• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode_sb_list_lock protects:
32  *   sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode_sb_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode_sb_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 /**
119  * inode_init_always - perform inode structure intialisation
120  * @sb: superblock inode belongs to
121  * @inode: inode to initialise
122  *
123  * These are initializations that need to be done on every inode
124  * allocation as the fields are not initialised by slab allocation.
125  */
inode_init_always(struct super_block * sb,struct inode * inode)126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 	static const struct inode_operations empty_iops;
129 	static const struct file_operations empty_fops;
130 	struct address_space *const mapping = &inode->i_data;
131 
132 	inode->i_sb = sb;
133 	inode->i_blkbits = sb->s_blocksize_bits;
134 	inode->i_flags = 0;
135 	atomic_set(&inode->i_count, 1);
136 	inode->i_op = &empty_iops;
137 	inode->i_fop = &empty_fops;
138 	inode->__i_nlink = 1;
139 	inode->i_opflags = 0;
140 	i_uid_write(inode, 0);
141 	i_gid_write(inode, 0);
142 	atomic_set(&inode->i_writecount, 0);
143 	inode->i_size = 0;
144 	inode->i_blocks = 0;
145 	inode->i_bytes = 0;
146 	inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_rdev = 0;
154 	inode->dirtied_when = 0;
155 
156 	if (security_inode_alloc(inode))
157 		goto out;
158 	spin_lock_init(&inode->i_lock);
159 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160 
161 	mutex_init(&inode->i_mutex);
162 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163 
164 	atomic_set(&inode->i_dio_count, 0);
165 
166 	mapping->a_ops = &empty_aops;
167 	mapping->host = inode;
168 	mapping->flags = 0;
169 	atomic_set(&mapping->i_mmap_writable, 0);
170 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 	mapping->private_data = NULL;
172 	mapping->backing_dev_info = &default_backing_dev_info;
173 	mapping->writeback_index = 0;
174 
175 	/*
176 	 * If the block_device provides a backing_dev_info for client
177 	 * inodes then use that.  Otherwise the inode share the bdev's
178 	 * backing_dev_info.
179 	 */
180 	if (sb->s_bdev) {
181 		struct backing_dev_info *bdi;
182 
183 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 		mapping->backing_dev_info = bdi;
185 	}
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 
197 	this_cpu_inc(nr_inodes);
198 
199 	return 0;
200 out:
201 	return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
alloc_inode(struct super_block * sb)205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (!inode)
215 		return NULL;
216 
217 	if (unlikely(inode_init_always(sb, inode))) {
218 		if (inode->i_sb->s_op->destroy_inode)
219 			inode->i_sb->s_op->destroy_inode(inode);
220 		else
221 			kmem_cache_free(inode_cachep, inode);
222 		return NULL;
223 	}
224 
225 	return inode;
226 }
227 
free_inode_nonrcu(struct inode * inode)228 void free_inode_nonrcu(struct inode *inode)
229 {
230 	kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233 
__destroy_inode(struct inode * inode)234 void __destroy_inode(struct inode *inode)
235 {
236 	BUG_ON(inode_has_buffers(inode));
237 	security_inode_free(inode);
238 	fsnotify_inode_delete(inode);
239 	if (!inode->i_nlink) {
240 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 		atomic_long_dec(&inode->i_sb->s_remove_count);
242 	}
243 
244 #ifdef CONFIG_FS_POSIX_ACL
245 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 		posix_acl_release(inode->i_acl);
247 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 		posix_acl_release(inode->i_default_acl);
249 #endif
250 	this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253 
i_callback(struct rcu_head * head)254 static void i_callback(struct rcu_head *head)
255 {
256 	struct inode *inode = container_of(head, struct inode, i_rcu);
257 	kmem_cache_free(inode_cachep, inode);
258 }
259 
destroy_inode(struct inode * inode)260 static void destroy_inode(struct inode *inode)
261 {
262 	BUG_ON(!list_empty(&inode->i_lru));
263 	__destroy_inode(inode);
264 	if (inode->i_sb->s_op->destroy_inode)
265 		inode->i_sb->s_op->destroy_inode(inode);
266 	else
267 		call_rcu(&inode->i_rcu, i_callback);
268 }
269 
270 /**
271  * drop_nlink - directly drop an inode's link count
272  * @inode: inode
273  *
274  * This is a low-level filesystem helper to replace any
275  * direct filesystem manipulation of i_nlink.  In cases
276  * where we are attempting to track writes to the
277  * filesystem, a decrement to zero means an imminent
278  * write when the file is truncated and actually unlinked
279  * on the filesystem.
280  */
drop_nlink(struct inode * inode)281 void drop_nlink(struct inode *inode)
282 {
283 	WARN_ON(inode->i_nlink == 0);
284 	inode->__i_nlink--;
285 	if (!inode->i_nlink)
286 		atomic_long_inc(&inode->i_sb->s_remove_count);
287 }
288 EXPORT_SYMBOL(drop_nlink);
289 
290 /**
291  * clear_nlink - directly zero an inode's link count
292  * @inode: inode
293  *
294  * This is a low-level filesystem helper to replace any
295  * direct filesystem manipulation of i_nlink.  See
296  * drop_nlink() for why we care about i_nlink hitting zero.
297  */
clear_nlink(struct inode * inode)298 void clear_nlink(struct inode *inode)
299 {
300 	if (inode->i_nlink) {
301 		inode->__i_nlink = 0;
302 		atomic_long_inc(&inode->i_sb->s_remove_count);
303 	}
304 }
305 EXPORT_SYMBOL(clear_nlink);
306 
307 /**
308  * set_nlink - directly set an inode's link count
309  * @inode: inode
310  * @nlink: new nlink (should be non-zero)
311  *
312  * This is a low-level filesystem helper to replace any
313  * direct filesystem manipulation of i_nlink.
314  */
set_nlink(struct inode * inode,unsigned int nlink)315 void set_nlink(struct inode *inode, unsigned int nlink)
316 {
317 	if (!nlink) {
318 		clear_nlink(inode);
319 	} else {
320 		/* Yes, some filesystems do change nlink from zero to one */
321 		if (inode->i_nlink == 0)
322 			atomic_long_dec(&inode->i_sb->s_remove_count);
323 
324 		inode->__i_nlink = nlink;
325 	}
326 }
327 EXPORT_SYMBOL(set_nlink);
328 
329 /**
330  * inc_nlink - directly increment an inode's link count
331  * @inode: inode
332  *
333  * This is a low-level filesystem helper to replace any
334  * direct filesystem manipulation of i_nlink.  Currently,
335  * it is only here for parity with dec_nlink().
336  */
inc_nlink(struct inode * inode)337 void inc_nlink(struct inode *inode)
338 {
339 	if (unlikely(inode->i_nlink == 0)) {
340 		WARN_ON(!(inode->i_state & I_LINKABLE));
341 		atomic_long_dec(&inode->i_sb->s_remove_count);
342 	}
343 
344 	inode->__i_nlink++;
345 }
346 EXPORT_SYMBOL(inc_nlink);
347 
address_space_init_once(struct address_space * mapping)348 void address_space_init_once(struct address_space *mapping)
349 {
350 	memset(mapping, 0, sizeof(*mapping));
351 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
352 	spin_lock_init(&mapping->tree_lock);
353 	mutex_init(&mapping->i_mmap_mutex);
354 	INIT_LIST_HEAD(&mapping->private_list);
355 	spin_lock_init(&mapping->private_lock);
356 	mapping->i_mmap = RB_ROOT;
357 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
358 }
359 EXPORT_SYMBOL(address_space_init_once);
360 
361 /*
362  * These are initializations that only need to be done
363  * once, because the fields are idempotent across use
364  * of the inode, so let the slab aware of that.
365  */
inode_init_once(struct inode * inode)366 void inode_init_once(struct inode *inode)
367 {
368 	memset(inode, 0, sizeof(*inode));
369 	INIT_HLIST_NODE(&inode->i_hash);
370 	INIT_LIST_HEAD(&inode->i_devices);
371 	INIT_LIST_HEAD(&inode->i_wb_list);
372 	INIT_LIST_HEAD(&inode->i_lru);
373 	address_space_init_once(&inode->i_data);
374 	i_size_ordered_init(inode);
375 #ifdef CONFIG_FSNOTIFY
376 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
377 #endif
378 }
379 EXPORT_SYMBOL(inode_init_once);
380 
init_once(void * foo)381 static void init_once(void *foo)
382 {
383 	struct inode *inode = (struct inode *) foo;
384 
385 	inode_init_once(inode);
386 }
387 
388 /*
389  * inode->i_lock must be held
390  */
__iget(struct inode * inode)391 void __iget(struct inode *inode)
392 {
393 	atomic_inc(&inode->i_count);
394 }
395 
396 /*
397  * get additional reference to inode; caller must already hold one.
398  */
ihold(struct inode * inode)399 void ihold(struct inode *inode)
400 {
401 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
402 }
403 EXPORT_SYMBOL(ihold);
404 
inode_lru_list_add(struct inode * inode)405 static void inode_lru_list_add(struct inode *inode)
406 {
407 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
408 		this_cpu_inc(nr_unused);
409 }
410 
411 /*
412  * Add inode to LRU if needed (inode is unused and clean).
413  *
414  * Needs inode->i_lock held.
415  */
inode_add_lru(struct inode * inode)416 void inode_add_lru(struct inode *inode)
417 {
418 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
419 				I_FREEING | I_WILL_FREE)) &&
420 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
421 		inode_lru_list_add(inode);
422 }
423 
424 
inode_lru_list_del(struct inode * inode)425 static void inode_lru_list_del(struct inode *inode)
426 {
427 
428 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_dec(nr_unused);
430 }
431 
432 /**
433  * inode_sb_list_add - add inode to the superblock list of inodes
434  * @inode: inode to add
435  */
inode_sb_list_add(struct inode * inode)436 void inode_sb_list_add(struct inode *inode)
437 {
438 	spin_lock(&inode_sb_list_lock);
439 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 	spin_unlock(&inode_sb_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 
inode_sb_list_del(struct inode * inode)444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 	if (!list_empty(&inode->i_sb_list)) {
447 		spin_lock(&inode_sb_list_lock);
448 		list_del_init(&inode->i_sb_list);
449 		spin_unlock(&inode_sb_list_lock);
450 	}
451 }
452 
hash(struct super_block * sb,unsigned long hashval)453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 	unsigned long tmp;
456 
457 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 			L1_CACHE_BYTES;
459 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 	return tmp & i_hash_mask;
461 }
462 
463 /**
464  *	__insert_inode_hash - hash an inode
465  *	@inode: unhashed inode
466  *	@hashval: unsigned long value used to locate this object in the
467  *		inode_hashtable.
468  *
469  *	Add an inode to the inode hash for this superblock.
470  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 
475 	spin_lock(&inode_hash_lock);
476 	spin_lock(&inode->i_lock);
477 	hlist_add_head(&inode->i_hash, b);
478 	spin_unlock(&inode->i_lock);
479 	spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482 
483 /**
484  *	__remove_inode_hash - remove an inode from the hash
485  *	@inode: inode to unhash
486  *
487  *	Remove an inode from the superblock.
488  */
__remove_inode_hash(struct inode * inode)489 void __remove_inode_hash(struct inode *inode)
490 {
491 	spin_lock(&inode_hash_lock);
492 	spin_lock(&inode->i_lock);
493 	hlist_del_init(&inode->i_hash);
494 	spin_unlock(&inode->i_lock);
495 	spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498 
clear_inode(struct inode * inode)499 void clear_inode(struct inode *inode)
500 {
501 	might_sleep();
502 	/*
503 	 * We have to cycle tree_lock here because reclaim can be still in the
504 	 * process of removing the last page (in __delete_from_page_cache())
505 	 * and we must not free mapping under it.
506 	 */
507 	spin_lock_irq(&inode->i_data.tree_lock);
508 	BUG_ON(inode->i_data.nrpages);
509 	BUG_ON(inode->i_data.nrshadows);
510 	spin_unlock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(!list_empty(&inode->i_data.private_list));
512 	BUG_ON(!(inode->i_state & I_FREEING));
513 	BUG_ON(inode->i_state & I_CLEAR);
514 	/* don't need i_lock here, no concurrent mods to i_state */
515 	inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518 
519 /*
520  * Free the inode passed in, removing it from the lists it is still connected
521  * to. We remove any pages still attached to the inode and wait for any IO that
522  * is still in progress before finally destroying the inode.
523  *
524  * An inode must already be marked I_FREEING so that we avoid the inode being
525  * moved back onto lists if we race with other code that manipulates the lists
526  * (e.g. writeback_single_inode). The caller is responsible for setting this.
527  *
528  * An inode must already be removed from the LRU list before being evicted from
529  * the cache. This should occur atomically with setting the I_FREEING state
530  * flag, so no inodes here should ever be on the LRU when being evicted.
531  */
evict(struct inode * inode)532 static void evict(struct inode *inode)
533 {
534 	const struct super_operations *op = inode->i_sb->s_op;
535 
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(!list_empty(&inode->i_lru));
538 
539 	if (!list_empty(&inode->i_wb_list))
540 		inode_wb_list_del(inode);
541 
542 	inode_sb_list_del(inode);
543 
544 	/*
545 	 * Wait for flusher thread to be done with the inode so that filesystem
546 	 * does not start destroying it while writeback is still running. Since
547 	 * the inode has I_FREEING set, flusher thread won't start new work on
548 	 * the inode.  We just have to wait for running writeback to finish.
549 	 */
550 	inode_wait_for_writeback(inode);
551 
552 	if (op->evict_inode) {
553 		op->evict_inode(inode);
554 	} else {
555 		truncate_inode_pages_final(&inode->i_data);
556 		clear_inode(inode);
557 	}
558 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 		bd_forget(inode);
560 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 		cd_forget(inode);
562 
563 	remove_inode_hash(inode);
564 
565 	spin_lock(&inode->i_lock);
566 	wake_up_bit(&inode->i_state, __I_NEW);
567 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 	spin_unlock(&inode->i_lock);
569 
570 	destroy_inode(inode);
571 }
572 
573 /*
574  * dispose_list - dispose of the contents of a local list
575  * @head: the head of the list to free
576  *
577  * Dispose-list gets a local list with local inodes in it, so it doesn't
578  * need to worry about list corruption and SMP locks.
579  */
dispose_list(struct list_head * head)580 static void dispose_list(struct list_head *head)
581 {
582 	while (!list_empty(head)) {
583 		struct inode *inode;
584 
585 		inode = list_first_entry(head, struct inode, i_lru);
586 		list_del_init(&inode->i_lru);
587 
588 		evict(inode);
589 	}
590 }
591 
592 /**
593  * evict_inodes	- evict all evictable inodes for a superblock
594  * @sb:		superblock to operate on
595  *
596  * Make sure that no inodes with zero refcount are retained.  This is
597  * called by superblock shutdown after having MS_ACTIVE flag removed,
598  * so any inode reaching zero refcount during or after that call will
599  * be immediately evicted.
600  */
evict_inodes(struct super_block * sb)601 void evict_inodes(struct super_block *sb)
602 {
603 	struct inode *inode, *next;
604 	LIST_HEAD(dispose);
605 
606 	spin_lock(&inode_sb_list_lock);
607 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 		if (atomic_read(&inode->i_count))
609 			continue;
610 
611 		spin_lock(&inode->i_lock);
612 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 			spin_unlock(&inode->i_lock);
614 			continue;
615 		}
616 
617 		inode->i_state |= I_FREEING;
618 		inode_lru_list_del(inode);
619 		spin_unlock(&inode->i_lock);
620 		list_add(&inode->i_lru, &dispose);
621 	}
622 	spin_unlock(&inode_sb_list_lock);
623 
624 	dispose_list(&dispose);
625 }
626 
627 /**
628  * invalidate_inodes	- attempt to free all inodes on a superblock
629  * @sb:		superblock to operate on
630  * @kill_dirty: flag to guide handling of dirty inodes
631  *
632  * Attempts to free all inodes for a given superblock.  If there were any
633  * busy inodes return a non-zero value, else zero.
634  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
635  * them as busy.
636  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)637 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
638 {
639 	int busy = 0;
640 	struct inode *inode, *next;
641 	LIST_HEAD(dispose);
642 
643 	spin_lock(&inode_sb_list_lock);
644 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 		spin_lock(&inode->i_lock);
646 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 			spin_unlock(&inode->i_lock);
648 			continue;
649 		}
650 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
651 			spin_unlock(&inode->i_lock);
652 			busy = 1;
653 			continue;
654 		}
655 		if (atomic_read(&inode->i_count)) {
656 			spin_unlock(&inode->i_lock);
657 			busy = 1;
658 			continue;
659 		}
660 
661 		inode->i_state |= I_FREEING;
662 		inode_lru_list_del(inode);
663 		spin_unlock(&inode->i_lock);
664 		list_add(&inode->i_lru, &dispose);
665 	}
666 	spin_unlock(&inode_sb_list_lock);
667 
668 	dispose_list(&dispose);
669 
670 	return busy;
671 }
672 
673 /*
674  * Isolate the inode from the LRU in preparation for freeing it.
675  *
676  * Any inodes which are pinned purely because of attached pagecache have their
677  * pagecache removed.  If the inode has metadata buffers attached to
678  * mapping->private_list then try to remove them.
679  *
680  * If the inode has the I_REFERENCED flag set, then it means that it has been
681  * used recently - the flag is set in iput_final(). When we encounter such an
682  * inode, clear the flag and move it to the back of the LRU so it gets another
683  * pass through the LRU before it gets reclaimed. This is necessary because of
684  * the fact we are doing lazy LRU updates to minimise lock contention so the
685  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686  * with this flag set because they are the inodes that are out of order.
687  */
688 static enum lru_status
inode_lru_isolate(struct list_head * item,spinlock_t * lru_lock,void * arg)689 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
690 {
691 	struct list_head *freeable = arg;
692 	struct inode	*inode = container_of(item, struct inode, i_lru);
693 
694 	/*
695 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 	 * If we fail to get the lock, just skip it.
697 	 */
698 	if (!spin_trylock(&inode->i_lock))
699 		return LRU_SKIP;
700 
701 	/*
702 	 * Referenced or dirty inodes are still in use. Give them another pass
703 	 * through the LRU as we canot reclaim them now.
704 	 */
705 	if (atomic_read(&inode->i_count) ||
706 	    (inode->i_state & ~I_REFERENCED)) {
707 		list_del_init(&inode->i_lru);
708 		spin_unlock(&inode->i_lock);
709 		this_cpu_dec(nr_unused);
710 		return LRU_REMOVED;
711 	}
712 
713 	/* recently referenced inodes get one more pass */
714 	if (inode->i_state & I_REFERENCED) {
715 		inode->i_state &= ~I_REFERENCED;
716 		spin_unlock(&inode->i_lock);
717 		return LRU_ROTATE;
718 	}
719 
720 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
721 		__iget(inode);
722 		spin_unlock(&inode->i_lock);
723 		spin_unlock(lru_lock);
724 		if (remove_inode_buffers(inode)) {
725 			unsigned long reap;
726 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
727 			if (current_is_kswapd())
728 				__count_vm_events(KSWAPD_INODESTEAL, reap);
729 			else
730 				__count_vm_events(PGINODESTEAL, reap);
731 			if (current->reclaim_state)
732 				current->reclaim_state->reclaimed_slab += reap;
733 		}
734 		iput(inode);
735 		spin_lock(lru_lock);
736 		return LRU_RETRY;
737 	}
738 
739 	WARN_ON(inode->i_state & I_NEW);
740 	inode->i_state |= I_FREEING;
741 	list_move(&inode->i_lru, freeable);
742 	spin_unlock(&inode->i_lock);
743 
744 	this_cpu_dec(nr_unused);
745 	return LRU_REMOVED;
746 }
747 
748 /*
749  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750  * This is called from the superblock shrinker function with a number of inodes
751  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752  * then are freed outside inode_lock by dispose_list().
753  */
prune_icache_sb(struct super_block * sb,unsigned long nr_to_scan,int nid)754 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
755 		     int nid)
756 {
757 	LIST_HEAD(freeable);
758 	long freed;
759 
760 	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
761 				       &freeable, &nr_to_scan);
762 	dispose_list(&freeable);
763 	return freed;
764 }
765 
766 static void __wait_on_freeing_inode(struct inode *inode);
767 /*
768  * Called with the inode lock held.
769  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)770 static struct inode *find_inode(struct super_block *sb,
771 				struct hlist_head *head,
772 				int (*test)(struct inode *, void *),
773 				void *data)
774 {
775 	struct inode *inode = NULL;
776 
777 repeat:
778 	hlist_for_each_entry(inode, head, i_hash) {
779 		if (inode->i_sb != sb)
780 			continue;
781 		if (!test(inode, data))
782 			continue;
783 		spin_lock(&inode->i_lock);
784 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
785 			__wait_on_freeing_inode(inode);
786 			goto repeat;
787 		}
788 		__iget(inode);
789 		spin_unlock(&inode->i_lock);
790 		return inode;
791 	}
792 	return NULL;
793 }
794 
795 /*
796  * find_inode_fast is the fast path version of find_inode, see the comment at
797  * iget_locked for details.
798  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)799 static struct inode *find_inode_fast(struct super_block *sb,
800 				struct hlist_head *head, unsigned long ino)
801 {
802 	struct inode *inode = NULL;
803 
804 repeat:
805 	hlist_for_each_entry(inode, head, i_hash) {
806 		if (inode->i_ino != ino)
807 			continue;
808 		if (inode->i_sb != sb)
809 			continue;
810 		spin_lock(&inode->i_lock);
811 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
812 			__wait_on_freeing_inode(inode);
813 			goto repeat;
814 		}
815 		__iget(inode);
816 		spin_unlock(&inode->i_lock);
817 		return inode;
818 	}
819 	return NULL;
820 }
821 
822 /*
823  * Each cpu owns a range of LAST_INO_BATCH numbers.
824  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
825  * to renew the exhausted range.
826  *
827  * This does not significantly increase overflow rate because every CPU can
828  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
829  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
830  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
831  * overflow rate by 2x, which does not seem too significant.
832  *
833  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
834  * error if st_ino won't fit in target struct field. Use 32bit counter
835  * here to attempt to avoid that.
836  */
837 #define LAST_INO_BATCH 1024
838 static DEFINE_PER_CPU(unsigned int, last_ino);
839 
get_next_ino(void)840 unsigned int get_next_ino(void)
841 {
842 	unsigned int *p = &get_cpu_var(last_ino);
843 	unsigned int res = *p;
844 
845 #ifdef CONFIG_SMP
846 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
847 		static atomic_t shared_last_ino;
848 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
849 
850 		res = next - LAST_INO_BATCH;
851 	}
852 #endif
853 
854 	*p = ++res;
855 	put_cpu_var(last_ino);
856 	return res;
857 }
858 EXPORT_SYMBOL(get_next_ino);
859 
860 /**
861  *	new_inode_pseudo 	- obtain an inode
862  *	@sb: superblock
863  *
864  *	Allocates a new inode for given superblock.
865  *	Inode wont be chained in superblock s_inodes list
866  *	This means :
867  *	- fs can't be unmount
868  *	- quotas, fsnotify, writeback can't work
869  */
new_inode_pseudo(struct super_block * sb)870 struct inode *new_inode_pseudo(struct super_block *sb)
871 {
872 	struct inode *inode = alloc_inode(sb);
873 
874 	if (inode) {
875 		spin_lock(&inode->i_lock);
876 		inode->i_state = 0;
877 		spin_unlock(&inode->i_lock);
878 		INIT_LIST_HEAD(&inode->i_sb_list);
879 	}
880 	return inode;
881 }
882 
883 /**
884  *	new_inode 	- obtain an inode
885  *	@sb: superblock
886  *
887  *	Allocates a new inode for given superblock. The default gfp_mask
888  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
889  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
890  *	for the page cache are not reclaimable or migratable,
891  *	mapping_set_gfp_mask() must be called with suitable flags on the
892  *	newly created inode's mapping
893  *
894  */
new_inode(struct super_block * sb)895 struct inode *new_inode(struct super_block *sb)
896 {
897 	struct inode *inode;
898 
899 	spin_lock_prefetch(&inode_sb_list_lock);
900 
901 	inode = new_inode_pseudo(sb);
902 	if (inode)
903 		inode_sb_list_add(inode);
904 	return inode;
905 }
906 EXPORT_SYMBOL(new_inode);
907 
908 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)909 void lockdep_annotate_inode_mutex_key(struct inode *inode)
910 {
911 	if (S_ISDIR(inode->i_mode)) {
912 		struct file_system_type *type = inode->i_sb->s_type;
913 
914 		/* Set new key only if filesystem hasn't already changed it */
915 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
916 			/*
917 			 * ensure nobody is actually holding i_mutex
918 			 */
919 			mutex_destroy(&inode->i_mutex);
920 			mutex_init(&inode->i_mutex);
921 			lockdep_set_class(&inode->i_mutex,
922 					  &type->i_mutex_dir_key);
923 		}
924 	}
925 }
926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
927 #endif
928 
929 /**
930  * unlock_new_inode - clear the I_NEW state and wake up any waiters
931  * @inode:	new inode to unlock
932  *
933  * Called when the inode is fully initialised to clear the new state of the
934  * inode and wake up anyone waiting for the inode to finish initialisation.
935  */
unlock_new_inode(struct inode * inode)936 void unlock_new_inode(struct inode *inode)
937 {
938 	lockdep_annotate_inode_mutex_key(inode);
939 	spin_lock(&inode->i_lock);
940 	WARN_ON(!(inode->i_state & I_NEW));
941 	inode->i_state &= ~I_NEW;
942 	smp_mb();
943 	wake_up_bit(&inode->i_state, __I_NEW);
944 	spin_unlock(&inode->i_lock);
945 }
946 EXPORT_SYMBOL(unlock_new_inode);
947 
948 /**
949  * lock_two_nondirectories - take two i_mutexes on non-directory objects
950  *
951  * Lock any non-NULL argument that is not a directory.
952  * Zero, one or two objects may be locked by this function.
953  *
954  * @inode1: first inode to lock
955  * @inode2: second inode to lock
956  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)957 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
958 {
959 	if (inode1 > inode2)
960 		swap(inode1, inode2);
961 
962 	if (inode1 && !S_ISDIR(inode1->i_mode))
963 		mutex_lock(&inode1->i_mutex);
964 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
965 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
966 }
967 EXPORT_SYMBOL(lock_two_nondirectories);
968 
969 /**
970  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
971  * @inode1: first inode to unlock
972  * @inode2: second inode to unlock
973  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)974 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 	if (inode1 && !S_ISDIR(inode1->i_mode))
977 		mutex_unlock(&inode1->i_mutex);
978 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 		mutex_unlock(&inode2->i_mutex);
980 }
981 EXPORT_SYMBOL(unlock_two_nondirectories);
982 
983 /**
984  * iget5_locked - obtain an inode from a mounted file system
985  * @sb:		super block of file system
986  * @hashval:	hash value (usually inode number) to get
987  * @test:	callback used for comparisons between inodes
988  * @set:	callback used to initialize a new struct inode
989  * @data:	opaque data pointer to pass to @test and @set
990  *
991  * Search for the inode specified by @hashval and @data in the inode cache,
992  * and if present it is return it with an increased reference count. This is
993  * a generalized version of iget_locked() for file systems where the inode
994  * number is not sufficient for unique identification of an inode.
995  *
996  * If the inode is not in cache, allocate a new inode and return it locked,
997  * hashed, and with the I_NEW flag set. The file system gets to fill it in
998  * before unlocking it via unlock_new_inode().
999  *
1000  * Note both @test and @set are called with the inode_hash_lock held, so can't
1001  * sleep.
1002  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1004 		int (*test)(struct inode *, void *),
1005 		int (*set)(struct inode *, void *), void *data)
1006 {
1007 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1008 	struct inode *inode;
1009 
1010 	spin_lock(&inode_hash_lock);
1011 	inode = find_inode(sb, head, test, data);
1012 	spin_unlock(&inode_hash_lock);
1013 
1014 	if (inode) {
1015 		wait_on_inode(inode);
1016 		return inode;
1017 	}
1018 
1019 	inode = alloc_inode(sb);
1020 	if (inode) {
1021 		struct inode *old;
1022 
1023 		spin_lock(&inode_hash_lock);
1024 		/* We released the lock, so.. */
1025 		old = find_inode(sb, head, test, data);
1026 		if (!old) {
1027 			if (set(inode, data))
1028 				goto set_failed;
1029 
1030 			spin_lock(&inode->i_lock);
1031 			inode->i_state = I_NEW;
1032 			hlist_add_head(&inode->i_hash, head);
1033 			spin_unlock(&inode->i_lock);
1034 			inode_sb_list_add(inode);
1035 			spin_unlock(&inode_hash_lock);
1036 
1037 			/* Return the locked inode with I_NEW set, the
1038 			 * caller is responsible for filling in the contents
1039 			 */
1040 			return inode;
1041 		}
1042 
1043 		/*
1044 		 * Uhhuh, somebody else created the same inode under
1045 		 * us. Use the old inode instead of the one we just
1046 		 * allocated.
1047 		 */
1048 		spin_unlock(&inode_hash_lock);
1049 		destroy_inode(inode);
1050 		inode = old;
1051 		wait_on_inode(inode);
1052 	}
1053 	return inode;
1054 
1055 set_failed:
1056 	spin_unlock(&inode_hash_lock);
1057 	destroy_inode(inode);
1058 	return NULL;
1059 }
1060 EXPORT_SYMBOL(iget5_locked);
1061 
1062 /**
1063  * iget_locked - obtain an inode from a mounted file system
1064  * @sb:		super block of file system
1065  * @ino:	inode number to get
1066  *
1067  * Search for the inode specified by @ino in the inode cache and if present
1068  * return it with an increased reference count. This is for file systems
1069  * where the inode number is sufficient for unique identification of an inode.
1070  *
1071  * If the inode is not in cache, allocate a new inode and return it locked,
1072  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1073  * before unlocking it via unlock_new_inode().
1074  */
iget_locked(struct super_block * sb,unsigned long ino)1075 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 {
1077 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1078 	struct inode *inode;
1079 
1080 	spin_lock(&inode_hash_lock);
1081 	inode = find_inode_fast(sb, head, ino);
1082 	spin_unlock(&inode_hash_lock);
1083 	if (inode) {
1084 		wait_on_inode(inode);
1085 		return inode;
1086 	}
1087 
1088 	inode = alloc_inode(sb);
1089 	if (inode) {
1090 		struct inode *old;
1091 
1092 		spin_lock(&inode_hash_lock);
1093 		/* We released the lock, so.. */
1094 		old = find_inode_fast(sb, head, ino);
1095 		if (!old) {
1096 			inode->i_ino = ino;
1097 			spin_lock(&inode->i_lock);
1098 			inode->i_state = I_NEW;
1099 			hlist_add_head(&inode->i_hash, head);
1100 			spin_unlock(&inode->i_lock);
1101 			inode_sb_list_add(inode);
1102 			spin_unlock(&inode_hash_lock);
1103 
1104 			/* Return the locked inode with I_NEW set, the
1105 			 * caller is responsible for filling in the contents
1106 			 */
1107 			return inode;
1108 		}
1109 
1110 		/*
1111 		 * Uhhuh, somebody else created the same inode under
1112 		 * us. Use the old inode instead of the one we just
1113 		 * allocated.
1114 		 */
1115 		spin_unlock(&inode_hash_lock);
1116 		destroy_inode(inode);
1117 		inode = old;
1118 		wait_on_inode(inode);
1119 	}
1120 	return inode;
1121 }
1122 EXPORT_SYMBOL(iget_locked);
1123 
1124 /*
1125  * search the inode cache for a matching inode number.
1126  * If we find one, then the inode number we are trying to
1127  * allocate is not unique and so we should not use it.
1128  *
1129  * Returns 1 if the inode number is unique, 0 if it is not.
1130  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1131 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1132 {
1133 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1134 	struct inode *inode;
1135 
1136 	spin_lock(&inode_hash_lock);
1137 	hlist_for_each_entry(inode, b, i_hash) {
1138 		if (inode->i_ino == ino && inode->i_sb == sb) {
1139 			spin_unlock(&inode_hash_lock);
1140 			return 0;
1141 		}
1142 	}
1143 	spin_unlock(&inode_hash_lock);
1144 
1145 	return 1;
1146 }
1147 
1148 /**
1149  *	iunique - get a unique inode number
1150  *	@sb: superblock
1151  *	@max_reserved: highest reserved inode number
1152  *
1153  *	Obtain an inode number that is unique on the system for a given
1154  *	superblock. This is used by file systems that have no natural
1155  *	permanent inode numbering system. An inode number is returned that
1156  *	is higher than the reserved limit but unique.
1157  *
1158  *	BUGS:
1159  *	With a large number of inodes live on the file system this function
1160  *	currently becomes quite slow.
1161  */
iunique(struct super_block * sb,ino_t max_reserved)1162 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1163 {
1164 	/*
1165 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1166 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1167 	 * here to attempt to avoid that.
1168 	 */
1169 	static DEFINE_SPINLOCK(iunique_lock);
1170 	static unsigned int counter;
1171 	ino_t res;
1172 
1173 	spin_lock(&iunique_lock);
1174 	do {
1175 		if (counter <= max_reserved)
1176 			counter = max_reserved + 1;
1177 		res = counter++;
1178 	} while (!test_inode_iunique(sb, res));
1179 	spin_unlock(&iunique_lock);
1180 
1181 	return res;
1182 }
1183 EXPORT_SYMBOL(iunique);
1184 
igrab(struct inode * inode)1185 struct inode *igrab(struct inode *inode)
1186 {
1187 	spin_lock(&inode->i_lock);
1188 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1189 		__iget(inode);
1190 		spin_unlock(&inode->i_lock);
1191 	} else {
1192 		spin_unlock(&inode->i_lock);
1193 		/*
1194 		 * Handle the case where s_op->clear_inode is not been
1195 		 * called yet, and somebody is calling igrab
1196 		 * while the inode is getting freed.
1197 		 */
1198 		inode = NULL;
1199 	}
1200 	return inode;
1201 }
1202 EXPORT_SYMBOL(igrab);
1203 
1204 /**
1205  * ilookup5_nowait - search for an inode in the inode cache
1206  * @sb:		super block of file system to search
1207  * @hashval:	hash value (usually inode number) to search for
1208  * @test:	callback used for comparisons between inodes
1209  * @data:	opaque data pointer to pass to @test
1210  *
1211  * Search for the inode specified by @hashval and @data in the inode cache.
1212  * If the inode is in the cache, the inode is returned with an incremented
1213  * reference count.
1214  *
1215  * Note: I_NEW is not waited upon so you have to be very careful what you do
1216  * with the returned inode.  You probably should be using ilookup5() instead.
1217  *
1218  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1220 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1221 		int (*test)(struct inode *, void *), void *data)
1222 {
1223 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1224 	struct inode *inode;
1225 
1226 	spin_lock(&inode_hash_lock);
1227 	inode = find_inode(sb, head, test, data);
1228 	spin_unlock(&inode_hash_lock);
1229 
1230 	return inode;
1231 }
1232 EXPORT_SYMBOL(ilookup5_nowait);
1233 
1234 /**
1235  * ilookup5 - search for an inode in the inode cache
1236  * @sb:		super block of file system to search
1237  * @hashval:	hash value (usually inode number) to search for
1238  * @test:	callback used for comparisons between inodes
1239  * @data:	opaque data pointer to pass to @test
1240  *
1241  * Search for the inode specified by @hashval and @data in the inode cache,
1242  * and if the inode is in the cache, return the inode with an incremented
1243  * reference count.  Waits on I_NEW before returning the inode.
1244  * returned with an incremented reference count.
1245  *
1246  * This is a generalized version of ilookup() for file systems where the
1247  * inode number is not sufficient for unique identification of an inode.
1248  *
1249  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1251 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1252 		int (*test)(struct inode *, void *), void *data)
1253 {
1254 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1255 
1256 	if (inode)
1257 		wait_on_inode(inode);
1258 	return inode;
1259 }
1260 EXPORT_SYMBOL(ilookup5);
1261 
1262 /**
1263  * ilookup - search for an inode in the inode cache
1264  * @sb:		super block of file system to search
1265  * @ino:	inode number to search for
1266  *
1267  * Search for the inode @ino in the inode cache, and if the inode is in the
1268  * cache, the inode is returned with an incremented reference count.
1269  */
ilookup(struct super_block * sb,unsigned long ino)1270 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1271 {
1272 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1273 	struct inode *inode;
1274 
1275 	spin_lock(&inode_hash_lock);
1276 	inode = find_inode_fast(sb, head, ino);
1277 	spin_unlock(&inode_hash_lock);
1278 
1279 	if (inode)
1280 		wait_on_inode(inode);
1281 	return inode;
1282 }
1283 EXPORT_SYMBOL(ilookup);
1284 
insert_inode_locked(struct inode * inode)1285 int insert_inode_locked(struct inode *inode)
1286 {
1287 	struct super_block *sb = inode->i_sb;
1288 	ino_t ino = inode->i_ino;
1289 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1290 
1291 	while (1) {
1292 		struct inode *old = NULL;
1293 		spin_lock(&inode_hash_lock);
1294 		hlist_for_each_entry(old, head, i_hash) {
1295 			if (old->i_ino != ino)
1296 				continue;
1297 			if (old->i_sb != sb)
1298 				continue;
1299 			spin_lock(&old->i_lock);
1300 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1301 				spin_unlock(&old->i_lock);
1302 				continue;
1303 			}
1304 			break;
1305 		}
1306 		if (likely(!old)) {
1307 			spin_lock(&inode->i_lock);
1308 			inode->i_state |= I_NEW;
1309 			hlist_add_head(&inode->i_hash, head);
1310 			spin_unlock(&inode->i_lock);
1311 			spin_unlock(&inode_hash_lock);
1312 			return 0;
1313 		}
1314 		__iget(old);
1315 		spin_unlock(&old->i_lock);
1316 		spin_unlock(&inode_hash_lock);
1317 		wait_on_inode(old);
1318 		if (unlikely(!inode_unhashed(old))) {
1319 			iput(old);
1320 			return -EBUSY;
1321 		}
1322 		iput(old);
1323 	}
1324 }
1325 EXPORT_SYMBOL(insert_inode_locked);
1326 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1327 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1328 		int (*test)(struct inode *, void *), void *data)
1329 {
1330 	struct super_block *sb = inode->i_sb;
1331 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 
1333 	while (1) {
1334 		struct inode *old = NULL;
1335 
1336 		spin_lock(&inode_hash_lock);
1337 		hlist_for_each_entry(old, head, i_hash) {
1338 			if (old->i_sb != sb)
1339 				continue;
1340 			if (!test(old, data))
1341 				continue;
1342 			spin_lock(&old->i_lock);
1343 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1344 				spin_unlock(&old->i_lock);
1345 				continue;
1346 			}
1347 			break;
1348 		}
1349 		if (likely(!old)) {
1350 			spin_lock(&inode->i_lock);
1351 			inode->i_state |= I_NEW;
1352 			hlist_add_head(&inode->i_hash, head);
1353 			spin_unlock(&inode->i_lock);
1354 			spin_unlock(&inode_hash_lock);
1355 			return 0;
1356 		}
1357 		__iget(old);
1358 		spin_unlock(&old->i_lock);
1359 		spin_unlock(&inode_hash_lock);
1360 		wait_on_inode(old);
1361 		if (unlikely(!inode_unhashed(old))) {
1362 			iput(old);
1363 			return -EBUSY;
1364 		}
1365 		iput(old);
1366 	}
1367 }
1368 EXPORT_SYMBOL(insert_inode_locked4);
1369 
1370 
generic_delete_inode(struct inode * inode)1371 int generic_delete_inode(struct inode *inode)
1372 {
1373 	return 1;
1374 }
1375 EXPORT_SYMBOL(generic_delete_inode);
1376 
1377 /*
1378  * Called when we're dropping the last reference
1379  * to an inode.
1380  *
1381  * Call the FS "drop_inode()" function, defaulting to
1382  * the legacy UNIX filesystem behaviour.  If it tells
1383  * us to evict inode, do so.  Otherwise, retain inode
1384  * in cache if fs is alive, sync and evict if fs is
1385  * shutting down.
1386  */
iput_final(struct inode * inode)1387 static void iput_final(struct inode *inode)
1388 {
1389 	struct super_block *sb = inode->i_sb;
1390 	const struct super_operations *op = inode->i_sb->s_op;
1391 	int drop;
1392 
1393 	WARN_ON(inode->i_state & I_NEW);
1394 
1395 	if (op->drop_inode)
1396 		drop = op->drop_inode(inode);
1397 	else
1398 		drop = generic_drop_inode(inode);
1399 
1400 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1401 		inode->i_state |= I_REFERENCED;
1402 		inode_add_lru(inode);
1403 		spin_unlock(&inode->i_lock);
1404 		return;
1405 	}
1406 
1407 	if (!drop) {
1408 		inode->i_state |= I_WILL_FREE;
1409 		spin_unlock(&inode->i_lock);
1410 		write_inode_now(inode, 1);
1411 		spin_lock(&inode->i_lock);
1412 		WARN_ON(inode->i_state & I_NEW);
1413 		inode->i_state &= ~I_WILL_FREE;
1414 	}
1415 
1416 	inode->i_state |= I_FREEING;
1417 	if (!list_empty(&inode->i_lru))
1418 		inode_lru_list_del(inode);
1419 	spin_unlock(&inode->i_lock);
1420 
1421 	evict(inode);
1422 }
1423 
1424 /**
1425  *	iput	- put an inode
1426  *	@inode: inode to put
1427  *
1428  *	Puts an inode, dropping its usage count. If the inode use count hits
1429  *	zero, the inode is then freed and may also be destroyed.
1430  *
1431  *	Consequently, iput() can sleep.
1432  */
iput(struct inode * inode)1433 void iput(struct inode *inode)
1434 {
1435 	if (!inode)
1436 		return;
1437 	BUG_ON(inode->i_state & I_CLEAR);
1438 retry:
1439 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1440 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1441 			atomic_inc(&inode->i_count);
1442 			inode->i_state &= ~I_DIRTY_TIME;
1443 			spin_unlock(&inode->i_lock);
1444 			trace_writeback_lazytime_iput(inode);
1445 			mark_inode_dirty_sync(inode);
1446 			goto retry;
1447 		}
1448 		iput_final(inode);
1449 	}
1450 }
1451 EXPORT_SYMBOL(iput);
1452 
1453 /**
1454  *	bmap	- find a block number in a file
1455  *	@inode: inode of file
1456  *	@block: block to find
1457  *
1458  *	Returns the block number on the device holding the inode that
1459  *	is the disk block number for the block of the file requested.
1460  *	That is, asked for block 4 of inode 1 the function will return the
1461  *	disk block relative to the disk start that holds that block of the
1462  *	file.
1463  */
bmap(struct inode * inode,sector_t block)1464 sector_t bmap(struct inode *inode, sector_t block)
1465 {
1466 	sector_t res = 0;
1467 	if (inode->i_mapping->a_ops->bmap)
1468 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1469 	return res;
1470 }
1471 EXPORT_SYMBOL(bmap);
1472 
1473 /*
1474  * With relative atime, only update atime if the previous atime is
1475  * earlier than either the ctime or mtime or if at least a day has
1476  * passed since the last atime update.
1477  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1478 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1479 			     struct timespec now)
1480 {
1481 
1482 	if (!(mnt->mnt_flags & MNT_RELATIME))
1483 		return 1;
1484 	/*
1485 	 * Is mtime younger than atime? If yes, update atime:
1486 	 */
1487 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1488 		return 1;
1489 	/*
1490 	 * Is ctime younger than atime? If yes, update atime:
1491 	 */
1492 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1493 		return 1;
1494 
1495 	/*
1496 	 * Is the previous atime value older than a day? If yes,
1497 	 * update atime:
1498 	 */
1499 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1500 		return 1;
1501 	/*
1502 	 * Good, we can skip the atime update:
1503 	 */
1504 	return 0;
1505 }
1506 
generic_update_time(struct inode * inode,struct timespec * time,int flags)1507 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1508 {
1509 	int iflags = I_DIRTY_TIME;
1510 
1511 	if (flags & S_ATIME)
1512 		inode->i_atime = *time;
1513 	if (flags & S_VERSION)
1514 		inode_inc_iversion(inode);
1515 	if (flags & S_CTIME)
1516 		inode->i_ctime = *time;
1517 	if (flags & S_MTIME)
1518 		inode->i_mtime = *time;
1519 
1520 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1521 		iflags |= I_DIRTY_SYNC;
1522 	__mark_inode_dirty(inode, iflags);
1523 	return 0;
1524 }
1525 EXPORT_SYMBOL(generic_update_time);
1526 
1527 /*
1528  * This does the actual work of updating an inodes time or version.  Must have
1529  * had called mnt_want_write() before calling this.
1530  */
update_time(struct inode * inode,struct timespec * time,int flags)1531 static int update_time(struct inode *inode, struct timespec *time, int flags)
1532 {
1533 	int (*update_time)(struct inode *, struct timespec *, int);
1534 
1535 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1536 		generic_update_time;
1537 
1538 	return update_time(inode, time, flags);
1539 }
1540 
1541 /**
1542  *	touch_atime	-	update the access time
1543  *	@path: the &struct path to update
1544  *
1545  *	Update the accessed time on an inode and mark it for writeback.
1546  *	This function automatically handles read only file systems and media,
1547  *	as well as the "noatime" flag and inode specific "noatime" markers.
1548  */
touch_atime(const struct path * path)1549 void touch_atime(const struct path *path)
1550 {
1551 	struct vfsmount *mnt = path->mnt;
1552 	struct inode *inode = path->dentry->d_inode;
1553 	struct timespec now;
1554 
1555 	if (inode->i_flags & S_NOATIME)
1556 		return;
1557 	if (IS_NOATIME(inode))
1558 		return;
1559 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1560 		return;
1561 
1562 	if (mnt->mnt_flags & MNT_NOATIME)
1563 		return;
1564 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1565 		return;
1566 
1567 	now = current_fs_time(inode->i_sb);
1568 
1569 	if (!relatime_need_update(mnt, inode, now))
1570 		return;
1571 
1572 	if (timespec_equal(&inode->i_atime, &now))
1573 		return;
1574 
1575 	if (!sb_start_write_trylock(inode->i_sb))
1576 		return;
1577 
1578 	if (__mnt_want_write(mnt))
1579 		goto skip_update;
1580 	/*
1581 	 * File systems can error out when updating inodes if they need to
1582 	 * allocate new space to modify an inode (such is the case for
1583 	 * Btrfs), but since we touch atime while walking down the path we
1584 	 * really don't care if we failed to update the atime of the file,
1585 	 * so just ignore the return value.
1586 	 * We may also fail on filesystems that have the ability to make parts
1587 	 * of the fs read only, e.g. subvolumes in Btrfs.
1588 	 */
1589 	update_time(inode, &now, S_ATIME);
1590 	__mnt_drop_write(mnt);
1591 skip_update:
1592 	sb_end_write(inode->i_sb);
1593 }
1594 EXPORT_SYMBOL(touch_atime);
1595 
1596 /*
1597  * The logic we want is
1598  *
1599  *	if suid or (sgid and xgrp)
1600  *		remove privs
1601  */
should_remove_suid(struct dentry * dentry)1602 int should_remove_suid(struct dentry *dentry)
1603 {
1604 	umode_t mode = dentry->d_inode->i_mode;
1605 	int kill = 0;
1606 
1607 	/* suid always must be killed */
1608 	if (unlikely(mode & S_ISUID))
1609 		kill = ATTR_KILL_SUID;
1610 
1611 	/*
1612 	 * sgid without any exec bits is just a mandatory locking mark; leave
1613 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1614 	 */
1615 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1616 		kill |= ATTR_KILL_SGID;
1617 
1618 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1619 		return kill;
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL(should_remove_suid);
1624 
__remove_suid(struct vfsmount * mnt,struct dentry * dentry,int kill)1625 static int __remove_suid(struct vfsmount *mnt, struct dentry *dentry, int kill)
1626 {
1627 	struct iattr newattrs;
1628 
1629 	newattrs.ia_valid = ATTR_FORCE | kill;
1630 	/*
1631 	 * Note we call this on write, so notify_change will not
1632 	 * encounter any conflicting delegations:
1633 	 */
1634 	return notify_change2(mnt, dentry, &newattrs, NULL);
1635 }
1636 
file_remove_suid(struct file * file)1637 int file_remove_suid(struct file *file)
1638 {
1639 	struct dentry *dentry = file->f_path.dentry;
1640 	struct inode *inode = dentry->d_inode;
1641 	int killsuid;
1642 	int killpriv;
1643 	int error = 0;
1644 
1645 	/* Fast path for nothing security related */
1646 	if (IS_NOSEC(inode))
1647 		return 0;
1648 
1649 	killsuid = should_remove_suid(dentry);
1650 	killpriv = security_inode_need_killpriv(dentry);
1651 
1652 	if (killpriv < 0)
1653 		return killpriv;
1654 	if (killpriv)
1655 		error = security_inode_killpriv(dentry);
1656 	if (!error && killsuid)
1657 		error = __remove_suid(file->f_path.mnt, dentry, killsuid);
1658 	if (!error)
1659 		inode_has_no_xattr(inode);
1660 
1661 	return error;
1662 }
1663 EXPORT_SYMBOL(file_remove_suid);
1664 
1665 /**
1666  *	file_update_time	-	update mtime and ctime time
1667  *	@file: file accessed
1668  *
1669  *	Update the mtime and ctime members of an inode and mark the inode
1670  *	for writeback.  Note that this function is meant exclusively for
1671  *	usage in the file write path of filesystems, and filesystems may
1672  *	choose to explicitly ignore update via this function with the
1673  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1674  *	timestamps are handled by the server.  This can return an error for
1675  *	file systems who need to allocate space in order to update an inode.
1676  */
1677 
file_update_time(struct file * file)1678 int file_update_time(struct file *file)
1679 {
1680 	struct inode *inode = file_inode(file);
1681 	struct timespec now;
1682 	int sync_it = 0;
1683 	int ret;
1684 
1685 	/* First try to exhaust all avenues to not sync */
1686 	if (IS_NOCMTIME(inode))
1687 		return 0;
1688 
1689 	now = current_fs_time(inode->i_sb);
1690 	if (!timespec_equal(&inode->i_mtime, &now))
1691 		sync_it = S_MTIME;
1692 
1693 	if (!timespec_equal(&inode->i_ctime, &now))
1694 		sync_it |= S_CTIME;
1695 
1696 	if (IS_I_VERSION(inode))
1697 		sync_it |= S_VERSION;
1698 
1699 	if (!sync_it)
1700 		return 0;
1701 
1702 	/* Finally allowed to write? Takes lock. */
1703 	if (__mnt_want_write_file(file))
1704 		return 0;
1705 
1706 	ret = update_time(inode, &now, sync_it);
1707 	__mnt_drop_write_file(file);
1708 
1709 	return ret;
1710 }
1711 EXPORT_SYMBOL(file_update_time);
1712 
inode_needs_sync(struct inode * inode)1713 int inode_needs_sync(struct inode *inode)
1714 {
1715 	if (IS_SYNC(inode))
1716 		return 1;
1717 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1718 		return 1;
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL(inode_needs_sync);
1722 
1723 /*
1724  * If we try to find an inode in the inode hash while it is being
1725  * deleted, we have to wait until the filesystem completes its
1726  * deletion before reporting that it isn't found.  This function waits
1727  * until the deletion _might_ have completed.  Callers are responsible
1728  * to recheck inode state.
1729  *
1730  * It doesn't matter if I_NEW is not set initially, a call to
1731  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1732  * will DTRT.
1733  */
__wait_on_freeing_inode(struct inode * inode)1734 static void __wait_on_freeing_inode(struct inode *inode)
1735 {
1736 	wait_queue_head_t *wq;
1737 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1738 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1739 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1740 	spin_unlock(&inode->i_lock);
1741 	spin_unlock(&inode_hash_lock);
1742 	schedule();
1743 	finish_wait(wq, &wait.wait);
1744 	spin_lock(&inode_hash_lock);
1745 }
1746 
1747 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1748 static int __init set_ihash_entries(char *str)
1749 {
1750 	if (!str)
1751 		return 0;
1752 	ihash_entries = simple_strtoul(str, &str, 0);
1753 	return 1;
1754 }
1755 __setup("ihash_entries=", set_ihash_entries);
1756 
1757 /*
1758  * Initialize the waitqueues and inode hash table.
1759  */
inode_init_early(void)1760 void __init inode_init_early(void)
1761 {
1762 	unsigned int loop;
1763 
1764 	/* If hashes are distributed across NUMA nodes, defer
1765 	 * hash allocation until vmalloc space is available.
1766 	 */
1767 	if (hashdist)
1768 		return;
1769 
1770 	inode_hashtable =
1771 		alloc_large_system_hash("Inode-cache",
1772 					sizeof(struct hlist_head),
1773 					ihash_entries,
1774 					14,
1775 					HASH_EARLY,
1776 					&i_hash_shift,
1777 					&i_hash_mask,
1778 					0,
1779 					0);
1780 
1781 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1782 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1783 }
1784 
inode_init(void)1785 void __init inode_init(void)
1786 {
1787 	unsigned int loop;
1788 
1789 	/* inode slab cache */
1790 	inode_cachep = kmem_cache_create("inode_cache",
1791 					 sizeof(struct inode),
1792 					 0,
1793 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1794 					 SLAB_MEM_SPREAD),
1795 					 init_once);
1796 
1797 	/* Hash may have been set up in inode_init_early */
1798 	if (!hashdist)
1799 		return;
1800 
1801 	inode_hashtable =
1802 		alloc_large_system_hash("Inode-cache",
1803 					sizeof(struct hlist_head),
1804 					ihash_entries,
1805 					14,
1806 					0,
1807 					&i_hash_shift,
1808 					&i_hash_mask,
1809 					0,
1810 					0);
1811 
1812 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1813 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1814 }
1815 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1816 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1817 {
1818 	inode->i_mode = mode;
1819 	if (S_ISCHR(mode)) {
1820 		inode->i_fop = &def_chr_fops;
1821 		inode->i_rdev = rdev;
1822 	} else if (S_ISBLK(mode)) {
1823 		inode->i_fop = &def_blk_fops;
1824 		inode->i_rdev = rdev;
1825 	} else if (S_ISFIFO(mode))
1826 		inode->i_fop = &pipefifo_fops;
1827 	else if (S_ISSOCK(mode))
1828 		inode->i_fop = &bad_sock_fops;
1829 	else
1830 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1831 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1832 				  inode->i_ino);
1833 }
1834 EXPORT_SYMBOL(init_special_inode);
1835 
1836 /**
1837  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1838  * @inode: New inode
1839  * @dir: Directory inode
1840  * @mode: mode of the new inode
1841  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1842 void inode_init_owner(struct inode *inode, const struct inode *dir,
1843 			umode_t mode)
1844 {
1845 	inode->i_uid = current_fsuid();
1846 	if (dir && dir->i_mode & S_ISGID) {
1847 		inode->i_gid = dir->i_gid;
1848 		if (S_ISDIR(mode))
1849 			mode |= S_ISGID;
1850 	} else
1851 		inode->i_gid = current_fsgid();
1852 	inode->i_mode = mode;
1853 }
1854 EXPORT_SYMBOL(inode_init_owner);
1855 
1856 /**
1857  * inode_owner_or_capable - check current task permissions to inode
1858  * @inode: inode being checked
1859  *
1860  * Return true if current either has CAP_FOWNER in a namespace with the
1861  * inode owner uid mapped, or owns the file.
1862  */
inode_owner_or_capable(const struct inode * inode)1863 bool inode_owner_or_capable(const struct inode *inode)
1864 {
1865 	struct user_namespace *ns;
1866 
1867 	if (uid_eq(current_fsuid(), inode->i_uid))
1868 		return true;
1869 
1870 	ns = current_user_ns();
1871 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1872 		return true;
1873 	return false;
1874 }
1875 EXPORT_SYMBOL(inode_owner_or_capable);
1876 
1877 /*
1878  * Direct i/o helper functions
1879  */
__inode_dio_wait(struct inode * inode)1880 static void __inode_dio_wait(struct inode *inode)
1881 {
1882 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1883 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1884 
1885 	do {
1886 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1887 		if (atomic_read(&inode->i_dio_count))
1888 			schedule();
1889 	} while (atomic_read(&inode->i_dio_count));
1890 	finish_wait(wq, &q.wait);
1891 }
1892 
1893 /**
1894  * inode_dio_wait - wait for outstanding DIO requests to finish
1895  * @inode: inode to wait for
1896  *
1897  * Waits for all pending direct I/O requests to finish so that we can
1898  * proceed with a truncate or equivalent operation.
1899  *
1900  * Must be called under a lock that serializes taking new references
1901  * to i_dio_count, usually by inode->i_mutex.
1902  */
inode_dio_wait(struct inode * inode)1903 void inode_dio_wait(struct inode *inode)
1904 {
1905 	if (atomic_read(&inode->i_dio_count))
1906 		__inode_dio_wait(inode);
1907 }
1908 EXPORT_SYMBOL(inode_dio_wait);
1909 
1910 /*
1911  * inode_dio_done - signal finish of a direct I/O requests
1912  * @inode: inode the direct I/O happens on
1913  *
1914  * This is called once we've finished processing a direct I/O request,
1915  * and is used to wake up callers waiting for direct I/O to be quiesced.
1916  */
inode_dio_done(struct inode * inode)1917 void inode_dio_done(struct inode *inode)
1918 {
1919 	if (atomic_dec_and_test(&inode->i_dio_count))
1920 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1921 }
1922 EXPORT_SYMBOL(inode_dio_done);
1923 
1924 /*
1925  * inode_set_flags - atomically set some inode flags
1926  *
1927  * Note: the caller should be holding i_mutex, or else be sure that
1928  * they have exclusive access to the inode structure (i.e., while the
1929  * inode is being instantiated).  The reason for the cmpxchg() loop
1930  * --- which wouldn't be necessary if all code paths which modify
1931  * i_flags actually followed this rule, is that there is at least one
1932  * code path which doesn't today --- for example,
1933  * __generic_file_aio_write() calls file_remove_suid() without holding
1934  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1935  *
1936  * In the long run, i_mutex is overkill, and we should probably look
1937  * at using the i_lock spinlock to protect i_flags, and then make sure
1938  * it is so documented in include/linux/fs.h and that all code follows
1939  * the locking convention!!
1940  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)1941 void inode_set_flags(struct inode *inode, unsigned int flags,
1942 		     unsigned int mask)
1943 {
1944 	unsigned int old_flags, new_flags;
1945 
1946 	WARN_ON_ONCE(flags & ~mask);
1947 	do {
1948 		old_flags = ACCESS_ONCE(inode->i_flags);
1949 		new_flags = (old_flags & ~mask) | flags;
1950 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1951 				  new_flags) != old_flags));
1952 }
1953 EXPORT_SYMBOL(inode_set_flags);
1954 
inode_nohighmem(struct inode * inode)1955 void inode_nohighmem(struct inode *inode)
1956 {
1957 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
1958 }
1959 EXPORT_SYMBOL(inode_nohighmem);
1960