• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *	(sct@redhat.com), 1993, 1998
21  */
22 
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 
27 #include <trace/events/ext4.h>
28 
29 typedef struct {
30 	__le32	*p;
31 	__le32	key;
32 	struct buffer_head *bh;
33 } Indirect;
34 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37 	p->key = *(p->p = v);
38 	p->bh = bh;
39 }
40 
41 /**
42  *	ext4_block_to_path - parse the block number into array of offsets
43  *	@inode: inode in question (we are only interested in its superblock)
44  *	@i_block: block number to be parsed
45  *	@offsets: array to store the offsets in
46  *	@boundary: set this non-zero if the referred-to block is likely to be
47  *	       followed (on disk) by an indirect block.
48  *
49  *	To store the locations of file's data ext4 uses a data structure common
50  *	for UNIX filesystems - tree of pointers anchored in the inode, with
51  *	data blocks at leaves and indirect blocks in intermediate nodes.
52  *	This function translates the block number into path in that tree -
53  *	return value is the path length and @offsets[n] is the offset of
54  *	pointer to (n+1)th node in the nth one. If @block is out of range
55  *	(negative or too large) warning is printed and zero returned.
56  *
57  *	Note: function doesn't find node addresses, so no IO is needed. All
58  *	we need to know is the capacity of indirect blocks (taken from the
59  *	inode->i_sb).
60  */
61 
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71 
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)72 static int ext4_block_to_path(struct inode *inode,
73 			      ext4_lblk_t i_block,
74 			      ext4_lblk_t offsets[4], int *boundary)
75 {
76 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 	const long direct_blocks = EXT4_NDIR_BLOCKS,
79 		indirect_blocks = ptrs,
80 		double_blocks = (1 << (ptrs_bits * 2));
81 	int n = 0;
82 	int final = 0;
83 
84 	if (i_block < direct_blocks) {
85 		offsets[n++] = i_block;
86 		final = direct_blocks;
87 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
88 		offsets[n++] = EXT4_IND_BLOCK;
89 		offsets[n++] = i_block;
90 		final = ptrs;
91 	} else if ((i_block -= indirect_blocks) < double_blocks) {
92 		offsets[n++] = EXT4_DIND_BLOCK;
93 		offsets[n++] = i_block >> ptrs_bits;
94 		offsets[n++] = i_block & (ptrs - 1);
95 		final = ptrs;
96 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 		offsets[n++] = EXT4_TIND_BLOCK;
98 		offsets[n++] = i_block >> (ptrs_bits * 2);
99 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 		offsets[n++] = i_block & (ptrs - 1);
101 		final = ptrs;
102 	} else {
103 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 			     i_block + direct_blocks +
105 			     indirect_blocks + double_blocks, inode->i_ino);
106 	}
107 	if (boundary)
108 		*boundary = final - 1 - (i_block & (ptrs - 1));
109 	return n;
110 }
111 
112 /**
113  *	ext4_get_branch - read the chain of indirect blocks leading to data
114  *	@inode: inode in question
115  *	@depth: depth of the chain (1 - direct pointer, etc.)
116  *	@offsets: offsets of pointers in inode/indirect blocks
117  *	@chain: place to store the result
118  *	@err: here we store the error value
119  *
120  *	Function fills the array of triples <key, p, bh> and returns %NULL
121  *	if everything went OK or the pointer to the last filled triple
122  *	(incomplete one) otherwise. Upon the return chain[i].key contains
123  *	the number of (i+1)-th block in the chain (as it is stored in memory,
124  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *	number (it points into struct inode for i==0 and into the bh->b_data
126  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *	block for i>0 and NULL for i==0. In other words, it holds the block
128  *	numbers of the chain, addresses they were taken from (and where we can
129  *	verify that chain did not change) and buffer_heads hosting these
130  *	numbers.
131  *
132  *	Function stops when it stumbles upon zero pointer (absent block)
133  *		(pointer to last triple returned, *@err == 0)
134  *	or when it gets an IO error reading an indirect block
135  *		(ditto, *@err == -EIO)
136  *	or when it reads all @depth-1 indirect blocks successfully and finds
137  *	the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 				 ext4_lblk_t  *offsets,
144 				 Indirect chain[4], int *err)
145 {
146 	struct super_block *sb = inode->i_sb;
147 	Indirect *p = chain;
148 	struct buffer_head *bh;
149 	int ret = -EIO;
150 
151 	*err = 0;
152 	/* i_data is not going away, no lock needed */
153 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 	if (!p->key)
155 		goto no_block;
156 	while (--depth) {
157 		bh = sb_getblk(sb, le32_to_cpu(p->key));
158 		if (unlikely(!bh)) {
159 			ret = -ENOMEM;
160 			goto failure;
161 		}
162 
163 		if (!bh_uptodate_or_lock(bh)) {
164 			if (bh_submit_read(bh) < 0) {
165 				put_bh(bh);
166 				goto failure;
167 			}
168 			/* validate block references */
169 			if (ext4_check_indirect_blockref(inode, bh)) {
170 				put_bh(bh);
171 				goto failure;
172 			}
173 		}
174 
175 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 		/* Reader: end */
177 		if (!p->key)
178 			goto no_block;
179 	}
180 	return NULL;
181 
182 failure:
183 	*err = ret;
184 no_block:
185 	return p;
186 }
187 
188 /**
189  *	ext4_find_near - find a place for allocation with sufficient locality
190  *	@inode: owner
191  *	@ind: descriptor of indirect block.
192  *
193  *	This function returns the preferred place for block allocation.
194  *	It is used when heuristic for sequential allocation fails.
195  *	Rules are:
196  *	  + if there is a block to the left of our position - allocate near it.
197  *	  + if pointer will live in indirect block - allocate near that block.
198  *	  + if pointer will live in inode - allocate in the same
199  *	    cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *	Caller must make sure that @ind is valid and will stay that way.
207  */
ext4_find_near(struct inode * inode,Indirect * ind)208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210 	struct ext4_inode_info *ei = EXT4_I(inode);
211 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 	__le32 *p;
213 
214 	/* Try to find previous block */
215 	for (p = ind->p - 1; p >= start; p--) {
216 		if (*p)
217 			return le32_to_cpu(*p);
218 	}
219 
220 	/* No such thing, so let's try location of indirect block */
221 	if (ind->bh)
222 		return ind->bh->b_blocknr;
223 
224 	/*
225 	 * It is going to be referred to from the inode itself? OK, just put it
226 	 * into the same cylinder group then.
227 	 */
228 	return ext4_inode_to_goal_block(inode);
229 }
230 
231 /**
232  *	ext4_find_goal - find a preferred place for allocation.
233  *	@inode: owner
234  *	@block:  block we want
235  *	@partial: pointer to the last triple within a chain
236  *
237  *	Normally this function find the preferred place for block allocation,
238  *	returns it.
239  *	Because this is only used for non-extent files, we limit the block nr
240  *	to 32 bits.
241  */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 				   Indirect *partial)
244 {
245 	ext4_fsblk_t goal;
246 
247 	/*
248 	 * XXX need to get goal block from mballoc's data structures
249 	 */
250 
251 	goal = ext4_find_near(inode, partial);
252 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 	return goal;
254 }
255 
256 /**
257  *	ext4_blks_to_allocate - Look up the block map and count the number
258  *	of direct blocks need to be allocated for the given branch.
259  *
260  *	@branch: chain of indirect blocks
261  *	@k: number of blocks need for indirect blocks
262  *	@blks: number of data blocks to be mapped.
263  *	@blocks_to_boundary:  the offset in the indirect block
264  *
265  *	return the total number of blocks to be allocate, including the
266  *	direct and indirect blocks.
267  */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 				 int blocks_to_boundary)
270 {
271 	unsigned int count = 0;
272 
273 	/*
274 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 	 * then it's clear blocks on that path have not allocated
276 	 */
277 	if (k > 0) {
278 		/* right now we don't handle cross boundary allocation */
279 		if (blks < blocks_to_boundary + 1)
280 			count += blks;
281 		else
282 			count += blocks_to_boundary + 1;
283 		return count;
284 	}
285 
286 	count++;
287 	while (count < blks && count <= blocks_to_boundary &&
288 		le32_to_cpu(*(branch[0].p + count)) == 0) {
289 		count++;
290 	}
291 	return count;
292 }
293 
294 /**
295  *	ext4_alloc_branch - allocate and set up a chain of blocks.
296  *	@handle: handle for this transaction
297  *	@inode: owner
298  *	@indirect_blks: number of allocated indirect blocks
299  *	@blks: number of allocated direct blocks
300  *	@goal: preferred place for allocation
301  *	@offsets: offsets (in the blocks) to store the pointers to next.
302  *	@branch: place to store the chain in.
303  *
304  *	This function allocates blocks, zeroes out all but the last one,
305  *	links them into chain and (if we are synchronous) writes them to disk.
306  *	In other words, it prepares a branch that can be spliced onto the
307  *	inode. It stores the information about that chain in the branch[], in
308  *	the same format as ext4_get_branch() would do. We are calling it after
309  *	we had read the existing part of chain and partial points to the last
310  *	triple of that (one with zero ->key). Upon the exit we have the same
311  *	picture as after the successful ext4_get_block(), except that in one
312  *	place chain is disconnected - *branch->p is still zero (we did not
313  *	set the last link), but branch->key contains the number that should
314  *	be placed into *branch->p to fill that gap.
315  *
316  *	If allocation fails we free all blocks we've allocated (and forget
317  *	their buffer_heads) and return the error value the from failed
318  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *	as described above and return 0.
320  */
ext4_alloc_branch(handle_t * handle,struct ext4_allocation_request * ar,int indirect_blks,ext4_lblk_t * offsets,Indirect * branch)321 static int ext4_alloc_branch(handle_t *handle,
322 			     struct ext4_allocation_request *ar,
323 			     int indirect_blks, ext4_lblk_t *offsets,
324 			     Indirect *branch)
325 {
326 	struct buffer_head *		bh;
327 	ext4_fsblk_t			b, new_blocks[4];
328 	__le32				*p;
329 	int				i, j, err, len = 1;
330 
331 	for (i = 0; i <= indirect_blks; i++) {
332 		if (i == indirect_blks) {
333 			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334 		} else
335 			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336 					ar->inode, ar->goal,
337 					ar->flags & EXT4_MB_DELALLOC_RESERVED,
338 					NULL, &err);
339 		if (err) {
340 			i--;
341 			goto failed;
342 		}
343 		branch[i].key = cpu_to_le32(new_blocks[i]);
344 		if (i == 0)
345 			continue;
346 
347 		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
348 		if (unlikely(!bh)) {
349 			err = -ENOMEM;
350 			goto failed;
351 		}
352 		lock_buffer(bh);
353 		BUFFER_TRACE(bh, "call get_create_access");
354 		err = ext4_journal_get_create_access(handle, bh);
355 		if (err) {
356 			unlock_buffer(bh);
357 			goto failed;
358 		}
359 
360 		memset(bh->b_data, 0, bh->b_size);
361 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
362 		b = new_blocks[i];
363 
364 		if (i == indirect_blks)
365 			len = ar->len;
366 		for (j = 0; j < len; j++)
367 			*p++ = cpu_to_le32(b++);
368 
369 		BUFFER_TRACE(bh, "marking uptodate");
370 		set_buffer_uptodate(bh);
371 		unlock_buffer(bh);
372 
373 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
374 		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
375 		if (err)
376 			goto failed;
377 	}
378 	return 0;
379 failed:
380 	for (; i >= 0; i--) {
381 		/*
382 		 * We want to ext4_forget() only freshly allocated indirect
383 		 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
384 		 * buffer at branch[0].bh is indirect block / inode already
385 		 * existing before ext4_alloc_branch() was called.
386 		 */
387 		if (i > 0 && i != indirect_blks && branch[i].bh)
388 			ext4_forget(handle, 1, ar->inode, branch[i].bh,
389 				    branch[i].bh->b_blocknr);
390 		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
391 				 (i == indirect_blks) ? ar->len : 1, 0);
392 	}
393 	return err;
394 }
395 
396 /**
397  * ext4_splice_branch - splice the allocated branch onto inode.
398  * @handle: handle for this transaction
399  * @inode: owner
400  * @block: (logical) number of block we are adding
401  * @chain: chain of indirect blocks (with a missing link - see
402  *	ext4_alloc_branch)
403  * @where: location of missing link
404  * @num:   number of indirect blocks we are adding
405  * @blks:  number of direct blocks we are adding
406  *
407  * This function fills the missing link and does all housekeeping needed in
408  * inode (->i_blocks, etc.). In case of success we end up with the full
409  * chain to new block and return 0.
410  */
ext4_splice_branch(handle_t * handle,struct ext4_allocation_request * ar,Indirect * where,int num)411 static int ext4_splice_branch(handle_t *handle,
412 			      struct ext4_allocation_request *ar,
413 			      Indirect *where, int num)
414 {
415 	int i;
416 	int err = 0;
417 	ext4_fsblk_t current_block;
418 
419 	/*
420 	 * If we're splicing into a [td]indirect block (as opposed to the
421 	 * inode) then we need to get write access to the [td]indirect block
422 	 * before the splice.
423 	 */
424 	if (where->bh) {
425 		BUFFER_TRACE(where->bh, "get_write_access");
426 		err = ext4_journal_get_write_access(handle, where->bh);
427 		if (err)
428 			goto err_out;
429 	}
430 	/* That's it */
431 
432 	*where->p = where->key;
433 
434 	/*
435 	 * Update the host buffer_head or inode to point to more just allocated
436 	 * direct blocks blocks
437 	 */
438 	if (num == 0 && ar->len > 1) {
439 		current_block = le32_to_cpu(where->key) + 1;
440 		for (i = 1; i < ar->len; i++)
441 			*(where->p + i) = cpu_to_le32(current_block++);
442 	}
443 
444 	/* We are done with atomic stuff, now do the rest of housekeeping */
445 	/* had we spliced it onto indirect block? */
446 	if (where->bh) {
447 		/*
448 		 * If we spliced it onto an indirect block, we haven't
449 		 * altered the inode.  Note however that if it is being spliced
450 		 * onto an indirect block at the very end of the file (the
451 		 * file is growing) then we *will* alter the inode to reflect
452 		 * the new i_size.  But that is not done here - it is done in
453 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
454 		 */
455 		jbd_debug(5, "splicing indirect only\n");
456 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
457 		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
458 		if (err)
459 			goto err_out;
460 	} else {
461 		/*
462 		 * OK, we spliced it into the inode itself on a direct block.
463 		 */
464 		ext4_mark_inode_dirty(handle, ar->inode);
465 		jbd_debug(5, "splicing direct\n");
466 	}
467 	return err;
468 
469 err_out:
470 	for (i = 1; i <= num; i++) {
471 		/*
472 		 * branch[i].bh is newly allocated, so there is no
473 		 * need to revoke the block, which is why we don't
474 		 * need to set EXT4_FREE_BLOCKS_METADATA.
475 		 */
476 		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
477 				 EXT4_FREE_BLOCKS_FORGET);
478 	}
479 	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
480 			 ar->len, 0);
481 
482 	return err;
483 }
484 
485 /*
486  * The ext4_ind_map_blocks() function handles non-extents inodes
487  * (i.e., using the traditional indirect/double-indirect i_blocks
488  * scheme) for ext4_map_blocks().
489  *
490  * Allocation strategy is simple: if we have to allocate something, we will
491  * have to go the whole way to leaf. So let's do it before attaching anything
492  * to tree, set linkage between the newborn blocks, write them if sync is
493  * required, recheck the path, free and repeat if check fails, otherwise
494  * set the last missing link (that will protect us from any truncate-generated
495  * removals - all blocks on the path are immune now) and possibly force the
496  * write on the parent block.
497  * That has a nice additional property: no special recovery from the failed
498  * allocations is needed - we simply release blocks and do not touch anything
499  * reachable from inode.
500  *
501  * `handle' can be NULL if create == 0.
502  *
503  * return > 0, # of blocks mapped or allocated.
504  * return = 0, if plain lookup failed.
505  * return < 0, error case.
506  *
507  * The ext4_ind_get_blocks() function should be called with
508  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
509  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
510  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
511  * blocks.
512  */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)513 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
514 			struct ext4_map_blocks *map,
515 			int flags)
516 {
517 	struct ext4_allocation_request ar;
518 	int err = -EIO;
519 	ext4_lblk_t offsets[4];
520 	Indirect chain[4];
521 	Indirect *partial;
522 	int indirect_blks;
523 	int blocks_to_boundary = 0;
524 	int depth;
525 	int count = 0;
526 	ext4_fsblk_t first_block = 0;
527 
528 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
529 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
530 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
531 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
532 				   &blocks_to_boundary);
533 
534 	if (depth == 0)
535 		goto out;
536 
537 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
538 
539 	/* Simplest case - block found, no allocation needed */
540 	if (!partial) {
541 		first_block = le32_to_cpu(chain[depth - 1].key);
542 		count++;
543 		/*map more blocks*/
544 		while (count < map->m_len && count <= blocks_to_boundary) {
545 			ext4_fsblk_t blk;
546 
547 			blk = le32_to_cpu(*(chain[depth-1].p + count));
548 
549 			if (blk == first_block + count)
550 				count++;
551 			else
552 				break;
553 		}
554 		goto got_it;
555 	}
556 
557 	/* Next simple case - plain lookup or failed read of indirect block */
558 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
559 		goto cleanup;
560 
561 	/*
562 	 * Okay, we need to do block allocation.
563 	*/
564 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
565 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
566 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
567 				 "non-extent mapped inodes with bigalloc");
568 		return -EUCLEAN;
569 	}
570 
571 	/* Set up for the direct block allocation */
572 	memset(&ar, 0, sizeof(ar));
573 	ar.inode = inode;
574 	ar.logical = map->m_lblk;
575 	if (S_ISREG(inode->i_mode))
576 		ar.flags = EXT4_MB_HINT_DATA;
577 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
578 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
579 
580 	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
581 
582 	/* the number of blocks need to allocate for [d,t]indirect blocks */
583 	indirect_blks = (chain + depth) - partial - 1;
584 
585 	/*
586 	 * Next look up the indirect map to count the totoal number of
587 	 * direct blocks to allocate for this branch.
588 	 */
589 	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
590 				       map->m_len, blocks_to_boundary);
591 
592 	/*
593 	 * Block out ext4_truncate while we alter the tree
594 	 */
595 	err = ext4_alloc_branch(handle, &ar, indirect_blks,
596 				offsets + (partial - chain), partial);
597 
598 	/*
599 	 * The ext4_splice_branch call will free and forget any buffers
600 	 * on the new chain if there is a failure, but that risks using
601 	 * up transaction credits, especially for bitmaps where the
602 	 * credits cannot be returned.  Can we handle this somehow?  We
603 	 * may need to return -EAGAIN upwards in the worst case.  --sct
604 	 */
605 	if (!err)
606 		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
607 	if (err)
608 		goto cleanup;
609 
610 	map->m_flags |= EXT4_MAP_NEW;
611 
612 	ext4_update_inode_fsync_trans(handle, inode, 1);
613 	count = ar.len;
614 got_it:
615 	map->m_flags |= EXT4_MAP_MAPPED;
616 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
617 	map->m_len = count;
618 	if (count > blocks_to_boundary)
619 		map->m_flags |= EXT4_MAP_BOUNDARY;
620 	err = count;
621 	/* Clean up and exit */
622 	partial = chain + depth - 1;	/* the whole chain */
623 cleanup:
624 	while (partial > chain) {
625 		BUFFER_TRACE(partial->bh, "call brelse");
626 		brelse(partial->bh);
627 		partial--;
628 	}
629 out:
630 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
631 	return err;
632 }
633 
634 /*
635  * O_DIRECT for ext3 (or indirect map) based files
636  *
637  * If the O_DIRECT write will extend the file then add this inode to the
638  * orphan list.  So recovery will truncate it back to the original size
639  * if the machine crashes during the write.
640  *
641  * If the O_DIRECT write is intantiating holes inside i_size and the machine
642  * crashes then stale disk data _may_ be exposed inside the file. But current
643  * VFS code falls back into buffered path in that case so we are safe.
644  */
ext4_ind_direct_IO(int rw,struct kiocb * iocb,struct iov_iter * iter,loff_t offset)645 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
646 			   struct iov_iter *iter, loff_t offset)
647 {
648 	struct file *file = iocb->ki_filp;
649 	struct inode *inode = file->f_mapping->host;
650 	struct ext4_inode_info *ei = EXT4_I(inode);
651 	handle_t *handle;
652 	ssize_t ret;
653 	int orphan = 0;
654 	size_t count = iov_iter_count(iter);
655 	int retries = 0;
656 
657 	if (rw == WRITE) {
658 		loff_t final_size = offset + count;
659 
660 		if (final_size > inode->i_size) {
661 			/* Credits for sb + inode write */
662 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
663 			if (IS_ERR(handle)) {
664 				ret = PTR_ERR(handle);
665 				goto out;
666 			}
667 			ret = ext4_orphan_add(handle, inode);
668 			if (ret) {
669 				ext4_journal_stop(handle);
670 				goto out;
671 			}
672 			orphan = 1;
673 			ei->i_disksize = inode->i_size;
674 			ext4_journal_stop(handle);
675 		}
676 	}
677 
678 retry:
679 	if (rw == READ && ext4_should_dioread_nolock(inode)) {
680 		/*
681 		 * Nolock dioread optimization may be dynamically disabled
682 		 * via ext4_inode_block_unlocked_dio(). Check inode's state
683 		 * while holding extra i_dio_count ref.
684 		 */
685 		atomic_inc(&inode->i_dio_count);
686 		smp_mb();
687 		if (unlikely(ext4_test_inode_state(inode,
688 						    EXT4_STATE_DIOREAD_LOCK))) {
689 			inode_dio_done(inode);
690 			goto locked;
691 		}
692 		ret = __blockdev_direct_IO(rw, iocb, inode,
693 				 inode->i_sb->s_bdev, iter, offset,
694 				 ext4_get_block, NULL, NULL, 0);
695 		inode_dio_done(inode);
696 	} else {
697 locked:
698 		ret = blockdev_direct_IO(rw, iocb, inode, iter,
699 				 offset, ext4_get_block);
700 
701 		if (unlikely((rw & WRITE) && ret < 0)) {
702 			loff_t isize = i_size_read(inode);
703 			loff_t end = offset + count;
704 
705 			if (end > isize)
706 				ext4_truncate_failed_write(inode);
707 		}
708 	}
709 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
710 		goto retry;
711 
712 	if (orphan) {
713 		int err;
714 
715 		/* Credits for sb + inode write */
716 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
717 		if (IS_ERR(handle)) {
718 			/* This is really bad luck. We've written the data
719 			 * but cannot extend i_size. Bail out and pretend
720 			 * the write failed... */
721 			ret = PTR_ERR(handle);
722 			if (inode->i_nlink)
723 				ext4_orphan_del(NULL, inode);
724 
725 			goto out;
726 		}
727 		if (inode->i_nlink)
728 			ext4_orphan_del(handle, inode);
729 		if (ret > 0) {
730 			loff_t end = offset + ret;
731 			if (end > inode->i_size) {
732 				ei->i_disksize = end;
733 				i_size_write(inode, end);
734 				/*
735 				 * We're going to return a positive `ret'
736 				 * here due to non-zero-length I/O, so there's
737 				 * no way of reporting error returns from
738 				 * ext4_mark_inode_dirty() to userspace.  So
739 				 * ignore it.
740 				 */
741 				ext4_mark_inode_dirty(handle, inode);
742 			}
743 		}
744 		err = ext4_journal_stop(handle);
745 		if (ret == 0)
746 			ret = err;
747 	}
748 out:
749 	return ret;
750 }
751 
752 /*
753  * Calculate the number of metadata blocks need to reserve
754  * to allocate a new block at @lblocks for non extent file based file
755  */
ext4_ind_calc_metadata_amount(struct inode * inode,sector_t lblock)756 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
757 {
758 	struct ext4_inode_info *ei = EXT4_I(inode);
759 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
760 	int blk_bits;
761 
762 	if (lblock < EXT4_NDIR_BLOCKS)
763 		return 0;
764 
765 	lblock -= EXT4_NDIR_BLOCKS;
766 
767 	if (ei->i_da_metadata_calc_len &&
768 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
769 		ei->i_da_metadata_calc_len++;
770 		return 0;
771 	}
772 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
773 	ei->i_da_metadata_calc_len = 1;
774 	blk_bits = order_base_2(lblock);
775 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
776 }
777 
778 /*
779  * Calculate number of indirect blocks touched by mapping @nrblocks logically
780  * contiguous blocks
781  */
ext4_ind_trans_blocks(struct inode * inode,int nrblocks)782 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
783 {
784 	/*
785 	 * With N contiguous data blocks, we need at most
786 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
787 	 * 2 dindirect blocks, and 1 tindirect block
788 	 */
789 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
790 }
791 
792 /*
793  * Truncate transactions can be complex and absolutely huge.  So we need to
794  * be able to restart the transaction at a conventient checkpoint to make
795  * sure we don't overflow the journal.
796  *
797  * Try to extend this transaction for the purposes of truncation.  If
798  * extend fails, we need to propagate the failure up and restart the
799  * transaction in the top-level truncate loop. --sct
800  *
801  * Returns 0 if we managed to create more room.  If we can't create more
802  * room, and the transaction must be restarted we return 1.
803  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)804 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
805 {
806 	if (!ext4_handle_valid(handle))
807 		return 0;
808 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
809 		return 0;
810 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
811 		return 0;
812 	return 1;
813 }
814 
815 /*
816  * Probably it should be a library function... search for first non-zero word
817  * or memcmp with zero_page, whatever is better for particular architecture.
818  * Linus?
819  */
all_zeroes(__le32 * p,__le32 * q)820 static inline int all_zeroes(__le32 *p, __le32 *q)
821 {
822 	while (p < q)
823 		if (*p++)
824 			return 0;
825 	return 1;
826 }
827 
828 /**
829  *	ext4_find_shared - find the indirect blocks for partial truncation.
830  *	@inode:	  inode in question
831  *	@depth:	  depth of the affected branch
832  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
833  *	@chain:	  place to store the pointers to partial indirect blocks
834  *	@top:	  place to the (detached) top of branch
835  *
836  *	This is a helper function used by ext4_truncate().
837  *
838  *	When we do truncate() we may have to clean the ends of several
839  *	indirect blocks but leave the blocks themselves alive. Block is
840  *	partially truncated if some data below the new i_size is referred
841  *	from it (and it is on the path to the first completely truncated
842  *	data block, indeed).  We have to free the top of that path along
843  *	with everything to the right of the path. Since no allocation
844  *	past the truncation point is possible until ext4_truncate()
845  *	finishes, we may safely do the latter, but top of branch may
846  *	require special attention - pageout below the truncation point
847  *	might try to populate it.
848  *
849  *	We atomically detach the top of branch from the tree, store the
850  *	block number of its root in *@top, pointers to buffer_heads of
851  *	partially truncated blocks - in @chain[].bh and pointers to
852  *	their last elements that should not be removed - in
853  *	@chain[].p. Return value is the pointer to last filled element
854  *	of @chain.
855  *
856  *	The work left to caller to do the actual freeing of subtrees:
857  *		a) free the subtree starting from *@top
858  *		b) free the subtrees whose roots are stored in
859  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
860  *		c) free the subtrees growing from the inode past the @chain[0].
861  *			(no partially truncated stuff there).  */
862 
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)863 static Indirect *ext4_find_shared(struct inode *inode, int depth,
864 				  ext4_lblk_t offsets[4], Indirect chain[4],
865 				  __le32 *top)
866 {
867 	Indirect *partial, *p;
868 	int k, err;
869 
870 	*top = 0;
871 	/* Make k index the deepest non-null offset + 1 */
872 	for (k = depth; k > 1 && !offsets[k-1]; k--)
873 		;
874 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
875 	/* Writer: pointers */
876 	if (!partial)
877 		partial = chain + k-1;
878 	/*
879 	 * If the branch acquired continuation since we've looked at it -
880 	 * fine, it should all survive and (new) top doesn't belong to us.
881 	 */
882 	if (!partial->key && *partial->p)
883 		/* Writer: end */
884 		goto no_top;
885 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
886 		;
887 	/*
888 	 * OK, we've found the last block that must survive. The rest of our
889 	 * branch should be detached before unlocking. However, if that rest
890 	 * of branch is all ours and does not grow immediately from the inode
891 	 * it's easier to cheat and just decrement partial->p.
892 	 */
893 	if (p == chain + k - 1 && p > chain) {
894 		p->p--;
895 	} else {
896 		*top = *p->p;
897 		/* Nope, don't do this in ext4.  Must leave the tree intact */
898 #if 0
899 		*p->p = 0;
900 #endif
901 	}
902 	/* Writer: end */
903 
904 	while (partial > p) {
905 		brelse(partial->bh);
906 		partial--;
907 	}
908 no_top:
909 	return partial;
910 }
911 
912 /*
913  * Zero a number of block pointers in either an inode or an indirect block.
914  * If we restart the transaction we must again get write access to the
915  * indirect block for further modification.
916  *
917  * We release `count' blocks on disk, but (last - first) may be greater
918  * than `count' because there can be holes in there.
919  *
920  * Return 0 on success, 1 on invalid block range
921  * and < 0 on fatal error.
922  */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)923 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
924 			     struct buffer_head *bh,
925 			     ext4_fsblk_t block_to_free,
926 			     unsigned long count, __le32 *first,
927 			     __le32 *last)
928 {
929 	__le32 *p;
930 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
931 	int	err;
932 
933 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
934 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
935 	else if (ext4_should_journal_data(inode))
936 		flags |= EXT4_FREE_BLOCKS_FORGET;
937 
938 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
939 				   count)) {
940 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
941 				 "blocks %llu len %lu",
942 				 (unsigned long long) block_to_free, count);
943 		return 1;
944 	}
945 
946 	if (try_to_extend_transaction(handle, inode)) {
947 		if (bh) {
948 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
949 			err = ext4_handle_dirty_metadata(handle, inode, bh);
950 			if (unlikely(err))
951 				goto out_err;
952 		}
953 		err = ext4_mark_inode_dirty(handle, inode);
954 		if (unlikely(err))
955 			goto out_err;
956 		err = ext4_truncate_restart_trans(handle, inode,
957 					ext4_blocks_for_truncate(inode));
958 		if (unlikely(err))
959 			goto out_err;
960 		if (bh) {
961 			BUFFER_TRACE(bh, "retaking write access");
962 			err = ext4_journal_get_write_access(handle, bh);
963 			if (unlikely(err))
964 				goto out_err;
965 		}
966 	}
967 
968 	for (p = first; p < last; p++)
969 		*p = 0;
970 
971 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
972 	return 0;
973 out_err:
974 	ext4_std_error(inode->i_sb, err);
975 	return err;
976 }
977 
978 /**
979  * ext4_free_data - free a list of data blocks
980  * @handle:	handle for this transaction
981  * @inode:	inode we are dealing with
982  * @this_bh:	indirect buffer_head which contains *@first and *@last
983  * @first:	array of block numbers
984  * @last:	points immediately past the end of array
985  *
986  * We are freeing all blocks referred from that array (numbers are stored as
987  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
988  *
989  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
990  * blocks are contiguous then releasing them at one time will only affect one
991  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
992  * actually use a lot of journal space.
993  *
994  * @this_bh will be %NULL if @first and @last point into the inode's direct
995  * block pointers.
996  */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)997 static void ext4_free_data(handle_t *handle, struct inode *inode,
998 			   struct buffer_head *this_bh,
999 			   __le32 *first, __le32 *last)
1000 {
1001 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1002 	unsigned long count = 0;	    /* Number of blocks in the run */
1003 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1004 					       corresponding to
1005 					       block_to_free */
1006 	ext4_fsblk_t nr;		    /* Current block # */
1007 	__le32 *p;			    /* Pointer into inode/ind
1008 					       for current block */
1009 	int err = 0;
1010 
1011 	if (this_bh) {				/* For indirect block */
1012 		BUFFER_TRACE(this_bh, "get_write_access");
1013 		err = ext4_journal_get_write_access(handle, this_bh);
1014 		/* Important: if we can't update the indirect pointers
1015 		 * to the blocks, we can't free them. */
1016 		if (err)
1017 			return;
1018 	}
1019 
1020 	for (p = first; p < last; p++) {
1021 		nr = le32_to_cpu(*p);
1022 		if (nr) {
1023 			/* accumulate blocks to free if they're contiguous */
1024 			if (count == 0) {
1025 				block_to_free = nr;
1026 				block_to_free_p = p;
1027 				count = 1;
1028 			} else if (nr == block_to_free + count) {
1029 				count++;
1030 			} else {
1031 				err = ext4_clear_blocks(handle, inode, this_bh,
1032 						        block_to_free, count,
1033 						        block_to_free_p, p);
1034 				if (err)
1035 					break;
1036 				block_to_free = nr;
1037 				block_to_free_p = p;
1038 				count = 1;
1039 			}
1040 		}
1041 	}
1042 
1043 	if (!err && count > 0)
1044 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1045 					count, block_to_free_p, p);
1046 	if (err < 0)
1047 		/* fatal error */
1048 		return;
1049 
1050 	if (this_bh) {
1051 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1052 
1053 		/*
1054 		 * The buffer head should have an attached journal head at this
1055 		 * point. However, if the data is corrupted and an indirect
1056 		 * block pointed to itself, it would have been detached when
1057 		 * the block was cleared. Check for this instead of OOPSing.
1058 		 */
1059 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1060 			ext4_handle_dirty_metadata(handle, inode, this_bh);
1061 		else
1062 			EXT4_ERROR_INODE(inode,
1063 					 "circular indirect block detected at "
1064 					 "block %llu",
1065 				(unsigned long long) this_bh->b_blocknr);
1066 	}
1067 }
1068 
1069 /**
1070  *	ext4_free_branches - free an array of branches
1071  *	@handle: JBD handle for this transaction
1072  *	@inode:	inode we are dealing with
1073  *	@parent_bh: the buffer_head which contains *@first and *@last
1074  *	@first:	array of block numbers
1075  *	@last:	pointer immediately past the end of array
1076  *	@depth:	depth of the branches to free
1077  *
1078  *	We are freeing all blocks referred from these branches (numbers are
1079  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1080  *	appropriately.
1081  */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)1082 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1083 			       struct buffer_head *parent_bh,
1084 			       __le32 *first, __le32 *last, int depth)
1085 {
1086 	ext4_fsblk_t nr;
1087 	__le32 *p;
1088 
1089 	if (ext4_handle_is_aborted(handle))
1090 		return;
1091 
1092 	if (depth--) {
1093 		struct buffer_head *bh;
1094 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1095 		p = last;
1096 		while (--p >= first) {
1097 			nr = le32_to_cpu(*p);
1098 			if (!nr)
1099 				continue;		/* A hole */
1100 
1101 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1102 						   nr, 1)) {
1103 				EXT4_ERROR_INODE(inode,
1104 						 "invalid indirect mapped "
1105 						 "block %lu (level %d)",
1106 						 (unsigned long) nr, depth);
1107 				break;
1108 			}
1109 
1110 			/* Go read the buffer for the next level down */
1111 			bh = sb_bread(inode->i_sb, nr);
1112 
1113 			/*
1114 			 * A read failure? Report error and clear slot
1115 			 * (should be rare).
1116 			 */
1117 			if (!bh) {
1118 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1119 						       "Read failure");
1120 				continue;
1121 			}
1122 
1123 			/* This zaps the entire block.  Bottom up. */
1124 			BUFFER_TRACE(bh, "free child branches");
1125 			ext4_free_branches(handle, inode, bh,
1126 					(__le32 *) bh->b_data,
1127 					(__le32 *) bh->b_data + addr_per_block,
1128 					depth);
1129 			brelse(bh);
1130 
1131 			/*
1132 			 * Everything below this this pointer has been
1133 			 * released.  Now let this top-of-subtree go.
1134 			 *
1135 			 * We want the freeing of this indirect block to be
1136 			 * atomic in the journal with the updating of the
1137 			 * bitmap block which owns it.  So make some room in
1138 			 * the journal.
1139 			 *
1140 			 * We zero the parent pointer *after* freeing its
1141 			 * pointee in the bitmaps, so if extend_transaction()
1142 			 * for some reason fails to put the bitmap changes and
1143 			 * the release into the same transaction, recovery
1144 			 * will merely complain about releasing a free block,
1145 			 * rather than leaking blocks.
1146 			 */
1147 			if (ext4_handle_is_aborted(handle))
1148 				return;
1149 			if (try_to_extend_transaction(handle, inode)) {
1150 				ext4_mark_inode_dirty(handle, inode);
1151 				ext4_truncate_restart_trans(handle, inode,
1152 					    ext4_blocks_for_truncate(inode));
1153 			}
1154 
1155 			/*
1156 			 * The forget flag here is critical because if
1157 			 * we are journaling (and not doing data
1158 			 * journaling), we have to make sure a revoke
1159 			 * record is written to prevent the journal
1160 			 * replay from overwriting the (former)
1161 			 * indirect block if it gets reallocated as a
1162 			 * data block.  This must happen in the same
1163 			 * transaction where the data blocks are
1164 			 * actually freed.
1165 			 */
1166 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1167 					 EXT4_FREE_BLOCKS_METADATA|
1168 					 EXT4_FREE_BLOCKS_FORGET);
1169 
1170 			if (parent_bh) {
1171 				/*
1172 				 * The block which we have just freed is
1173 				 * pointed to by an indirect block: journal it
1174 				 */
1175 				BUFFER_TRACE(parent_bh, "get_write_access");
1176 				if (!ext4_journal_get_write_access(handle,
1177 								   parent_bh)){
1178 					*p = 0;
1179 					BUFFER_TRACE(parent_bh,
1180 					"call ext4_handle_dirty_metadata");
1181 					ext4_handle_dirty_metadata(handle,
1182 								   inode,
1183 								   parent_bh);
1184 				}
1185 			}
1186 		}
1187 	} else {
1188 		/* We have reached the bottom of the tree. */
1189 		BUFFER_TRACE(parent_bh, "free data blocks");
1190 		ext4_free_data(handle, inode, parent_bh, first, last);
1191 	}
1192 }
1193 
ext4_ind_truncate(handle_t * handle,struct inode * inode)1194 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1195 {
1196 	struct ext4_inode_info *ei = EXT4_I(inode);
1197 	__le32 *i_data = ei->i_data;
1198 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1199 	ext4_lblk_t offsets[4];
1200 	Indirect chain[4];
1201 	Indirect *partial;
1202 	__le32 nr = 0;
1203 	int n = 0;
1204 	ext4_lblk_t last_block, max_block;
1205 	unsigned blocksize = inode->i_sb->s_blocksize;
1206 
1207 	last_block = (inode->i_size + blocksize-1)
1208 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1209 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1210 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1211 
1212 	if (last_block != max_block) {
1213 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1214 		if (n == 0)
1215 			return;
1216 	}
1217 
1218 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1219 
1220 	/*
1221 	 * The orphan list entry will now protect us from any crash which
1222 	 * occurs before the truncate completes, so it is now safe to propagate
1223 	 * the new, shorter inode size (held for now in i_size) into the
1224 	 * on-disk inode. We do this via i_disksize, which is the value which
1225 	 * ext4 *really* writes onto the disk inode.
1226 	 */
1227 	ei->i_disksize = inode->i_size;
1228 
1229 	if (last_block == max_block) {
1230 		/*
1231 		 * It is unnecessary to free any data blocks if last_block is
1232 		 * equal to the indirect block limit.
1233 		 */
1234 		return;
1235 	} else if (n == 1) {		/* direct blocks */
1236 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1237 			       i_data + EXT4_NDIR_BLOCKS);
1238 		goto do_indirects;
1239 	}
1240 
1241 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1242 	/* Kill the top of shared branch (not detached) */
1243 	if (nr) {
1244 		if (partial == chain) {
1245 			/* Shared branch grows from the inode */
1246 			ext4_free_branches(handle, inode, NULL,
1247 					   &nr, &nr+1, (chain+n-1) - partial);
1248 			*partial->p = 0;
1249 			/*
1250 			 * We mark the inode dirty prior to restart,
1251 			 * and prior to stop.  No need for it here.
1252 			 */
1253 		} else {
1254 			/* Shared branch grows from an indirect block */
1255 			BUFFER_TRACE(partial->bh, "get_write_access");
1256 			ext4_free_branches(handle, inode, partial->bh,
1257 					partial->p,
1258 					partial->p+1, (chain+n-1) - partial);
1259 		}
1260 	}
1261 	/* Clear the ends of indirect blocks on the shared branch */
1262 	while (partial > chain) {
1263 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1264 				   (__le32*)partial->bh->b_data+addr_per_block,
1265 				   (chain+n-1) - partial);
1266 		BUFFER_TRACE(partial->bh, "call brelse");
1267 		brelse(partial->bh);
1268 		partial--;
1269 	}
1270 do_indirects:
1271 	/* Kill the remaining (whole) subtrees */
1272 	switch (offsets[0]) {
1273 	default:
1274 		nr = i_data[EXT4_IND_BLOCK];
1275 		if (nr) {
1276 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1277 			i_data[EXT4_IND_BLOCK] = 0;
1278 		}
1279 	case EXT4_IND_BLOCK:
1280 		nr = i_data[EXT4_DIND_BLOCK];
1281 		if (nr) {
1282 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1283 			i_data[EXT4_DIND_BLOCK] = 0;
1284 		}
1285 	case EXT4_DIND_BLOCK:
1286 		nr = i_data[EXT4_TIND_BLOCK];
1287 		if (nr) {
1288 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1289 			i_data[EXT4_TIND_BLOCK] = 0;
1290 		}
1291 	case EXT4_TIND_BLOCK:
1292 		;
1293 	}
1294 }
1295 
1296 /**
1297  *	ext4_ind_remove_space - remove space from the range
1298  *	@handle: JBD handle for this transaction
1299  *	@inode:	inode we are dealing with
1300  *	@start:	First block to remove
1301  *	@end:	One block after the last block to remove (exclusive)
1302  *
1303  *	Free the blocks in the defined range (end is exclusive endpoint of
1304  *	range). This is used by ext4_punch_hole().
1305  */
ext4_ind_remove_space(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)1306 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1307 			  ext4_lblk_t start, ext4_lblk_t end)
1308 {
1309 	struct ext4_inode_info *ei = EXT4_I(inode);
1310 	__le32 *i_data = ei->i_data;
1311 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1312 	ext4_lblk_t offsets[4], offsets2[4];
1313 	Indirect chain[4], chain2[4];
1314 	Indirect *partial, *partial2;
1315 	ext4_lblk_t max_block;
1316 	__le32 nr = 0, nr2 = 0;
1317 	int n = 0, n2 = 0;
1318 	unsigned blocksize = inode->i_sb->s_blocksize;
1319 
1320 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1321 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1322 	if (end >= max_block)
1323 		end = max_block;
1324 	if ((start >= end) || (start > max_block))
1325 		return 0;
1326 
1327 	n = ext4_block_to_path(inode, start, offsets, NULL);
1328 	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1329 
1330 	BUG_ON(n > n2);
1331 
1332 	if ((n == 1) && (n == n2)) {
1333 		/* We're punching only within direct block range */
1334 		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1335 			       i_data + offsets2[0]);
1336 		return 0;
1337 	} else if (n2 > n) {
1338 		/*
1339 		 * Start and end are on a different levels so we're going to
1340 		 * free partial block at start, and partial block at end of
1341 		 * the range. If there are some levels in between then
1342 		 * do_indirects label will take care of that.
1343 		 */
1344 
1345 		if (n == 1) {
1346 			/*
1347 			 * Start is at the direct block level, free
1348 			 * everything to the end of the level.
1349 			 */
1350 			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1351 				       i_data + EXT4_NDIR_BLOCKS);
1352 			goto end_range;
1353 		}
1354 
1355 
1356 		partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1357 		if (nr) {
1358 			if (partial == chain) {
1359 				/* Shared branch grows from the inode */
1360 				ext4_free_branches(handle, inode, NULL,
1361 					   &nr, &nr+1, (chain+n-1) - partial);
1362 				*partial->p = 0;
1363 			} else {
1364 				/* Shared branch grows from an indirect block */
1365 				BUFFER_TRACE(partial->bh, "get_write_access");
1366 				ext4_free_branches(handle, inode, partial->bh,
1367 					partial->p,
1368 					partial->p+1, (chain+n-1) - partial);
1369 			}
1370 		}
1371 
1372 		/*
1373 		 * Clear the ends of indirect blocks on the shared branch
1374 		 * at the start of the range
1375 		 */
1376 		while (partial > chain) {
1377 			ext4_free_branches(handle, inode, partial->bh,
1378 				partial->p + 1,
1379 				(__le32 *)partial->bh->b_data+addr_per_block,
1380 				(chain+n-1) - partial);
1381 			BUFFER_TRACE(partial->bh, "call brelse");
1382 			brelse(partial->bh);
1383 			partial--;
1384 		}
1385 
1386 end_range:
1387 		partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1388 		if (nr2) {
1389 			if (partial2 == chain2) {
1390 				/*
1391 				 * Remember, end is exclusive so here we're at
1392 				 * the start of the next level we're not going
1393 				 * to free. Everything was covered by the start
1394 				 * of the range.
1395 				 */
1396 				goto do_indirects;
1397 			}
1398 		} else {
1399 			/*
1400 			 * ext4_find_shared returns Indirect structure which
1401 			 * points to the last element which should not be
1402 			 * removed by truncate. But this is end of the range
1403 			 * in punch_hole so we need to point to the next element
1404 			 */
1405 			partial2->p++;
1406 		}
1407 
1408 		/*
1409 		 * Clear the ends of indirect blocks on the shared branch
1410 		 * at the end of the range
1411 		 */
1412 		while (partial2 > chain2) {
1413 			ext4_free_branches(handle, inode, partial2->bh,
1414 					   (__le32 *)partial2->bh->b_data,
1415 					   partial2->p,
1416 					   (chain2+n2-1) - partial2);
1417 			BUFFER_TRACE(partial2->bh, "call brelse");
1418 			brelse(partial2->bh);
1419 			partial2--;
1420 		}
1421 		goto do_indirects;
1422 	}
1423 
1424 	/* Punch happened within the same level (n == n2) */
1425 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1426 	partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1427 
1428 	/* Free top, but only if partial2 isn't its subtree. */
1429 	if (nr) {
1430 		int level = min(partial - chain, partial2 - chain2);
1431 		int i;
1432 		int subtree = 1;
1433 
1434 		for (i = 0; i <= level; i++) {
1435 			if (offsets[i] != offsets2[i]) {
1436 				subtree = 0;
1437 				break;
1438 			}
1439 		}
1440 
1441 		if (!subtree) {
1442 			if (partial == chain) {
1443 				/* Shared branch grows from the inode */
1444 				ext4_free_branches(handle, inode, NULL,
1445 						   &nr, &nr+1,
1446 						   (chain+n-1) - partial);
1447 				*partial->p = 0;
1448 			} else {
1449 				/* Shared branch grows from an indirect block */
1450 				BUFFER_TRACE(partial->bh, "get_write_access");
1451 				ext4_free_branches(handle, inode, partial->bh,
1452 						   partial->p,
1453 						   partial->p+1,
1454 						   (chain+n-1) - partial);
1455 			}
1456 		}
1457 	}
1458 
1459 	if (!nr2) {
1460 		/*
1461 		 * ext4_find_shared returns Indirect structure which
1462 		 * points to the last element which should not be
1463 		 * removed by truncate. But this is end of the range
1464 		 * in punch_hole so we need to point to the next element
1465 		 */
1466 		partial2->p++;
1467 	}
1468 
1469 	while (partial > chain || partial2 > chain2) {
1470 		int depth = (chain+n-1) - partial;
1471 		int depth2 = (chain2+n2-1) - partial2;
1472 
1473 		if (partial > chain && partial2 > chain2 &&
1474 		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1475 			/*
1476 			 * We've converged on the same block. Clear the range,
1477 			 * then we're done.
1478 			 */
1479 			ext4_free_branches(handle, inode, partial->bh,
1480 					   partial->p + 1,
1481 					   partial2->p,
1482 					   (chain+n-1) - partial);
1483 			BUFFER_TRACE(partial->bh, "call brelse");
1484 			brelse(partial->bh);
1485 			BUFFER_TRACE(partial2->bh, "call brelse");
1486 			brelse(partial2->bh);
1487 			return 0;
1488 		}
1489 
1490 		/*
1491 		 * The start and end partial branches may not be at the same
1492 		 * level even though the punch happened within one level. So, we
1493 		 * give them a chance to arrive at the same level, then walk
1494 		 * them in step with each other until we converge on the same
1495 		 * block.
1496 		 */
1497 		if (partial > chain && depth <= depth2) {
1498 			ext4_free_branches(handle, inode, partial->bh,
1499 					   partial->p + 1,
1500 					   (__le32 *)partial->bh->b_data+addr_per_block,
1501 					   (chain+n-1) - partial);
1502 			BUFFER_TRACE(partial->bh, "call brelse");
1503 			brelse(partial->bh);
1504 			partial--;
1505 		}
1506 		if (partial2 > chain2 && depth2 <= depth) {
1507 			ext4_free_branches(handle, inode, partial2->bh,
1508 					   (__le32 *)partial2->bh->b_data,
1509 					   partial2->p,
1510 					   (chain2+n2-1) - partial2);
1511 			BUFFER_TRACE(partial2->bh, "call brelse");
1512 			brelse(partial2->bh);
1513 			partial2--;
1514 		}
1515 	}
1516 	return 0;
1517 
1518 do_indirects:
1519 	/* Kill the remaining (whole) subtrees */
1520 	switch (offsets[0]) {
1521 	default:
1522 		if (++n >= n2)
1523 			return 0;
1524 		nr = i_data[EXT4_IND_BLOCK];
1525 		if (nr) {
1526 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1527 			i_data[EXT4_IND_BLOCK] = 0;
1528 		}
1529 	case EXT4_IND_BLOCK:
1530 		if (++n >= n2)
1531 			return 0;
1532 		nr = i_data[EXT4_DIND_BLOCK];
1533 		if (nr) {
1534 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1535 			i_data[EXT4_DIND_BLOCK] = 0;
1536 		}
1537 	case EXT4_DIND_BLOCK:
1538 		if (++n >= n2)
1539 			return 0;
1540 		nr = i_data[EXT4_TIND_BLOCK];
1541 		if (nr) {
1542 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1543 			i_data[EXT4_TIND_BLOCK] = 0;
1544 		}
1545 	case EXT4_TIND_BLOCK:
1546 		;
1547 	}
1548 	return 0;
1549 }
1550