• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/ext4/extents_status.c
3  *
4  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5  * Modified by
6  *	Allison Henderson <achender@linux.vnet.ibm.com>
7  *	Hugh Dickins <hughd@google.com>
8  *	Zheng Liu <wenqing.lz@taobao.com>
9  *
10  * Ext4 extents status tree core functions.
11  */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 #include "extents_status.h"
18 
19 #include <trace/events/ext4.h>
20 
21 /*
22  * According to previous discussion in Ext4 Developer Workshop, we
23  * will introduce a new structure called io tree to track all extent
24  * status in order to solve some problems that we have met
25  * (e.g. Reservation space warning), and provide extent-level locking.
26  * Delay extent tree is the first step to achieve this goal.  It is
27  * original built by Yongqiang Yang.  At that time it is called delay
28  * extent tree, whose goal is only track delayed extents in memory to
29  * simplify the implementation of fiemap and bigalloc, and introduce
30  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
31  * delay extent tree at the first commit.  But for better understand
32  * what it does, it has been rename to extent status tree.
33  *
34  * Step1:
35  * Currently the first step has been done.  All delayed extents are
36  * tracked in the tree.  It maintains the delayed extent when a delayed
37  * allocation is issued, and the delayed extent is written out or
38  * invalidated.  Therefore the implementation of fiemap and bigalloc
39  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40  *
41  * The following comment describes the implemenmtation of extent
42  * status tree and future works.
43  *
44  * Step2:
45  * In this step all extent status are tracked by extent status tree.
46  * Thus, we can first try to lookup a block mapping in this tree before
47  * finding it in extent tree.  Hence, single extent cache can be removed
48  * because extent status tree can do a better job.  Extents in status
49  * tree are loaded on-demand.  Therefore, the extent status tree may not
50  * contain all of the extents in a file.  Meanwhile we define a shrinker
51  * to reclaim memory from extent status tree because fragmented extent
52  * tree will make status tree cost too much memory.  written/unwritten/-
53  * hole extents in the tree will be reclaimed by this shrinker when we
54  * are under high memory pressure.  Delayed extents will not be
55  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
56  */
57 
58 /*
59  * Extent status tree implementation for ext4.
60  *
61  *
62  * ==========================================================================
63  * Extent status tree tracks all extent status.
64  *
65  * 1. Why we need to implement extent status tree?
66  *
67  * Without extent status tree, ext4 identifies a delayed extent by looking
68  * up page cache, this has several deficiencies - complicated, buggy,
69  * and inefficient code.
70  *
71  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
72  * block or a range of blocks are belonged to a delayed extent.
73  *
74  * Let us have a look at how they do without extent status tree.
75  *   --	FIEMAP
76  *	FIEMAP looks up page cache to identify delayed allocations from holes.
77  *
78  *   --	SEEK_HOLE/DATA
79  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
80  *
81  *   --	bigalloc
82  *	bigalloc looks up page cache to figure out if a block is
83  *	already under delayed allocation or not to determine whether
84  *	quota reserving is needed for the cluster.
85  *
86  *   --	writeout
87  *	Writeout looks up whole page cache to see if a buffer is
88  *	mapped, If there are not very many delayed buffers, then it is
89  *	time comsuming.
90  *
91  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
92  * bigalloc and writeout can figure out if a block or a range of
93  * blocks is under delayed allocation(belonged to a delayed extent) or
94  * not by searching the extent tree.
95  *
96  *
97  * ==========================================================================
98  * 2. Ext4 extent status tree impelmentation
99  *
100  *   --	extent
101  *	A extent is a range of blocks which are contiguous logically and
102  *	physically.  Unlike extent in extent tree, this extent in ext4 is
103  *	a in-memory struct, there is no corresponding on-disk data.  There
104  *	is no limit on length of extent, so an extent can contain as many
105  *	blocks as they are contiguous logically and physically.
106  *
107  *   --	extent status tree
108  *	Every inode has an extent status tree and all allocation blocks
109  *	are added to the tree with different status.  The extent in the
110  *	tree are ordered by logical block no.
111  *
112  *   --	operations on a extent status tree
113  *	There are three important operations on a delayed extent tree: find
114  *	next extent, adding a extent(a range of blocks) and removing a extent.
115  *
116  *   --	race on a extent status tree
117  *	Extent status tree is protected by inode->i_es_lock.
118  *
119  *   --	memory consumption
120  *      Fragmented extent tree will make extent status tree cost too much
121  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
122  *      the tree under a heavy memory pressure.
123  *
124  *
125  * ==========================================================================
126  * 3. Performance analysis
127  *
128  *   --	overhead
129  *	1. There is a cache extent for write access, so if writes are
130  *	not very random, adding space operaions are in O(1) time.
131  *
132  *   --	gain
133  *	2. Code is much simpler, more readable, more maintainable and
134  *	more efficient.
135  *
136  *
137  * ==========================================================================
138  * 4. TODO list
139  *
140  *   -- Refactor delayed space reservation
141  *
142  *   -- Extent-level locking
143  */
144 
145 static struct kmem_cache *ext4_es_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 			      ext4_lblk_t end);
150 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
151 				       int nr_to_scan);
152 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
153 			    struct ext4_inode_info *locked_ei);
154 
ext4_init_es(void)155 int __init ext4_init_es(void)
156 {
157 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
158 					   sizeof(struct extent_status),
159 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
160 	if (ext4_es_cachep == NULL)
161 		return -ENOMEM;
162 	return 0;
163 }
164 
ext4_exit_es(void)165 void ext4_exit_es(void)
166 {
167 	if (ext4_es_cachep)
168 		kmem_cache_destroy(ext4_es_cachep);
169 }
170 
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
240  * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
241  *
242  * @inode: the inode which owns delayed extents
243  * @lblk: the offset where we start to search
244  * @end: the offset where we stop to search
245  * @es: delayed extent that we found
246  */
ext4_es_find_delayed_extent_range(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)247 void ext4_es_find_delayed_extent_range(struct inode *inode,
248 				 ext4_lblk_t lblk, ext4_lblk_t end,
249 				 struct extent_status *es)
250 {
251 	struct ext4_es_tree *tree = NULL;
252 	struct extent_status *es1 = NULL;
253 	struct rb_node *node;
254 
255 	BUG_ON(es == NULL);
256 	BUG_ON(end < lblk);
257 	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
258 
259 	read_lock(&EXT4_I(inode)->i_es_lock);
260 	tree = &EXT4_I(inode)->i_es_tree;
261 
262 	/* find extent in cache firstly */
263 	es->es_lblk = es->es_len = es->es_pblk = 0;
264 	if (tree->cache_es) {
265 		es1 = tree->cache_es;
266 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
267 			es_debug("%u cached by [%u/%u) %llu %x\n",
268 				 lblk, es1->es_lblk, es1->es_len,
269 				 ext4_es_pblock(es1), ext4_es_status(es1));
270 			goto out;
271 		}
272 	}
273 
274 	es1 = __es_tree_search(&tree->root, lblk);
275 
276 out:
277 	if (es1 && !ext4_es_is_delayed(es1)) {
278 		while ((node = rb_next(&es1->rb_node)) != NULL) {
279 			es1 = rb_entry(node, struct extent_status, rb_node);
280 			if (es1->es_lblk > end) {
281 				es1 = NULL;
282 				break;
283 			}
284 			if (ext4_es_is_delayed(es1))
285 				break;
286 		}
287 	}
288 
289 	if (es1 && ext4_es_is_delayed(es1)) {
290 		tree->cache_es = es1;
291 		es->es_lblk = es1->es_lblk;
292 		es->es_len = es1->es_len;
293 		es->es_pblk = es1->es_pblk;
294 	}
295 
296 	read_unlock(&EXT4_I(inode)->i_es_lock);
297 
298 	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
299 }
300 
301 static struct extent_status *
ext4_es_alloc_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)302 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
303 		     ext4_fsblk_t pblk)
304 {
305 	struct extent_status *es;
306 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
307 	if (es == NULL)
308 		return NULL;
309 	es->es_lblk = lblk;
310 	es->es_len = len;
311 	es->es_pblk = pblk;
312 
313 	/*
314 	 * We don't count delayed extent because we never try to reclaim them
315 	 */
316 	if (!ext4_es_is_delayed(es)) {
317 		EXT4_I(inode)->i_es_lru_nr++;
318 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
319 					s_es_stats.es_stats_lru_cnt);
320 	}
321 
322 	EXT4_I(inode)->i_es_all_nr++;
323 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
324 
325 	return es;
326 }
327 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)328 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
329 {
330 	EXT4_I(inode)->i_es_all_nr--;
331 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
332 
333 	/* Decrease the lru counter when this es is not delayed */
334 	if (!ext4_es_is_delayed(es)) {
335 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
336 		EXT4_I(inode)->i_es_lru_nr--;
337 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
338 					s_es_stats.es_stats_lru_cnt);
339 	}
340 
341 	kmem_cache_free(ext4_es_cachep, es);
342 }
343 
344 /*
345  * Check whether or not two extents can be merged
346  * Condition:
347  *  - logical block number is contiguous
348  *  - physical block number is contiguous
349  *  - status is equal
350  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)351 static int ext4_es_can_be_merged(struct extent_status *es1,
352 				 struct extent_status *es2)
353 {
354 	if (ext4_es_status(es1) != ext4_es_status(es2))
355 		return 0;
356 
357 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
358 		pr_warn("ES assertion failed when merging extents. "
359 			"The sum of lengths of es1 (%d) and es2 (%d) "
360 			"is bigger than allowed file size (%d)\n",
361 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
362 		WARN_ON(1);
363 		return 0;
364 	}
365 
366 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
367 		return 0;
368 
369 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
370 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
371 		return 1;
372 
373 	if (ext4_es_is_hole(es1))
374 		return 1;
375 
376 	/* we need to check delayed extent is without unwritten status */
377 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
378 		return 1;
379 
380 	return 0;
381 }
382 
383 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)384 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
385 {
386 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
387 	struct extent_status *es1;
388 	struct rb_node *node;
389 
390 	node = rb_prev(&es->rb_node);
391 	if (!node)
392 		return es;
393 
394 	es1 = rb_entry(node, struct extent_status, rb_node);
395 	if (ext4_es_can_be_merged(es1, es)) {
396 		es1->es_len += es->es_len;
397 		rb_erase(&es->rb_node, &tree->root);
398 		ext4_es_free_extent(inode, es);
399 		es = es1;
400 	}
401 
402 	return es;
403 }
404 
405 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)406 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
407 {
408 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
409 	struct extent_status *es1;
410 	struct rb_node *node;
411 
412 	node = rb_next(&es->rb_node);
413 	if (!node)
414 		return es;
415 
416 	es1 = rb_entry(node, struct extent_status, rb_node);
417 	if (ext4_es_can_be_merged(es, es1)) {
418 		es->es_len += es1->es_len;
419 		rb_erase(node, &tree->root);
420 		ext4_es_free_extent(inode, es1);
421 	}
422 
423 	return es;
424 }
425 
426 #ifdef ES_AGGRESSIVE_TEST
427 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
428 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)429 static void ext4_es_insert_extent_ext_check(struct inode *inode,
430 					    struct extent_status *es)
431 {
432 	struct ext4_ext_path *path = NULL;
433 	struct ext4_extent *ex;
434 	ext4_lblk_t ee_block;
435 	ext4_fsblk_t ee_start;
436 	unsigned short ee_len;
437 	int depth, ee_status, es_status;
438 
439 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
440 	if (IS_ERR(path))
441 		return;
442 
443 	depth = ext_depth(inode);
444 	ex = path[depth].p_ext;
445 
446 	if (ex) {
447 
448 		ee_block = le32_to_cpu(ex->ee_block);
449 		ee_start = ext4_ext_pblock(ex);
450 		ee_len = ext4_ext_get_actual_len(ex);
451 
452 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
453 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
454 
455 		/*
456 		 * Make sure ex and es are not overlap when we try to insert
457 		 * a delayed/hole extent.
458 		 */
459 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
460 			if (in_range(es->es_lblk, ee_block, ee_len)) {
461 				pr_warn("ES insert assertion failed for "
462 					"inode: %lu we can find an extent "
463 					"at block [%d/%d/%llu/%c], but we "
464 					"want to add a delayed/hole extent "
465 					"[%d/%d/%llu/%x]\n",
466 					inode->i_ino, ee_block, ee_len,
467 					ee_start, ee_status ? 'u' : 'w',
468 					es->es_lblk, es->es_len,
469 					ext4_es_pblock(es), ext4_es_status(es));
470 			}
471 			goto out;
472 		}
473 
474 		/*
475 		 * We don't check ee_block == es->es_lblk, etc. because es
476 		 * might be a part of whole extent, vice versa.
477 		 */
478 		if (es->es_lblk < ee_block ||
479 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
480 			pr_warn("ES insert assertion failed for inode: %lu "
481 				"ex_status [%d/%d/%llu/%c] != "
482 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 				ee_block, ee_len, ee_start,
484 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 				ext4_es_pblock(es), es_status ? 'u' : 'w');
486 			goto out;
487 		}
488 
489 		if (ee_status ^ es_status) {
490 			pr_warn("ES insert assertion failed for inode: %lu "
491 				"ex_status [%d/%d/%llu/%c] != "
492 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
493 				ee_block, ee_len, ee_start,
494 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
495 				ext4_es_pblock(es), es_status ? 'u' : 'w');
496 		}
497 	} else {
498 		/*
499 		 * We can't find an extent on disk.  So we need to make sure
500 		 * that we don't want to add an written/unwritten extent.
501 		 */
502 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
503 			pr_warn("ES insert assertion failed for inode: %lu "
504 				"can't find an extent at block %d but we want "
505 				"to add a written/unwritten extent "
506 				"[%d/%d/%llu/%x]\n", inode->i_ino,
507 				es->es_lblk, es->es_lblk, es->es_len,
508 				ext4_es_pblock(es), ext4_es_status(es));
509 		}
510 	}
511 out:
512 	ext4_ext_drop_refs(path);
513 	kfree(path);
514 }
515 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)516 static void ext4_es_insert_extent_ind_check(struct inode *inode,
517 					    struct extent_status *es)
518 {
519 	struct ext4_map_blocks map;
520 	int retval;
521 
522 	/*
523 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
524 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
525 	 * access direct/indirect tree from outside.  It is too dirty to define
526 	 * this function in indirect.c file.
527 	 */
528 
529 	map.m_lblk = es->es_lblk;
530 	map.m_len = es->es_len;
531 
532 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
533 	if (retval > 0) {
534 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
535 			/*
536 			 * We want to add a delayed/hole extent but this
537 			 * block has been allocated.
538 			 */
539 			pr_warn("ES insert assertion failed for inode: %lu "
540 				"We can find blocks but we want to add a "
541 				"delayed/hole extent [%d/%d/%llu/%x]\n",
542 				inode->i_ino, es->es_lblk, es->es_len,
543 				ext4_es_pblock(es), ext4_es_status(es));
544 			return;
545 		} else if (ext4_es_is_written(es)) {
546 			if (retval != es->es_len) {
547 				pr_warn("ES insert assertion failed for "
548 					"inode: %lu retval %d != es_len %d\n",
549 					inode->i_ino, retval, es->es_len);
550 				return;
551 			}
552 			if (map.m_pblk != ext4_es_pblock(es)) {
553 				pr_warn("ES insert assertion failed for "
554 					"inode: %lu m_pblk %llu != "
555 					"es_pblk %llu\n",
556 					inode->i_ino, map.m_pblk,
557 					ext4_es_pblock(es));
558 				return;
559 			}
560 		} else {
561 			/*
562 			 * We don't need to check unwritten extent because
563 			 * indirect-based file doesn't have it.
564 			 */
565 			BUG_ON(1);
566 		}
567 	} else if (retval == 0) {
568 		if (ext4_es_is_written(es)) {
569 			pr_warn("ES insert assertion failed for inode: %lu "
570 				"We can't find the block but we want to add "
571 				"a written extent [%d/%d/%llu/%x]\n",
572 				inode->i_ino, es->es_lblk, es->es_len,
573 				ext4_es_pblock(es), ext4_es_status(es));
574 			return;
575 		}
576 	}
577 }
578 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)579 static inline void ext4_es_insert_extent_check(struct inode *inode,
580 					       struct extent_status *es)
581 {
582 	/*
583 	 * We don't need to worry about the race condition because
584 	 * caller takes i_data_sem locking.
585 	 */
586 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
587 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
588 		ext4_es_insert_extent_ext_check(inode, es);
589 	else
590 		ext4_es_insert_extent_ind_check(inode, es);
591 }
592 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)593 static inline void ext4_es_insert_extent_check(struct inode *inode,
594 					       struct extent_status *es)
595 {
596 }
597 #endif
598 
__es_insert_extent(struct inode * inode,struct extent_status * newes)599 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
600 {
601 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
602 	struct rb_node **p = &tree->root.rb_node;
603 	struct rb_node *parent = NULL;
604 	struct extent_status *es;
605 
606 	while (*p) {
607 		parent = *p;
608 		es = rb_entry(parent, struct extent_status, rb_node);
609 
610 		if (newes->es_lblk < es->es_lblk) {
611 			if (ext4_es_can_be_merged(newes, es)) {
612 				/*
613 				 * Here we can modify es_lblk directly
614 				 * because it isn't overlapped.
615 				 */
616 				es->es_lblk = newes->es_lblk;
617 				es->es_len += newes->es_len;
618 				if (ext4_es_is_written(es) ||
619 				    ext4_es_is_unwritten(es))
620 					ext4_es_store_pblock(es,
621 							     newes->es_pblk);
622 				es = ext4_es_try_to_merge_left(inode, es);
623 				goto out;
624 			}
625 			p = &(*p)->rb_left;
626 		} else if (newes->es_lblk > ext4_es_end(es)) {
627 			if (ext4_es_can_be_merged(es, newes)) {
628 				es->es_len += newes->es_len;
629 				es = ext4_es_try_to_merge_right(inode, es);
630 				goto out;
631 			}
632 			p = &(*p)->rb_right;
633 		} else {
634 			BUG_ON(1);
635 			return -EINVAL;
636 		}
637 	}
638 
639 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
640 				  newes->es_pblk);
641 	if (!es)
642 		return -ENOMEM;
643 	rb_link_node(&es->rb_node, parent, p);
644 	rb_insert_color(&es->rb_node, &tree->root);
645 
646 out:
647 	tree->cache_es = es;
648 	return 0;
649 }
650 
651 /*
652  * ext4_es_insert_extent() adds information to an inode's extent
653  * status tree.
654  *
655  * Return 0 on success, error code on failure.
656  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)657 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
658 			  ext4_lblk_t len, ext4_fsblk_t pblk,
659 			  unsigned int status)
660 {
661 	struct extent_status newes;
662 	ext4_lblk_t end = lblk + len - 1;
663 	int err = 0;
664 
665 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
666 		 lblk, len, pblk, status, inode->i_ino);
667 
668 	if (!len)
669 		return 0;
670 
671 	BUG_ON(end < lblk);
672 
673 	if ((status & EXTENT_STATUS_DELAYED) &&
674 	    (status & EXTENT_STATUS_WRITTEN)) {
675 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
676 				" delayed and written which can potentially "
677 				" cause data loss.\n", lblk, len);
678 		WARN_ON(1);
679 	}
680 
681 	newes.es_lblk = lblk;
682 	newes.es_len = len;
683 	ext4_es_store_pblock_status(&newes, pblk, status);
684 	trace_ext4_es_insert_extent(inode, &newes);
685 
686 	ext4_es_insert_extent_check(inode, &newes);
687 
688 	write_lock(&EXT4_I(inode)->i_es_lock);
689 	err = __es_remove_extent(inode, lblk, end);
690 	if (err != 0)
691 		goto error;
692 retry:
693 	err = __es_insert_extent(inode, &newes);
694 	if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
695 					       EXT4_I(inode)))
696 		goto retry;
697 	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
698 		err = 0;
699 
700 error:
701 	write_unlock(&EXT4_I(inode)->i_es_lock);
702 
703 	ext4_es_print_tree(inode);
704 
705 	return err;
706 }
707 
708 /*
709  * ext4_es_cache_extent() inserts information into the extent status
710  * tree if and only if there isn't information about the range in
711  * question already.
712  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)713 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
714 			  ext4_lblk_t len, ext4_fsblk_t pblk,
715 			  unsigned int status)
716 {
717 	struct extent_status *es;
718 	struct extent_status newes;
719 	ext4_lblk_t end = lblk + len - 1;
720 
721 	newes.es_lblk = lblk;
722 	newes.es_len = len;
723 	ext4_es_store_pblock_status(&newes, pblk, status);
724 	trace_ext4_es_cache_extent(inode, &newes);
725 
726 	if (!len)
727 		return;
728 
729 	BUG_ON(end < lblk);
730 
731 	write_lock(&EXT4_I(inode)->i_es_lock);
732 
733 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
734 	if (!es || es->es_lblk > end)
735 		__es_insert_extent(inode, &newes);
736 	write_unlock(&EXT4_I(inode)->i_es_lock);
737 }
738 
739 /*
740  * ext4_es_lookup_extent() looks up an extent in extent status tree.
741  *
742  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
743  *
744  * Return: 1 on found, 0 on not
745  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es)746 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
747 			  struct extent_status *es)
748 {
749 	struct ext4_es_tree *tree;
750 	struct ext4_es_stats *stats;
751 	struct extent_status *es1 = NULL;
752 	struct rb_node *node;
753 	int found = 0;
754 
755 	trace_ext4_es_lookup_extent_enter(inode, lblk);
756 	es_debug("lookup extent in block %u\n", lblk);
757 
758 	tree = &EXT4_I(inode)->i_es_tree;
759 	read_lock(&EXT4_I(inode)->i_es_lock);
760 
761 	/* find extent in cache firstly */
762 	es->es_lblk = es->es_len = es->es_pblk = 0;
763 	if (tree->cache_es) {
764 		es1 = tree->cache_es;
765 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
766 			es_debug("%u cached by [%u/%u)\n",
767 				 lblk, es1->es_lblk, es1->es_len);
768 			found = 1;
769 			goto out;
770 		}
771 	}
772 
773 	node = tree->root.rb_node;
774 	while (node) {
775 		es1 = rb_entry(node, struct extent_status, rb_node);
776 		if (lblk < es1->es_lblk)
777 			node = node->rb_left;
778 		else if (lblk > ext4_es_end(es1))
779 			node = node->rb_right;
780 		else {
781 			found = 1;
782 			break;
783 		}
784 	}
785 
786 out:
787 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
788 	if (found) {
789 		BUG_ON(!es1);
790 		es->es_lblk = es1->es_lblk;
791 		es->es_len = es1->es_len;
792 		es->es_pblk = es1->es_pblk;
793 		stats->es_stats_cache_hits++;
794 	} else {
795 		stats->es_stats_cache_misses++;
796 	}
797 
798 	read_unlock(&EXT4_I(inode)->i_es_lock);
799 
800 	trace_ext4_es_lookup_extent_exit(inode, es, found);
801 	return found;
802 }
803 
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end)804 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
805 			      ext4_lblk_t end)
806 {
807 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
808 	struct rb_node *node;
809 	struct extent_status *es;
810 	struct extent_status orig_es;
811 	ext4_lblk_t len1, len2;
812 	ext4_fsblk_t block;
813 	int err;
814 
815 retry:
816 	err = 0;
817 	es = __es_tree_search(&tree->root, lblk);
818 	if (!es)
819 		goto out;
820 	if (es->es_lblk > end)
821 		goto out;
822 
823 	/* Simply invalidate cache_es. */
824 	tree->cache_es = NULL;
825 
826 	orig_es.es_lblk = es->es_lblk;
827 	orig_es.es_len = es->es_len;
828 	orig_es.es_pblk = es->es_pblk;
829 
830 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
831 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
832 	if (len1 > 0)
833 		es->es_len = len1;
834 	if (len2 > 0) {
835 		if (len1 > 0) {
836 			struct extent_status newes;
837 
838 			newes.es_lblk = end + 1;
839 			newes.es_len = len2;
840 			block = 0x7FDEADBEEFULL;
841 			if (ext4_es_is_written(&orig_es) ||
842 			    ext4_es_is_unwritten(&orig_es))
843 				block = ext4_es_pblock(&orig_es) +
844 					orig_es.es_len - len2;
845 			ext4_es_store_pblock_status(&newes, block,
846 						    ext4_es_status(&orig_es));
847 			err = __es_insert_extent(inode, &newes);
848 			if (err) {
849 				es->es_lblk = orig_es.es_lblk;
850 				es->es_len = orig_es.es_len;
851 				if ((err == -ENOMEM) &&
852 				    __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
853 						     EXT4_I(inode)))
854 					goto retry;
855 				goto out;
856 			}
857 		} else {
858 			es->es_lblk = end + 1;
859 			es->es_len = len2;
860 			if (ext4_es_is_written(es) ||
861 			    ext4_es_is_unwritten(es)) {
862 				block = orig_es.es_pblk + orig_es.es_len - len2;
863 				ext4_es_store_pblock(es, block);
864 			}
865 		}
866 		goto out;
867 	}
868 
869 	if (len1 > 0) {
870 		node = rb_next(&es->rb_node);
871 		if (node)
872 			es = rb_entry(node, struct extent_status, rb_node);
873 		else
874 			es = NULL;
875 	}
876 
877 	while (es && ext4_es_end(es) <= end) {
878 		node = rb_next(&es->rb_node);
879 		rb_erase(&es->rb_node, &tree->root);
880 		ext4_es_free_extent(inode, es);
881 		if (!node) {
882 			es = NULL;
883 			break;
884 		}
885 		es = rb_entry(node, struct extent_status, rb_node);
886 	}
887 
888 	if (es && es->es_lblk < end + 1) {
889 		ext4_lblk_t orig_len = es->es_len;
890 
891 		len1 = ext4_es_end(es) - end;
892 		es->es_lblk = end + 1;
893 		es->es_len = len1;
894 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
895 			block = es->es_pblk + orig_len - len1;
896 			ext4_es_store_pblock(es, block);
897 		}
898 	}
899 
900 out:
901 	return err;
902 }
903 
904 /*
905  * ext4_es_remove_extent() removes a space from a extent status tree.
906  *
907  * Return 0 on success, error code on failure.
908  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)909 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
910 			  ext4_lblk_t len)
911 {
912 	ext4_lblk_t end;
913 	int err = 0;
914 
915 	trace_ext4_es_remove_extent(inode, lblk, len);
916 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
917 		 lblk, len, inode->i_ino);
918 
919 	if (!len)
920 		return err;
921 
922 	end = lblk + len - 1;
923 	BUG_ON(end < lblk);
924 
925 	write_lock(&EXT4_I(inode)->i_es_lock);
926 	err = __es_remove_extent(inode, lblk, end);
927 	write_unlock(&EXT4_I(inode)->i_es_lock);
928 	ext4_es_print_tree(inode);
929 	return err;
930 }
931 
ext4_inode_touch_time_cmp(void * priv,struct list_head * a,struct list_head * b)932 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
933 				     struct list_head *b)
934 {
935 	struct ext4_inode_info *eia, *eib;
936 	eia = list_entry(a, struct ext4_inode_info, i_es_lru);
937 	eib = list_entry(b, struct ext4_inode_info, i_es_lru);
938 
939 	if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
940 	    !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
941 		return 1;
942 	if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
943 	    ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
944 		return -1;
945 	if (eia->i_touch_when == eib->i_touch_when)
946 		return 0;
947 	if (time_after(eia->i_touch_when, eib->i_touch_when))
948 		return 1;
949 	else
950 		return -1;
951 }
952 
__ext4_es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)953 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
954 			    struct ext4_inode_info *locked_ei)
955 {
956 	struct ext4_inode_info *ei;
957 	struct ext4_es_stats *es_stats;
958 	struct list_head *cur, *tmp;
959 	LIST_HEAD(skipped);
960 	ktime_t start_time;
961 	u64 scan_time;
962 	int nr_shrunk = 0;
963 	int retried = 0, skip_precached = 1, nr_skipped = 0;
964 
965 	es_stats = &sbi->s_es_stats;
966 	start_time = ktime_get();
967 	spin_lock(&sbi->s_es_lru_lock);
968 
969 retry:
970 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
971 		int shrunk;
972 
973 		/*
974 		 * If we have already reclaimed all extents from extent
975 		 * status tree, just stop the loop immediately.
976 		 */
977 		if (percpu_counter_read_positive(
978 				&es_stats->es_stats_lru_cnt) == 0)
979 			break;
980 
981 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
982 
983 		/*
984 		 * Skip the inode that is newer than the last_sorted
985 		 * time.  Normally we try hard to avoid shrinking
986 		 * precached inodes, but we will as a last resort.
987 		 */
988 		if ((es_stats->es_stats_last_sorted < ei->i_touch_when) ||
989 		    (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
990 						EXT4_STATE_EXT_PRECACHED))) {
991 			nr_skipped++;
992 			list_move_tail(cur, &skipped);
993 			continue;
994 		}
995 
996 		if (ei->i_es_lru_nr == 0 || ei == locked_ei ||
997 		    !write_trylock(&ei->i_es_lock))
998 			continue;
999 
1000 		shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
1001 		if (ei->i_es_lru_nr == 0)
1002 			list_del_init(&ei->i_es_lru);
1003 		write_unlock(&ei->i_es_lock);
1004 
1005 		nr_shrunk += shrunk;
1006 		nr_to_scan -= shrunk;
1007 		if (nr_to_scan == 0)
1008 			break;
1009 	}
1010 
1011 	/* Move the newer inodes into the tail of the LRU list. */
1012 	list_splice_tail(&skipped, &sbi->s_es_lru);
1013 	INIT_LIST_HEAD(&skipped);
1014 
1015 	/*
1016 	 * If we skipped any inodes, and we weren't able to make any
1017 	 * forward progress, sort the list and try again.
1018 	 */
1019 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1020 		retried++;
1021 		list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
1022 		es_stats->es_stats_last_sorted = jiffies;
1023 		ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
1024 				      i_es_lru);
1025 		/*
1026 		 * If there are no non-precached inodes left on the
1027 		 * list, start releasing precached extents.
1028 		 */
1029 		if (ext4_test_inode_state(&ei->vfs_inode,
1030 					  EXT4_STATE_EXT_PRECACHED))
1031 			skip_precached = 0;
1032 		goto retry;
1033 	}
1034 
1035 	spin_unlock(&sbi->s_es_lru_lock);
1036 
1037 	if (locked_ei && nr_shrunk == 0)
1038 		nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1039 
1040 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1041 	if (likely(es_stats->es_stats_scan_time))
1042 		es_stats->es_stats_scan_time = (scan_time +
1043 				es_stats->es_stats_scan_time*3) / 4;
1044 	else
1045 		es_stats->es_stats_scan_time = scan_time;
1046 	if (scan_time > es_stats->es_stats_max_scan_time)
1047 		es_stats->es_stats_max_scan_time = scan_time;
1048 	if (likely(es_stats->es_stats_shrunk))
1049 		es_stats->es_stats_shrunk = (nr_shrunk +
1050 				es_stats->es_stats_shrunk*3) / 4;
1051 	else
1052 		es_stats->es_stats_shrunk = nr_shrunk;
1053 
1054 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, skip_precached,
1055 			     nr_skipped, retried);
1056 	return nr_shrunk;
1057 }
1058 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1059 static unsigned long ext4_es_count(struct shrinker *shrink,
1060 				   struct shrink_control *sc)
1061 {
1062 	unsigned long nr;
1063 	struct ext4_sb_info *sbi;
1064 
1065 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1066 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1067 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1068 	return nr;
1069 }
1070 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1071 static unsigned long ext4_es_scan(struct shrinker *shrink,
1072 				  struct shrink_control *sc)
1073 {
1074 	struct ext4_sb_info *sbi = container_of(shrink,
1075 					struct ext4_sb_info, s_es_shrinker);
1076 	int nr_to_scan = sc->nr_to_scan;
1077 	int ret, nr_shrunk;
1078 
1079 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_lru_cnt);
1080 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1081 
1082 	if (!nr_to_scan)
1083 		return ret;
1084 
1085 	nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1086 
1087 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1088 	return nr_shrunk;
1089 }
1090 
ext4_es_seq_shrinker_info_start(struct seq_file * seq,loff_t * pos)1091 static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos)
1092 {
1093 	return *pos ? NULL : SEQ_START_TOKEN;
1094 }
1095 
1096 static void *
ext4_es_seq_shrinker_info_next(struct seq_file * seq,void * v,loff_t * pos)1097 ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos)
1098 {
1099 	return NULL;
1100 }
1101 
ext4_es_seq_shrinker_info_show(struct seq_file * seq,void * v)1102 static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v)
1103 {
1104 	struct ext4_sb_info *sbi = seq->private;
1105 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1106 	struct ext4_inode_info *ei, *max = NULL;
1107 	unsigned int inode_cnt = 0;
1108 
1109 	if (v != SEQ_START_TOKEN)
1110 		return 0;
1111 
1112 	/* here we just find an inode that has the max nr. of objects */
1113 	spin_lock(&sbi->s_es_lru_lock);
1114 	list_for_each_entry(ei, &sbi->s_es_lru, i_es_lru) {
1115 		inode_cnt++;
1116 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1117 			max = ei;
1118 		else if (!max)
1119 			max = ei;
1120 	}
1121 	spin_unlock(&sbi->s_es_lru_lock);
1122 
1123 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1124 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1125 		   percpu_counter_sum_positive(&es_stats->es_stats_lru_cnt));
1126 	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1127 		   es_stats->es_stats_cache_hits,
1128 		   es_stats->es_stats_cache_misses);
1129 	if (es_stats->es_stats_last_sorted != 0)
1130 		seq_printf(seq, "  %u ms last sorted interval\n",
1131 			   jiffies_to_msecs(jiffies -
1132 					    es_stats->es_stats_last_sorted));
1133 	if (inode_cnt)
1134 		seq_printf(seq, "  %d inodes on lru list\n", inode_cnt);
1135 
1136 	seq_printf(seq, "average:\n  %llu us scan time\n",
1137 	    div_u64(es_stats->es_stats_scan_time, 1000));
1138 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1139 	if (inode_cnt)
1140 		seq_printf(seq,
1141 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1142 		    "  %llu us max scan time\n",
1143 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_lru_nr,
1144 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1145 
1146 	return 0;
1147 }
1148 
ext4_es_seq_shrinker_info_stop(struct seq_file * seq,void * v)1149 static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v)
1150 {
1151 }
1152 
1153 static const struct seq_operations ext4_es_seq_shrinker_info_ops = {
1154 	.start = ext4_es_seq_shrinker_info_start,
1155 	.next  = ext4_es_seq_shrinker_info_next,
1156 	.stop  = ext4_es_seq_shrinker_info_stop,
1157 	.show  = ext4_es_seq_shrinker_info_show,
1158 };
1159 
1160 static int
ext4_es_seq_shrinker_info_open(struct inode * inode,struct file * file)1161 ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file)
1162 {
1163 	int ret;
1164 
1165 	ret = seq_open(file, &ext4_es_seq_shrinker_info_ops);
1166 	if (!ret) {
1167 		struct seq_file *m = file->private_data;
1168 		m->private = PDE_DATA(inode);
1169 	}
1170 
1171 	return ret;
1172 }
1173 
1174 static int
ext4_es_seq_shrinker_info_release(struct inode * inode,struct file * file)1175 ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file)
1176 {
1177 	return seq_release(inode, file);
1178 }
1179 
1180 static const struct file_operations ext4_es_seq_shrinker_info_fops = {
1181 	.owner		= THIS_MODULE,
1182 	.open		= ext4_es_seq_shrinker_info_open,
1183 	.read		= seq_read,
1184 	.llseek		= seq_lseek,
1185 	.release	= ext4_es_seq_shrinker_info_release,
1186 };
1187 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1188 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1189 {
1190 	int err;
1191 
1192 	INIT_LIST_HEAD(&sbi->s_es_lru);
1193 	spin_lock_init(&sbi->s_es_lru_lock);
1194 	sbi->s_es_stats.es_stats_last_sorted = 0;
1195 	sbi->s_es_stats.es_stats_shrunk = 0;
1196 	sbi->s_es_stats.es_stats_cache_hits = 0;
1197 	sbi->s_es_stats.es_stats_cache_misses = 0;
1198 	sbi->s_es_stats.es_stats_scan_time = 0;
1199 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1200 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1201 	if (err)
1202 		return err;
1203 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_lru_cnt, 0, GFP_KERNEL);
1204 	if (err)
1205 		goto err1;
1206 
1207 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1208 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1209 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1210 	err = register_shrinker(&sbi->s_es_shrinker);
1211 	if (err)
1212 		goto err2;
1213 
1214 	if (sbi->s_proc)
1215 		proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc,
1216 				 &ext4_es_seq_shrinker_info_fops, sbi);
1217 
1218 	return 0;
1219 
1220 err2:
1221 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1222 err1:
1223 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1224 	return err;
1225 }
1226 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1227 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1228 {
1229 	if (sbi->s_proc)
1230 		remove_proc_entry("es_shrinker_info", sbi->s_proc);
1231 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1232 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_lru_cnt);
1233 	unregister_shrinker(&sbi->s_es_shrinker);
1234 }
1235 
ext4_es_lru_add(struct inode * inode)1236 void ext4_es_lru_add(struct inode *inode)
1237 {
1238 	struct ext4_inode_info *ei = EXT4_I(inode);
1239 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1240 
1241 	ei->i_touch_when = jiffies;
1242 
1243 	if (!list_empty(&ei->i_es_lru))
1244 		return;
1245 
1246 	spin_lock(&sbi->s_es_lru_lock);
1247 	if (list_empty(&ei->i_es_lru))
1248 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1249 	spin_unlock(&sbi->s_es_lru_lock);
1250 }
1251 
ext4_es_lru_del(struct inode * inode)1252 void ext4_es_lru_del(struct inode *inode)
1253 {
1254 	struct ext4_inode_info *ei = EXT4_I(inode);
1255 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256 
1257 	spin_lock(&sbi->s_es_lru_lock);
1258 	if (!list_empty(&ei->i_es_lru))
1259 		list_del_init(&ei->i_es_lru);
1260 	spin_unlock(&sbi->s_es_lru_lock);
1261 }
1262 
__es_try_to_reclaim_extents(struct ext4_inode_info * ei,int nr_to_scan)1263 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1264 				       int nr_to_scan)
1265 {
1266 	struct inode *inode = &ei->vfs_inode;
1267 	struct ext4_es_tree *tree = &ei->i_es_tree;
1268 	struct rb_node *node;
1269 	struct extent_status *es;
1270 	unsigned long nr_shrunk = 0;
1271 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1272 				      DEFAULT_RATELIMIT_BURST);
1273 
1274 	if (ei->i_es_lru_nr == 0)
1275 		return 0;
1276 
1277 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1278 	    __ratelimit(&_rs))
1279 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1280 
1281 	node = rb_first(&tree->root);
1282 	while (node != NULL) {
1283 		es = rb_entry(node, struct extent_status, rb_node);
1284 		node = rb_next(&es->rb_node);
1285 		/*
1286 		 * We can't reclaim delayed extent from status tree because
1287 		 * fiemap, bigallic, and seek_data/hole need to use it.
1288 		 */
1289 		if (!ext4_es_is_delayed(es)) {
1290 			rb_erase(&es->rb_node, &tree->root);
1291 			ext4_es_free_extent(inode, es);
1292 			nr_shrunk++;
1293 			if (--nr_to_scan == 0)
1294 				break;
1295 		}
1296 	}
1297 	tree->cache_es = NULL;
1298 	return nr_shrunk;
1299 }
1300