 	}
3357 	return D_WALK_CONTINUE;
3358 }
3359 
d_genocide(struct dentry * parent)3360 void d_genocide(struct dentry *parent)
3361 {
3362 	d_walk(parent, parent, d_genocide_kill, NULL);
3363 }
3364 
d_tmpfile(struct dentry * dentry,struct inode * inode)3365 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3366 {
3367 	inode_dec_link_count(inode);
3368 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3369 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3370 		!d_unlinked(dentry));
3371 	spin_lock(&dentry->d_parent->d_lock);
3372 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3373 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3374 				(unsigned long long)inode->i_ino);
3375 	spin_unlock(&dentry->d_lock);
3376 	spin_unlock(&dentry->d_parent->d_lock);
3377 	d_instantiate(dentry, inode);
3378 }
3379 EXPORT_SYMBOL(d_tmpfile);
3380 
3381 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3382 static int __init set_dhash_entries(char *str)
3383 {
3384 	if (!str)
3385 		return 0;
3386 	dhash_entries = simple_strtoul(str, &str, 0);
3387 	return 1;
3388 }
3389 __setup("dhash_entries=", set_dhash_entries);
3390 
dcache_init_early(void)3391 static void __init dcache_init_early(void)
3392 {
3393 	unsigned int loop;
3394 
3395 	/* If hashes are distributed across NUMA nodes, defer
3396 	 * hash allocation until vmalloc space is available.
3397 	 */
3398 	if (hashdist)
3399 		return;
3400 
3401 	dentry_hashtable =
3402 		alloc_large_system_hash("Dentry cache",
3403 					sizeof(struct hlist_bl_head),
3404 					dhash_entries,
3405 					13,
3406 					HASH_EARLY,
3407 					&d_hash_shift,
3408 					&d_hash_mask,
3409 					0,
3410 					0);
3411 
3412 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3413 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3414 }
3415 
dcache_init(void)3416 static void __init dcache_init(void)
3417 {
3418 	unsigned int loop;
3419 
3420 	/*
3421 	 * A constructor could be added for stable state like the lists,
3422 	 * but it is probably not worth it because of the cache nature
3423 	 * of the dcache.
3424 	 */
3425 	dentry_cache = KMEM_CACHE(dentry,
3426 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3427 
3428 	/* Hash may have been set up in dcache_init_early */
3429 	if (!hashdist)
3430 		return;
3431 
3432 	dentry_hashtable =
3433 		alloc_large_system_hash("Dentry cache",
3434 					sizeof(struct hlist_bl_head),
3435 					dhash_entries,
3436 					13,
3437 					0,
3438 					&d_hash_shift,
3439 					&d_hash_mask,
3440 					0,
3441 					0);
3442 
3443 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3444 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3445 }
3446 
3447 /* SLAB cache for __getname() consumers */
3448 struct kmem_cache *names_cachep __read_mostly;
3449 EXPORT_SYMBOL(names_cachep);
3450 
3451 EXPORT_SYMBOL(d_genocide);
3452 
vfs_caches_init_early(void)3453 void __init vfs_caches_init_early(void)
3454 {
3455 	dcache_init_early();
3456 	inode_init_early();
3457 }
3458 
vfs_caches_init(unsigned long mempages)3459 void __init vfs_caches_init(unsigned long mempages)
3460 {
3461 	unsigned long reserve;
3462 
3463 	/* Base hash sizes on available memory, with a reserve equal to
3464            150% of current kernel size */
3465 
3466 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3467 	mempages -= reserve;
3468 
3469 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3470 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3471 
3472 	dcache_init();
3473 	inode_init();
3474 	files_init(mempages);
3475 	mnt_init();
3476 	bdev_cache_init();
3477 	chrdev_init();
3478 }
3479 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)3480 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
3481 {
3482 	spin_lock(&dentry->d_lock);
3483 	if (unlikely(dname_external(dentry))) {
3484 		struct external_name *p = external_name(dentry);
3485 		atomic_inc(&p->u.count);
3486 		spin_unlock(&dentry->d_lock);
3487 		name->name = p->name;
3488 	} else {
3489 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
3490 		spin_unlock(&dentry->d_lock);
3491 		name->name = name->inline_name;
3492 	}
3493 }
3494 EXPORT_SYMBOL(take_dentry_name_snapshot);
3495 
release_dentry_name_snapshot(struct name_snapshot * name)3496 void release_dentry_name_snapshot(struct name_snapshot *name)
3497 {
3498 	if (unlikely(name->name != name->inline_name)) {
3499 		struct external_name *p;
3500 		p = container_of(name->name, struct external_name, name[0]);
3501 		if (unlikely(atomic_dec_and_test(&p->u.count)))
3502 			kfree_rcu(p, u.head);
3503 	}
3504 }
3505 EXPORT_SYMBOL(release_dentry_name_snapshot);
3506