• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Fence mechanism for dma-buf to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20 
21 #ifndef __LINUX_FENCE_H
22 #define __LINUX_FENCE_H
23 
24 #include <linux/err.h>
25 #include <linux/wait.h>
26 #include <linux/list.h>
27 #include <linux/bitops.h>
28 #include <linux/kref.h>
29 #include <linux/sched.h>
30 #include <linux/printk.h>
31 #include <linux/rcupdate.h>
32 
33 struct fence;
34 struct fence_ops;
35 struct fence_cb;
36 
37 /**
38  * struct fence - software synchronization primitive
39  * @refcount: refcount for this fence
40  * @ops: fence_ops associated with this fence
41  * @rcu: used for releasing fence with kfree_rcu
42  * @cb_list: list of all callbacks to call
43  * @lock: spin_lock_irqsave used for locking
44  * @context: execution context this fence belongs to, returned by
45  *           fence_context_alloc()
46  * @seqno: the sequence number of this fence inside the execution context,
47  * can be compared to decide which fence would be signaled later.
48  * @flags: A mask of FENCE_FLAG_* defined below
49  * @timestamp: Timestamp when the fence was signaled.
50  * @status: Optional, only valid if < 0, must be set before calling
51  * fence_signal, indicates that the fence has completed with an error.
52  *
53  * the flags member must be manipulated and read using the appropriate
54  * atomic ops (bit_*), so taking the spinlock will not be needed most
55  * of the time.
56  *
57  * FENCE_FLAG_SIGNALED_BIT - fence is already signaled
58  * FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called*
59  * FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
60  * implementer of the fence for its own purposes. Can be used in different
61  * ways by different fence implementers, so do not rely on this.
62  *
63  * *) Since atomic bitops are used, this is not guaranteed to be the case.
64  * Particularly, if the bit was set, but fence_signal was called right
65  * before this bit was set, it would have been able to set the
66  * FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
67  * Adding a check for FENCE_FLAG_SIGNALED_BIT after setting
68  * FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
69  * after fence_signal was called, any enable_signaling call will have either
70  * been completed, or never called at all.
71  */
72 struct fence {
73 	struct kref refcount;
74 	const struct fence_ops *ops;
75 	struct rcu_head rcu;
76 	struct list_head cb_list;
77 	spinlock_t *lock;
78 	unsigned context, seqno;
79 	unsigned long flags;
80 	ktime_t timestamp;
81 	int status;
82 };
83 
84 enum fence_flag_bits {
85 	FENCE_FLAG_SIGNALED_BIT,
86 	FENCE_FLAG_ENABLE_SIGNAL_BIT,
87 	FENCE_FLAG_USER_BITS, /* must always be last member */
88 };
89 
90 typedef void (*fence_func_t)(struct fence *fence, struct fence_cb *cb);
91 
92 /**
93  * struct fence_cb - callback for fence_add_callback
94  * @node: used by fence_add_callback to append this struct to fence::cb_list
95  * @func: fence_func_t to call
96  *
97  * This struct will be initialized by fence_add_callback, additional
98  * data can be passed along by embedding fence_cb in another struct.
99  */
100 struct fence_cb {
101 	struct list_head node;
102 	fence_func_t func;
103 };
104 
105 /**
106  * struct fence_ops - operations implemented for fence
107  * @get_driver_name: returns the driver name.
108  * @get_timeline_name: return the name of the context this fence belongs to.
109  * @enable_signaling: enable software signaling of fence.
110  * @disable_signaling: disable software signaling of fence (optional).
111  * @signaled: [optional] peek whether the fence is signaled, can be null.
112  * @wait: custom wait implementation, or fence_default_wait.
113  * @release: [optional] called on destruction of fence, can be null
114  * @fill_driver_data: [optional] callback to fill in free-form debug info
115  * Returns amount of bytes filled, or -errno.
116  * @fence_value_str: [optional] fills in the value of the fence as a string
117  * @timeline_value_str: [optional] fills in the current value of the timeline
118  * as a string
119  *
120  * Notes on enable_signaling:
121  * For fence implementations that have the capability for hw->hw
122  * signaling, they can implement this op to enable the necessary
123  * irqs, or insert commands into cmdstream, etc.  This is called
124  * in the first wait() or add_callback() path to let the fence
125  * implementation know that there is another driver waiting on
126  * the signal (ie. hw->sw case).
127  *
128  * This function can be called called from atomic context, but not
129  * from irq context, so normal spinlocks can be used.
130  *
131  * A return value of false indicates the fence already passed,
132  * or some failure occured that made it impossible to enable
133  * signaling. True indicates succesful enabling.
134  *
135  * fence->status may be set in enable_signaling, but only when false is
136  * returned.
137  *
138  * Calling fence_signal before enable_signaling is called allows
139  * for a tiny race window in which enable_signaling is called during,
140  * before, or after fence_signal. To fight this, it is recommended
141  * that before enable_signaling returns true an extra reference is
142  * taken on the fence, to be released when the fence is signaled.
143  * This will mean fence_signal will still be called twice, but
144  * the second time will be a noop since it was already signaled.
145  *
146  * Notes on signaled:
147  * May set fence->status if returning true.
148  *
149  * Notes on wait:
150  * Must not be NULL, set to fence_default_wait for default implementation.
151  * the fence_default_wait implementation should work for any fence, as long
152  * as enable_signaling works correctly.
153  *
154  * Must return -ERESTARTSYS if the wait is intr = true and the wait was
155  * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
156  * timed out. Can also return other error values on custom implementations,
157  * which should be treated as if the fence is signaled. For example a hardware
158  * lockup could be reported like that.
159  *
160  * Notes on release:
161  * Can be NULL, this function allows additional commands to run on
162  * destruction of the fence. Can be called from irq context.
163  * If pointer is set to NULL, kfree will get called instead.
164  */
165 
166 struct fence_ops {
167 	const char * (*get_driver_name)(struct fence *fence);
168 	const char * (*get_timeline_name)(struct fence *fence);
169 	bool (*enable_signaling)(struct fence *fence);
170 	void (*disable_signaling)(struct fence *fence);
171 	bool (*signaled)(struct fence *fence);
172 	signed long (*wait)(struct fence *fence, bool intr, signed long timeout);
173 	void (*release)(struct fence *fence);
174 
175 	int (*fill_driver_data)(struct fence *fence, void *data, int size);
176 	void (*fence_value_str)(struct fence *fence, char *str, int size);
177 	void (*timeline_value_str)(struct fence *fence, char *str, int size);
178 };
179 
180 void fence_init(struct fence *fence, const struct fence_ops *ops,
181 		spinlock_t *lock, unsigned context, unsigned seqno);
182 
183 void fence_release(struct kref *kref);
184 void fence_free(struct fence *fence);
185 
186 /**
187  * fence_get - increases refcount of the fence
188  * @fence:	[in]	fence to increase refcount of
189  *
190  * Returns the same fence, with refcount increased by 1.
191  */
fence_get(struct fence * fence)192 static inline struct fence *fence_get(struct fence *fence)
193 {
194 	if (fence)
195 		kref_get(&fence->refcount);
196 	return fence;
197 }
198 
199 /**
200  * fence_get_rcu - get a fence from a reservation_object_list with rcu read lock
201  * @fence:	[in]	fence to increase refcount of
202  *
203  * Function returns NULL if no refcount could be obtained, or the fence.
204  */
fence_get_rcu(struct fence * fence)205 static inline struct fence *fence_get_rcu(struct fence *fence)
206 {
207 	if (kref_get_unless_zero(&fence->refcount))
208 		return fence;
209 	else
210 		return NULL;
211 }
212 
213 /**
214  * fence_put - decreases refcount of the fence
215  * @fence:	[in]	fence to reduce refcount of
216  */
fence_put(struct fence * fence)217 static inline void fence_put(struct fence *fence)
218 {
219 	if (fence)
220 		kref_put(&fence->refcount, fence_release);
221 }
222 
223 int fence_signal(struct fence *fence);
224 int fence_signal_locked(struct fence *fence);
225 signed long fence_default_wait(struct fence *fence, bool intr, signed long timeout);
226 int fence_add_callback(struct fence *fence, struct fence_cb *cb,
227 		       fence_func_t func);
228 bool fence_remove_callback(struct fence *fence, struct fence_cb *cb);
229 void fence_enable_sw_signaling(struct fence *fence);
230 
231 /**
232  * fence_is_signaled_locked - Return an indication if the fence is signaled yet.
233  * @fence:	[in]	the fence to check
234  *
235  * Returns true if the fence was already signaled, false if not. Since this
236  * function doesn't enable signaling, it is not guaranteed to ever return
237  * true if fence_add_callback, fence_wait or fence_enable_sw_signaling
238  * haven't been called before.
239  *
240  * This function requires fence->lock to be held.
241  */
242 static inline bool
fence_is_signaled_locked(struct fence * fence)243 fence_is_signaled_locked(struct fence *fence)
244 {
245 	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
246 		return true;
247 
248 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
249 		fence_signal_locked(fence);
250 		return true;
251 	}
252 
253 	return false;
254 }
255 
256 /**
257  * fence_is_signaled - Return an indication if the fence is signaled yet.
258  * @fence:	[in]	the fence to check
259  *
260  * Returns true if the fence was already signaled, false if not. Since this
261  * function doesn't enable signaling, it is not guaranteed to ever return
262  * true if fence_add_callback, fence_wait or fence_enable_sw_signaling
263  * haven't been called before.
264  *
265  * It's recommended for seqno fences to call fence_signal when the
266  * operation is complete, it makes it possible to prevent issues from
267  * wraparound between time of issue and time of use by checking the return
268  * value of this function before calling hardware-specific wait instructions.
269  */
270 static inline bool
fence_is_signaled(struct fence * fence)271 fence_is_signaled(struct fence *fence)
272 {
273 	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
274 		return true;
275 
276 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
277 		fence_signal(fence);
278 		return true;
279 	}
280 
281 	return false;
282 }
283 
284 /**
285  * fence_later - return the chronologically later fence
286  * @f1:	[in]	the first fence from the same context
287  * @f2:	[in]	the second fence from the same context
288  *
289  * Returns NULL if both fences are signaled, otherwise the fence that would be
290  * signaled last. Both fences must be from the same context, since a seqno is
291  * not re-used across contexts.
292  */
fence_later(struct fence * f1,struct fence * f2)293 static inline struct fence *fence_later(struct fence *f1, struct fence *f2)
294 {
295 	if (WARN_ON(f1->context != f2->context))
296 		return NULL;
297 
298 	/*
299 	 * can't check just FENCE_FLAG_SIGNALED_BIT here, it may never have been
300 	 * set if enable_signaling wasn't called, and enabling that here is
301 	 * overkill.
302 	 */
303 	if (f2->seqno - f1->seqno <= INT_MAX)
304 		return fence_is_signaled(f2) ? NULL : f2;
305 	else
306 		return fence_is_signaled(f1) ? NULL : f1;
307 }
308 
309 signed long fence_wait_timeout(struct fence *, bool intr, signed long timeout);
310 
311 
312 /**
313  * fence_wait - sleep until the fence gets signaled
314  * @fence:	[in]	the fence to wait on
315  * @intr:	[in]	if true, do an interruptible wait
316  *
317  * This function will return -ERESTARTSYS if interrupted by a signal,
318  * or 0 if the fence was signaled. Other error values may be
319  * returned on custom implementations.
320  *
321  * Performs a synchronous wait on this fence. It is assumed the caller
322  * directly or indirectly holds a reference to the fence, otherwise the
323  * fence might be freed before return, resulting in undefined behavior.
324  */
fence_wait(struct fence * fence,bool intr)325 static inline signed long fence_wait(struct fence *fence, bool intr)
326 {
327 	signed long ret;
328 
329 	/* Since fence_wait_timeout cannot timeout with
330 	 * MAX_SCHEDULE_TIMEOUT, only valid return values are
331 	 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
332 	 */
333 	ret = fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
334 
335 	return ret < 0 ? ret : 0;
336 }
337 
338 unsigned fence_context_alloc(unsigned num);
339 
340 #define FENCE_TRACE(f, fmt, args...) \
341 	do {								\
342 		struct fence *__ff = (f);				\
343 		if (config_enabled(CONFIG_FENCE_TRACE))			\
344 			pr_info("f %u#%u: " fmt,			\
345 				__ff->context, __ff->seqno, ##args);	\
346 	} while (0)
347 
348 #define FENCE_WARN(f, fmt, args...) \
349 	do {								\
350 		struct fence *__ff = (f);				\
351 		pr_warn("f %u#%u: " fmt, __ff->context, __ff->seqno,	\
352 			 ##args);					\
353 	} while (0)
354 
355 #define FENCE_ERR(f, fmt, args...) \
356 	do {								\
357 		struct fence *__ff = (f);				\
358 		pr_err("f %u#%u: " fmt, __ff->context, __ff->seqno,	\
359 			##args);					\
360 	} while (0)
361 
362 #endif /* __LINUX_FENCE_H */
363