• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *  	Roman Zippel provided the ideas and primary code snippets of
16  *  	the ktime_t union and further simplifications of the original
17  *  	code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23 
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26 
27 /*
28  * ktime_t:
29  *
30  * A single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  */
37 union ktime {
38 	s64	tv64;
39 };
40 
41 typedef union ktime ktime_t;		/* Kill this */
42 
43 /**
44  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45  * @secs:	seconds to set
46  * @nsecs:	nanoseconds to set
47  *
48  * Return: The ktime_t representation of the value.
49  */
ktime_set(const s64 secs,const unsigned long nsecs)50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
51 {
52 	if (unlikely(secs >= KTIME_SEC_MAX))
53 		return (ktime_t){ .tv64 = KTIME_MAX };
54 
55 	return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
56 }
57 
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 		({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
61 
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 		({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
65 
66 /*
67  * Add a ktime_t variable and a scalar nanosecond value.
68  * res = kt + nsval:
69  */
70 #define ktime_add_ns(kt, nsval) \
71 		({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
72 
73 /*
74  * Subtract a scalar nanosecod from a ktime_t variable
75  * res = kt - nsval:
76  */
77 #define ktime_sub_ns(kt, nsval) \
78 		({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
79 
80 /* convert a timespec to ktime_t format: */
timespec_to_ktime(struct timespec ts)81 static inline ktime_t timespec_to_ktime(struct timespec ts)
82 {
83 	return ktime_set(ts.tv_sec, ts.tv_nsec);
84 }
85 
86 /* convert a timespec64 to ktime_t format: */
timespec64_to_ktime(struct timespec64 ts)87 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
88 {
89 	return ktime_set(ts.tv_sec, ts.tv_nsec);
90 }
91 
92 /* convert a timeval to ktime_t format: */
timeval_to_ktime(struct timeval tv)93 static inline ktime_t timeval_to_ktime(struct timeval tv)
94 {
95 	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
96 }
97 
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt)		ns_to_timespec((kt).tv64)
100 
101 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
102 #define ktime_to_timespec64(kt)		ns_to_timespec64((kt).tv64)
103 
104 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
105 #define ktime_to_timeval(kt)		ns_to_timeval((kt).tv64)
106 
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt)			((kt).tv64)
109 
110 
111 /**
112  * ktime_equal - Compares two ktime_t variables to see if they are equal
113  * @cmp1:	comparable1
114  * @cmp2:	comparable2
115  *
116  * Compare two ktime_t variables.
117  *
118  * Return: 1 if equal.
119  */
ktime_equal(const ktime_t cmp1,const ktime_t cmp2)120 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
121 {
122 	return cmp1.tv64 == cmp2.tv64;
123 }
124 
125 /**
126  * ktime_compare - Compares two ktime_t variables for less, greater or equal
127  * @cmp1:	comparable1
128  * @cmp2:	comparable2
129  *
130  * Return: ...
131  *   cmp1  < cmp2: return <0
132  *   cmp1 == cmp2: return 0
133  *   cmp1  > cmp2: return >0
134  */
ktime_compare(const ktime_t cmp1,const ktime_t cmp2)135 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
136 {
137 	if (cmp1.tv64 < cmp2.tv64)
138 		return -1;
139 	if (cmp1.tv64 > cmp2.tv64)
140 		return 1;
141 	return 0;
142 }
143 
144 /**
145  * ktime_after - Compare if a ktime_t value is bigger than another one.
146  * @cmp1:	comparable1
147  * @cmp2:	comparable2
148  *
149  * Return: true if cmp1 happened after cmp2.
150  */
ktime_after(const ktime_t cmp1,const ktime_t cmp2)151 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
152 {
153 	return ktime_compare(cmp1, cmp2) > 0;
154 }
155 
156 /**
157  * ktime_before - Compare if a ktime_t value is smaller than another one.
158  * @cmp1:	comparable1
159  * @cmp2:	comparable2
160  *
161  * Return: true if cmp1 happened before cmp2.
162  */
ktime_before(const ktime_t cmp1,const ktime_t cmp2)163 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
164 {
165 	return ktime_compare(cmp1, cmp2) < 0;
166 }
167 
168 #if BITS_PER_LONG < 64
169 extern s64 __ktime_divns(const ktime_t kt, s64 div);
ktime_divns(const ktime_t kt,s64 div)170 static inline s64 ktime_divns(const ktime_t kt, s64 div)
171 {
172 	/*
173 	 * Negative divisors could cause an inf loop,
174 	 * so bug out here.
175 	 */
176 	BUG_ON(div < 0);
177 	if (__builtin_constant_p(div) && !(div >> 32)) {
178 		s64 ns = kt.tv64;
179 		u64 tmp = ns < 0 ? -ns : ns;
180 
181 		do_div(tmp, div);
182 		return ns < 0 ? -tmp : tmp;
183 	} else {
184 		return __ktime_divns(kt, div);
185 	}
186 }
187 #else /* BITS_PER_LONG < 64 */
ktime_divns(const ktime_t kt,s64 div)188 static inline s64 ktime_divns(const ktime_t kt, s64 div)
189 {
190 	/*
191 	 * 32-bit implementation cannot handle negative divisors,
192 	 * so catch them on 64bit as well.
193 	 */
194 	WARN_ON(div < 0);
195 	return kt.tv64 / div;
196 }
197 #endif
198 
ktime_to_us(const ktime_t kt)199 static inline s64 ktime_to_us(const ktime_t kt)
200 {
201 	return ktime_divns(kt, NSEC_PER_USEC);
202 }
203 
ktime_to_ms(const ktime_t kt)204 static inline s64 ktime_to_ms(const ktime_t kt)
205 {
206 	return ktime_divns(kt, NSEC_PER_MSEC);
207 }
208 
ktime_us_delta(const ktime_t later,const ktime_t earlier)209 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
210 {
211        return ktime_to_us(ktime_sub(later, earlier));
212 }
213 
ktime_add_us(const ktime_t kt,const u64 usec)214 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
215 {
216 	return ktime_add_ns(kt, usec * NSEC_PER_USEC);
217 }
218 
ktime_add_ms(const ktime_t kt,const u64 msec)219 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
220 {
221 	return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
222 }
223 
ktime_sub_us(const ktime_t kt,const u64 usec)224 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
225 {
226 	return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
227 }
228 
229 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
230 
231 /**
232  * ktime_to_timespec_cond - convert a ktime_t variable to timespec
233  *			    format only if the variable contains data
234  * @kt:		the ktime_t variable to convert
235  * @ts:		the timespec variable to store the result in
236  *
237  * Return: %true if there was a successful conversion, %false if kt was 0.
238  */
ktime_to_timespec_cond(const ktime_t kt,struct timespec * ts)239 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
240 						       struct timespec *ts)
241 {
242 	if (kt.tv64) {
243 		*ts = ktime_to_timespec(kt);
244 		return true;
245 	} else {
246 		return false;
247 	}
248 }
249 
250 /**
251  * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
252  *			    format only if the variable contains data
253  * @kt:		the ktime_t variable to convert
254  * @ts:		the timespec variable to store the result in
255  *
256  * Return: %true if there was a successful conversion, %false if kt was 0.
257  */
ktime_to_timespec64_cond(const ktime_t kt,struct timespec64 * ts)258 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
259 						       struct timespec64 *ts)
260 {
261 	if (kt.tv64) {
262 		*ts = ktime_to_timespec64(kt);
263 		return true;
264 	} else {
265 		return false;
266 	}
267 }
268 
269 /*
270  * The resolution of the clocks. The resolution value is returned in
271  * the clock_getres() system call to give application programmers an
272  * idea of the (in)accuracy of timers. Timer values are rounded up to
273  * this resolution values.
274  */
275 #define LOW_RES_NSEC		TICK_NSEC
276 #define KTIME_LOW_RES		(ktime_t){ .tv64 = LOW_RES_NSEC }
277 
ns_to_ktime(u64 ns)278 static inline ktime_t ns_to_ktime(u64 ns)
279 {
280 	static const ktime_t ktime_zero = { .tv64 = 0 };
281 
282 	return ktime_add_ns(ktime_zero, ns);
283 }
284 
ms_to_ktime(u64 ms)285 static inline ktime_t ms_to_ktime(u64 ms)
286 {
287 	static const ktime_t ktime_zero = { .tv64 = 0 };
288 
289 	return ktime_add_ms(ktime_zero, ms);
290 }
291 
292 # include <linux/timekeeping.h>
293 
294 #endif
295