1 /*
2 * fs/ext4/extents_status.c
3 *
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5 * Modified by
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
9 *
10 * Ext4 extents status tree core functions.
11 */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 #include "extents_status.h"
18
19 #include <trace/events/ext4.h>
20
21 /*
22 * According to previous discussion in Ext4 Developer Workshop, we
23 * will introduce a new structure called io tree to track all extent
24 * status in order to solve some problems that we have met
25 * (e.g. Reservation space warning), and provide extent-level locking.
26 * Delay extent tree is the first step to achieve this goal. It is
27 * original built by Yongqiang Yang. At that time it is called delay
28 * extent tree, whose goal is only track delayed extents in memory to
29 * simplify the implementation of fiemap and bigalloc, and introduce
30 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
31 * delay extent tree at the first commit. But for better understand
32 * what it does, it has been rename to extent status tree.
33 *
34 * Step1:
35 * Currently the first step has been done. All delayed extents are
36 * tracked in the tree. It maintains the delayed extent when a delayed
37 * allocation is issued, and the delayed extent is written out or
38 * invalidated. Therefore the implementation of fiemap and bigalloc
39 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40 *
41 * The following comment describes the implemenmtation of extent
42 * status tree and future works.
43 *
44 * Step2:
45 * In this step all extent status are tracked by extent status tree.
46 * Thus, we can first try to lookup a block mapping in this tree before
47 * finding it in extent tree. Hence, single extent cache can be removed
48 * because extent status tree can do a better job. Extents in status
49 * tree are loaded on-demand. Therefore, the extent status tree may not
50 * contain all of the extents in a file. Meanwhile we define a shrinker
51 * to reclaim memory from extent status tree because fragmented extent
52 * tree will make status tree cost too much memory. written/unwritten/-
53 * hole extents in the tree will be reclaimed by this shrinker when we
54 * are under high memory pressure. Delayed extents will not be
55 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
56 */
57
58 /*
59 * Extent status tree implementation for ext4.
60 *
61 *
62 * ==========================================================================
63 * Extent status tree tracks all extent status.
64 *
65 * 1. Why we need to implement extent status tree?
66 *
67 * Without extent status tree, ext4 identifies a delayed extent by looking
68 * up page cache, this has several deficiencies - complicated, buggy,
69 * and inefficient code.
70 *
71 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
72 * block or a range of blocks are belonged to a delayed extent.
73 *
74 * Let us have a look at how they do without extent status tree.
75 * -- FIEMAP
76 * FIEMAP looks up page cache to identify delayed allocations from holes.
77 *
78 * -- SEEK_HOLE/DATA
79 * SEEK_HOLE/DATA has the same problem as FIEMAP.
80 *
81 * -- bigalloc
82 * bigalloc looks up page cache to figure out if a block is
83 * already under delayed allocation or not to determine whether
84 * quota reserving is needed for the cluster.
85 *
86 * -- writeout
87 * Writeout looks up whole page cache to see if a buffer is
88 * mapped, If there are not very many delayed buffers, then it is
89 * time comsuming.
90 *
91 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
92 * bigalloc and writeout can figure out if a block or a range of
93 * blocks is under delayed allocation(belonged to a delayed extent) or
94 * not by searching the extent tree.
95 *
96 *
97 * ==========================================================================
98 * 2. Ext4 extent status tree impelmentation
99 *
100 * -- extent
101 * A extent is a range of blocks which are contiguous logically and
102 * physically. Unlike extent in extent tree, this extent in ext4 is
103 * a in-memory struct, there is no corresponding on-disk data. There
104 * is no limit on length of extent, so an extent can contain as many
105 * blocks as they are contiguous logically and physically.
106 *
107 * -- extent status tree
108 * Every inode has an extent status tree and all allocation blocks
109 * are added to the tree with different status. The extent in the
110 * tree are ordered by logical block no.
111 *
112 * -- operations on a extent status tree
113 * There are three important operations on a delayed extent tree: find
114 * next extent, adding a extent(a range of blocks) and removing a extent.
115 *
116 * -- race on a extent status tree
117 * Extent status tree is protected by inode->i_es_lock.
118 *
119 * -- memory consumption
120 * Fragmented extent tree will make extent status tree cost too much
121 * memory. Hence, we will reclaim written/unwritten/hole extents from
122 * the tree under a heavy memory pressure.
123 *
124 *
125 * ==========================================================================
126 * 3. Performance analysis
127 *
128 * -- overhead
129 * 1. There is a cache extent for write access, so if writes are
130 * not very random, adding space operaions are in O(1) time.
131 *
132 * -- gain
133 * 2. Code is much simpler, more readable, more maintainable and
134 * more efficient.
135 *
136 *
137 * ==========================================================================
138 * 4. TODO list
139 *
140 * -- Refactor delayed space reservation
141 *
142 * -- Extent-level locking
143 */
144
145 static struct kmem_cache *ext4_es_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 ext4_lblk_t end);
150 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
151 int nr_to_scan);
152 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
153 struct ext4_inode_info *locked_ei);
154
ext4_init_es(void)155 int __init ext4_init_es(void)
156 {
157 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
158 sizeof(struct extent_status),
159 0, (SLAB_RECLAIM_ACCOUNT), NULL);
160 if (ext4_es_cachep == NULL)
161 return -ENOMEM;
162 return 0;
163 }
164
ext4_exit_es(void)165 void ext4_exit_es(void)
166 {
167 if (ext4_es_cachep)
168 kmem_cache_destroy(ext4_es_cachep);
169 }
170
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 tree->root = RB_ROOT;
174 tree->cache_es = NULL;
175 }
176
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 struct ext4_es_tree *tree;
181 struct rb_node *node;
182
183 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 tree = &EXT4_I(inode)->i_es_tree;
185 node = rb_first(&tree->root);
186 while (node) {
187 struct extent_status *es;
188 es = rb_entry(node, struct extent_status, rb_node);
189 printk(KERN_DEBUG " [%u/%u) %llu %x",
190 es->es_lblk, es->es_len,
191 ext4_es_pblock(es), ext4_es_status(es));
192 node = rb_next(node);
193 }
194 printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 return es->es_lblk + es->es_len - 1;
204 }
205
206 /*
207 * search through the tree for an delayed extent with a given offset. If
208 * it can't be found, try to find next extent.
209 */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 ext4_lblk_t lblk)
212 {
213 struct rb_node *node = root->rb_node;
214 struct extent_status *es = NULL;
215
216 while (node) {
217 es = rb_entry(node, struct extent_status, rb_node);
218 if (lblk < es->es_lblk)
219 node = node->rb_left;
220 else if (lblk > ext4_es_end(es))
221 node = node->rb_right;
222 else
223 return es;
224 }
225
226 if (es && lblk < es->es_lblk)
227 return es;
228
229 if (es && lblk > ext4_es_end(es)) {
230 node = rb_next(&es->rb_node);
231 return node ? rb_entry(node, struct extent_status, rb_node) :
232 NULL;
233 }
234
235 return NULL;
236 }
237
238 /*
239 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
240 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
241 *
242 * @inode: the inode which owns delayed extents
243 * @lblk: the offset where we start to search
244 * @end: the offset where we stop to search
245 * @es: delayed extent that we found
246 */
ext4_es_find_delayed_extent_range(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)247 void ext4_es_find_delayed_extent_range(struct inode *inode,
248 ext4_lblk_t lblk, ext4_lblk_t end,
249 struct extent_status *es)
250 {
251 struct ext4_es_tree *tree = NULL;
252 struct extent_status *es1 = NULL;
253 struct rb_node *node;
254
255 BUG_ON(es == NULL);
256 BUG_ON(end < lblk);
257 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
258
259 read_lock(&EXT4_I(inode)->i_es_lock);
260 tree = &EXT4_I(inode)->i_es_tree;
261
262 /* find extent in cache firstly */
263 es->es_lblk = es->es_len = es->es_pblk = 0;
264 if (tree->cache_es) {
265 es1 = tree->cache_es;
266 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
267 es_debug("%u cached by [%u/%u) %llu %x\n",
268 lblk, es1->es_lblk, es1->es_len,
269 ext4_es_pblock(es1), ext4_es_status(es1));
270 goto out;
271 }
272 }
273
274 es1 = __es_tree_search(&tree->root, lblk);
275
276 out:
277 if (es1 && !ext4_es_is_delayed(es1)) {
278 while ((node = rb_next(&es1->rb_node)) != NULL) {
279 es1 = rb_entry(node, struct extent_status, rb_node);
280 if (es1->es_lblk > end) {
281 es1 = NULL;
282 break;
283 }
284 if (ext4_es_is_delayed(es1))
285 break;
286 }
287 }
288
289 if (es1 && ext4_es_is_delayed(es1)) {
290 tree->cache_es = es1;
291 es->es_lblk = es1->es_lblk;
292 es->es_len = es1->es_len;
293 es->es_pblk = es1->es_pblk;
294 }
295
296 read_unlock(&EXT4_I(inode)->i_es_lock);
297
298 trace_ext4_es_find_delayed_extent_range_exit(inode, es);
299 }
300
301 static struct extent_status *
ext4_es_alloc_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)302 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
303 ext4_fsblk_t pblk)
304 {
305 struct extent_status *es;
306 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
307 if (es == NULL)
308 return NULL;
309 es->es_lblk = lblk;
310 es->es_len = len;
311 es->es_pblk = pblk;
312
313 /*
314 * We don't count delayed extent because we never try to reclaim them
315 */
316 if (!ext4_es_is_delayed(es)) {
317 EXT4_I(inode)->i_es_lru_nr++;
318 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
319 s_es_stats.es_stats_lru_cnt);
320 }
321
322 EXT4_I(inode)->i_es_all_nr++;
323 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
324
325 return es;
326 }
327
ext4_es_free_extent(struct inode * inode,struct extent_status * es)328 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
329 {
330 EXT4_I(inode)->i_es_all_nr--;
331 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
332
333 /* Decrease the lru counter when this es is not delayed */
334 if (!ext4_es_is_delayed(es)) {
335 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
336 EXT4_I(inode)->i_es_lru_nr--;
337 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
338 s_es_stats.es_stats_lru_cnt);
339 }
340
341 kmem_cache_free(ext4_es_cachep, es);
342 }
343
344 /*
345 * Check whether or not two extents can be merged
346 * Condition:
347 * - logical block number is contiguous
348 * - physical block number is contiguous
349 * - status is equal
350 */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)351 static int ext4_es_can_be_merged(struct extent_status *es1,
352 struct extent_status *es2)
353 {
354 if (ext4_es_status(es1) != ext4_es_status(es2))
355 return 0;
356
357 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
358 pr_warn("ES assertion failed when merging extents. "
359 "The sum of lengths of es1 (%d) and es2 (%d) "
360 "is bigger than allowed file size (%d)\n",
361 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
362 WARN_ON(1);
363 return 0;
364 }
365
366 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
367 return 0;
368
369 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
370 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
371 return 1;
372
373 if (ext4_es_is_hole(es1))
374 return 1;
375
376 /* we need to check delayed extent is without unwritten status */
377 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
378 return 1;
379
380 return 0;
381 }
382
383 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)384 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
385 {
386 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
387 struct extent_status *es1;
388 struct rb_node *node;
389
390 node = rb_prev(&es->rb_node);
391 if (!node)
392 return es;
393
394 es1 = rb_entry(node, struct extent_status, rb_node);
395 if (ext4_es_can_be_merged(es1, es)) {
396 es1->es_len += es->es_len;
397 rb_erase(&es->rb_node, &tree->root);
398 ext4_es_free_extent(inode, es);
399 es = es1;
400 }
401
402 return es;
403 }
404
405 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)406 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
407 {
408 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
409 struct extent_status *es1;
410 struct rb_node *node;
411
412 node = rb_next(&es->rb_node);
413 if (!node)
414 return es;
415
416 es1 = rb_entry(node, struct extent_status, rb_node);
417 if (ext4_es_can_be_merged(es, es1)) {
418 es->es_len += es1->es_len;
419 rb_erase(node, &tree->root);
420 ext4_es_free_extent(inode, es1);
421 }
422
423 return es;
424 }
425
426 #ifdef ES_AGGRESSIVE_TEST
427 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
428
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)429 static void ext4_es_insert_extent_ext_check(struct inode *inode,
430 struct extent_status *es)
431 {
432 struct ext4_ext_path *path = NULL;
433 struct ext4_extent *ex;
434 ext4_lblk_t ee_block;
435 ext4_fsblk_t ee_start;
436 unsigned short ee_len;
437 int depth, ee_status, es_status;
438
439 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
440 if (IS_ERR(path))
441 return;
442
443 depth = ext_depth(inode);
444 ex = path[depth].p_ext;
445
446 if (ex) {
447
448 ee_block = le32_to_cpu(ex->ee_block);
449 ee_start = ext4_ext_pblock(ex);
450 ee_len = ext4_ext_get_actual_len(ex);
451
452 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
453 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
454
455 /*
456 * Make sure ex and es are not overlap when we try to insert
457 * a delayed/hole extent.
458 */
459 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
460 if (in_range(es->es_lblk, ee_block, ee_len)) {
461 pr_warn("ES insert assertion failed for "
462 "inode: %lu we can find an extent "
463 "at block [%d/%d/%llu/%c], but we "
464 "want to add a delayed/hole extent "
465 "[%d/%d/%llu/%x]\n",
466 inode->i_ino, ee_block, ee_len,
467 ee_start, ee_status ? 'u' : 'w',
468 es->es_lblk, es->es_len,
469 ext4_es_pblock(es), ext4_es_status(es));
470 }
471 goto out;
472 }
473
474 /*
475 * We don't check ee_block == es->es_lblk, etc. because es
476 * might be a part of whole extent, vice versa.
477 */
478 if (es->es_lblk < ee_block ||
479 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
480 pr_warn("ES insert assertion failed for inode: %lu "
481 "ex_status [%d/%d/%llu/%c] != "
482 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 ee_block, ee_len, ee_start,
484 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 ext4_es_pblock(es), es_status ? 'u' : 'w');
486 goto out;
487 }
488
489 if (ee_status ^ es_status) {
490 pr_warn("ES insert assertion failed for inode: %lu "
491 "ex_status [%d/%d/%llu/%c] != "
492 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
493 ee_block, ee_len, ee_start,
494 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
495 ext4_es_pblock(es), es_status ? 'u' : 'w');
496 }
497 } else {
498 /*
499 * We can't find an extent on disk. So we need to make sure
500 * that we don't want to add an written/unwritten extent.
501 */
502 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
503 pr_warn("ES insert assertion failed for inode: %lu "
504 "can't find an extent at block %d but we want "
505 "to add a written/unwritten extent "
506 "[%d/%d/%llu/%x]\n", inode->i_ino,
507 es->es_lblk, es->es_lblk, es->es_len,
508 ext4_es_pblock(es), ext4_es_status(es));
509 }
510 }
511 out:
512 ext4_ext_drop_refs(path);
513 kfree(path);
514 }
515
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)516 static void ext4_es_insert_extent_ind_check(struct inode *inode,
517 struct extent_status *es)
518 {
519 struct ext4_map_blocks map;
520 int retval;
521
522 /*
523 * Here we call ext4_ind_map_blocks to lookup a block mapping because
524 * 'Indirect' structure is defined in indirect.c. So we couldn't
525 * access direct/indirect tree from outside. It is too dirty to define
526 * this function in indirect.c file.
527 */
528
529 map.m_lblk = es->es_lblk;
530 map.m_len = es->es_len;
531
532 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
533 if (retval > 0) {
534 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
535 /*
536 * We want to add a delayed/hole extent but this
537 * block has been allocated.
538 */
539 pr_warn("ES insert assertion failed for inode: %lu "
540 "We can find blocks but we want to add a "
541 "delayed/hole extent [%d/%d/%llu/%x]\n",
542 inode->i_ino, es->es_lblk, es->es_len,
543 ext4_es_pblock(es), ext4_es_status(es));
544 return;
545 } else if (ext4_es_is_written(es)) {
546 if (retval != es->es_len) {
547 pr_warn("ES insert assertion failed for "
548 "inode: %lu retval %d != es_len %d\n",
549 inode->i_ino, retval, es->es_len);
550 return;
551 }
552 if (map.m_pblk != ext4_es_pblock(es)) {
553 pr_warn("ES insert assertion failed for "
554 "inode: %lu m_pblk %llu != "
555 "es_pblk %llu\n",
556 inode->i_ino, map.m_pblk,
557 ext4_es_pblock(es));
558 return;
559 }
560 } else {
561 /*
562 * We don't need to check unwritten extent because
563 * indirect-based file doesn't have it.
564 */
565 BUG_ON(1);
566 }
567 } else if (retval == 0) {
568 if (ext4_es_is_written(es)) {
569 pr_warn("ES insert assertion failed for inode: %lu "
570 "We can't find the block but we want to add "
571 "a written extent [%d/%d/%llu/%x]\n",
572 inode->i_ino, es->es_lblk, es->es_len,
573 ext4_es_pblock(es), ext4_es_status(es));
574 return;
575 }
576 }
577 }
578
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)579 static inline void ext4_es_insert_extent_check(struct inode *inode,
580 struct extent_status *es)
581 {
582 /*
583 * We don't need to worry about the race condition because
584 * caller takes i_data_sem locking.
585 */
586 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
587 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
588 ext4_es_insert_extent_ext_check(inode, es);
589 else
590 ext4_es_insert_extent_ind_check(inode, es);
591 }
592 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)593 static inline void ext4_es_insert_extent_check(struct inode *inode,
594 struct extent_status *es)
595 {
596 }
597 #endif
598
__es_insert_extent(struct inode * inode,struct extent_status * newes)599 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
600 {
601 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
602 struct rb_node **p = &tree->root.rb_node;
603 struct rb_node *parent = NULL;
604 struct extent_status *es;
605
606 while (*p) {
607 parent = *p;
608 es = rb_entry(parent, struct extent_status, rb_node);
609
610 if (newes->es_lblk < es->es_lblk) {
611 if (ext4_es_can_be_merged(newes, es)) {
612 /*
613 * Here we can modify es_lblk directly
614 * because it isn't overlapped.
615 */
616 es->es_lblk = newes->es_lblk;
617 es->es_len += newes->es_len;
618 if (ext4_es_is_written(es) ||
619 ext4_es_is_unwritten(es))
620 ext4_es_store_pblock(es,
621 newes->es_pblk);
622 es = ext4_es_try_to_merge_left(inode, es);
623 goto out;
624 }
625 p = &(*p)->rb_left;
626 } else if (newes->es_lblk > ext4_es_end(es)) {
627 if (ext4_es_can_be_merged(es, newes)) {
628 es->es_len += newes->es_len;
629 es = ext4_es_try_to_merge_right(inode, es);
630 goto out;
631 }
632 p = &(*p)->rb_right;
633 } else {
634 BUG_ON(1);
635 return -EINVAL;
636 }
637 }
638
639 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
640 newes->es_pblk);
641 if (!es)
642 return -ENOMEM;
643 rb_link_node(&es->rb_node, parent, p);
644 rb_insert_color(&es->rb_node, &tree->root);
645
646 out:
647 tree->cache_es = es;
648 return 0;
649 }
650
651 /*
652 * ext4_es_insert_extent() adds information to an inode's extent
653 * status tree.
654 *
655 * Return 0 on success, error code on failure.
656 */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)657 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
658 ext4_lblk_t len, ext4_fsblk_t pblk,
659 unsigned int status)
660 {
661 struct extent_status newes;
662 ext4_lblk_t end = lblk + len - 1;
663 int err = 0;
664
665 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
666 lblk, len, pblk, status, inode->i_ino);
667
668 if (!len)
669 return 0;
670
671 BUG_ON(end < lblk);
672
673 if ((status & EXTENT_STATUS_DELAYED) &&
674 (status & EXTENT_STATUS_WRITTEN)) {
675 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
676 " delayed and written which can potentially "
677 " cause data loss.\n", lblk, len);
678 WARN_ON(1);
679 }
680
681 newes.es_lblk = lblk;
682 newes.es_len = len;
683 ext4_es_store_pblock_status(&newes, pblk, status);
684 trace_ext4_es_insert_extent(inode, &newes);
685
686 ext4_es_insert_extent_check(inode, &newes);
687
688 write_lock(&EXT4_I(inode)->i_es_lock);
689 err = __es_remove_extent(inode, lblk, end);
690 if (err != 0)
691 goto error;
692 retry:
693 err = __es_insert_extent(inode, &newes);
694 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
695 EXT4_I(inode)))
696 goto retry;
697 if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
698 err = 0;
699
700 error:
701 write_unlock(&EXT4_I(inode)->i_es_lock);
702
703 ext4_es_print_tree(inode);
704
705 return err;
706 }
707
708 /*
709 * ext4_es_cache_extent() inserts information into the extent status
710 * tree if and only if there isn't information about the range in
711 * question already.
712 */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)713 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
714 ext4_lblk_t len, ext4_fsblk_t pblk,
715 unsigned int status)
716 {
717 struct extent_status *es;
718 struct extent_status newes;
719 ext4_lblk_t end = lblk + len - 1;
720
721 newes.es_lblk = lblk;
722 newes.es_len = len;
723 ext4_es_store_pblock_status(&newes, pblk, status);
724 trace_ext4_es_cache_extent(inode, &newes);
725
726 if (!len)
727 return;
728
729 BUG_ON(end < lblk);
730
731 write_lock(&EXT4_I(inode)->i_es_lock);
732
733 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
734 if (!es || es->es_lblk > end)
735 __es_insert_extent(inode, &newes);
736 write_unlock(&EXT4_I(inode)->i_es_lock);
737 }
738
739 /*
740 * ext4_es_lookup_extent() looks up an extent in extent status tree.
741 *
742 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
743 *
744 * Return: 1 on found, 0 on not
745 */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es)746 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
747 struct extent_status *es)
748 {
749 struct ext4_es_tree *tree;
750 struct ext4_es_stats *stats;
751 struct extent_status *es1 = NULL;
752 struct rb_node *node;
753 int found = 0;
754
755 trace_ext4_es_lookup_extent_enter(inode, lblk);
756 es_debug("lookup extent in block %u\n", lblk);
757
758 tree = &EXT4_I(inode)->i_es_tree;
759 read_lock(&EXT4_I(inode)->i_es_lock);
760
761 /* find extent in cache firstly */
762 es->es_lblk = es->es_len = es->es_pblk = 0;
763 if (tree->cache_es) {
764 es1 = tree->cache_es;
765 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
766 es_debug("%u cached by [%u/%u)\n",
767 lblk, es1->es_lblk, es1->es_len);
768 found = 1;
769 goto out;
770 }
771 }
772
773 node = tree->root.rb_node;
774 while (node) {
775 es1 = rb_entry(node, struct extent_status, rb_node);
776 if (lblk < es1->es_lblk)
777 node = node->rb_left;
778 else if (lblk > ext4_es_end(es1))
779 node = node->rb_right;
780 else {
781 found = 1;
782 break;
783 }
784 }
785
786 out:
787 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
788 if (found) {
789 BUG_ON(!es1);
790 es->es_lblk = es1->es_lblk;
791 es->es_len = es1->es_len;
792 es->es_pblk = es1->es_pblk;
793 stats->es_stats_cache_hits++;
794 } else {
795 stats->es_stats_cache_misses++;
796 }
797
798 read_unlock(&EXT4_I(inode)->i_es_lock);
799
800 trace_ext4_es_lookup_extent_exit(inode, es, found);
801 return found;
802 }
803
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end)804 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
805 ext4_lblk_t end)
806 {
807 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
808 struct rb_node *node;
809 struct extent_status *es;
810 struct extent_status orig_es;
811 ext4_lblk_t len1, len2;
812 ext4_fsblk_t block;
813 int err;
814
815 retry:
816 err = 0;
817 es = __es_tree_search(&tree->root, lblk);
818 if (!es)
819 goto out;
820 if (es->es_lblk > end)
821 goto out;
822
823 /* Simply invalidate cache_es. */
824 tree->cache_es = NULL;
825
826 orig_es.es_lblk = es->es_lblk;
827 orig_es.es_len = es->es_len;
828 orig_es.es_pblk = es->es_pblk;
829
830 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
831 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
832 if (len1 > 0)
833 es->es_len = len1;
834 if (len2 > 0) {
835 if (len1 > 0) {
836 struct extent_status newes;
837
838 newes.es_lblk = end + 1;
839 newes.es_len = len2;
840 block = 0x7FDEADBEEFULL;
841 if (ext4_es_is_written(&orig_es) ||
842 ext4_es_is_unwritten(&orig_es))
843 block = ext4_es_pblock(&orig_es) +
844 orig_es.es_len - len2;
845 ext4_es_store_pblock_status(&newes, block,
846 ext4_es_status(&orig_es));
847 err = __es_insert_extent(inode, &newes);
848 if (err) {
849 es->es_lblk = orig_es.es_lblk;
850 es->es_len = orig_es.es_len;
851 if ((err == -ENOMEM) &&
852 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
853 EXT4_I(inode)))
854 goto retry;
855 goto out;
856 }
857 } else {
858 es->es_lblk = end + 1;
859 es->es_len = len2;
860 if (ext4_es_is_written(es) ||
861 ext4_es_is_unwritten(es)) {
862 block = orig_es.es_pblk + orig_es.es_len - len2;
863 ext4_es_store_pblock(es, block);
864 }
865 }
866 goto out;
867 }
868
869 if (len1 > 0) {
870 node = rb_next(&es->rb_node);
871 if (node)
872 es = rb_entry(node, struct extent_status, rb_node);
873 else
874 es = NULL;
875 }
876
877 while (es && ext4_es_end(es) <= end) {
878 node = rb_next(&es->rb_node);
879 rb_erase(&es->rb_node, &tree->root);
880 ext4_es_free_extent(inode, es);
881 if (!node) {
882 es = NULL;
883 break;
884 }
885 es = rb_entry(node, struct extent_status, rb_node);
886 }
887
888 if (es && es->es_lblk < end + 1) {
889 ext4_lblk_t orig_len = es->es_len;
890
891 len1 = ext4_es_end(es) - end;
892 es->es_lblk = end + 1;
893 es->es_len = len1;
894 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
895 block = es->es_pblk + orig_len - len1;
896 ext4_es_store_pblock(es, block);
897 }
898 }
899
900 out:
901 return err;
902 }
903
904 /*
905 * ext4_es_remove_extent() removes a space from a extent status tree.
906 *
907 * Return 0 on success, error code on failure.
908 */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)909 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
910 ext4_lblk_t len)
911 {
912 ext4_lblk_t end;
913 int err = 0;
914
915 trace_ext4_es_remove_extent(inode, lblk, len);
916 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
917 lblk, len, inode->i_ino);
918
919 if (!len)
920 return err;
921
922 end = lblk + len - 1;
923 BUG_ON(end < lblk);
924
925 write_lock(&EXT4_I(inode)->i_es_lock);
926 err = __es_remove_extent(inode, lblk, end);
927 write_unlock(&EXT4_I(inode)->i_es_lock);
928 ext4_es_print_tree(inode);
929 return err;
930 }
931
ext4_inode_touch_time_cmp(void * priv,struct list_head * a,struct list_head * b)932 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
933 struct list_head *b)
934 {
935 struct ext4_inode_info *eia, *eib;
936 eia = list_entry(a, struct ext4_inode_info, i_es_lru);
937 eib = list_entry(b, struct ext4_inode_info, i_es_lru);
938
939 if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
940 !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
941 return 1;
942 if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
943 ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
944 return -1;
945 if (eia->i_touch_when == eib->i_touch_when)
946 return 0;
947 if (time_after(eia->i_touch_when, eib->i_touch_when))
948 return 1;
949 else
950 return -1;
951 }
952
__ext4_es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)953 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
954 struct ext4_inode_info *locked_ei)
955 {
956 struct ext4_inode_info *ei;
957 struct ext4_es_stats *es_stats;
958 struct list_head *cur, *tmp;
959 LIST_HEAD(skipped);
960 ktime_t start_time;
961 u64 scan_time;
962 int nr_shrunk = 0;
963 int retried = 0, skip_precached = 1, nr_skipped = 0;
964
965 es_stats = &sbi->s_es_stats;
966 start_time = ktime_get();
967 spin_lock(&sbi->s_es_lru_lock);
968
969 retry:
970 list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
971 int shrunk;
972
973 /*
974 * If we have already reclaimed all extents from extent
975 * status tree, just stop the loop immediately.
976 */
977 if (percpu_counter_read_positive(
978 &es_stats->es_stats_lru_cnt) == 0)
979 break;
980
981 ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
982
983 /*
984 * Skip the inode that is newer than the last_sorted
985 * time. Normally we try hard to avoid shrinking
986 * precached inodes, but we will as a last resort.
987 */
988 if ((es_stats->es_stats_last_sorted < ei->i_touch_when) ||
989 (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
990 EXT4_STATE_EXT_PRECACHED))) {
991 nr_skipped++;
992 list_move_tail(cur, &skipped);
993 continue;
994 }
995
996 if (ei->i_es_lru_nr == 0 || ei == locked_ei ||
997 !write_trylock(&ei->i_es_lock))
998 continue;
999
1000 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
1001 if (ei->i_es_lru_nr == 0)
1002 list_del_init(&ei->i_es_lru);
1003 write_unlock(&ei->i_es_lock);
1004
1005 nr_shrunk += shrunk;
1006 nr_to_scan -= shrunk;
1007 if (nr_to_scan == 0)
1008 break;
1009 }
1010
1011 /* Move the newer inodes into the tail of the LRU list. */
1012 list_splice_tail(&skipped, &sbi->s_es_lru);
1013 INIT_LIST_HEAD(&skipped);
1014
1015 /*
1016 * If we skipped any inodes, and we weren't able to make any
1017 * forward progress, sort the list and try again.
1018 */
1019 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1020 retried++;
1021 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
1022 es_stats->es_stats_last_sorted = jiffies;
1023 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
1024 i_es_lru);
1025 /*
1026 * If there are no non-precached inodes left on the
1027 * list, start releasing precached extents.
1028 */
1029 if (ext4_test_inode_state(&ei->vfs_inode,
1030 EXT4_STATE_EXT_PRECACHED))
1031 skip_precached = 0;
1032 goto retry;
1033 }
1034
1035 spin_unlock(&sbi->s_es_lru_lock);
1036
1037 if (locked_ei && nr_shrunk == 0)
1038 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1039
1040 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1041 if (likely(es_stats->es_stats_scan_time))
1042 es_stats->es_stats_scan_time = (scan_time +
1043 es_stats->es_stats_scan_time*3) / 4;
1044 else
1045 es_stats->es_stats_scan_time = scan_time;
1046 if (scan_time > es_stats->es_stats_max_scan_time)
1047 es_stats->es_stats_max_scan_time = scan_time;
1048 if (likely(es_stats->es_stats_shrunk))
1049 es_stats->es_stats_shrunk = (nr_shrunk +
1050 es_stats->es_stats_shrunk*3) / 4;
1051 else
1052 es_stats->es_stats_shrunk = nr_shrunk;
1053
1054 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, skip_precached,
1055 nr_skipped, retried);
1056 return nr_shrunk;
1057 }
1058
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1059 static unsigned long ext4_es_count(struct shrinker *shrink,
1060 struct shrink_control *sc)
1061 {
1062 unsigned long nr;
1063 struct ext4_sb_info *sbi;
1064
1065 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1066 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1067 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1068 return nr;
1069 }
1070
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1071 static unsigned long ext4_es_scan(struct shrinker *shrink,
1072 struct shrink_control *sc)
1073 {
1074 struct ext4_sb_info *sbi = container_of(shrink,
1075 struct ext4_sb_info, s_es_shrinker);
1076 int nr_to_scan = sc->nr_to_scan;
1077 int ret, nr_shrunk;
1078
1079 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1080 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1081
1082 if (!nr_to_scan)
1083 return ret;
1084
1085 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1086
1087 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1088 return nr_shrunk;
1089 }
1090
ext4_es_seq_shrinker_info_start(struct seq_file * seq,loff_t * pos)1091 static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos)
1092 {
1093 return *pos ? NULL : SEQ_START_TOKEN;
1094 }
1095
1096 static void *
ext4_es_seq_shrinker_info_next(struct seq_file * seq,void * v,loff_t * pos)1097 ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos)
1098 {
1099 return NULL;
1100 }
1101
ext4_es_seq_shrinker_info_show(struct seq_file * seq,void * v)1102 static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v)
1103 {
1104 struct ext4_sb_info *sbi = seq->private;
1105 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1106 struct ext4_inode_info *ei, *max = NULL;
1107 unsigned int inode_cnt = 0;
1108
1109 if (v != SEQ_START_TOKEN)
1110 return 0;
1111
1112 /* here we just find an inode that has the max nr. of objects */
1113 spin_lock(&sbi->s_es_lru_lock);
1114 list_for_each_entry(ei, &sbi->s_es_lru, i_es_lru) {
1115 inode_cnt++;
1116 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1117 max = ei;
1118 else if (!max)
1119 max = ei;
1120 }
1121 spin_unlock(&sbi->s_es_lru_lock);
1122
1123 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1124 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1125 percpu_counter_sum_positive(&es_stats->es_stats_lru_cnt));
1126 seq_printf(seq, " %lu/%lu cache hits/misses\n",
1127 es_stats->es_stats_cache_hits,
1128 es_stats->es_stats_cache_misses);
1129 if (es_stats->es_stats_last_sorted != 0)
1130 seq_printf(seq, " %u ms last sorted interval\n",
1131 jiffies_to_msecs(jiffies -
1132 es_stats->es_stats_last_sorted));
1133 if (inode_cnt)
1134 seq_printf(seq, " %d inodes on lru list\n", inode_cnt);
1135
1136 seq_printf(seq, "average:\n %llu us scan time\n",
1137 div_u64(es_stats->es_stats_scan_time, 1000));
1138 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1139 if (inode_cnt)
1140 seq_printf(seq,
1141 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1142 " %llu us max scan time\n",
1143 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_lru_nr,
1144 div_u64(es_stats->es_stats_max_scan_time, 1000));
1145
1146 return 0;
1147 }
1148
ext4_es_seq_shrinker_info_stop(struct seq_file * seq,void * v)1149 static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v)
1150 {
1151 }
1152
1153 static const struct seq_operations ext4_es_seq_shrinker_info_ops = {
1154 .start = ext4_es_seq_shrinker_info_start,
1155 .next = ext4_es_seq_shrinker_info_next,
1156 .stop = ext4_es_seq_shrinker_info_stop,
1157 .show = ext4_es_seq_shrinker_info_show,
1158 };
1159
1160 static int
ext4_es_seq_shrinker_info_open(struct inode * inode,struct file * file)1161 ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file)
1162 {
1163 int ret;
1164
1165 ret = seq_open(file, &ext4_es_seq_shrinker_info_ops);
1166 if (!ret) {
1167 struct seq_file *m = file->private_data;
1168 m->private = PDE_DATA(inode);
1169 }
1170
1171 return ret;
1172 }
1173
1174 static int
ext4_es_seq_shrinker_info_release(struct inode * inode,struct file * file)1175 ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file)
1176 {
1177 return seq_release(inode, file);
1178 }
1179
1180 static const struct file_operations ext4_es_seq_shrinker_info_fops = {
1181 .owner = THIS_MODULE,
1182 .open = ext4_es_seq_shrinker_info_open,
1183 .read = seq_read,
1184 .llseek = seq_lseek,
1185 .release = ext4_es_seq_shrinker_info_release,
1186 };
1187
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1188 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1189 {
1190 int err;
1191
1192 INIT_LIST_HEAD(&sbi->s_es_lru);
1193 spin_lock_init(&sbi->s_es_lru_lock);
1194 sbi->s_es_stats.es_stats_last_sorted = 0;
1195 sbi->s_es_stats.es_stats_shrunk = 0;
1196 sbi->s_es_stats.es_stats_cache_hits = 0;
1197 sbi->s_es_stats.es_stats_cache_misses = 0;
1198 sbi->s_es_stats.es_stats_scan_time = 0;
1199 sbi->s_es_stats.es_stats_max_scan_time = 0;
1200 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1201 if (err)
1202 return err;
1203 err = percpu_counter_init(&sbi->s_es_stats.es_stats_lru_cnt, 0, GFP_KERNEL);
1204 if (err)
1205 goto err1;
1206
1207 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1208 sbi->s_es_shrinker.count_objects = ext4_es_count;
1209 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1210 err = register_shrinker(&sbi->s_es_shrinker);
1211 if (err)
1212 goto err2;
1213
1214 if (sbi->s_proc)
1215 proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc,
1216 &ext4_es_seq_shrinker_info_fops, sbi);
1217
1218 return 0;
1219
1220 err2:
1221 percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1222 err1:
1223 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1224 return err;
1225 }
1226
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1227 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1228 {
1229 if (sbi->s_proc)
1230 remove_proc_entry("es_shrinker_info", sbi->s_proc);
1231 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1232 percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1233 unregister_shrinker(&sbi->s_es_shrinker);
1234 }
1235
ext4_es_lru_add(struct inode * inode)1236 void ext4_es_lru_add(struct inode *inode)
1237 {
1238 struct ext4_inode_info *ei = EXT4_I(inode);
1239 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1240
1241 ei->i_touch_when = jiffies;
1242
1243 if (!list_empty(&ei->i_es_lru))
1244 return;
1245
1246 spin_lock(&sbi->s_es_lru_lock);
1247 if (list_empty(&ei->i_es_lru))
1248 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1249 spin_unlock(&sbi->s_es_lru_lock);
1250 }
1251
ext4_es_lru_del(struct inode * inode)1252 void ext4_es_lru_del(struct inode *inode)
1253 {
1254 struct ext4_inode_info *ei = EXT4_I(inode);
1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256
1257 spin_lock(&sbi->s_es_lru_lock);
1258 if (!list_empty(&ei->i_es_lru))
1259 list_del_init(&ei->i_es_lru);
1260 spin_unlock(&sbi->s_es_lru_lock);
1261 }
1262
__es_try_to_reclaim_extents(struct ext4_inode_info * ei,int nr_to_scan)1263 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1264 int nr_to_scan)
1265 {
1266 struct inode *inode = &ei->vfs_inode;
1267 struct ext4_es_tree *tree = &ei->i_es_tree;
1268 struct rb_node *node;
1269 struct extent_status *es;
1270 unsigned long nr_shrunk = 0;
1271 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1272 DEFAULT_RATELIMIT_BURST);
1273
1274 if (ei->i_es_lru_nr == 0)
1275 return 0;
1276
1277 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1278 __ratelimit(&_rs))
1279 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1280
1281 node = rb_first(&tree->root);
1282 while (node != NULL) {
1283 es = rb_entry(node, struct extent_status, rb_node);
1284 node = rb_next(&es->rb_node);
1285 /*
1286 * We can't reclaim delayed extent from status tree because
1287 * fiemap, bigallic, and seek_data/hole need to use it.
1288 */
1289 if (!ext4_es_is_delayed(es)) {
1290 rb_erase(&es->rb_node, &tree->root);
1291 ext4_es_free_extent(inode, es);
1292 nr_shrunk++;
1293 if (--nr_to_scan == 0)
1294 break;
1295 }
1296 }
1297 tree->cache_es = NULL;
1298 return nr_shrunk;
1299 }
1300