1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode_sb_list_lock protects:
32 * sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode_sb_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode_sb_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 /**
119 * inode_init_always - perform inode structure intialisation
120 * @sb: superblock inode belongs to
121 * @inode: inode to initialise
122 *
123 * These are initializations that need to be done on every inode
124 * allocation as the fields are not initialised by slab allocation.
125 */
inode_init_always(struct super_block * sb,struct inode * inode)126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 static const struct inode_operations empty_iops;
129 static const struct file_operations empty_fops;
130 struct address_space *const mapping = &inode->i_data;
131
132 inode->i_sb = sb;
133 inode->i_blkbits = sb->s_blocksize_bits;
134 inode->i_flags = 0;
135 atomic_set(&inode->i_count, 1);
136 inode->i_op = &empty_iops;
137 inode->i_fop = &empty_fops;
138 inode->__i_nlink = 1;
139 inode->i_opflags = 0;
140 i_uid_write(inode, 0);
141 i_gid_write(inode, 0);
142 atomic_set(&inode->i_writecount, 0);
143 inode->i_size = 0;
144 inode->i_blocks = 0;
145 inode->i_bytes = 0;
146 inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_rdev = 0;
154 inode->dirtied_when = 0;
155
156 if (security_inode_alloc(inode))
157 goto out;
158 spin_lock_init(&inode->i_lock);
159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160
161 mutex_init(&inode->i_mutex);
162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163
164 atomic_set(&inode->i_dio_count, 0);
165
166 mapping->a_ops = &empty_aops;
167 mapping->host = inode;
168 mapping->flags = 0;
169 atomic_set(&mapping->i_mmap_writable, 0);
170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 mapping->private_data = NULL;
172 mapping->backing_dev_info = &default_backing_dev_info;
173 mapping->writeback_index = 0;
174
175 /*
176 * If the block_device provides a backing_dev_info for client
177 * inodes then use that. Otherwise the inode share the bdev's
178 * backing_dev_info.
179 */
180 if (sb->s_bdev) {
181 struct backing_dev_info *bdi;
182
183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 mapping->backing_dev_info = bdi;
185 }
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195 #endif
196
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200 out:
201 return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204
alloc_inode(struct super_block * sb)205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226 }
227
free_inode_nonrcu(struct inode * inode)228 void free_inode_nonrcu(struct inode *inode)
229 {
230 kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233
__destroy_inode(struct inode * inode)234 void __destroy_inode(struct inode *inode)
235 {
236 BUG_ON(inode_has_buffers(inode));
237 security_inode_free(inode);
238 fsnotify_inode_delete(inode);
239 if (!inode->i_nlink) {
240 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 atomic_long_dec(&inode->i_sb->s_remove_count);
242 }
243
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_acl);
247 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 posix_acl_release(inode->i_default_acl);
249 #endif
250 this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253
i_callback(struct rcu_head * head)254 static void i_callback(struct rcu_head *head)
255 {
256 struct inode *inode = container_of(head, struct inode, i_rcu);
257 kmem_cache_free(inode_cachep, inode);
258 }
259
destroy_inode(struct inode * inode)260 static void destroy_inode(struct inode *inode)
261 {
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
266 else
267 call_rcu(&inode->i_rcu, i_callback);
268 }
269
270 /**
271 * drop_nlink - directly drop an inode's link count
272 * @inode: inode
273 *
274 * This is a low-level filesystem helper to replace any
275 * direct filesystem manipulation of i_nlink. In cases
276 * where we are attempting to track writes to the
277 * filesystem, a decrement to zero means an imminent
278 * write when the file is truncated and actually unlinked
279 * on the filesystem.
280 */
drop_nlink(struct inode * inode)281 void drop_nlink(struct inode *inode)
282 {
283 WARN_ON(inode->i_nlink == 0);
284 inode->__i_nlink--;
285 if (!inode->i_nlink)
286 atomic_long_inc(&inode->i_sb->s_remove_count);
287 }
288 EXPORT_SYMBOL(drop_nlink);
289
290 /**
291 * clear_nlink - directly zero an inode's link count
292 * @inode: inode
293 *
294 * This is a low-level filesystem helper to replace any
295 * direct filesystem manipulation of i_nlink. See
296 * drop_nlink() for why we care about i_nlink hitting zero.
297 */
clear_nlink(struct inode * inode)298 void clear_nlink(struct inode *inode)
299 {
300 if (inode->i_nlink) {
301 inode->__i_nlink = 0;
302 atomic_long_inc(&inode->i_sb->s_remove_count);
303 }
304 }
305 EXPORT_SYMBOL(clear_nlink);
306
307 /**
308 * set_nlink - directly set an inode's link count
309 * @inode: inode
310 * @nlink: new nlink (should be non-zero)
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink.
314 */
set_nlink(struct inode * inode,unsigned int nlink)315 void set_nlink(struct inode *inode, unsigned int nlink)
316 {
317 if (!nlink) {
318 clear_nlink(inode);
319 } else {
320 /* Yes, some filesystems do change nlink from zero to one */
321 if (inode->i_nlink == 0)
322 atomic_long_dec(&inode->i_sb->s_remove_count);
323
324 inode->__i_nlink = nlink;
325 }
326 }
327 EXPORT_SYMBOL(set_nlink);
328
329 /**
330 * inc_nlink - directly increment an inode's link count
331 * @inode: inode
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink. Currently,
335 * it is only here for parity with dec_nlink().
336 */
inc_nlink(struct inode * inode)337 void inc_nlink(struct inode *inode)
338 {
339 if (unlikely(inode->i_nlink == 0)) {
340 WARN_ON(!(inode->i_state & I_LINKABLE));
341 atomic_long_dec(&inode->i_sb->s_remove_count);
342 }
343
344 inode->__i_nlink++;
345 }
346 EXPORT_SYMBOL(inc_nlink);
347
address_space_init_once(struct address_space * mapping)348 void address_space_init_once(struct address_space *mapping)
349 {
350 memset(mapping, 0, sizeof(*mapping));
351 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
352 spin_lock_init(&mapping->tree_lock);
353 mutex_init(&mapping->i_mmap_mutex);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT;
357 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
358 }
359 EXPORT_SYMBOL(address_space_init_once);
360
361 /*
362 * These are initializations that only need to be done
363 * once, because the fields are idempotent across use
364 * of the inode, so let the slab aware of that.
365 */
inode_init_once(struct inode * inode)366 void inode_init_once(struct inode *inode)
367 {
368 memset(inode, 0, sizeof(*inode));
369 INIT_HLIST_NODE(&inode->i_hash);
370 INIT_LIST_HEAD(&inode->i_devices);
371 INIT_LIST_HEAD(&inode->i_wb_list);
372 INIT_LIST_HEAD(&inode->i_lru);
373 address_space_init_once(&inode->i_data);
374 i_size_ordered_init(inode);
375 #ifdef CONFIG_FSNOTIFY
376 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
377 #endif
378 }
379 EXPORT_SYMBOL(inode_init_once);
380
init_once(void * foo)381 static void init_once(void *foo)
382 {
383 struct inode *inode = (struct inode *) foo;
384
385 inode_init_once(inode);
386 }
387
388 /*
389 * inode->i_lock must be held
390 */
__iget(struct inode * inode)391 void __iget(struct inode *inode)
392 {
393 atomic_inc(&inode->i_count);
394 }
395
396 /*
397 * get additional reference to inode; caller must already hold one.
398 */
ihold(struct inode * inode)399 void ihold(struct inode *inode)
400 {
401 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
402 }
403 EXPORT_SYMBOL(ihold);
404
inode_lru_list_add(struct inode * inode)405 static void inode_lru_list_add(struct inode *inode)
406 {
407 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
408 this_cpu_inc(nr_unused);
409 }
410
411 /*
412 * Add inode to LRU if needed (inode is unused and clean).
413 *
414 * Needs inode->i_lock held.
415 */
inode_add_lru(struct inode * inode)416 void inode_add_lru(struct inode *inode)
417 {
418 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
419 I_FREEING | I_WILL_FREE)) &&
420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
421 inode_lru_list_add(inode);
422 }
423
424
inode_lru_list_del(struct inode * inode)425 static void inode_lru_list_del(struct inode *inode)
426 {
427
428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 this_cpu_dec(nr_unused);
430 }
431
432 /**
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
435 */
inode_sb_list_add(struct inode * inode)436 void inode_sb_list_add(struct inode *inode)
437 {
438 spin_lock(&inode_sb_list_lock);
439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 spin_unlock(&inode_sb_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443
inode_sb_list_del(struct inode * inode)444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 if (!list_empty(&inode->i_sb_list)) {
447 spin_lock(&inode_sb_list_lock);
448 list_del_init(&inode->i_sb_list);
449 spin_unlock(&inode_sb_list_lock);
450 }
451 }
452
hash(struct super_block * sb,unsigned long hashval)453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 unsigned long tmp;
456
457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 L1_CACHE_BYTES;
459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 return tmp & i_hash_mask;
461 }
462
463 /**
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
467 * inode_hashtable.
468 *
469 * Add an inode to the inode hash for this superblock.
470 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474
475 spin_lock(&inode_hash_lock);
476 spin_lock(&inode->i_lock);
477 hlist_add_head(&inode->i_hash, b);
478 spin_unlock(&inode->i_lock);
479 spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482
483 /**
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
486 *
487 * Remove an inode from the superblock.
488 */
__remove_inode_hash(struct inode * inode)489 void __remove_inode_hash(struct inode *inode)
490 {
491 spin_lock(&inode_hash_lock);
492 spin_lock(&inode->i_lock);
493 hlist_del_init(&inode->i_hash);
494 spin_unlock(&inode->i_lock);
495 spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498
clear_inode(struct inode * inode)499 void clear_inode(struct inode *inode)
500 {
501 might_sleep();
502 /*
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
506 */
507 spin_lock_irq(&inode->i_data.tree_lock);
508 BUG_ON(inode->i_data.nrpages);
509 BUG_ON(inode->i_data.nrshadows);
510 spin_unlock_irq(&inode->i_data.tree_lock);
511 BUG_ON(!list_empty(&inode->i_data.private_list));
512 BUG_ON(!(inode->i_state & I_FREEING));
513 BUG_ON(inode->i_state & I_CLEAR);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518
519 /*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
evict(struct inode * inode)532 static void evict(struct inode *inode)
533 {
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_wb_list))
540 inode_wb_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 /*
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
549 */
550 inode_wait_for_writeback(inode);
551
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
557 }
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
562
563 remove_inode_hash(inode);
564
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
569
570 destroy_inode(inode);
571 }
572
573 /*
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
576 *
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
579 */
dispose_list(struct list_head * head)580 static void dispose_list(struct list_head *head)
581 {
582 while (!list_empty(head)) {
583 struct inode *inode;
584
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
587
588 evict(inode);
589 }
590 }
591
592 /**
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
595 *
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
600 */
evict_inodes(struct super_block * sb)601 void evict_inodes(struct super_block *sb)
602 {
603 struct inode *inode, *next;
604 LIST_HEAD(dispose);
605
606 spin_lock(&inode_sb_list_lock);
607 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 if (atomic_read(&inode->i_count))
609 continue;
610
611 spin_lock(&inode->i_lock);
612 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 spin_unlock(&inode->i_lock);
614 continue;
615 }
616
617 inode->i_state |= I_FREEING;
618 inode_lru_list_del(inode);
619 spin_unlock(&inode->i_lock);
620 list_add(&inode->i_lru, &dispose);
621 }
622 spin_unlock(&inode_sb_list_lock);
623
624 dispose_list(&dispose);
625 }
626
627 /**
628 * invalidate_inodes - attempt to free all inodes on a superblock
629 * @sb: superblock to operate on
630 * @kill_dirty: flag to guide handling of dirty inodes
631 *
632 * Attempts to free all inodes for a given superblock. If there were any
633 * busy inodes return a non-zero value, else zero.
634 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
635 * them as busy.
636 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)637 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
638 {
639 int busy = 0;
640 struct inode *inode, *next;
641 LIST_HEAD(dispose);
642
643 spin_lock(&inode_sb_list_lock);
644 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 spin_lock(&inode->i_lock);
646 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 spin_unlock(&inode->i_lock);
648 continue;
649 }
650 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
651 spin_unlock(&inode->i_lock);
652 busy = 1;
653 continue;
654 }
655 if (atomic_read(&inode->i_count)) {
656 spin_unlock(&inode->i_lock);
657 busy = 1;
658 continue;
659 }
660
661 inode->i_state |= I_FREEING;
662 inode_lru_list_del(inode);
663 spin_unlock(&inode->i_lock);
664 list_add(&inode->i_lru, &dispose);
665 }
666 spin_unlock(&inode_sb_list_lock);
667
668 dispose_list(&dispose);
669
670 return busy;
671 }
672
673 /*
674 * Isolate the inode from the LRU in preparation for freeing it.
675 *
676 * Any inodes which are pinned purely because of attached pagecache have their
677 * pagecache removed. If the inode has metadata buffers attached to
678 * mapping->private_list then try to remove them.
679 *
680 * If the inode has the I_REFERENCED flag set, then it means that it has been
681 * used recently - the flag is set in iput_final(). When we encounter such an
682 * inode, clear the flag and move it to the back of the LRU so it gets another
683 * pass through the LRU before it gets reclaimed. This is necessary because of
684 * the fact we are doing lazy LRU updates to minimise lock contention so the
685 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686 * with this flag set because they are the inodes that are out of order.
687 */
688 static enum lru_status
inode_lru_isolate(struct list_head * item,spinlock_t * lru_lock,void * arg)689 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
690 {
691 struct list_head *freeable = arg;
692 struct inode *inode = container_of(item, struct inode, i_lru);
693
694 /*
695 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 * If we fail to get the lock, just skip it.
697 */
698 if (!spin_trylock(&inode->i_lock))
699 return LRU_SKIP;
700
701 /*
702 * Referenced or dirty inodes are still in use. Give them another pass
703 * through the LRU as we canot reclaim them now.
704 */
705 if (atomic_read(&inode->i_count) ||
706 (inode->i_state & ~I_REFERENCED)) {
707 list_del_init(&inode->i_lru);
708 spin_unlock(&inode->i_lock);
709 this_cpu_dec(nr_unused);
710 return LRU_REMOVED;
711 }
712
713 /* recently referenced inodes get one more pass */
714 if (inode->i_state & I_REFERENCED) {
715 inode->i_state &= ~I_REFERENCED;
716 spin_unlock(&inode->i_lock);
717 return LRU_ROTATE;
718 }
719
720 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
721 __iget(inode);
722 spin_unlock(&inode->i_lock);
723 spin_unlock(lru_lock);
724 if (remove_inode_buffers(inode)) {
725 unsigned long reap;
726 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
727 if (current_is_kswapd())
728 __count_vm_events(KSWAPD_INODESTEAL, reap);
729 else
730 __count_vm_events(PGINODESTEAL, reap);
731 if (current->reclaim_state)
732 current->reclaim_state->reclaimed_slab += reap;
733 }
734 iput(inode);
735 spin_lock(lru_lock);
736 return LRU_RETRY;
737 }
738
739 WARN_ON(inode->i_state & I_NEW);
740 inode->i_state |= I_FREEING;
741 list_move(&inode->i_lru, freeable);
742 spin_unlock(&inode->i_lock);
743
744 this_cpu_dec(nr_unused);
745 return LRU_REMOVED;
746 }
747
748 /*
749 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750 * This is called from the superblock shrinker function with a number of inodes
751 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752 * then are freed outside inode_lock by dispose_list().
753 */
prune_icache_sb(struct super_block * sb,unsigned long nr_to_scan,int nid)754 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
755 int nid)
756 {
757 LIST_HEAD(freeable);
758 long freed;
759
760 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
761 &freeable, &nr_to_scan);
762 dispose_list(&freeable);
763 return freed;
764 }
765
766 static void __wait_on_freeing_inode(struct inode *inode);
767 /*
768 * Called with the inode lock held.
769 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)770 static struct inode *find_inode(struct super_block *sb,
771 struct hlist_head *head,
772 int (*test)(struct inode *, void *),
773 void *data)
774 {
775 struct inode *inode = NULL;
776
777 repeat:
778 hlist_for_each_entry(inode, head, i_hash) {
779 if (inode->i_sb != sb)
780 continue;
781 if (!test(inode, data))
782 continue;
783 spin_lock(&inode->i_lock);
784 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
785 __wait_on_freeing_inode(inode);
786 goto repeat;
787 }
788 __iget(inode);
789 spin_unlock(&inode->i_lock);
790 return inode;
791 }
792 return NULL;
793 }
794
795 /*
796 * find_inode_fast is the fast path version of find_inode, see the comment at
797 * iget_locked for details.
798 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)799 static struct inode *find_inode_fast(struct super_block *sb,
800 struct hlist_head *head, unsigned long ino)
801 {
802 struct inode *inode = NULL;
803
804 repeat:
805 hlist_for_each_entry(inode, head, i_hash) {
806 if (inode->i_ino != ino)
807 continue;
808 if (inode->i_sb != sb)
809 continue;
810 spin_lock(&inode->i_lock);
811 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
812 __wait_on_freeing_inode(inode);
813 goto repeat;
814 }
815 __iget(inode);
816 spin_unlock(&inode->i_lock);
817 return inode;
818 }
819 return NULL;
820 }
821
822 /*
823 * Each cpu owns a range of LAST_INO_BATCH numbers.
824 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
825 * to renew the exhausted range.
826 *
827 * This does not significantly increase overflow rate because every CPU can
828 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
829 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
830 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
831 * overflow rate by 2x, which does not seem too significant.
832 *
833 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
834 * error if st_ino won't fit in target struct field. Use 32bit counter
835 * here to attempt to avoid that.
836 */
837 #define LAST_INO_BATCH 1024
838 static DEFINE_PER_CPU(unsigned int, last_ino);
839
get_next_ino(void)840 unsigned int get_next_ino(void)
841 {
842 unsigned int *p = &get_cpu_var(last_ino);
843 unsigned int res = *p;
844
845 #ifdef CONFIG_SMP
846 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
847 static atomic_t shared_last_ino;
848 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
849
850 res = next - LAST_INO_BATCH;
851 }
852 #endif
853
854 *p = ++res;
855 put_cpu_var(last_ino);
856 return res;
857 }
858 EXPORT_SYMBOL(get_next_ino);
859
860 /**
861 * new_inode_pseudo - obtain an inode
862 * @sb: superblock
863 *
864 * Allocates a new inode for given superblock.
865 * Inode wont be chained in superblock s_inodes list
866 * This means :
867 * - fs can't be unmount
868 * - quotas, fsnotify, writeback can't work
869 */
new_inode_pseudo(struct super_block * sb)870 struct inode *new_inode_pseudo(struct super_block *sb)
871 {
872 struct inode *inode = alloc_inode(sb);
873
874 if (inode) {
875 spin_lock(&inode->i_lock);
876 inode->i_state = 0;
877 spin_unlock(&inode->i_lock);
878 INIT_LIST_HEAD(&inode->i_sb_list);
879 }
880 return inode;
881 }
882
883 /**
884 * new_inode - obtain an inode
885 * @sb: superblock
886 *
887 * Allocates a new inode for given superblock. The default gfp_mask
888 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
889 * If HIGHMEM pages are unsuitable or it is known that pages allocated
890 * for the page cache are not reclaimable or migratable,
891 * mapping_set_gfp_mask() must be called with suitable flags on the
892 * newly created inode's mapping
893 *
894 */
new_inode(struct super_block * sb)895 struct inode *new_inode(struct super_block *sb)
896 {
897 struct inode *inode;
898
899 spin_lock_prefetch(&inode_sb_list_lock);
900
901 inode = new_inode_pseudo(sb);
902 if (inode)
903 inode_sb_list_add(inode);
904 return inode;
905 }
906 EXPORT_SYMBOL(new_inode);
907
908 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)909 void lockdep_annotate_inode_mutex_key(struct inode *inode)
910 {
911 if (S_ISDIR(inode->i_mode)) {
912 struct file_system_type *type = inode->i_sb->s_type;
913
914 /* Set new key only if filesystem hasn't already changed it */
915 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
916 /*
917 * ensure nobody is actually holding i_mutex
918 */
919 mutex_destroy(&inode->i_mutex);
920 mutex_init(&inode->i_mutex);
921 lockdep_set_class(&inode->i_mutex,
922 &type->i_mutex_dir_key);
923 }
924 }
925 }
926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
927 #endif
928
929 /**
930 * unlock_new_inode - clear the I_NEW state and wake up any waiters
931 * @inode: new inode to unlock
932 *
933 * Called when the inode is fully initialised to clear the new state of the
934 * inode and wake up anyone waiting for the inode to finish initialisation.
935 */
unlock_new_inode(struct inode * inode)936 void unlock_new_inode(struct inode *inode)
937 {
938 lockdep_annotate_inode_mutex_key(inode);
939 spin_lock(&inode->i_lock);
940 WARN_ON(!(inode->i_state & I_NEW));
941 inode->i_state &= ~I_NEW;
942 smp_mb();
943 wake_up_bit(&inode->i_state, __I_NEW);
944 spin_unlock(&inode->i_lock);
945 }
946 EXPORT_SYMBOL(unlock_new_inode);
947
948 /**
949 * lock_two_nondirectories - take two i_mutexes on non-directory objects
950 *
951 * Lock any non-NULL argument that is not a directory.
952 * Zero, one or two objects may be locked by this function.
953 *
954 * @inode1: first inode to lock
955 * @inode2: second inode to lock
956 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)957 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
958 {
959 if (inode1 > inode2)
960 swap(inode1, inode2);
961
962 if (inode1 && !S_ISDIR(inode1->i_mode))
963 mutex_lock(&inode1->i_mutex);
964 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
965 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
966 }
967 EXPORT_SYMBOL(lock_two_nondirectories);
968
969 /**
970 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
971 * @inode1: first inode to unlock
972 * @inode2: second inode to unlock
973 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)974 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 if (inode1 && !S_ISDIR(inode1->i_mode))
977 mutex_unlock(&inode1->i_mutex);
978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 mutex_unlock(&inode2->i_mutex);
980 }
981 EXPORT_SYMBOL(unlock_two_nondirectories);
982
983 /**
984 * iget5_locked - obtain an inode from a mounted file system
985 * @sb: super block of file system
986 * @hashval: hash value (usually inode number) to get
987 * @test: callback used for comparisons between inodes
988 * @set: callback used to initialize a new struct inode
989 * @data: opaque data pointer to pass to @test and @set
990 *
991 * Search for the inode specified by @hashval and @data in the inode cache,
992 * and if present it is return it with an increased reference count. This is
993 * a generalized version of iget_locked() for file systems where the inode
994 * number is not sufficient for unique identification of an inode.
995 *
996 * If the inode is not in cache, allocate a new inode and return it locked,
997 * hashed, and with the I_NEW flag set. The file system gets to fill it in
998 * before unlocking it via unlock_new_inode().
999 *
1000 * Note both @test and @set are called with the inode_hash_lock held, so can't
1001 * sleep.
1002 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1004 int (*test)(struct inode *, void *),
1005 int (*set)(struct inode *, void *), void *data)
1006 {
1007 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1008 struct inode *inode;
1009
1010 spin_lock(&inode_hash_lock);
1011 inode = find_inode(sb, head, test, data);
1012 spin_unlock(&inode_hash_lock);
1013
1014 if (inode) {
1015 wait_on_inode(inode);
1016 return inode;
1017 }
1018
1019 inode = alloc_inode(sb);
1020 if (inode) {
1021 struct inode *old;
1022
1023 spin_lock(&inode_hash_lock);
1024 /* We released the lock, so.. */
1025 old = find_inode(sb, head, test, data);
1026 if (!old) {
1027 if (set(inode, data))
1028 goto set_failed;
1029
1030 spin_lock(&inode->i_lock);
1031 inode->i_state = I_NEW;
1032 hlist_add_head(&inode->i_hash, head);
1033 spin_unlock(&inode->i_lock);
1034 inode_sb_list_add(inode);
1035 spin_unlock(&inode_hash_lock);
1036
1037 /* Return the locked inode with I_NEW set, the
1038 * caller is responsible for filling in the contents
1039 */
1040 return inode;
1041 }
1042
1043 /*
1044 * Uhhuh, somebody else created the same inode under
1045 * us. Use the old inode instead of the one we just
1046 * allocated.
1047 */
1048 spin_unlock(&inode_hash_lock);
1049 destroy_inode(inode);
1050 inode = old;
1051 wait_on_inode(inode);
1052 }
1053 return inode;
1054
1055 set_failed:
1056 spin_unlock(&inode_hash_lock);
1057 destroy_inode(inode);
1058 return NULL;
1059 }
1060 EXPORT_SYMBOL(iget5_locked);
1061
1062 /**
1063 * iget_locked - obtain an inode from a mounted file system
1064 * @sb: super block of file system
1065 * @ino: inode number to get
1066 *
1067 * Search for the inode specified by @ino in the inode cache and if present
1068 * return it with an increased reference count. This is for file systems
1069 * where the inode number is sufficient for unique identification of an inode.
1070 *
1071 * If the inode is not in cache, allocate a new inode and return it locked,
1072 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1073 * before unlocking it via unlock_new_inode().
1074 */
iget_locked(struct super_block * sb,unsigned long ino)1075 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 {
1077 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1078 struct inode *inode;
1079
1080 spin_lock(&inode_hash_lock);
1081 inode = find_inode_fast(sb, head, ino);
1082 spin_unlock(&inode_hash_lock);
1083 if (inode) {
1084 wait_on_inode(inode);
1085 return inode;
1086 }
1087
1088 inode = alloc_inode(sb);
1089 if (inode) {
1090 struct inode *old;
1091
1092 spin_lock(&inode_hash_lock);
1093 /* We released the lock, so.. */
1094 old = find_inode_fast(sb, head, ino);
1095 if (!old) {
1096 inode->i_ino = ino;
1097 spin_lock(&inode->i_lock);
1098 inode->i_state = I_NEW;
1099 hlist_add_head(&inode->i_hash, head);
1100 spin_unlock(&inode->i_lock);
1101 inode_sb_list_add(inode);
1102 spin_unlock(&inode_hash_lock);
1103
1104 /* Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1106 */
1107 return inode;
1108 }
1109
1110 /*
1111 * Uhhuh, somebody else created the same inode under
1112 * us. Use the old inode instead of the one we just
1113 * allocated.
1114 */
1115 spin_unlock(&inode_hash_lock);
1116 destroy_inode(inode);
1117 inode = old;
1118 wait_on_inode(inode);
1119 }
1120 return inode;
1121 }
1122 EXPORT_SYMBOL(iget_locked);
1123
1124 /*
1125 * search the inode cache for a matching inode number.
1126 * If we find one, then the inode number we are trying to
1127 * allocate is not unique and so we should not use it.
1128 *
1129 * Returns 1 if the inode number is unique, 0 if it is not.
1130 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1131 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1132 {
1133 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1134 struct inode *inode;
1135
1136 spin_lock(&inode_hash_lock);
1137 hlist_for_each_entry(inode, b, i_hash) {
1138 if (inode->i_ino == ino && inode->i_sb == sb) {
1139 spin_unlock(&inode_hash_lock);
1140 return 0;
1141 }
1142 }
1143 spin_unlock(&inode_hash_lock);
1144
1145 return 1;
1146 }
1147
1148 /**
1149 * iunique - get a unique inode number
1150 * @sb: superblock
1151 * @max_reserved: highest reserved inode number
1152 *
1153 * Obtain an inode number that is unique on the system for a given
1154 * superblock. This is used by file systems that have no natural
1155 * permanent inode numbering system. An inode number is returned that
1156 * is higher than the reserved limit but unique.
1157 *
1158 * BUGS:
1159 * With a large number of inodes live on the file system this function
1160 * currently becomes quite slow.
1161 */
iunique(struct super_block * sb,ino_t max_reserved)1162 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1163 {
1164 /*
1165 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1166 * error if st_ino won't fit in target struct field. Use 32bit counter
1167 * here to attempt to avoid that.
1168 */
1169 static DEFINE_SPINLOCK(iunique_lock);
1170 static unsigned int counter;
1171 ino_t res;
1172
1173 spin_lock(&iunique_lock);
1174 do {
1175 if (counter <= max_reserved)
1176 counter = max_reserved + 1;
1177 res = counter++;
1178 } while (!test_inode_iunique(sb, res));
1179 spin_unlock(&iunique_lock);
1180
1181 return res;
1182 }
1183 EXPORT_SYMBOL(iunique);
1184
igrab(struct inode * inode)1185 struct inode *igrab(struct inode *inode)
1186 {
1187 spin_lock(&inode->i_lock);
1188 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1189 __iget(inode);
1190 spin_unlock(&inode->i_lock);
1191 } else {
1192 spin_unlock(&inode->i_lock);
1193 /*
1194 * Handle the case where s_op->clear_inode is not been
1195 * called yet, and somebody is calling igrab
1196 * while the inode is getting freed.
1197 */
1198 inode = NULL;
1199 }
1200 return inode;
1201 }
1202 EXPORT_SYMBOL(igrab);
1203
1204 /**
1205 * ilookup5_nowait - search for an inode in the inode cache
1206 * @sb: super block of file system to search
1207 * @hashval: hash value (usually inode number) to search for
1208 * @test: callback used for comparisons between inodes
1209 * @data: opaque data pointer to pass to @test
1210 *
1211 * Search for the inode specified by @hashval and @data in the inode cache.
1212 * If the inode is in the cache, the inode is returned with an incremented
1213 * reference count.
1214 *
1215 * Note: I_NEW is not waited upon so you have to be very careful what you do
1216 * with the returned inode. You probably should be using ilookup5() instead.
1217 *
1218 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1220 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1221 int (*test)(struct inode *, void *), void *data)
1222 {
1223 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1224 struct inode *inode;
1225
1226 spin_lock(&inode_hash_lock);
1227 inode = find_inode(sb, head, test, data);
1228 spin_unlock(&inode_hash_lock);
1229
1230 return inode;
1231 }
1232 EXPORT_SYMBOL(ilookup5_nowait);
1233
1234 /**
1235 * ilookup5 - search for an inode in the inode cache
1236 * @sb: super block of file system to search
1237 * @hashval: hash value (usually inode number) to search for
1238 * @test: callback used for comparisons between inodes
1239 * @data: opaque data pointer to pass to @test
1240 *
1241 * Search for the inode specified by @hashval and @data in the inode cache,
1242 * and if the inode is in the cache, return the inode with an incremented
1243 * reference count. Waits on I_NEW before returning the inode.
1244 * returned with an incremented reference count.
1245 *
1246 * This is a generalized version of ilookup() for file systems where the
1247 * inode number is not sufficient for unique identification of an inode.
1248 *
1249 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1251 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1252 int (*test)(struct inode *, void *), void *data)
1253 {
1254 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1255
1256 if (inode)
1257 wait_on_inode(inode);
1258 return inode;
1259 }
1260 EXPORT_SYMBOL(ilookup5);
1261
1262 /**
1263 * ilookup - search for an inode in the inode cache
1264 * @sb: super block of file system to search
1265 * @ino: inode number to search for
1266 *
1267 * Search for the inode @ino in the inode cache, and if the inode is in the
1268 * cache, the inode is returned with an incremented reference count.
1269 */
ilookup(struct super_block * sb,unsigned long ino)1270 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1271 {
1272 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1273 struct inode *inode;
1274
1275 spin_lock(&inode_hash_lock);
1276 inode = find_inode_fast(sb, head, ino);
1277 spin_unlock(&inode_hash_lock);
1278
1279 if (inode)
1280 wait_on_inode(inode);
1281 return inode;
1282 }
1283 EXPORT_SYMBOL(ilookup);
1284
insert_inode_locked(struct inode * inode)1285 int insert_inode_locked(struct inode *inode)
1286 {
1287 struct super_block *sb = inode->i_sb;
1288 ino_t ino = inode->i_ino;
1289 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1290
1291 while (1) {
1292 struct inode *old = NULL;
1293 spin_lock(&inode_hash_lock);
1294 hlist_for_each_entry(old, head, i_hash) {
1295 if (old->i_ino != ino)
1296 continue;
1297 if (old->i_sb != sb)
1298 continue;
1299 spin_lock(&old->i_lock);
1300 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1301 spin_unlock(&old->i_lock);
1302 continue;
1303 }
1304 break;
1305 }
1306 if (likely(!old)) {
1307 spin_lock(&inode->i_lock);
1308 inode->i_state |= I_NEW;
1309 hlist_add_head(&inode->i_hash, head);
1310 spin_unlock(&inode->i_lock);
1311 spin_unlock(&inode_hash_lock);
1312 return 0;
1313 }
1314 __iget(old);
1315 spin_unlock(&old->i_lock);
1316 spin_unlock(&inode_hash_lock);
1317 wait_on_inode(old);
1318 if (unlikely(!inode_unhashed(old))) {
1319 iput(old);
1320 return -EBUSY;
1321 }
1322 iput(old);
1323 }
1324 }
1325 EXPORT_SYMBOL(insert_inode_locked);
1326
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1327 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1328 int (*test)(struct inode *, void *), void *data)
1329 {
1330 struct super_block *sb = inode->i_sb;
1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332
1333 while (1) {
1334 struct inode *old = NULL;
1335
1336 spin_lock(&inode_hash_lock);
1337 hlist_for_each_entry(old, head, i_hash) {
1338 if (old->i_sb != sb)
1339 continue;
1340 if (!test(old, data))
1341 continue;
1342 spin_lock(&old->i_lock);
1343 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1344 spin_unlock(&old->i_lock);
1345 continue;
1346 }
1347 break;
1348 }
1349 if (likely(!old)) {
1350 spin_lock(&inode->i_lock);
1351 inode->i_state |= I_NEW;
1352 hlist_add_head(&inode->i_hash, head);
1353 spin_unlock(&inode->i_lock);
1354 spin_unlock(&inode_hash_lock);
1355 return 0;
1356 }
1357 __iget(old);
1358 spin_unlock(&old->i_lock);
1359 spin_unlock(&inode_hash_lock);
1360 wait_on_inode(old);
1361 if (unlikely(!inode_unhashed(old))) {
1362 iput(old);
1363 return -EBUSY;
1364 }
1365 iput(old);
1366 }
1367 }
1368 EXPORT_SYMBOL(insert_inode_locked4);
1369
1370
generic_delete_inode(struct inode * inode)1371 int generic_delete_inode(struct inode *inode)
1372 {
1373 return 1;
1374 }
1375 EXPORT_SYMBOL(generic_delete_inode);
1376
1377 /*
1378 * Called when we're dropping the last reference
1379 * to an inode.
1380 *
1381 * Call the FS "drop_inode()" function, defaulting to
1382 * the legacy UNIX filesystem behaviour. If it tells
1383 * us to evict inode, do so. Otherwise, retain inode
1384 * in cache if fs is alive, sync and evict if fs is
1385 * shutting down.
1386 */
iput_final(struct inode * inode)1387 static void iput_final(struct inode *inode)
1388 {
1389 struct super_block *sb = inode->i_sb;
1390 const struct super_operations *op = inode->i_sb->s_op;
1391 int drop;
1392
1393 WARN_ON(inode->i_state & I_NEW);
1394
1395 if (op->drop_inode)
1396 drop = op->drop_inode(inode);
1397 else
1398 drop = generic_drop_inode(inode);
1399
1400 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1401 inode->i_state |= I_REFERENCED;
1402 inode_add_lru(inode);
1403 spin_unlock(&inode->i_lock);
1404 return;
1405 }
1406
1407 if (!drop) {
1408 inode->i_state |= I_WILL_FREE;
1409 spin_unlock(&inode->i_lock);
1410 write_inode_now(inode, 1);
1411 spin_lock(&inode->i_lock);
1412 WARN_ON(inode->i_state & I_NEW);
1413 inode->i_state &= ~I_WILL_FREE;
1414 }
1415
1416 inode->i_state |= I_FREEING;
1417 if (!list_empty(&inode->i_lru))
1418 inode_lru_list_del(inode);
1419 spin_unlock(&inode->i_lock);
1420
1421 evict(inode);
1422 }
1423
1424 /**
1425 * iput - put an inode
1426 * @inode: inode to put
1427 *
1428 * Puts an inode, dropping its usage count. If the inode use count hits
1429 * zero, the inode is then freed and may also be destroyed.
1430 *
1431 * Consequently, iput() can sleep.
1432 */
iput(struct inode * inode)1433 void iput(struct inode *inode)
1434 {
1435 if (!inode)
1436 return;
1437 BUG_ON(inode->i_state & I_CLEAR);
1438 retry:
1439 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1440 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1441 atomic_inc(&inode->i_count);
1442 inode->i_state &= ~I_DIRTY_TIME;
1443 spin_unlock(&inode->i_lock);
1444 trace_writeback_lazytime_iput(inode);
1445 mark_inode_dirty_sync(inode);
1446 goto retry;
1447 }
1448 iput_final(inode);
1449 }
1450 }
1451 EXPORT_SYMBOL(iput);
1452
1453 /**
1454 * bmap - find a block number in a file
1455 * @inode: inode of file
1456 * @block: block to find
1457 *
1458 * Returns the block number on the device holding the inode that
1459 * is the disk block number for the block of the file requested.
1460 * That is, asked for block 4 of inode 1 the function will return the
1461 * disk block relative to the disk start that holds that block of the
1462 * file.
1463 */
bmap(struct inode * inode,sector_t block)1464 sector_t bmap(struct inode *inode, sector_t block)
1465 {
1466 sector_t res = 0;
1467 if (inode->i_mapping->a_ops->bmap)
1468 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1469 return res;
1470 }
1471 EXPORT_SYMBOL(bmap);
1472
1473 /*
1474 * With relative atime, only update atime if the previous atime is
1475 * earlier than either the ctime or mtime or if at least a day has
1476 * passed since the last atime update.
1477 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1478 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1479 struct timespec now)
1480 {
1481
1482 if (!(mnt->mnt_flags & MNT_RELATIME))
1483 return 1;
1484 /*
1485 * Is mtime younger than atime? If yes, update atime:
1486 */
1487 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1488 return 1;
1489 /*
1490 * Is ctime younger than atime? If yes, update atime:
1491 */
1492 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1493 return 1;
1494
1495 /*
1496 * Is the previous atime value older than a day? If yes,
1497 * update atime:
1498 */
1499 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1500 return 1;
1501 /*
1502 * Good, we can skip the atime update:
1503 */
1504 return 0;
1505 }
1506
generic_update_time(struct inode * inode,struct timespec * time,int flags)1507 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1508 {
1509 int iflags = I_DIRTY_TIME;
1510
1511 if (flags & S_ATIME)
1512 inode->i_atime = *time;
1513 if (flags & S_VERSION)
1514 inode_inc_iversion(inode);
1515 if (flags & S_CTIME)
1516 inode->i_ctime = *time;
1517 if (flags & S_MTIME)
1518 inode->i_mtime = *time;
1519
1520 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1521 iflags |= I_DIRTY_SYNC;
1522 __mark_inode_dirty(inode, iflags);
1523 return 0;
1524 }
1525 EXPORT_SYMBOL(generic_update_time);
1526
1527 /*
1528 * This does the actual work of updating an inodes time or version. Must have
1529 * had called mnt_want_write() before calling this.
1530 */
update_time(struct inode * inode,struct timespec * time,int flags)1531 static int update_time(struct inode *inode, struct timespec *time, int flags)
1532 {
1533 int (*update_time)(struct inode *, struct timespec *, int);
1534
1535 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1536 generic_update_time;
1537
1538 return update_time(inode, time, flags);
1539 }
1540
1541 /**
1542 * touch_atime - update the access time
1543 * @path: the &struct path to update
1544 *
1545 * Update the accessed time on an inode and mark it for writeback.
1546 * This function automatically handles read only file systems and media,
1547 * as well as the "noatime" flag and inode specific "noatime" markers.
1548 */
touch_atime(const struct path * path)1549 void touch_atime(const struct path *path)
1550 {
1551 struct vfsmount *mnt = path->mnt;
1552 struct inode *inode = path->dentry->d_inode;
1553 struct timespec now;
1554
1555 if (inode->i_flags & S_NOATIME)
1556 return;
1557 if (IS_NOATIME(inode))
1558 return;
1559 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1560 return;
1561
1562 if (mnt->mnt_flags & MNT_NOATIME)
1563 return;
1564 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1565 return;
1566
1567 now = current_fs_time(inode->i_sb);
1568
1569 if (!relatime_need_update(mnt, inode, now))
1570 return;
1571
1572 if (timespec_equal(&inode->i_atime, &now))
1573 return;
1574
1575 if (!sb_start_write_trylock(inode->i_sb))
1576 return;
1577
1578 if (__mnt_want_write(mnt))
1579 goto skip_update;
1580 /*
1581 * File systems can error out when updating inodes if they need to
1582 * allocate new space to modify an inode (such is the case for
1583 * Btrfs), but since we touch atime while walking down the path we
1584 * really don't care if we failed to update the atime of the file,
1585 * so just ignore the return value.
1586 * We may also fail on filesystems that have the ability to make parts
1587 * of the fs read only, e.g. subvolumes in Btrfs.
1588 */
1589 update_time(inode, &now, S_ATIME);
1590 __mnt_drop_write(mnt);
1591 skip_update:
1592 sb_end_write(inode->i_sb);
1593 }
1594 EXPORT_SYMBOL(touch_atime);
1595
1596 /*
1597 * The logic we want is
1598 *
1599 * if suid or (sgid and xgrp)
1600 * remove privs
1601 */
should_remove_suid(struct dentry * dentry)1602 int should_remove_suid(struct dentry *dentry)
1603 {
1604 umode_t mode = dentry->d_inode->i_mode;
1605 int kill = 0;
1606
1607 /* suid always must be killed */
1608 if (unlikely(mode & S_ISUID))
1609 kill = ATTR_KILL_SUID;
1610
1611 /*
1612 * sgid without any exec bits is just a mandatory locking mark; leave
1613 * it alone. If some exec bits are set, it's a real sgid; kill it.
1614 */
1615 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1616 kill |= ATTR_KILL_SGID;
1617
1618 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1619 return kill;
1620
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(should_remove_suid);
1624
__remove_suid(struct vfsmount * mnt,struct dentry * dentry,int kill)1625 static int __remove_suid(struct vfsmount *mnt, struct dentry *dentry, int kill)
1626 {
1627 struct iattr newattrs;
1628
1629 newattrs.ia_valid = ATTR_FORCE | kill;
1630 /*
1631 * Note we call this on write, so notify_change will not
1632 * encounter any conflicting delegations:
1633 */
1634 return notify_change2(mnt, dentry, &newattrs, NULL);
1635 }
1636
file_remove_suid(struct file * file)1637 int file_remove_suid(struct file *file)
1638 {
1639 struct dentry *dentry = file->f_path.dentry;
1640 struct inode *inode = dentry->d_inode;
1641 int killsuid;
1642 int killpriv;
1643 int error = 0;
1644
1645 /* Fast path for nothing security related */
1646 if (IS_NOSEC(inode))
1647 return 0;
1648
1649 killsuid = should_remove_suid(dentry);
1650 killpriv = security_inode_need_killpriv(dentry);
1651
1652 if (killpriv < 0)
1653 return killpriv;
1654 if (killpriv)
1655 error = security_inode_killpriv(dentry);
1656 if (!error && killsuid)
1657 error = __remove_suid(file->f_path.mnt, dentry, killsuid);
1658 if (!error)
1659 inode_has_no_xattr(inode);
1660
1661 return error;
1662 }
1663 EXPORT_SYMBOL(file_remove_suid);
1664
1665 /**
1666 * file_update_time - update mtime and ctime time
1667 * @file: file accessed
1668 *
1669 * Update the mtime and ctime members of an inode and mark the inode
1670 * for writeback. Note that this function is meant exclusively for
1671 * usage in the file write path of filesystems, and filesystems may
1672 * choose to explicitly ignore update via this function with the
1673 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1674 * timestamps are handled by the server. This can return an error for
1675 * file systems who need to allocate space in order to update an inode.
1676 */
1677
file_update_time(struct file * file)1678 int file_update_time(struct file *file)
1679 {
1680 struct inode *inode = file_inode(file);
1681 struct timespec now;
1682 int sync_it = 0;
1683 int ret;
1684
1685 /* First try to exhaust all avenues to not sync */
1686 if (IS_NOCMTIME(inode))
1687 return 0;
1688
1689 now = current_fs_time(inode->i_sb);
1690 if (!timespec_equal(&inode->i_mtime, &now))
1691 sync_it = S_MTIME;
1692
1693 if (!timespec_equal(&inode->i_ctime, &now))
1694 sync_it |= S_CTIME;
1695
1696 if (IS_I_VERSION(inode))
1697 sync_it |= S_VERSION;
1698
1699 if (!sync_it)
1700 return 0;
1701
1702 /* Finally allowed to write? Takes lock. */
1703 if (__mnt_want_write_file(file))
1704 return 0;
1705
1706 ret = update_time(inode, &now, sync_it);
1707 __mnt_drop_write_file(file);
1708
1709 return ret;
1710 }
1711 EXPORT_SYMBOL(file_update_time);
1712
inode_needs_sync(struct inode * inode)1713 int inode_needs_sync(struct inode *inode)
1714 {
1715 if (IS_SYNC(inode))
1716 return 1;
1717 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1718 return 1;
1719 return 0;
1720 }
1721 EXPORT_SYMBOL(inode_needs_sync);
1722
1723 /*
1724 * If we try to find an inode in the inode hash while it is being
1725 * deleted, we have to wait until the filesystem completes its
1726 * deletion before reporting that it isn't found. This function waits
1727 * until the deletion _might_ have completed. Callers are responsible
1728 * to recheck inode state.
1729 *
1730 * It doesn't matter if I_NEW is not set initially, a call to
1731 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1732 * will DTRT.
1733 */
__wait_on_freeing_inode(struct inode * inode)1734 static void __wait_on_freeing_inode(struct inode *inode)
1735 {
1736 wait_queue_head_t *wq;
1737 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1738 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1739 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1740 spin_unlock(&inode->i_lock);
1741 spin_unlock(&inode_hash_lock);
1742 schedule();
1743 finish_wait(wq, &wait.wait);
1744 spin_lock(&inode_hash_lock);
1745 }
1746
1747 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1748 static int __init set_ihash_entries(char *str)
1749 {
1750 if (!str)
1751 return 0;
1752 ihash_entries = simple_strtoul(str, &str, 0);
1753 return 1;
1754 }
1755 __setup("ihash_entries=", set_ihash_entries);
1756
1757 /*
1758 * Initialize the waitqueues and inode hash table.
1759 */
inode_init_early(void)1760 void __init inode_init_early(void)
1761 {
1762 unsigned int loop;
1763
1764 /* If hashes are distributed across NUMA nodes, defer
1765 * hash allocation until vmalloc space is available.
1766 */
1767 if (hashdist)
1768 return;
1769
1770 inode_hashtable =
1771 alloc_large_system_hash("Inode-cache",
1772 sizeof(struct hlist_head),
1773 ihash_entries,
1774 14,
1775 HASH_EARLY,
1776 &i_hash_shift,
1777 &i_hash_mask,
1778 0,
1779 0);
1780
1781 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1782 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1783 }
1784
inode_init(void)1785 void __init inode_init(void)
1786 {
1787 unsigned int loop;
1788
1789 /* inode slab cache */
1790 inode_cachep = kmem_cache_create("inode_cache",
1791 sizeof(struct inode),
1792 0,
1793 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1794 SLAB_MEM_SPREAD),
1795 init_once);
1796
1797 /* Hash may have been set up in inode_init_early */
1798 if (!hashdist)
1799 return;
1800
1801 inode_hashtable =
1802 alloc_large_system_hash("Inode-cache",
1803 sizeof(struct hlist_head),
1804 ihash_entries,
1805 14,
1806 0,
1807 &i_hash_shift,
1808 &i_hash_mask,
1809 0,
1810 0);
1811
1812 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1813 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1814 }
1815
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1816 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1817 {
1818 inode->i_mode = mode;
1819 if (S_ISCHR(mode)) {
1820 inode->i_fop = &def_chr_fops;
1821 inode->i_rdev = rdev;
1822 } else if (S_ISBLK(mode)) {
1823 inode->i_fop = &def_blk_fops;
1824 inode->i_rdev = rdev;
1825 } else if (S_ISFIFO(mode))
1826 inode->i_fop = &pipefifo_fops;
1827 else if (S_ISSOCK(mode))
1828 inode->i_fop = &bad_sock_fops;
1829 else
1830 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1831 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1832 inode->i_ino);
1833 }
1834 EXPORT_SYMBOL(init_special_inode);
1835
1836 /**
1837 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1838 * @inode: New inode
1839 * @dir: Directory inode
1840 * @mode: mode of the new inode
1841 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1842 void inode_init_owner(struct inode *inode, const struct inode *dir,
1843 umode_t mode)
1844 {
1845 inode->i_uid = current_fsuid();
1846 if (dir && dir->i_mode & S_ISGID) {
1847 inode->i_gid = dir->i_gid;
1848 if (S_ISDIR(mode))
1849 mode |= S_ISGID;
1850 } else
1851 inode->i_gid = current_fsgid();
1852 inode->i_mode = mode;
1853 }
1854 EXPORT_SYMBOL(inode_init_owner);
1855
1856 /**
1857 * inode_owner_or_capable - check current task permissions to inode
1858 * @inode: inode being checked
1859 *
1860 * Return true if current either has CAP_FOWNER in a namespace with the
1861 * inode owner uid mapped, or owns the file.
1862 */
inode_owner_or_capable(const struct inode * inode)1863 bool inode_owner_or_capable(const struct inode *inode)
1864 {
1865 struct user_namespace *ns;
1866
1867 if (uid_eq(current_fsuid(), inode->i_uid))
1868 return true;
1869
1870 ns = current_user_ns();
1871 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1872 return true;
1873 return false;
1874 }
1875 EXPORT_SYMBOL(inode_owner_or_capable);
1876
1877 /*
1878 * Direct i/o helper functions
1879 */
__inode_dio_wait(struct inode * inode)1880 static void __inode_dio_wait(struct inode *inode)
1881 {
1882 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1883 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1884
1885 do {
1886 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1887 if (atomic_read(&inode->i_dio_count))
1888 schedule();
1889 } while (atomic_read(&inode->i_dio_count));
1890 finish_wait(wq, &q.wait);
1891 }
1892
1893 /**
1894 * inode_dio_wait - wait for outstanding DIO requests to finish
1895 * @inode: inode to wait for
1896 *
1897 * Waits for all pending direct I/O requests to finish so that we can
1898 * proceed with a truncate or equivalent operation.
1899 *
1900 * Must be called under a lock that serializes taking new references
1901 * to i_dio_count, usually by inode->i_mutex.
1902 */
inode_dio_wait(struct inode * inode)1903 void inode_dio_wait(struct inode *inode)
1904 {
1905 if (atomic_read(&inode->i_dio_count))
1906 __inode_dio_wait(inode);
1907 }
1908 EXPORT_SYMBOL(inode_dio_wait);
1909
1910 /*
1911 * inode_dio_done - signal finish of a direct I/O requests
1912 * @inode: inode the direct I/O happens on
1913 *
1914 * This is called once we've finished processing a direct I/O request,
1915 * and is used to wake up callers waiting for direct I/O to be quiesced.
1916 */
inode_dio_done(struct inode * inode)1917 void inode_dio_done(struct inode *inode)
1918 {
1919 if (atomic_dec_and_test(&inode->i_dio_count))
1920 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1921 }
1922 EXPORT_SYMBOL(inode_dio_done);
1923
1924 /*
1925 * inode_set_flags - atomically set some inode flags
1926 *
1927 * Note: the caller should be holding i_mutex, or else be sure that
1928 * they have exclusive access to the inode structure (i.e., while the
1929 * inode is being instantiated). The reason for the cmpxchg() loop
1930 * --- which wouldn't be necessary if all code paths which modify
1931 * i_flags actually followed this rule, is that there is at least one
1932 * code path which doesn't today --- for example,
1933 * __generic_file_aio_write() calls file_remove_suid() without holding
1934 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1935 *
1936 * In the long run, i_mutex is overkill, and we should probably look
1937 * at using the i_lock spinlock to protect i_flags, and then make sure
1938 * it is so documented in include/linux/fs.h and that all code follows
1939 * the locking convention!!
1940 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)1941 void inode_set_flags(struct inode *inode, unsigned int flags,
1942 unsigned int mask)
1943 {
1944 unsigned int old_flags, new_flags;
1945
1946 WARN_ON_ONCE(flags & ~mask);
1947 do {
1948 old_flags = ACCESS_ONCE(inode->i_flags);
1949 new_flags = (old_flags & ~mask) | flags;
1950 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1951 new_flags) != old_flags));
1952 }
1953 EXPORT_SYMBOL(inode_set_flags);
1954
inode_nohighmem(struct inode * inode)1955 void inode_nohighmem(struct inode *inode)
1956 {
1957 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
1958 }
1959 EXPORT_SYMBOL(inode_nohighmem);
1960