1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
m_hash(struct vfsmount * mnt,struct dentry * dentry)81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
mp_hash(struct dentry * dentry)89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
mnt_alloc_id(struct mount * mnt)100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
mnt_free_id(struct mount * mnt)117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
mnt_alloc_group_id(struct mount * mnt)132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
mnt_release_group_id(struct mount * mnt)151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
mnt_add_count(struct mount * mnt,int n)163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
mnt_get_count(struct mount * mnt)177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
alloc_vfsmnt(const char * name)193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
219 mnt->mnt.data = NULL;
220
221 INIT_HLIST_NODE(&mnt->mnt_hash);
222 INIT_LIST_HEAD(&mnt->mnt_child);
223 INIT_LIST_HEAD(&mnt->mnt_mounts);
224 INIT_LIST_HEAD(&mnt->mnt_list);
225 INIT_LIST_HEAD(&mnt->mnt_expire);
226 INIT_LIST_HEAD(&mnt->mnt_share);
227 INIT_LIST_HEAD(&mnt->mnt_slave_list);
228 INIT_LIST_HEAD(&mnt->mnt_slave);
229 INIT_HLIST_NODE(&mnt->mnt_mp_list);
230 #ifdef CONFIG_FSNOTIFY
231 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
232 #endif
233 }
234 return mnt;
235
236 #ifdef CONFIG_SMP
237 out_free_devname:
238 kfree(mnt->mnt_devname);
239 #endif
240 out_free_id:
241 mnt_free_id(mnt);
242 out_free_cache:
243 kmem_cache_free(mnt_cache, mnt);
244 return NULL;
245 }
246
247 /*
248 * Most r/o checks on a fs are for operations that take
249 * discrete amounts of time, like a write() or unlink().
250 * We must keep track of when those operations start
251 * (for permission checks) and when they end, so that
252 * we can determine when writes are able to occur to
253 * a filesystem.
254 */
255 /*
256 * __mnt_is_readonly: check whether a mount is read-only
257 * @mnt: the mount to check for its write status
258 *
259 * This shouldn't be used directly ouside of the VFS.
260 * It does not guarantee that the filesystem will stay
261 * r/w, just that it is right *now*. This can not and
262 * should not be used in place of IS_RDONLY(inode).
263 * mnt_want/drop_write() will _keep_ the filesystem
264 * r/w.
265 */
__mnt_is_readonly(struct vfsmount * mnt)266 int __mnt_is_readonly(struct vfsmount *mnt)
267 {
268 if (mnt->mnt_flags & MNT_READONLY)
269 return 1;
270 if (mnt->mnt_sb->s_flags & MS_RDONLY)
271 return 1;
272 return 0;
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275
mnt_inc_writers(struct mount * mnt)276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 mnt->mnt_writers++;
282 #endif
283 }
284
mnt_dec_writers(struct mount * mnt)285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 mnt->mnt_writers--;
291 #endif
292 }
293
mnt_get_writers(struct mount * mnt)294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 unsigned int count = 0;
298 int cpu;
299
300 for_each_possible_cpu(cpu) {
301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 }
303
304 return count;
305 #else
306 return mnt->mnt_writers;
307 #endif
308 }
309
mnt_is_readonly(struct vfsmount * mnt)310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 if (mnt->mnt_sb->s_readonly_remount)
313 return 1;
314 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 smp_rmb();
316 return __mnt_is_readonly(mnt);
317 }
318
319 /*
320 * Most r/o & frozen checks on a fs are for operations that take discrete
321 * amounts of time, like a write() or unlink(). We must keep track of when
322 * those operations start (for permission checks) and when they end, so that we
323 * can determine when writes are able to occur to a filesystem.
324 */
325 /**
326 * __mnt_want_write - get write access to a mount without freeze protection
327 * @m: the mount on which to take a write
328 *
329 * This tells the low-level filesystem that a write is about to be performed to
330 * it, and makes sure that writes are allowed (mnt it read-write) before
331 * returning success. This operation does not protect against filesystem being
332 * frozen. When the write operation is finished, __mnt_drop_write() must be
333 * called. This is effectively a refcount.
334 */
__mnt_want_write(struct vfsmount * m)335 int __mnt_want_write(struct vfsmount *m)
336 {
337 struct mount *mnt = real_mount(m);
338 int ret = 0;
339
340 preempt_disable();
341 mnt_inc_writers(mnt);
342 /*
343 * The store to mnt_inc_writers must be visible before we pass
344 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 * incremented count after it has set MNT_WRITE_HOLD.
346 */
347 smp_mb();
348 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
349 cpu_relax();
350 /*
351 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
352 * be set to match its requirements. So we must not load that until
353 * MNT_WRITE_HOLD is cleared.
354 */
355 smp_rmb();
356 if (mnt_is_readonly(m)) {
357 mnt_dec_writers(mnt);
358 ret = -EROFS;
359 }
360 preempt_enable();
361
362 return ret;
363 }
364
365 /**
366 * mnt_want_write - get write access to a mount
367 * @m: the mount on which to take a write
368 *
369 * This tells the low-level filesystem that a write is about to be performed to
370 * it, and makes sure that writes are allowed (mount is read-write, filesystem
371 * is not frozen) before returning success. When the write operation is
372 * finished, mnt_drop_write() must be called. This is effectively a refcount.
373 */
mnt_want_write(struct vfsmount * m)374 int mnt_want_write(struct vfsmount *m)
375 {
376 int ret;
377
378 sb_start_write(m->mnt_sb);
379 ret = __mnt_want_write(m);
380 if (ret)
381 sb_end_write(m->mnt_sb);
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(mnt_want_write);
385
386 /**
387 * mnt_clone_write - get write access to a mount
388 * @mnt: the mount on which to take a write
389 *
390 * This is effectively like mnt_want_write, except
391 * it must only be used to take an extra write reference
392 * on a mountpoint that we already know has a write reference
393 * on it. This allows some optimisation.
394 *
395 * After finished, mnt_drop_write must be called as usual to
396 * drop the reference.
397 */
mnt_clone_write(struct vfsmount * mnt)398 int mnt_clone_write(struct vfsmount *mnt)
399 {
400 /* superblock may be r/o */
401 if (__mnt_is_readonly(mnt))
402 return -EROFS;
403 preempt_disable();
404 mnt_inc_writers(real_mount(mnt));
405 preempt_enable();
406 return 0;
407 }
408 EXPORT_SYMBOL_GPL(mnt_clone_write);
409
410 /**
411 * __mnt_want_write_file - get write access to a file's mount
412 * @file: the file who's mount on which to take a write
413 *
414 * This is like __mnt_want_write, but it takes a file and can
415 * do some optimisations if the file is open for write already
416 */
__mnt_want_write_file(struct file * file)417 int __mnt_want_write_file(struct file *file)
418 {
419 if (!(file->f_mode & FMODE_WRITER))
420 return __mnt_want_write(file->f_path.mnt);
421 else
422 return mnt_clone_write(file->f_path.mnt);
423 }
424
425 /**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
mnt_want_write_file(struct file * file)432 int mnt_want_write_file(struct file *file)
433 {
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441 }
442 EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
444 /**
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
451 */
__mnt_drop_write(struct vfsmount * mnt)452 void __mnt_drop_write(struct vfsmount *mnt)
453 {
454 preempt_disable();
455 mnt_dec_writers(real_mount(mnt));
456 preempt_enable();
457 }
458
459 /**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
mnt_drop_write(struct vfsmount * mnt)467 void mnt_drop_write(struct vfsmount *mnt)
468 {
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471 }
472 EXPORT_SYMBOL_GPL(mnt_drop_write);
473
__mnt_drop_write_file(struct file * file)474 void __mnt_drop_write_file(struct file *file)
475 {
476 __mnt_drop_write(file->f_path.mnt);
477 }
478
mnt_drop_write_file(struct file * file)479 void mnt_drop_write_file(struct file *file)
480 {
481 mnt_drop_write(file->f_path.mnt);
482 }
483 EXPORT_SYMBOL(mnt_drop_write_file);
484
mnt_make_readonly(struct mount * mnt)485 static int mnt_make_readonly(struct mount *mnt)
486 {
487 int ret = 0;
488
489 lock_mount_hash();
490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
491 /*
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
494 */
495 smp_mb();
496
497 /*
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
512 */
513 if (mnt_get_writers(mnt) > 0)
514 ret = -EBUSY;
515 else
516 mnt->mnt.mnt_flags |= MNT_READONLY;
517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
523 unlock_mount_hash();
524 return ret;
525 }
526
__mnt_unmake_readonly(struct mount * mnt)527 static void __mnt_unmake_readonly(struct mount *mnt)
528 {
529 lock_mount_hash();
530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
531 unlock_mount_hash();
532 }
533
sb_prepare_remount_readonly(struct super_block * sb)534 int sb_prepare_remount_readonly(struct super_block *sb)
535 {
536 struct mount *mnt;
537 int err = 0;
538
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
543 lock_mount_hash();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
565 unlock_mount_hash();
566
567 return err;
568 }
569
free_vfsmnt(struct mount * mnt)570 static void free_vfsmnt(struct mount *mnt)
571 {
572 kfree(mnt->mnt.data);
573 kfree(mnt->mnt_devname);
574 #ifdef CONFIG_SMP
575 free_percpu(mnt->mnt_pcp);
576 #endif
577 kmem_cache_free(mnt_cache, mnt);
578 }
579
delayed_free_vfsmnt(struct rcu_head * head)580 static void delayed_free_vfsmnt(struct rcu_head *head)
581 {
582 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
583 }
584
585 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)586 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
587 {
588 struct mount *mnt;
589 if (read_seqretry(&mount_lock, seq))
590 return false;
591 if (bastard == NULL)
592 return true;
593 mnt = real_mount(bastard);
594 mnt_add_count(mnt, 1);
595 if (likely(!read_seqretry(&mount_lock, seq)))
596 return true;
597 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
598 mnt_add_count(mnt, -1);
599 return false;
600 }
601 rcu_read_unlock();
602 mntput(bastard);
603 rcu_read_lock();
604 return false;
605 }
606
607 /*
608 * find the first mount at @dentry on vfsmount @mnt.
609 * call under rcu_read_lock()
610 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)611 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
612 {
613 struct hlist_head *head = m_hash(mnt, dentry);
614 struct mount *p;
615
616 hlist_for_each_entry_rcu(p, head, mnt_hash)
617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
618 return p;
619 return NULL;
620 }
621
622 /*
623 * find the last mount at @dentry on vfsmount @mnt.
624 * mount_lock must be held.
625 */
__lookup_mnt_last(struct vfsmount * mnt,struct dentry * dentry)626 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
627 {
628 struct mount *p, *res;
629 res = p = __lookup_mnt(mnt, dentry);
630 if (!p)
631 goto out;
632 hlist_for_each_entry_continue(p, mnt_hash) {
633 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
634 break;
635 res = p;
636 }
637 out:
638 return res;
639 }
640
641 /*
642 * lookup_mnt - Return the first child mount mounted at path
643 *
644 * "First" means first mounted chronologically. If you create the
645 * following mounts:
646 *
647 * mount /dev/sda1 /mnt
648 * mount /dev/sda2 /mnt
649 * mount /dev/sda3 /mnt
650 *
651 * Then lookup_mnt() on the base /mnt dentry in the root mount will
652 * return successively the root dentry and vfsmount of /dev/sda1, then
653 * /dev/sda2, then /dev/sda3, then NULL.
654 *
655 * lookup_mnt takes a reference to the found vfsmount.
656 */
lookup_mnt(struct path * path)657 struct vfsmount *lookup_mnt(struct path *path)
658 {
659 struct mount *child_mnt;
660 struct vfsmount *m;
661 unsigned seq;
662
663 rcu_read_lock();
664 do {
665 seq = read_seqbegin(&mount_lock);
666 child_mnt = __lookup_mnt(path->mnt, path->dentry);
667 m = child_mnt ? &child_mnt->mnt : NULL;
668 } while (!legitimize_mnt(m, seq));
669 rcu_read_unlock();
670 return m;
671 }
672
673 /*
674 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
675 * current mount namespace.
676 *
677 * The common case is dentries are not mountpoints at all and that
678 * test is handled inline. For the slow case when we are actually
679 * dealing with a mountpoint of some kind, walk through all of the
680 * mounts in the current mount namespace and test to see if the dentry
681 * is a mountpoint.
682 *
683 * The mount_hashtable is not usable in the context because we
684 * need to identify all mounts that may be in the current mount
685 * namespace not just a mount that happens to have some specified
686 * parent mount.
687 */
__is_local_mountpoint(struct dentry * dentry)688 bool __is_local_mountpoint(struct dentry *dentry)
689 {
690 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
691 struct mount *mnt;
692 bool is_covered = false;
693
694 if (!d_mountpoint(dentry))
695 goto out;
696
697 down_read(&namespace_sem);
698 list_for_each_entry(mnt, &ns->list, mnt_list) {
699 is_covered = (mnt->mnt_mountpoint == dentry);
700 if (is_covered)
701 break;
702 }
703 up_read(&namespace_sem);
704 out:
705 return is_covered;
706 }
707
lookup_mountpoint(struct dentry * dentry)708 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
709 {
710 struct hlist_head *chain = mp_hash(dentry);
711 struct mountpoint *mp;
712
713 hlist_for_each_entry(mp, chain, m_hash) {
714 if (mp->m_dentry == dentry) {
715 /* might be worth a WARN_ON() */
716 if (d_unlinked(dentry))
717 return ERR_PTR(-ENOENT);
718 mp->m_count++;
719 return mp;
720 }
721 }
722 return NULL;
723 }
724
new_mountpoint(struct dentry * dentry)725 static struct mountpoint *new_mountpoint(struct dentry *dentry)
726 {
727 struct hlist_head *chain = mp_hash(dentry);
728 struct mountpoint *mp;
729 int ret;
730
731 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
732 if (!mp)
733 return ERR_PTR(-ENOMEM);
734
735 ret = d_set_mounted(dentry);
736 if (ret) {
737 kfree(mp);
738 return ERR_PTR(ret);
739 }
740
741 mp->m_dentry = dentry;
742 mp->m_count = 1;
743 hlist_add_head(&mp->m_hash, chain);
744 INIT_HLIST_HEAD(&mp->m_list);
745 return mp;
746 }
747
put_mountpoint(struct mountpoint * mp)748 static void put_mountpoint(struct mountpoint *mp)
749 {
750 if (!--mp->m_count) {
751 struct dentry *dentry = mp->m_dentry;
752 BUG_ON(!hlist_empty(&mp->m_list));
753 spin_lock(&dentry->d_lock);
754 dentry->d_flags &= ~DCACHE_MOUNTED;
755 spin_unlock(&dentry->d_lock);
756 hlist_del(&mp->m_hash);
757 kfree(mp);
758 }
759 }
760
check_mnt(struct mount * mnt)761 static inline int check_mnt(struct mount *mnt)
762 {
763 return mnt->mnt_ns == current->nsproxy->mnt_ns;
764 }
765
766 /*
767 * vfsmount lock must be held for write
768 */
touch_mnt_namespace(struct mnt_namespace * ns)769 static void touch_mnt_namespace(struct mnt_namespace *ns)
770 {
771 if (ns) {
772 ns->event = ++event;
773 wake_up_interruptible(&ns->poll);
774 }
775 }
776
777 /*
778 * vfsmount lock must be held for write
779 */
__touch_mnt_namespace(struct mnt_namespace * ns)780 static void __touch_mnt_namespace(struct mnt_namespace *ns)
781 {
782 if (ns && ns->event != event) {
783 ns->event = event;
784 wake_up_interruptible(&ns->poll);
785 }
786 }
787
788 /*
789 * vfsmount lock must be held for write
790 */
detach_mnt(struct mount * mnt,struct path * old_path)791 static void detach_mnt(struct mount *mnt, struct path *old_path)
792 {
793 old_path->dentry = mnt->mnt_mountpoint;
794 old_path->mnt = &mnt->mnt_parent->mnt;
795 mnt->mnt_parent = mnt;
796 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
797 list_del_init(&mnt->mnt_child);
798 hlist_del_init_rcu(&mnt->mnt_hash);
799 hlist_del_init(&mnt->mnt_mp_list);
800 put_mountpoint(mnt->mnt_mp);
801 mnt->mnt_mp = NULL;
802 }
803
804 /*
805 * vfsmount lock must be held for write
806 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)807 void mnt_set_mountpoint(struct mount *mnt,
808 struct mountpoint *mp,
809 struct mount *child_mnt)
810 {
811 mp->m_count++;
812 mnt_add_count(mnt, 1); /* essentially, that's mntget */
813 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
814 child_mnt->mnt_parent = mnt;
815 child_mnt->mnt_mp = mp;
816 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
817 }
818
819 /*
820 * vfsmount lock must be held for write
821 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)822 static void attach_mnt(struct mount *mnt,
823 struct mount *parent,
824 struct mountpoint *mp)
825 {
826 mnt_set_mountpoint(parent, mp, mnt);
827 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
828 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
829 }
830
attach_shadowed(struct mount * mnt,struct mount * parent,struct mount * shadows)831 static void attach_shadowed(struct mount *mnt,
832 struct mount *parent,
833 struct mount *shadows)
834 {
835 if (shadows) {
836 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
837 list_add(&mnt->mnt_child, &shadows->mnt_child);
838 } else {
839 hlist_add_head_rcu(&mnt->mnt_hash,
840 m_hash(&parent->mnt, mnt->mnt_mountpoint));
841 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
842 }
843 }
844
845 /*
846 * vfsmount lock must be held for write
847 */
commit_tree(struct mount * mnt,struct mount * shadows)848 static void commit_tree(struct mount *mnt, struct mount *shadows)
849 {
850 struct mount *parent = mnt->mnt_parent;
851 struct mount *m;
852 LIST_HEAD(head);
853 struct mnt_namespace *n = parent->mnt_ns;
854
855 BUG_ON(parent == mnt);
856
857 list_add_tail(&head, &mnt->mnt_list);
858 list_for_each_entry(m, &head, mnt_list)
859 m->mnt_ns = n;
860
861 list_splice(&head, n->list.prev);
862
863 attach_shadowed(mnt, parent, shadows);
864 touch_mnt_namespace(n);
865 }
866
next_mnt(struct mount * p,struct mount * root)867 static struct mount *next_mnt(struct mount *p, struct mount *root)
868 {
869 struct list_head *next = p->mnt_mounts.next;
870 if (next == &p->mnt_mounts) {
871 while (1) {
872 if (p == root)
873 return NULL;
874 next = p->mnt_child.next;
875 if (next != &p->mnt_parent->mnt_mounts)
876 break;
877 p = p->mnt_parent;
878 }
879 }
880 return list_entry(next, struct mount, mnt_child);
881 }
882
skip_mnt_tree(struct mount * p)883 static struct mount *skip_mnt_tree(struct mount *p)
884 {
885 struct list_head *prev = p->mnt_mounts.prev;
886 while (prev != &p->mnt_mounts) {
887 p = list_entry(prev, struct mount, mnt_child);
888 prev = p->mnt_mounts.prev;
889 }
890 return p;
891 }
892
893 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)894 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
895 {
896 struct mount *mnt;
897 struct dentry *root;
898
899 if (!type)
900 return ERR_PTR(-ENODEV);
901
902 mnt = alloc_vfsmnt(name);
903 if (!mnt)
904 return ERR_PTR(-ENOMEM);
905
906 if (type->alloc_mnt_data) {
907 mnt->mnt.data = type->alloc_mnt_data();
908 if (!mnt->mnt.data) {
909 mnt_free_id(mnt);
910 free_vfsmnt(mnt);
911 return ERR_PTR(-ENOMEM);
912 }
913 }
914 if (flags & MS_KERNMOUNT)
915 mnt->mnt.mnt_flags = MNT_INTERNAL;
916
917 root = mount_fs(type, flags, name, &mnt->mnt, data);
918 if (IS_ERR(root)) {
919 mnt_free_id(mnt);
920 free_vfsmnt(mnt);
921 return ERR_CAST(root);
922 }
923
924 mnt->mnt.mnt_root = root;
925 mnt->mnt.mnt_sb = root->d_sb;
926 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
927 mnt->mnt_parent = mnt;
928 lock_mount_hash();
929 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
930 unlock_mount_hash();
931 return &mnt->mnt;
932 }
933 EXPORT_SYMBOL_GPL(vfs_kern_mount);
934
clone_mnt(struct mount * old,struct dentry * root,int flag)935 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
936 int flag)
937 {
938 struct super_block *sb = old->mnt.mnt_sb;
939 struct mount *mnt;
940 int err;
941
942 mnt = alloc_vfsmnt(old->mnt_devname);
943 if (!mnt)
944 return ERR_PTR(-ENOMEM);
945
946 if (sb->s_op->clone_mnt_data) {
947 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
948 if (!mnt->mnt.data) {
949 err = -ENOMEM;
950 goto out_free;
951 }
952 }
953
954 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
955 mnt->mnt_group_id = 0; /* not a peer of original */
956 else
957 mnt->mnt_group_id = old->mnt_group_id;
958
959 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
960 err = mnt_alloc_group_id(mnt);
961 if (err)
962 goto out_free;
963 }
964
965 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
966 /* Don't allow unprivileged users to change mount flags */
967 if (flag & CL_UNPRIVILEGED) {
968 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
969
970 if (mnt->mnt.mnt_flags & MNT_READONLY)
971 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
972
973 if (mnt->mnt.mnt_flags & MNT_NODEV)
974 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
975
976 if (mnt->mnt.mnt_flags & MNT_NOSUID)
977 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
978
979 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
980 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
981 }
982
983 /* Don't allow unprivileged users to reveal what is under a mount */
984 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
985 mnt->mnt.mnt_flags |= MNT_LOCKED;
986
987 atomic_inc(&sb->s_active);
988 mnt->mnt.mnt_sb = sb;
989 mnt->mnt.mnt_root = dget(root);
990 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
991 mnt->mnt_parent = mnt;
992 lock_mount_hash();
993 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
994 unlock_mount_hash();
995
996 if ((flag & CL_SLAVE) ||
997 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
998 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
999 mnt->mnt_master = old;
1000 CLEAR_MNT_SHARED(mnt);
1001 } else if (!(flag & CL_PRIVATE)) {
1002 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1003 list_add(&mnt->mnt_share, &old->mnt_share);
1004 if (IS_MNT_SLAVE(old))
1005 list_add(&mnt->mnt_slave, &old->mnt_slave);
1006 mnt->mnt_master = old->mnt_master;
1007 }
1008 if (flag & CL_MAKE_SHARED)
1009 set_mnt_shared(mnt);
1010
1011 /* stick the duplicate mount on the same expiry list
1012 * as the original if that was on one */
1013 if (flag & CL_EXPIRE) {
1014 if (!list_empty(&old->mnt_expire))
1015 list_add(&mnt->mnt_expire, &old->mnt_expire);
1016 }
1017
1018 return mnt;
1019
1020 out_free:
1021 mnt_free_id(mnt);
1022 free_vfsmnt(mnt);
1023 return ERR_PTR(err);
1024 }
1025
cleanup_mnt(struct mount * mnt)1026 static void cleanup_mnt(struct mount *mnt)
1027 {
1028 /*
1029 * This probably indicates that somebody messed
1030 * up a mnt_want/drop_write() pair. If this
1031 * happens, the filesystem was probably unable
1032 * to make r/w->r/o transitions.
1033 */
1034 /*
1035 * The locking used to deal with mnt_count decrement provides barriers,
1036 * so mnt_get_writers() below is safe.
1037 */
1038 WARN_ON(mnt_get_writers(mnt));
1039 if (unlikely(mnt->mnt_pins.first))
1040 mnt_pin_kill(mnt);
1041 fsnotify_vfsmount_delete(&mnt->mnt);
1042 dput(mnt->mnt.mnt_root);
1043 deactivate_super(mnt->mnt.mnt_sb);
1044 mnt_free_id(mnt);
1045 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1046 }
1047
__cleanup_mnt(struct rcu_head * head)1048 static void __cleanup_mnt(struct rcu_head *head)
1049 {
1050 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1051 }
1052
1053 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1054 static void delayed_mntput(struct work_struct *unused)
1055 {
1056 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1057 struct llist_node *next;
1058
1059 for (; node; node = next) {
1060 next = llist_next(node);
1061 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1062 }
1063 }
1064 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1065
mntput_no_expire(struct mount * mnt)1066 static void mntput_no_expire(struct mount *mnt)
1067 {
1068 rcu_read_lock();
1069 mnt_add_count(mnt, -1);
1070 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1071 rcu_read_unlock();
1072 return;
1073 }
1074 lock_mount_hash();
1075 if (mnt_get_count(mnt)) {
1076 rcu_read_unlock();
1077 unlock_mount_hash();
1078 return;
1079 }
1080 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1081 rcu_read_unlock();
1082 unlock_mount_hash();
1083 return;
1084 }
1085 mnt->mnt.mnt_flags |= MNT_DOOMED;
1086 rcu_read_unlock();
1087
1088 list_del(&mnt->mnt_instance);
1089 unlock_mount_hash();
1090
1091 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1092 struct task_struct *task = current;
1093 if (likely(!(task->flags & PF_KTHREAD))) {
1094 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1095 if (!task_work_add(task, &mnt->mnt_rcu, true))
1096 return;
1097 }
1098 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1099 schedule_delayed_work(&delayed_mntput_work, 1);
1100 return;
1101 }
1102 cleanup_mnt(mnt);
1103 }
1104
mntput(struct vfsmount * mnt)1105 void mntput(struct vfsmount *mnt)
1106 {
1107 if (mnt) {
1108 struct mount *m = real_mount(mnt);
1109 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1110 if (unlikely(m->mnt_expiry_mark))
1111 m->mnt_expiry_mark = 0;
1112 mntput_no_expire(m);
1113 }
1114 }
1115 EXPORT_SYMBOL(mntput);
1116
mntget(struct vfsmount * mnt)1117 struct vfsmount *mntget(struct vfsmount *mnt)
1118 {
1119 if (mnt)
1120 mnt_add_count(real_mount(mnt), 1);
1121 return mnt;
1122 }
1123 EXPORT_SYMBOL(mntget);
1124
mnt_clone_internal(struct path * path)1125 struct vfsmount *mnt_clone_internal(struct path *path)
1126 {
1127 struct mount *p;
1128 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1129 if (IS_ERR(p))
1130 return ERR_CAST(p);
1131 p->mnt.mnt_flags |= MNT_INTERNAL;
1132 return &p->mnt;
1133 }
1134
mangle(struct seq_file * m,const char * s)1135 static inline void mangle(struct seq_file *m, const char *s)
1136 {
1137 seq_escape(m, s, " \t\n\\");
1138 }
1139
1140 /*
1141 * Simple .show_options callback for filesystems which don't want to
1142 * implement more complex mount option showing.
1143 *
1144 * See also save_mount_options().
1145 */
generic_show_options(struct seq_file * m,struct dentry * root)1146 int generic_show_options(struct seq_file *m, struct dentry *root)
1147 {
1148 const char *options;
1149
1150 rcu_read_lock();
1151 options = rcu_dereference(root->d_sb->s_options);
1152
1153 if (options != NULL && options[0]) {
1154 seq_putc(m, ',');
1155 mangle(m, options);
1156 }
1157 rcu_read_unlock();
1158
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(generic_show_options);
1162
1163 /*
1164 * If filesystem uses generic_show_options(), this function should be
1165 * called from the fill_super() callback.
1166 *
1167 * The .remount_fs callback usually needs to be handled in a special
1168 * way, to make sure, that previous options are not overwritten if the
1169 * remount fails.
1170 *
1171 * Also note, that if the filesystem's .remount_fs function doesn't
1172 * reset all options to their default value, but changes only newly
1173 * given options, then the displayed options will not reflect reality
1174 * any more.
1175 */
save_mount_options(struct super_block * sb,char * options)1176 void save_mount_options(struct super_block *sb, char *options)
1177 {
1178 BUG_ON(sb->s_options);
1179 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1180 }
1181 EXPORT_SYMBOL(save_mount_options);
1182
replace_mount_options(struct super_block * sb,char * options)1183 void replace_mount_options(struct super_block *sb, char *options)
1184 {
1185 char *old = sb->s_options;
1186 rcu_assign_pointer(sb->s_options, options);
1187 if (old) {
1188 synchronize_rcu();
1189 kfree(old);
1190 }
1191 }
1192 EXPORT_SYMBOL(replace_mount_options);
1193
1194 #ifdef CONFIG_PROC_FS
1195 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1196 static void *m_start(struct seq_file *m, loff_t *pos)
1197 {
1198 struct proc_mounts *p = proc_mounts(m);
1199
1200 down_read(&namespace_sem);
1201 if (p->cached_event == p->ns->event) {
1202 void *v = p->cached_mount;
1203 if (*pos == p->cached_index)
1204 return v;
1205 if (*pos == p->cached_index + 1) {
1206 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1207 return p->cached_mount = v;
1208 }
1209 }
1210
1211 p->cached_event = p->ns->event;
1212 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1213 p->cached_index = *pos;
1214 return p->cached_mount;
1215 }
1216
m_next(struct seq_file * m,void * v,loff_t * pos)1217 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1218 {
1219 struct proc_mounts *p = proc_mounts(m);
1220
1221 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1222 p->cached_index = *pos;
1223 return p->cached_mount;
1224 }
1225
m_stop(struct seq_file * m,void * v)1226 static void m_stop(struct seq_file *m, void *v)
1227 {
1228 up_read(&namespace_sem);
1229 }
1230
m_show(struct seq_file * m,void * v)1231 static int m_show(struct seq_file *m, void *v)
1232 {
1233 struct proc_mounts *p = proc_mounts(m);
1234 struct mount *r = list_entry(v, struct mount, mnt_list);
1235 return p->show(m, &r->mnt);
1236 }
1237
1238 const struct seq_operations mounts_op = {
1239 .start = m_start,
1240 .next = m_next,
1241 .stop = m_stop,
1242 .show = m_show,
1243 };
1244 #endif /* CONFIG_PROC_FS */
1245
1246 /**
1247 * may_umount_tree - check if a mount tree is busy
1248 * @mnt: root of mount tree
1249 *
1250 * This is called to check if a tree of mounts has any
1251 * open files, pwds, chroots or sub mounts that are
1252 * busy.
1253 */
may_umount_tree(struct vfsmount * m)1254 int may_umount_tree(struct vfsmount *m)
1255 {
1256 struct mount *mnt = real_mount(m);
1257 int actual_refs = 0;
1258 int minimum_refs = 0;
1259 struct mount *p;
1260 BUG_ON(!m);
1261
1262 /* write lock needed for mnt_get_count */
1263 lock_mount_hash();
1264 for (p = mnt; p; p = next_mnt(p, mnt)) {
1265 actual_refs += mnt_get_count(p);
1266 minimum_refs += 2;
1267 }
1268 unlock_mount_hash();
1269
1270 if (actual_refs > minimum_refs)
1271 return 0;
1272
1273 return 1;
1274 }
1275
1276 EXPORT_SYMBOL(may_umount_tree);
1277
1278 /**
1279 * may_umount - check if a mount point is busy
1280 * @mnt: root of mount
1281 *
1282 * This is called to check if a mount point has any
1283 * open files, pwds, chroots or sub mounts. If the
1284 * mount has sub mounts this will return busy
1285 * regardless of whether the sub mounts are busy.
1286 *
1287 * Doesn't take quota and stuff into account. IOW, in some cases it will
1288 * give false negatives. The main reason why it's here is that we need
1289 * a non-destructive way to look for easily umountable filesystems.
1290 */
may_umount(struct vfsmount * mnt)1291 int may_umount(struct vfsmount *mnt)
1292 {
1293 int ret = 1;
1294 down_read(&namespace_sem);
1295 lock_mount_hash();
1296 if (propagate_mount_busy(real_mount(mnt), 2))
1297 ret = 0;
1298 unlock_mount_hash();
1299 up_read(&namespace_sem);
1300 return ret;
1301 }
1302
1303 EXPORT_SYMBOL(may_umount);
1304
1305 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1306
namespace_unlock(void)1307 static void namespace_unlock(void)
1308 {
1309 struct mount *mnt;
1310 struct hlist_head head = unmounted;
1311
1312 if (likely(hlist_empty(&head))) {
1313 up_write(&namespace_sem);
1314 return;
1315 }
1316
1317 head.first->pprev = &head.first;
1318 INIT_HLIST_HEAD(&unmounted);
1319
1320 /* undo decrements we'd done in umount_tree() */
1321 hlist_for_each_entry(mnt, &head, mnt_hash)
1322 if (mnt->mnt_ex_mountpoint.mnt)
1323 mntget(mnt->mnt_ex_mountpoint.mnt);
1324
1325 up_write(&namespace_sem);
1326
1327 synchronize_rcu();
1328
1329 while (!hlist_empty(&head)) {
1330 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1331 hlist_del_init(&mnt->mnt_hash);
1332 if (mnt->mnt_ex_mountpoint.mnt)
1333 path_put(&mnt->mnt_ex_mountpoint);
1334 mntput(&mnt->mnt);
1335 }
1336 }
1337
namespace_lock(void)1338 static inline void namespace_lock(void)
1339 {
1340 down_write(&namespace_sem);
1341 }
1342
1343 enum umount_tree_flags {
1344 UMOUNT_SYNC = 1,
1345 UMOUNT_PROPAGATE = 2,
1346 };
1347 /*
1348 * mount_lock must be held
1349 * namespace_sem must be held for write
1350 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1351 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1352 {
1353 HLIST_HEAD(tmp_list);
1354 struct mount *p;
1355 struct mount *last = NULL;
1356
1357 for (p = mnt; p; p = next_mnt(p, mnt)) {
1358 hlist_del_init_rcu(&p->mnt_hash);
1359 hlist_add_head(&p->mnt_hash, &tmp_list);
1360 }
1361
1362 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1363 list_del_init(&p->mnt_child);
1364
1365 if (how & UMOUNT_PROPAGATE)
1366 propagate_umount(&tmp_list);
1367
1368 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1369 list_del_init(&p->mnt_expire);
1370 list_del_init(&p->mnt_list);
1371 __touch_mnt_namespace(p->mnt_ns);
1372 p->mnt_ns = NULL;
1373 if (how & UMOUNT_SYNC)
1374 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1375 if (mnt_has_parent(p)) {
1376 hlist_del_init(&p->mnt_mp_list);
1377 put_mountpoint(p->mnt_mp);
1378 mnt_add_count(p->mnt_parent, -1);
1379 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1380 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1381 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1382 p->mnt_mountpoint = p->mnt.mnt_root;
1383 p->mnt_parent = p;
1384 p->mnt_mp = NULL;
1385 }
1386 change_mnt_propagation(p, MS_PRIVATE);
1387 last = p;
1388 }
1389 if (last) {
1390 last->mnt_hash.next = unmounted.first;
1391 if (unmounted.first)
1392 unmounted.first->pprev = &last->mnt_hash.next;
1393 unmounted.first = tmp_list.first;
1394 unmounted.first->pprev = &unmounted.first;
1395 }
1396 }
1397
1398 static void shrink_submounts(struct mount *mnt);
1399
do_umount(struct mount * mnt,int flags)1400 static int do_umount(struct mount *mnt, int flags)
1401 {
1402 struct super_block *sb = mnt->mnt.mnt_sb;
1403 int retval;
1404
1405 retval = security_sb_umount(&mnt->mnt, flags);
1406 if (retval)
1407 return retval;
1408
1409 /*
1410 * Allow userspace to request a mountpoint be expired rather than
1411 * unmounting unconditionally. Unmount only happens if:
1412 * (1) the mark is already set (the mark is cleared by mntput())
1413 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1414 */
1415 if (flags & MNT_EXPIRE) {
1416 if (&mnt->mnt == current->fs->root.mnt ||
1417 flags & (MNT_FORCE | MNT_DETACH))
1418 return -EINVAL;
1419
1420 /*
1421 * probably don't strictly need the lock here if we examined
1422 * all race cases, but it's a slowpath.
1423 */
1424 lock_mount_hash();
1425 if (mnt_get_count(mnt) != 2) {
1426 unlock_mount_hash();
1427 return -EBUSY;
1428 }
1429 unlock_mount_hash();
1430
1431 if (!xchg(&mnt->mnt_expiry_mark, 1))
1432 return -EAGAIN;
1433 }
1434
1435 /*
1436 * If we may have to abort operations to get out of this
1437 * mount, and they will themselves hold resources we must
1438 * allow the fs to do things. In the Unix tradition of
1439 * 'Gee thats tricky lets do it in userspace' the umount_begin
1440 * might fail to complete on the first run through as other tasks
1441 * must return, and the like. Thats for the mount program to worry
1442 * about for the moment.
1443 */
1444
1445 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1446 sb->s_op->umount_begin(sb);
1447 }
1448
1449 /*
1450 * No sense to grab the lock for this test, but test itself looks
1451 * somewhat bogus. Suggestions for better replacement?
1452 * Ho-hum... In principle, we might treat that as umount + switch
1453 * to rootfs. GC would eventually take care of the old vfsmount.
1454 * Actually it makes sense, especially if rootfs would contain a
1455 * /reboot - static binary that would close all descriptors and
1456 * call reboot(9). Then init(8) could umount root and exec /reboot.
1457 */
1458 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1459 /*
1460 * Special case for "unmounting" root ...
1461 * we just try to remount it readonly.
1462 */
1463 if (!capable(CAP_SYS_ADMIN))
1464 return -EPERM;
1465 down_write(&sb->s_umount);
1466 if (!(sb->s_flags & MS_RDONLY))
1467 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1468 up_write(&sb->s_umount);
1469 return retval;
1470 }
1471
1472 namespace_lock();
1473 lock_mount_hash();
1474 event++;
1475
1476 if (flags & MNT_DETACH) {
1477 if (!list_empty(&mnt->mnt_list))
1478 umount_tree(mnt, UMOUNT_PROPAGATE);
1479 retval = 0;
1480 } else {
1481 shrink_submounts(mnt);
1482 retval = -EBUSY;
1483 if (!propagate_mount_busy(mnt, 2)) {
1484 if (!list_empty(&mnt->mnt_list))
1485 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1486 retval = 0;
1487 }
1488 }
1489 unlock_mount_hash();
1490 namespace_unlock();
1491 return retval;
1492 }
1493
1494 /*
1495 * __detach_mounts - lazily unmount all mounts on the specified dentry
1496 *
1497 * During unlink, rmdir, and d_drop it is possible to loose the path
1498 * to an existing mountpoint, and wind up leaking the mount.
1499 * detach_mounts allows lazily unmounting those mounts instead of
1500 * leaking them.
1501 *
1502 * The caller may hold dentry->d_inode->i_mutex.
1503 */
__detach_mounts(struct dentry * dentry)1504 void __detach_mounts(struct dentry *dentry)
1505 {
1506 struct mountpoint *mp;
1507 struct mount *mnt;
1508
1509 namespace_lock();
1510 mp = lookup_mountpoint(dentry);
1511 if (IS_ERR_OR_NULL(mp))
1512 goto out_unlock;
1513
1514 lock_mount_hash();
1515 event++;
1516 while (!hlist_empty(&mp->m_list)) {
1517 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1518 umount_tree(mnt, 0);
1519 }
1520 unlock_mount_hash();
1521 put_mountpoint(mp);
1522 out_unlock:
1523 namespace_unlock();
1524 }
1525
1526 /*
1527 * Is the caller allowed to modify his namespace?
1528 */
may_mount(void)1529 static inline bool may_mount(void)
1530 {
1531 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1532 }
1533
1534 /*
1535 * Now umount can handle mount points as well as block devices.
1536 * This is important for filesystems which use unnamed block devices.
1537 *
1538 * We now support a flag for forced unmount like the other 'big iron'
1539 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1540 */
1541
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1542 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1543 {
1544 struct path path;
1545 struct mount *mnt;
1546 int retval;
1547 int lookup_flags = 0;
1548
1549 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1550 return -EINVAL;
1551
1552 if (!may_mount())
1553 return -EPERM;
1554
1555 if (!(flags & UMOUNT_NOFOLLOW))
1556 lookup_flags |= LOOKUP_FOLLOW;
1557
1558 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1559 if (retval)
1560 goto out;
1561 mnt = real_mount(path.mnt);
1562 retval = -EINVAL;
1563 if (path.dentry != path.mnt->mnt_root)
1564 goto dput_and_out;
1565 if (!check_mnt(mnt))
1566 goto dput_and_out;
1567 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1568 goto dput_and_out;
1569 retval = -EPERM;
1570 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1571 goto dput_and_out;
1572
1573 retval = do_umount(mnt, flags);
1574 dput_and_out:
1575 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1576 dput(path.dentry);
1577 mntput_no_expire(mnt);
1578 out:
1579 return retval;
1580 }
1581
1582 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1583
1584 /*
1585 * The 2.0 compatible umount. No flags.
1586 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1587 SYSCALL_DEFINE1(oldumount, char __user *, name)
1588 {
1589 return sys_umount(name, 0);
1590 }
1591
1592 #endif
1593
is_mnt_ns_file(struct dentry * dentry)1594 static bool is_mnt_ns_file(struct dentry *dentry)
1595 {
1596 /* Is this a proxy for a mount namespace? */
1597 struct inode *inode = dentry->d_inode;
1598 struct proc_ns *ei;
1599
1600 if (!proc_ns_inode(inode))
1601 return false;
1602
1603 ei = get_proc_ns(inode);
1604 if (ei->ns_ops != &mntns_operations)
1605 return false;
1606
1607 return true;
1608 }
1609
mnt_ns_loop(struct dentry * dentry)1610 static bool mnt_ns_loop(struct dentry *dentry)
1611 {
1612 /* Could bind mounting the mount namespace inode cause a
1613 * mount namespace loop?
1614 */
1615 struct mnt_namespace *mnt_ns;
1616 if (!is_mnt_ns_file(dentry))
1617 return false;
1618
1619 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1620 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1621 }
1622
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1623 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1624 int flag)
1625 {
1626 struct mount *res, *p, *q, *r, *parent;
1627
1628 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1629 return ERR_PTR(-EINVAL);
1630
1631 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1632 return ERR_PTR(-EINVAL);
1633
1634 res = q = clone_mnt(mnt, dentry, flag);
1635 if (IS_ERR(q))
1636 return q;
1637
1638 q->mnt.mnt_flags &= ~MNT_LOCKED;
1639 q->mnt_mountpoint = mnt->mnt_mountpoint;
1640
1641 p = mnt;
1642 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1643 struct mount *s;
1644 if (!is_subdir(r->mnt_mountpoint, dentry))
1645 continue;
1646
1647 for (s = r; s; s = next_mnt(s, r)) {
1648 struct mount *t = NULL;
1649 if (!(flag & CL_COPY_UNBINDABLE) &&
1650 IS_MNT_UNBINDABLE(s)) {
1651 s = skip_mnt_tree(s);
1652 continue;
1653 }
1654 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1655 is_mnt_ns_file(s->mnt.mnt_root)) {
1656 s = skip_mnt_tree(s);
1657 continue;
1658 }
1659 while (p != s->mnt_parent) {
1660 p = p->mnt_parent;
1661 q = q->mnt_parent;
1662 }
1663 p = s;
1664 parent = q;
1665 q = clone_mnt(p, p->mnt.mnt_root, flag);
1666 if (IS_ERR(q))
1667 goto out;
1668 lock_mount_hash();
1669 list_add_tail(&q->mnt_list, &res->mnt_list);
1670 mnt_set_mountpoint(parent, p->mnt_mp, q);
1671 if (!list_empty(&parent->mnt_mounts)) {
1672 t = list_last_entry(&parent->mnt_mounts,
1673 struct mount, mnt_child);
1674 if (t->mnt_mp != p->mnt_mp)
1675 t = NULL;
1676 }
1677 attach_shadowed(q, parent, t);
1678 unlock_mount_hash();
1679 }
1680 }
1681 return res;
1682 out:
1683 if (res) {
1684 lock_mount_hash();
1685 umount_tree(res, UMOUNT_SYNC);
1686 unlock_mount_hash();
1687 }
1688 return q;
1689 }
1690
1691 /* Caller should check returned pointer for errors */
1692
collect_mounts(struct path * path)1693 struct vfsmount *collect_mounts(struct path *path)
1694 {
1695 struct mount *tree;
1696 namespace_lock();
1697 if (!check_mnt(real_mount(path->mnt)))
1698 tree = ERR_PTR(-EINVAL);
1699 else
1700 tree = copy_tree(real_mount(path->mnt), path->dentry,
1701 CL_COPY_ALL | CL_PRIVATE);
1702 namespace_unlock();
1703 if (IS_ERR(tree))
1704 return ERR_CAST(tree);
1705 return &tree->mnt;
1706 }
1707
drop_collected_mounts(struct vfsmount * mnt)1708 void drop_collected_mounts(struct vfsmount *mnt)
1709 {
1710 namespace_lock();
1711 lock_mount_hash();
1712 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1713 unlock_mount_hash();
1714 namespace_unlock();
1715 }
1716
1717 /**
1718 * clone_private_mount - create a private clone of a path
1719 *
1720 * This creates a new vfsmount, which will be the clone of @path. The new will
1721 * not be attached anywhere in the namespace and will be private (i.e. changes
1722 * to the originating mount won't be propagated into this).
1723 *
1724 * Release with mntput().
1725 */
clone_private_mount(struct path * path)1726 struct vfsmount *clone_private_mount(struct path *path)
1727 {
1728 struct mount *old_mnt = real_mount(path->mnt);
1729 struct mount *new_mnt;
1730
1731 if (IS_MNT_UNBINDABLE(old_mnt))
1732 return ERR_PTR(-EINVAL);
1733
1734 down_read(&namespace_sem);
1735 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1736 up_read(&namespace_sem);
1737 if (IS_ERR(new_mnt))
1738 return ERR_CAST(new_mnt);
1739
1740 return &new_mnt->mnt;
1741 }
1742 EXPORT_SYMBOL_GPL(clone_private_mount);
1743
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1744 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1745 struct vfsmount *root)
1746 {
1747 struct mount *mnt;
1748 int res = f(root, arg);
1749 if (res)
1750 return res;
1751 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1752 res = f(&mnt->mnt, arg);
1753 if (res)
1754 return res;
1755 }
1756 return 0;
1757 }
1758
cleanup_group_ids(struct mount * mnt,struct mount * end)1759 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1760 {
1761 struct mount *p;
1762
1763 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1764 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1765 mnt_release_group_id(p);
1766 }
1767 }
1768
invent_group_ids(struct mount * mnt,bool recurse)1769 static int invent_group_ids(struct mount *mnt, bool recurse)
1770 {
1771 struct mount *p;
1772
1773 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1774 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1775 int err = mnt_alloc_group_id(p);
1776 if (err) {
1777 cleanup_group_ids(mnt, p);
1778 return err;
1779 }
1780 }
1781 }
1782
1783 return 0;
1784 }
1785
1786 /*
1787 * @source_mnt : mount tree to be attached
1788 * @nd : place the mount tree @source_mnt is attached
1789 * @parent_nd : if non-null, detach the source_mnt from its parent and
1790 * store the parent mount and mountpoint dentry.
1791 * (done when source_mnt is moved)
1792 *
1793 * NOTE: in the table below explains the semantics when a source mount
1794 * of a given type is attached to a destination mount of a given type.
1795 * ---------------------------------------------------------------------------
1796 * | BIND MOUNT OPERATION |
1797 * |**************************************************************************
1798 * | source-->| shared | private | slave | unbindable |
1799 * | dest | | | | |
1800 * | | | | | | |
1801 * | v | | | | |
1802 * |**************************************************************************
1803 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1804 * | | | | | |
1805 * |non-shared| shared (+) | private | slave (*) | invalid |
1806 * ***************************************************************************
1807 * A bind operation clones the source mount and mounts the clone on the
1808 * destination mount.
1809 *
1810 * (++) the cloned mount is propagated to all the mounts in the propagation
1811 * tree of the destination mount and the cloned mount is added to
1812 * the peer group of the source mount.
1813 * (+) the cloned mount is created under the destination mount and is marked
1814 * as shared. The cloned mount is added to the peer group of the source
1815 * mount.
1816 * (+++) the mount is propagated to all the mounts in the propagation tree
1817 * of the destination mount and the cloned mount is made slave
1818 * of the same master as that of the source mount. The cloned mount
1819 * is marked as 'shared and slave'.
1820 * (*) the cloned mount is made a slave of the same master as that of the
1821 * source mount.
1822 *
1823 * ---------------------------------------------------------------------------
1824 * | MOVE MOUNT OPERATION |
1825 * |**************************************************************************
1826 * | source-->| shared | private | slave | unbindable |
1827 * | dest | | | | |
1828 * | | | | | | |
1829 * | v | | | | |
1830 * |**************************************************************************
1831 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1832 * | | | | | |
1833 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1834 * ***************************************************************************
1835 *
1836 * (+) the mount is moved to the destination. And is then propagated to
1837 * all the mounts in the propagation tree of the destination mount.
1838 * (+*) the mount is moved to the destination.
1839 * (+++) the mount is moved to the destination and is then propagated to
1840 * all the mounts belonging to the destination mount's propagation tree.
1841 * the mount is marked as 'shared and slave'.
1842 * (*) the mount continues to be a slave at the new location.
1843 *
1844 * if the source mount is a tree, the operations explained above is
1845 * applied to each mount in the tree.
1846 * Must be called without spinlocks held, since this function can sleep
1847 * in allocations.
1848 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1849 static int attach_recursive_mnt(struct mount *source_mnt,
1850 struct mount *dest_mnt,
1851 struct mountpoint *dest_mp,
1852 struct path *parent_path)
1853 {
1854 HLIST_HEAD(tree_list);
1855 struct mount *child, *p;
1856 struct hlist_node *n;
1857 int err;
1858
1859 if (IS_MNT_SHARED(dest_mnt)) {
1860 err = invent_group_ids(source_mnt, true);
1861 if (err)
1862 goto out;
1863 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1864 lock_mount_hash();
1865 if (err)
1866 goto out_cleanup_ids;
1867 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1868 set_mnt_shared(p);
1869 } else {
1870 lock_mount_hash();
1871 }
1872 if (parent_path) {
1873 detach_mnt(source_mnt, parent_path);
1874 attach_mnt(source_mnt, dest_mnt, dest_mp);
1875 touch_mnt_namespace(source_mnt->mnt_ns);
1876 } else {
1877 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1878 commit_tree(source_mnt, NULL);
1879 }
1880
1881 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1882 struct mount *q;
1883 hlist_del_init(&child->mnt_hash);
1884 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1885 child->mnt_mountpoint);
1886 commit_tree(child, q);
1887 }
1888 unlock_mount_hash();
1889
1890 return 0;
1891
1892 out_cleanup_ids:
1893 while (!hlist_empty(&tree_list)) {
1894 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1895 umount_tree(child, UMOUNT_SYNC);
1896 }
1897 unlock_mount_hash();
1898 cleanup_group_ids(source_mnt, NULL);
1899 out:
1900 return err;
1901 }
1902
lock_mount(struct path * path)1903 static struct mountpoint *lock_mount(struct path *path)
1904 {
1905 struct vfsmount *mnt;
1906 struct dentry *dentry = path->dentry;
1907 retry:
1908 mutex_lock(&dentry->d_inode->i_mutex);
1909 if (unlikely(cant_mount(dentry))) {
1910 mutex_unlock(&dentry->d_inode->i_mutex);
1911 return ERR_PTR(-ENOENT);
1912 }
1913 namespace_lock();
1914 mnt = lookup_mnt(path);
1915 if (likely(!mnt)) {
1916 struct mountpoint *mp = lookup_mountpoint(dentry);
1917 if (!mp)
1918 mp = new_mountpoint(dentry);
1919 if (IS_ERR(mp)) {
1920 namespace_unlock();
1921 mutex_unlock(&dentry->d_inode->i_mutex);
1922 return mp;
1923 }
1924 return mp;
1925 }
1926 namespace_unlock();
1927 mutex_unlock(&path->dentry->d_inode->i_mutex);
1928 path_put(path);
1929 path->mnt = mnt;
1930 dentry = path->dentry = dget(mnt->mnt_root);
1931 goto retry;
1932 }
1933
unlock_mount(struct mountpoint * where)1934 static void unlock_mount(struct mountpoint *where)
1935 {
1936 struct dentry *dentry = where->m_dentry;
1937 put_mountpoint(where);
1938 namespace_unlock();
1939 mutex_unlock(&dentry->d_inode->i_mutex);
1940 }
1941
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)1942 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1943 {
1944 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1945 return -EINVAL;
1946
1947 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1948 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1949 return -ENOTDIR;
1950
1951 return attach_recursive_mnt(mnt, p, mp, NULL);
1952 }
1953
1954 /*
1955 * Sanity check the flags to change_mnt_propagation.
1956 */
1957
flags_to_propagation_type(int flags)1958 static int flags_to_propagation_type(int flags)
1959 {
1960 int type = flags & ~(MS_REC | MS_SILENT);
1961
1962 /* Fail if any non-propagation flags are set */
1963 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1964 return 0;
1965 /* Only one propagation flag should be set */
1966 if (!is_power_of_2(type))
1967 return 0;
1968 return type;
1969 }
1970
1971 /*
1972 * recursively change the type of the mountpoint.
1973 */
do_change_type(struct path * path,int flag)1974 static int do_change_type(struct path *path, int flag)
1975 {
1976 struct mount *m;
1977 struct mount *mnt = real_mount(path->mnt);
1978 int recurse = flag & MS_REC;
1979 int type;
1980 int err = 0;
1981
1982 if (path->dentry != path->mnt->mnt_root)
1983 return -EINVAL;
1984
1985 type = flags_to_propagation_type(flag);
1986 if (!type)
1987 return -EINVAL;
1988
1989 namespace_lock();
1990 if (type == MS_SHARED) {
1991 err = invent_group_ids(mnt, recurse);
1992 if (err)
1993 goto out_unlock;
1994 }
1995
1996 lock_mount_hash();
1997 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1998 change_mnt_propagation(m, type);
1999 unlock_mount_hash();
2000
2001 out_unlock:
2002 namespace_unlock();
2003 return err;
2004 }
2005
has_locked_children(struct mount * mnt,struct dentry * dentry)2006 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2007 {
2008 struct mount *child;
2009 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2010 if (!is_subdir(child->mnt_mountpoint, dentry))
2011 continue;
2012
2013 if (child->mnt.mnt_flags & MNT_LOCKED)
2014 return true;
2015 }
2016 return false;
2017 }
2018
2019 /*
2020 * do loopback mount.
2021 */
do_loopback(struct path * path,const char * old_name,int recurse)2022 static int do_loopback(struct path *path, const char *old_name,
2023 int recurse)
2024 {
2025 struct path old_path;
2026 struct mount *mnt = NULL, *old, *parent;
2027 struct mountpoint *mp;
2028 int err;
2029 if (!old_name || !*old_name)
2030 return -EINVAL;
2031 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2032 if (err)
2033 return err;
2034
2035 err = -EINVAL;
2036 if (mnt_ns_loop(old_path.dentry))
2037 goto out;
2038
2039 mp = lock_mount(path);
2040 err = PTR_ERR(mp);
2041 if (IS_ERR(mp))
2042 goto out;
2043
2044 old = real_mount(old_path.mnt);
2045 parent = real_mount(path->mnt);
2046
2047 err = -EINVAL;
2048 if (IS_MNT_UNBINDABLE(old))
2049 goto out2;
2050
2051 if (!check_mnt(parent) || !check_mnt(old))
2052 goto out2;
2053
2054 if (!recurse && has_locked_children(old, old_path.dentry))
2055 goto out2;
2056
2057 if (recurse)
2058 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2059 else
2060 mnt = clone_mnt(old, old_path.dentry, 0);
2061
2062 if (IS_ERR(mnt)) {
2063 err = PTR_ERR(mnt);
2064 goto out2;
2065 }
2066
2067 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2068
2069 err = graft_tree(mnt, parent, mp);
2070 if (err) {
2071 lock_mount_hash();
2072 umount_tree(mnt, UMOUNT_SYNC);
2073 unlock_mount_hash();
2074 }
2075 out2:
2076 unlock_mount(mp);
2077 out:
2078 path_put(&old_path);
2079 return err;
2080 }
2081
change_mount_flags(struct vfsmount * mnt,int ms_flags)2082 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2083 {
2084 int error = 0;
2085 int readonly_request = 0;
2086
2087 if (ms_flags & MS_RDONLY)
2088 readonly_request = 1;
2089 if (readonly_request == __mnt_is_readonly(mnt))
2090 return 0;
2091
2092 if (readonly_request)
2093 error = mnt_make_readonly(real_mount(mnt));
2094 else
2095 __mnt_unmake_readonly(real_mount(mnt));
2096 return error;
2097 }
2098
2099 /*
2100 * change filesystem flags. dir should be a physical root of filesystem.
2101 * If you've mounted a non-root directory somewhere and want to do remount
2102 * on it - tough luck.
2103 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2104 static int do_remount(struct path *path, int flags, int mnt_flags,
2105 void *data)
2106 {
2107 int err;
2108 struct super_block *sb = path->mnt->mnt_sb;
2109 struct mount *mnt = real_mount(path->mnt);
2110
2111 if (!check_mnt(mnt))
2112 return -EINVAL;
2113
2114 if (path->dentry != path->mnt->mnt_root)
2115 return -EINVAL;
2116
2117 /* Don't allow changing of locked mnt flags.
2118 *
2119 * No locks need to be held here while testing the various
2120 * MNT_LOCK flags because those flags can never be cleared
2121 * once they are set.
2122 */
2123 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2124 !(mnt_flags & MNT_READONLY)) {
2125 return -EPERM;
2126 }
2127 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2128 !(mnt_flags & MNT_NODEV)) {
2129 /* Was the nodev implicitly added in mount? */
2130 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2131 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2132 mnt_flags |= MNT_NODEV;
2133 } else {
2134 return -EPERM;
2135 }
2136 }
2137 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2138 !(mnt_flags & MNT_NOSUID)) {
2139 return -EPERM;
2140 }
2141 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2142 !(mnt_flags & MNT_NOEXEC)) {
2143 return -EPERM;
2144 }
2145 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2146 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2147 return -EPERM;
2148 }
2149
2150 err = security_sb_remount(sb, data);
2151 if (err)
2152 return err;
2153
2154 down_write(&sb->s_umount);
2155 if (flags & MS_BIND)
2156 err = change_mount_flags(path->mnt, flags);
2157 else if (!capable(CAP_SYS_ADMIN))
2158 err = -EPERM;
2159 else {
2160 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2161 namespace_lock();
2162 lock_mount_hash();
2163 propagate_remount(mnt);
2164 unlock_mount_hash();
2165 namespace_unlock();
2166 }
2167 if (!err) {
2168 lock_mount_hash();
2169 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2170 mnt->mnt.mnt_flags = mnt_flags;
2171 touch_mnt_namespace(mnt->mnt_ns);
2172 unlock_mount_hash();
2173 }
2174 up_write(&sb->s_umount);
2175 return err;
2176 }
2177
tree_contains_unbindable(struct mount * mnt)2178 static inline int tree_contains_unbindable(struct mount *mnt)
2179 {
2180 struct mount *p;
2181 for (p = mnt; p; p = next_mnt(p, mnt)) {
2182 if (IS_MNT_UNBINDABLE(p))
2183 return 1;
2184 }
2185 return 0;
2186 }
2187
do_move_mount(struct path * path,const char * old_name)2188 static int do_move_mount(struct path *path, const char *old_name)
2189 {
2190 struct path old_path, parent_path;
2191 struct mount *p;
2192 struct mount *old;
2193 struct mountpoint *mp;
2194 int err;
2195 if (!old_name || !*old_name)
2196 return -EINVAL;
2197 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2198 if (err)
2199 return err;
2200
2201 mp = lock_mount(path);
2202 err = PTR_ERR(mp);
2203 if (IS_ERR(mp))
2204 goto out;
2205
2206 old = real_mount(old_path.mnt);
2207 p = real_mount(path->mnt);
2208
2209 err = -EINVAL;
2210 if (!check_mnt(p) || !check_mnt(old))
2211 goto out1;
2212
2213 if (old->mnt.mnt_flags & MNT_LOCKED)
2214 goto out1;
2215
2216 err = -EINVAL;
2217 if (old_path.dentry != old_path.mnt->mnt_root)
2218 goto out1;
2219
2220 if (!mnt_has_parent(old))
2221 goto out1;
2222
2223 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2224 S_ISDIR(old_path.dentry->d_inode->i_mode))
2225 goto out1;
2226 /*
2227 * Don't move a mount residing in a shared parent.
2228 */
2229 if (IS_MNT_SHARED(old->mnt_parent))
2230 goto out1;
2231 /*
2232 * Don't move a mount tree containing unbindable mounts to a destination
2233 * mount which is shared.
2234 */
2235 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2236 goto out1;
2237 err = -ELOOP;
2238 for (; mnt_has_parent(p); p = p->mnt_parent)
2239 if (p == old)
2240 goto out1;
2241
2242 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2243 if (err)
2244 goto out1;
2245
2246 /* if the mount is moved, it should no longer be expire
2247 * automatically */
2248 list_del_init(&old->mnt_expire);
2249 out1:
2250 unlock_mount(mp);
2251 out:
2252 if (!err)
2253 path_put(&parent_path);
2254 path_put(&old_path);
2255 return err;
2256 }
2257
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2258 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2259 {
2260 int err;
2261 const char *subtype = strchr(fstype, '.');
2262 if (subtype) {
2263 subtype++;
2264 err = -EINVAL;
2265 if (!subtype[0])
2266 goto err;
2267 } else
2268 subtype = "";
2269
2270 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2271 err = -ENOMEM;
2272 if (!mnt->mnt_sb->s_subtype)
2273 goto err;
2274 return mnt;
2275
2276 err:
2277 mntput(mnt);
2278 return ERR_PTR(err);
2279 }
2280
2281 /*
2282 * add a mount into a namespace's mount tree
2283 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2284 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2285 {
2286 struct mountpoint *mp;
2287 struct mount *parent;
2288 int err;
2289
2290 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2291
2292 mp = lock_mount(path);
2293 if (IS_ERR(mp))
2294 return PTR_ERR(mp);
2295
2296 parent = real_mount(path->mnt);
2297 err = -EINVAL;
2298 if (unlikely(!check_mnt(parent))) {
2299 /* that's acceptable only for automounts done in private ns */
2300 if (!(mnt_flags & MNT_SHRINKABLE))
2301 goto unlock;
2302 /* ... and for those we'd better have mountpoint still alive */
2303 if (!parent->mnt_ns)
2304 goto unlock;
2305 }
2306
2307 /* Refuse the same filesystem on the same mount point */
2308 err = -EBUSY;
2309 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2310 path->mnt->mnt_root == path->dentry)
2311 goto unlock;
2312
2313 err = -EINVAL;
2314 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2315 goto unlock;
2316
2317 newmnt->mnt.mnt_flags = mnt_flags;
2318 err = graft_tree(newmnt, parent, mp);
2319
2320 unlock:
2321 unlock_mount(mp);
2322 return err;
2323 }
2324
2325 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2326
2327 /*
2328 * create a new mount for userspace and request it to be added into the
2329 * namespace's tree
2330 */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2331 static int do_new_mount(struct path *path, const char *fstype, int flags,
2332 int mnt_flags, const char *name, void *data)
2333 {
2334 struct file_system_type *type;
2335 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2336 struct vfsmount *mnt;
2337 int err;
2338
2339 if (!fstype)
2340 return -EINVAL;
2341
2342 type = get_fs_type(fstype);
2343 if (!type)
2344 return -ENODEV;
2345
2346 if (user_ns != &init_user_ns) {
2347 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2348 put_filesystem(type);
2349 return -EPERM;
2350 }
2351 /* Only in special cases allow devices from mounts
2352 * created outside the initial user namespace.
2353 */
2354 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2355 flags |= MS_NODEV;
2356 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2357 }
2358 if (type->fs_flags & FS_USERNS_VISIBLE) {
2359 if (!fs_fully_visible(type, &mnt_flags)) {
2360 put_filesystem(type);
2361 return -EPERM;
2362 }
2363 }
2364 }
2365
2366 mnt = vfs_kern_mount(type, flags, name, data);
2367 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2368 !mnt->mnt_sb->s_subtype)
2369 mnt = fs_set_subtype(mnt, fstype);
2370
2371 put_filesystem(type);
2372 if (IS_ERR(mnt))
2373 return PTR_ERR(mnt);
2374
2375 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2376 if (err)
2377 mntput(mnt);
2378 return err;
2379 }
2380
finish_automount(struct vfsmount * m,struct path * path)2381 int finish_automount(struct vfsmount *m, struct path *path)
2382 {
2383 struct mount *mnt = real_mount(m);
2384 int err;
2385 /* The new mount record should have at least 2 refs to prevent it being
2386 * expired before we get a chance to add it
2387 */
2388 BUG_ON(mnt_get_count(mnt) < 2);
2389
2390 if (m->mnt_sb == path->mnt->mnt_sb &&
2391 m->mnt_root == path->dentry) {
2392 err = -ELOOP;
2393 goto fail;
2394 }
2395
2396 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2397 if (!err)
2398 return 0;
2399 fail:
2400 /* remove m from any expiration list it may be on */
2401 if (!list_empty(&mnt->mnt_expire)) {
2402 namespace_lock();
2403 list_del_init(&mnt->mnt_expire);
2404 namespace_unlock();
2405 }
2406 mntput(m);
2407 mntput(m);
2408 return err;
2409 }
2410
2411 /**
2412 * mnt_set_expiry - Put a mount on an expiration list
2413 * @mnt: The mount to list.
2414 * @expiry_list: The list to add the mount to.
2415 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2416 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2417 {
2418 namespace_lock();
2419
2420 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2421
2422 namespace_unlock();
2423 }
2424 EXPORT_SYMBOL(mnt_set_expiry);
2425
2426 /*
2427 * process a list of expirable mountpoints with the intent of discarding any
2428 * mountpoints that aren't in use and haven't been touched since last we came
2429 * here
2430 */
mark_mounts_for_expiry(struct list_head * mounts)2431 void mark_mounts_for_expiry(struct list_head *mounts)
2432 {
2433 struct mount *mnt, *next;
2434 LIST_HEAD(graveyard);
2435
2436 if (list_empty(mounts))
2437 return;
2438
2439 namespace_lock();
2440 lock_mount_hash();
2441
2442 /* extract from the expiration list every vfsmount that matches the
2443 * following criteria:
2444 * - only referenced by its parent vfsmount
2445 * - still marked for expiry (marked on the last call here; marks are
2446 * cleared by mntput())
2447 */
2448 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2449 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2450 propagate_mount_busy(mnt, 1))
2451 continue;
2452 list_move(&mnt->mnt_expire, &graveyard);
2453 }
2454 while (!list_empty(&graveyard)) {
2455 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2456 touch_mnt_namespace(mnt->mnt_ns);
2457 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2458 }
2459 unlock_mount_hash();
2460 namespace_unlock();
2461 }
2462
2463 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2464
2465 /*
2466 * Ripoff of 'select_parent()'
2467 *
2468 * search the list of submounts for a given mountpoint, and move any
2469 * shrinkable submounts to the 'graveyard' list.
2470 */
select_submounts(struct mount * parent,struct list_head * graveyard)2471 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2472 {
2473 struct mount *this_parent = parent;
2474 struct list_head *next;
2475 int found = 0;
2476
2477 repeat:
2478 next = this_parent->mnt_mounts.next;
2479 resume:
2480 while (next != &this_parent->mnt_mounts) {
2481 struct list_head *tmp = next;
2482 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2483
2484 next = tmp->next;
2485 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2486 continue;
2487 /*
2488 * Descend a level if the d_mounts list is non-empty.
2489 */
2490 if (!list_empty(&mnt->mnt_mounts)) {
2491 this_parent = mnt;
2492 goto repeat;
2493 }
2494
2495 if (!propagate_mount_busy(mnt, 1)) {
2496 list_move_tail(&mnt->mnt_expire, graveyard);
2497 found++;
2498 }
2499 }
2500 /*
2501 * All done at this level ... ascend and resume the search
2502 */
2503 if (this_parent != parent) {
2504 next = this_parent->mnt_child.next;
2505 this_parent = this_parent->mnt_parent;
2506 goto resume;
2507 }
2508 return found;
2509 }
2510
2511 /*
2512 * process a list of expirable mountpoints with the intent of discarding any
2513 * submounts of a specific parent mountpoint
2514 *
2515 * mount_lock must be held for write
2516 */
shrink_submounts(struct mount * mnt)2517 static void shrink_submounts(struct mount *mnt)
2518 {
2519 LIST_HEAD(graveyard);
2520 struct mount *m;
2521
2522 /* extract submounts of 'mountpoint' from the expiration list */
2523 while (select_submounts(mnt, &graveyard)) {
2524 while (!list_empty(&graveyard)) {
2525 m = list_first_entry(&graveyard, struct mount,
2526 mnt_expire);
2527 touch_mnt_namespace(m->mnt_ns);
2528 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2529 }
2530 }
2531 }
2532
2533 /*
2534 * Some copy_from_user() implementations do not return the exact number of
2535 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2536 * Note that this function differs from copy_from_user() in that it will oops
2537 * on bad values of `to', rather than returning a short copy.
2538 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2539 static long exact_copy_from_user(void *to, const void __user * from,
2540 unsigned long n)
2541 {
2542 char *t = to;
2543 const char __user *f = from;
2544 char c;
2545
2546 if (!access_ok(VERIFY_READ, from, n))
2547 return n;
2548
2549 while (n) {
2550 if (__get_user(c, f)) {
2551 memset(t, 0, n);
2552 break;
2553 }
2554 *t++ = c;
2555 f++;
2556 n--;
2557 }
2558 return n;
2559 }
2560
copy_mount_options(const void __user * data,unsigned long * where)2561 int copy_mount_options(const void __user * data, unsigned long *where)
2562 {
2563 int i;
2564 unsigned long page;
2565 unsigned long size;
2566
2567 *where = 0;
2568 if (!data)
2569 return 0;
2570
2571 if (!(page = __get_free_page(GFP_KERNEL)))
2572 return -ENOMEM;
2573
2574 /* We only care that *some* data at the address the user
2575 * gave us is valid. Just in case, we'll zero
2576 * the remainder of the page.
2577 */
2578 /* copy_from_user cannot cross TASK_SIZE ! */
2579 size = TASK_SIZE - (unsigned long)data;
2580 if (size > PAGE_SIZE)
2581 size = PAGE_SIZE;
2582
2583 i = size - exact_copy_from_user((void *)page, data, size);
2584 if (!i) {
2585 free_page(page);
2586 return -EFAULT;
2587 }
2588 if (i != PAGE_SIZE)
2589 memset((char *)page + i, 0, PAGE_SIZE - i);
2590 *where = page;
2591 return 0;
2592 }
2593
copy_mount_string(const void __user * data)2594 char *copy_mount_string(const void __user *data)
2595 {
2596 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2597 }
2598
2599 /*
2600 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2601 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2602 *
2603 * data is a (void *) that can point to any structure up to
2604 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2605 * information (or be NULL).
2606 *
2607 * Pre-0.97 versions of mount() didn't have a flags word.
2608 * When the flags word was introduced its top half was required
2609 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2610 * Therefore, if this magic number is present, it carries no information
2611 * and must be discarded.
2612 */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2613 long do_mount(const char *dev_name, const char __user *dir_name,
2614 const char *type_page, unsigned long flags, void *data_page)
2615 {
2616 struct path path;
2617 int retval = 0;
2618 int mnt_flags = 0;
2619
2620 /* Discard magic */
2621 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2622 flags &= ~MS_MGC_MSK;
2623
2624 /* Basic sanity checks */
2625 if (data_page)
2626 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2627
2628 /* ... and get the mountpoint */
2629 retval = user_path(dir_name, &path);
2630 if (retval)
2631 return retval;
2632
2633 retval = security_sb_mount(dev_name, &path,
2634 type_page, flags, data_page);
2635 if (!retval && !may_mount())
2636 retval = -EPERM;
2637 if (retval)
2638 goto dput_out;
2639
2640 /* Default to relatime unless overriden */
2641 if (!(flags & MS_NOATIME))
2642 mnt_flags |= MNT_RELATIME;
2643
2644 /* Separate the per-mountpoint flags */
2645 if (flags & MS_NOSUID)
2646 mnt_flags |= MNT_NOSUID;
2647 if (flags & MS_NODEV)
2648 mnt_flags |= MNT_NODEV;
2649 if (flags & MS_NOEXEC)
2650 mnt_flags |= MNT_NOEXEC;
2651 if (flags & MS_NOATIME)
2652 mnt_flags |= MNT_NOATIME;
2653 if (flags & MS_NODIRATIME)
2654 mnt_flags |= MNT_NODIRATIME;
2655 if (flags & MS_STRICTATIME)
2656 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2657 if (flags & MS_RDONLY)
2658 mnt_flags |= MNT_READONLY;
2659
2660 /* The default atime for remount is preservation */
2661 if ((flags & MS_REMOUNT) &&
2662 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2663 MS_STRICTATIME)) == 0)) {
2664 mnt_flags &= ~MNT_ATIME_MASK;
2665 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2666 }
2667
2668 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2669 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2670 MS_STRICTATIME);
2671
2672 if (flags & MS_REMOUNT)
2673 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2674 data_page);
2675 else if (flags & MS_BIND)
2676 retval = do_loopback(&path, dev_name, flags & MS_REC);
2677 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2678 retval = do_change_type(&path, flags);
2679 else if (flags & MS_MOVE)
2680 retval = do_move_mount(&path, dev_name);
2681 else
2682 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2683 dev_name, data_page);
2684 dput_out:
2685 path_put(&path);
2686 return retval;
2687 }
2688
free_mnt_ns(struct mnt_namespace * ns)2689 static void free_mnt_ns(struct mnt_namespace *ns)
2690 {
2691 proc_free_inum(ns->proc_inum);
2692 put_user_ns(ns->user_ns);
2693 kfree(ns);
2694 }
2695
2696 /*
2697 * Assign a sequence number so we can detect when we attempt to bind
2698 * mount a reference to an older mount namespace into the current
2699 * mount namespace, preventing reference counting loops. A 64bit
2700 * number incrementing at 10Ghz will take 12,427 years to wrap which
2701 * is effectively never, so we can ignore the possibility.
2702 */
2703 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2704
alloc_mnt_ns(struct user_namespace * user_ns)2705 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2706 {
2707 struct mnt_namespace *new_ns;
2708 int ret;
2709
2710 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2711 if (!new_ns)
2712 return ERR_PTR(-ENOMEM);
2713 ret = proc_alloc_inum(&new_ns->proc_inum);
2714 if (ret) {
2715 kfree(new_ns);
2716 return ERR_PTR(ret);
2717 }
2718 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2719 atomic_set(&new_ns->count, 1);
2720 new_ns->root = NULL;
2721 INIT_LIST_HEAD(&new_ns->list);
2722 init_waitqueue_head(&new_ns->poll);
2723 new_ns->event = 0;
2724 new_ns->user_ns = get_user_ns(user_ns);
2725 return new_ns;
2726 }
2727
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2728 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2729 struct user_namespace *user_ns, struct fs_struct *new_fs)
2730 {
2731 struct mnt_namespace *new_ns;
2732 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2733 struct mount *p, *q;
2734 struct mount *old;
2735 struct mount *new;
2736 int copy_flags;
2737
2738 BUG_ON(!ns);
2739
2740 if (likely(!(flags & CLONE_NEWNS))) {
2741 get_mnt_ns(ns);
2742 return ns;
2743 }
2744
2745 old = ns->root;
2746
2747 new_ns = alloc_mnt_ns(user_ns);
2748 if (IS_ERR(new_ns))
2749 return new_ns;
2750
2751 namespace_lock();
2752 /* First pass: copy the tree topology */
2753 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2754 if (user_ns != ns->user_ns)
2755 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2756 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2757 if (IS_ERR(new)) {
2758 namespace_unlock();
2759 free_mnt_ns(new_ns);
2760 return ERR_CAST(new);
2761 }
2762 new_ns->root = new;
2763 list_add_tail(&new_ns->list, &new->mnt_list);
2764
2765 /*
2766 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2767 * as belonging to new namespace. We have already acquired a private
2768 * fs_struct, so tsk->fs->lock is not needed.
2769 */
2770 p = old;
2771 q = new;
2772 while (p) {
2773 q->mnt_ns = new_ns;
2774 if (new_fs) {
2775 if (&p->mnt == new_fs->root.mnt) {
2776 new_fs->root.mnt = mntget(&q->mnt);
2777 rootmnt = &p->mnt;
2778 }
2779 if (&p->mnt == new_fs->pwd.mnt) {
2780 new_fs->pwd.mnt = mntget(&q->mnt);
2781 pwdmnt = &p->mnt;
2782 }
2783 }
2784 p = next_mnt(p, old);
2785 q = next_mnt(q, new);
2786 if (!q)
2787 break;
2788 while (p->mnt.mnt_root != q->mnt.mnt_root)
2789 p = next_mnt(p, old);
2790 }
2791 namespace_unlock();
2792
2793 if (rootmnt)
2794 mntput(rootmnt);
2795 if (pwdmnt)
2796 mntput(pwdmnt);
2797
2798 return new_ns;
2799 }
2800
2801 /**
2802 * create_mnt_ns - creates a private namespace and adds a root filesystem
2803 * @mnt: pointer to the new root filesystem mountpoint
2804 */
create_mnt_ns(struct vfsmount * m)2805 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2806 {
2807 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2808 if (!IS_ERR(new_ns)) {
2809 struct mount *mnt = real_mount(m);
2810 mnt->mnt_ns = new_ns;
2811 new_ns->root = mnt;
2812 list_add(&mnt->mnt_list, &new_ns->list);
2813 } else {
2814 mntput(m);
2815 }
2816 return new_ns;
2817 }
2818
mount_subtree(struct vfsmount * mnt,const char * name)2819 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2820 {
2821 struct mnt_namespace *ns;
2822 struct super_block *s;
2823 struct path path;
2824 int err;
2825
2826 ns = create_mnt_ns(mnt);
2827 if (IS_ERR(ns))
2828 return ERR_CAST(ns);
2829
2830 err = vfs_path_lookup(mnt->mnt_root, mnt,
2831 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2832
2833 put_mnt_ns(ns);
2834
2835 if (err)
2836 return ERR_PTR(err);
2837
2838 /* trade a vfsmount reference for active sb one */
2839 s = path.mnt->mnt_sb;
2840 atomic_inc(&s->s_active);
2841 mntput(path.mnt);
2842 /* lock the sucker */
2843 down_write(&s->s_umount);
2844 /* ... and return the root of (sub)tree on it */
2845 return path.dentry;
2846 }
2847 EXPORT_SYMBOL(mount_subtree);
2848
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2849 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2850 char __user *, type, unsigned long, flags, void __user *, data)
2851 {
2852 int ret;
2853 char *kernel_type;
2854 char *kernel_dev;
2855 unsigned long data_page;
2856
2857 kernel_type = copy_mount_string(type);
2858 ret = PTR_ERR(kernel_type);
2859 if (IS_ERR(kernel_type))
2860 goto out_type;
2861
2862 kernel_dev = copy_mount_string(dev_name);
2863 ret = PTR_ERR(kernel_dev);
2864 if (IS_ERR(kernel_dev))
2865 goto out_dev;
2866
2867 ret = copy_mount_options(data, &data_page);
2868 if (ret < 0)
2869 goto out_data;
2870
2871 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2872 (void *) data_page);
2873
2874 free_page(data_page);
2875 out_data:
2876 kfree(kernel_dev);
2877 out_dev:
2878 kfree(kernel_type);
2879 out_type:
2880 return ret;
2881 }
2882
2883 /*
2884 * Return true if path is reachable from root
2885 *
2886 * namespace_sem or mount_lock is held
2887 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)2888 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2889 const struct path *root)
2890 {
2891 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2892 dentry = mnt->mnt_mountpoint;
2893 mnt = mnt->mnt_parent;
2894 }
2895 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2896 }
2897
path_is_under(struct path * path1,struct path * path2)2898 int path_is_under(struct path *path1, struct path *path2)
2899 {
2900 int res;
2901 read_seqlock_excl(&mount_lock);
2902 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2903 read_sequnlock_excl(&mount_lock);
2904 return res;
2905 }
2906 EXPORT_SYMBOL(path_is_under);
2907
2908 /*
2909 * pivot_root Semantics:
2910 * Moves the root file system of the current process to the directory put_old,
2911 * makes new_root as the new root file system of the current process, and sets
2912 * root/cwd of all processes which had them on the current root to new_root.
2913 *
2914 * Restrictions:
2915 * The new_root and put_old must be directories, and must not be on the
2916 * same file system as the current process root. The put_old must be
2917 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2918 * pointed to by put_old must yield the same directory as new_root. No other
2919 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2920 *
2921 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2922 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2923 * in this situation.
2924 *
2925 * Notes:
2926 * - we don't move root/cwd if they are not at the root (reason: if something
2927 * cared enough to change them, it's probably wrong to force them elsewhere)
2928 * - it's okay to pick a root that isn't the root of a file system, e.g.
2929 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2930 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2931 * first.
2932 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2933 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2934 const char __user *, put_old)
2935 {
2936 struct path new, old, parent_path, root_parent, root;
2937 struct mount *new_mnt, *root_mnt, *old_mnt;
2938 struct mountpoint *old_mp, *root_mp;
2939 int error;
2940
2941 if (!may_mount())
2942 return -EPERM;
2943
2944 error = user_path_dir(new_root, &new);
2945 if (error)
2946 goto out0;
2947
2948 error = user_path_dir(put_old, &old);
2949 if (error)
2950 goto out1;
2951
2952 error = security_sb_pivotroot(&old, &new);
2953 if (error)
2954 goto out2;
2955
2956 get_fs_root(current->fs, &root);
2957 old_mp = lock_mount(&old);
2958 error = PTR_ERR(old_mp);
2959 if (IS_ERR(old_mp))
2960 goto out3;
2961
2962 error = -EINVAL;
2963 new_mnt = real_mount(new.mnt);
2964 root_mnt = real_mount(root.mnt);
2965 old_mnt = real_mount(old.mnt);
2966 if (IS_MNT_SHARED(old_mnt) ||
2967 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2968 IS_MNT_SHARED(root_mnt->mnt_parent))
2969 goto out4;
2970 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2971 goto out4;
2972 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2973 goto out4;
2974 error = -ENOENT;
2975 if (d_unlinked(new.dentry))
2976 goto out4;
2977 error = -EBUSY;
2978 if (new_mnt == root_mnt || old_mnt == root_mnt)
2979 goto out4; /* loop, on the same file system */
2980 error = -EINVAL;
2981 if (root.mnt->mnt_root != root.dentry)
2982 goto out4; /* not a mountpoint */
2983 if (!mnt_has_parent(root_mnt))
2984 goto out4; /* not attached */
2985 root_mp = root_mnt->mnt_mp;
2986 if (new.mnt->mnt_root != new.dentry)
2987 goto out4; /* not a mountpoint */
2988 if (!mnt_has_parent(new_mnt))
2989 goto out4; /* not attached */
2990 /* make sure we can reach put_old from new_root */
2991 if (!is_path_reachable(old_mnt, old.dentry, &new))
2992 goto out4;
2993 /* make certain new is below the root */
2994 if (!is_path_reachable(new_mnt, new.dentry, &root))
2995 goto out4;
2996 root_mp->m_count++; /* pin it so it won't go away */
2997 lock_mount_hash();
2998 detach_mnt(new_mnt, &parent_path);
2999 detach_mnt(root_mnt, &root_parent);
3000 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3001 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3002 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3003 }
3004 /* mount old root on put_old */
3005 attach_mnt(root_mnt, old_mnt, old_mp);
3006 /* mount new_root on / */
3007 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3008 touch_mnt_namespace(current->nsproxy->mnt_ns);
3009 unlock_mount_hash();
3010 chroot_fs_refs(&root, &new);
3011 put_mountpoint(root_mp);
3012 error = 0;
3013 out4:
3014 unlock_mount(old_mp);
3015 if (!error) {
3016 path_put(&root_parent);
3017 path_put(&parent_path);
3018 }
3019 out3:
3020 path_put(&root);
3021 out2:
3022 path_put(&old);
3023 out1:
3024 path_put(&new);
3025 out0:
3026 return error;
3027 }
3028
init_mount_tree(void)3029 static void __init init_mount_tree(void)
3030 {
3031 struct vfsmount *mnt;
3032 struct mnt_namespace *ns;
3033 struct path root;
3034 struct file_system_type *type;
3035
3036 type = get_fs_type("rootfs");
3037 if (!type)
3038 panic("Can't find rootfs type");
3039 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3040 put_filesystem(type);
3041 if (IS_ERR(mnt))
3042 panic("Can't create rootfs");
3043
3044 ns = create_mnt_ns(mnt);
3045 if (IS_ERR(ns))
3046 panic("Can't allocate initial namespace");
3047
3048 init_task.nsproxy->mnt_ns = ns;
3049 get_mnt_ns(ns);
3050
3051 root.mnt = mnt;
3052 root.dentry = mnt->mnt_root;
3053
3054 set_fs_pwd(current->fs, &root);
3055 set_fs_root(current->fs, &root);
3056 }
3057
mnt_init(void)3058 void __init mnt_init(void)
3059 {
3060 unsigned u;
3061 int err;
3062
3063 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3064 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3065
3066 mount_hashtable = alloc_large_system_hash("Mount-cache",
3067 sizeof(struct hlist_head),
3068 mhash_entries, 19,
3069 0,
3070 &m_hash_shift, &m_hash_mask, 0, 0);
3071 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3072 sizeof(struct hlist_head),
3073 mphash_entries, 19,
3074 0,
3075 &mp_hash_shift, &mp_hash_mask, 0, 0);
3076
3077 if (!mount_hashtable || !mountpoint_hashtable)
3078 panic("Failed to allocate mount hash table\n");
3079
3080 for (u = 0; u <= m_hash_mask; u++)
3081 INIT_HLIST_HEAD(&mount_hashtable[u]);
3082 for (u = 0; u <= mp_hash_mask; u++)
3083 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3084
3085 kernfs_init();
3086
3087 err = sysfs_init();
3088 if (err)
3089 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3090 __func__, err);
3091 fs_kobj = kobject_create_and_add("fs", NULL);
3092 if (!fs_kobj)
3093 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3094 init_rootfs();
3095 init_mount_tree();
3096 }
3097
put_mnt_ns(struct mnt_namespace * ns)3098 void put_mnt_ns(struct mnt_namespace *ns)
3099 {
3100 if (!atomic_dec_and_test(&ns->count))
3101 return;
3102 drop_collected_mounts(&ns->root->mnt);
3103 free_mnt_ns(ns);
3104 }
3105
kern_mount_data(struct file_system_type * type,void * data)3106 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3107 {
3108 struct vfsmount *mnt;
3109 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3110 if (!IS_ERR(mnt)) {
3111 /*
3112 * it is a longterm mount, don't release mnt until
3113 * we unmount before file sys is unregistered
3114 */
3115 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3116 }
3117 return mnt;
3118 }
3119 EXPORT_SYMBOL_GPL(kern_mount_data);
3120
kern_unmount(struct vfsmount * mnt)3121 void kern_unmount(struct vfsmount *mnt)
3122 {
3123 /* release long term mount so mount point can be released */
3124 if (!IS_ERR_OR_NULL(mnt)) {
3125 real_mount(mnt)->mnt_ns = NULL;
3126 synchronize_rcu(); /* yecchhh... */
3127 mntput(mnt);
3128 }
3129 }
3130 EXPORT_SYMBOL(kern_unmount);
3131
our_mnt(struct vfsmount * mnt)3132 bool our_mnt(struct vfsmount *mnt)
3133 {
3134 return check_mnt(real_mount(mnt));
3135 }
3136
current_chrooted(void)3137 bool current_chrooted(void)
3138 {
3139 /* Does the current process have a non-standard root */
3140 struct path ns_root;
3141 struct path fs_root;
3142 bool chrooted;
3143
3144 /* Find the namespace root */
3145 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3146 ns_root.dentry = ns_root.mnt->mnt_root;
3147 path_get(&ns_root);
3148 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3149 ;
3150
3151 get_fs_root(current->fs, &fs_root);
3152
3153 chrooted = !path_equal(&fs_root, &ns_root);
3154
3155 path_put(&fs_root);
3156 path_put(&ns_root);
3157
3158 return chrooted;
3159 }
3160
fs_fully_visible(struct file_system_type * type,int * new_mnt_flags)3161 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3162 {
3163 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3164 int new_flags = *new_mnt_flags;
3165 struct mount *mnt;
3166 bool visible = false;
3167
3168 if (unlikely(!ns))
3169 return false;
3170
3171 down_read(&namespace_sem);
3172 list_for_each_entry(mnt, &ns->list, mnt_list) {
3173 struct mount *child;
3174 if (mnt->mnt.mnt_sb->s_type != type)
3175 continue;
3176
3177 /* This mount is not fully visible if it's root directory
3178 * is not the root directory of the filesystem.
3179 */
3180 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3181 continue;
3182
3183 /* Verify the mount flags are equal to or more permissive
3184 * than the proposed new mount.
3185 */
3186 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
3187 !(new_flags & MNT_READONLY))
3188 continue;
3189 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
3190 !(new_flags & MNT_NODEV))
3191 continue;
3192 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
3193 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3194 continue;
3195
3196 /* This mount is not fully visible if there are any
3197 * locked child mounts that cover anything except for
3198 * empty directories.
3199 */
3200 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3201 struct inode *inode = child->mnt_mountpoint->d_inode;
3202 /* Only worry about locked mounts */
3203 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3204 continue;
3205 if (!S_ISDIR(inode->i_mode))
3206 goto next;
3207 if (inode->i_nlink > 2)
3208 goto next;
3209 }
3210 /* Preserve the locked attributes */
3211 *new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
3212 MNT_LOCK_NODEV | \
3213 MNT_LOCK_ATIME);
3214 visible = true;
3215 goto found;
3216 next: ;
3217 }
3218 found:
3219 up_read(&namespace_sem);
3220 return visible;
3221 }
3222
mntns_get(struct task_struct * task)3223 static void *mntns_get(struct task_struct *task)
3224 {
3225 struct mnt_namespace *ns = NULL;
3226 struct nsproxy *nsproxy;
3227
3228 task_lock(task);
3229 nsproxy = task->nsproxy;
3230 if (nsproxy) {
3231 ns = nsproxy->mnt_ns;
3232 get_mnt_ns(ns);
3233 }
3234 task_unlock(task);
3235
3236 return ns;
3237 }
3238
mntns_put(void * ns)3239 static void mntns_put(void *ns)
3240 {
3241 put_mnt_ns(ns);
3242 }
3243
mntns_install(struct nsproxy * nsproxy,void * ns)3244 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3245 {
3246 struct fs_struct *fs = current->fs;
3247 struct mnt_namespace *mnt_ns = ns;
3248 struct path root;
3249
3250 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3251 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3252 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3253 return -EPERM;
3254
3255 if (fs->users != 1)
3256 return -EINVAL;
3257
3258 get_mnt_ns(mnt_ns);
3259 put_mnt_ns(nsproxy->mnt_ns);
3260 nsproxy->mnt_ns = mnt_ns;
3261
3262 /* Find the root */
3263 root.mnt = &mnt_ns->root->mnt;
3264 root.dentry = mnt_ns->root->mnt.mnt_root;
3265 path_get(&root);
3266 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3267 ;
3268
3269 /* Update the pwd and root */
3270 set_fs_pwd(fs, &root);
3271 set_fs_root(fs, &root);
3272
3273 path_put(&root);
3274 return 0;
3275 }
3276
mntns_inum(void * ns)3277 static unsigned int mntns_inum(void *ns)
3278 {
3279 struct mnt_namespace *mnt_ns = ns;
3280 return mnt_ns->proc_inum;
3281 }
3282
3283 const struct proc_ns_operations mntns_operations = {
3284 .name = "mnt",
3285 .type = CLONE_NEWNS,
3286 .get = mntns_get,
3287 .put = mntns_put,
3288 .install = mntns_install,
3289 .inum = mntns_inum,
3290 };
3291