• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
8 
9 struct mmu_notifier;
10 struct mmu_notifier_ops;
11 
12 #ifdef CONFIG_MMU_NOTIFIER
13 
14 /*
15  * The mmu notifier_mm structure is allocated and installed in
16  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17  * critical section and it's released only when mm_count reaches zero
18  * in mmdrop().
19  */
20 struct mmu_notifier_mm {
21 	/* all mmu notifiers registerd in this mm are queued in this list */
22 	struct hlist_head list;
23 	/* to serialize the list modifications and hlist_unhashed */
24 	spinlock_t lock;
25 };
26 
27 struct mmu_notifier_ops {
28 	/*
29 	 * Called either by mmu_notifier_unregister or when the mm is
30 	 * being destroyed by exit_mmap, always before all pages are
31 	 * freed. This can run concurrently with other mmu notifier
32 	 * methods (the ones invoked outside the mm context) and it
33 	 * should tear down all secondary mmu mappings and freeze the
34 	 * secondary mmu. If this method isn't implemented you've to
35 	 * be sure that nothing could possibly write to the pages
36 	 * through the secondary mmu by the time the last thread with
37 	 * tsk->mm == mm exits.
38 	 *
39 	 * As side note: the pages freed after ->release returns could
40 	 * be immediately reallocated by the gart at an alias physical
41 	 * address with a different cache model, so if ->release isn't
42 	 * implemented because all _software_ driven memory accesses
43 	 * through the secondary mmu are terminated by the time the
44 	 * last thread of this mm quits, you've also to be sure that
45 	 * speculative _hardware_ operations can't allocate dirty
46 	 * cachelines in the cpu that could not be snooped and made
47 	 * coherent with the other read and write operations happening
48 	 * through the gart alias address, so leading to memory
49 	 * corruption.
50 	 */
51 	void (*release)(struct mmu_notifier *mn,
52 			struct mm_struct *mm);
53 
54 	/*
55 	 * clear_flush_young is called after the VM is
56 	 * test-and-clearing the young/accessed bitflag in the
57 	 * pte. This way the VM will provide proper aging to the
58 	 * accesses to the page through the secondary MMUs and not
59 	 * only to the ones through the Linux pte.
60 	 * Start-end is necessary in case the secondary MMU is mapping the page
61 	 * at a smaller granularity than the primary MMU.
62 	 */
63 	int (*clear_flush_young)(struct mmu_notifier *mn,
64 				 struct mm_struct *mm,
65 				 unsigned long start,
66 				 unsigned long end);
67 
68 	/*
69 	 * test_young is called to check the young/accessed bitflag in
70 	 * the secondary pte. This is used to know if the page is
71 	 * frequently used without actually clearing the flag or tearing
72 	 * down the secondary mapping on the page.
73 	 */
74 	int (*test_young)(struct mmu_notifier *mn,
75 			  struct mm_struct *mm,
76 			  unsigned long address);
77 
78 	/*
79 	 * change_pte is called in cases that pte mapping to page is changed:
80 	 * for example, when ksm remaps pte to point to a new shared page.
81 	 */
82 	void (*change_pte)(struct mmu_notifier *mn,
83 			   struct mm_struct *mm,
84 			   unsigned long address,
85 			   pte_t pte);
86 
87 	/*
88 	 * Before this is invoked any secondary MMU is still ok to
89 	 * read/write to the page previously pointed to by the Linux
90 	 * pte because the page hasn't been freed yet and it won't be
91 	 * freed until this returns. If required set_page_dirty has to
92 	 * be called internally to this method.
93 	 */
94 	void (*invalidate_page)(struct mmu_notifier *mn,
95 				struct mm_struct *mm,
96 				unsigned long address);
97 
98 	/*
99 	 * invalidate_range_start() and invalidate_range_end() must be
100 	 * paired and are called only when the mmap_sem and/or the
101 	 * locks protecting the reverse maps are held. The subsystem
102 	 * must guarantee that no additional references are taken to
103 	 * the pages in the range established between the call to
104 	 * invalidate_range_start() and the matching call to
105 	 * invalidate_range_end().
106 	 *
107 	 * Invalidation of multiple concurrent ranges may be
108 	 * optionally permitted by the driver. Either way the
109 	 * establishment of sptes is forbidden in the range passed to
110 	 * invalidate_range_begin/end for the whole duration of the
111 	 * invalidate_range_begin/end critical section.
112 	 *
113 	 * invalidate_range_start() is called when all pages in the
114 	 * range are still mapped and have at least a refcount of one.
115 	 *
116 	 * invalidate_range_end() is called when all pages in the
117 	 * range have been unmapped and the pages have been freed by
118 	 * the VM.
119 	 *
120 	 * The VM will remove the page table entries and potentially
121 	 * the page between invalidate_range_start() and
122 	 * invalidate_range_end(). If the page must not be freed
123 	 * because of pending I/O or other circumstances then the
124 	 * invalidate_range_start() callback (or the initial mapping
125 	 * by the driver) must make sure that the refcount is kept
126 	 * elevated.
127 	 *
128 	 * If the driver increases the refcount when the pages are
129 	 * initially mapped into an address space then either
130 	 * invalidate_range_start() or invalidate_range_end() may
131 	 * decrease the refcount. If the refcount is decreased on
132 	 * invalidate_range_start() then the VM can free pages as page
133 	 * table entries are removed.  If the refcount is only
134 	 * droppped on invalidate_range_end() then the driver itself
135 	 * will drop the last refcount but it must take care to flush
136 	 * any secondary tlb before doing the final free on the
137 	 * page. Pages will no longer be referenced by the linux
138 	 * address space but may still be referenced by sptes until
139 	 * the last refcount is dropped.
140 	 */
141 	void (*invalidate_range_start)(struct mmu_notifier *mn,
142 				       struct mm_struct *mm,
143 				       unsigned long start, unsigned long end);
144 	void (*invalidate_range_end)(struct mmu_notifier *mn,
145 				     struct mm_struct *mm,
146 				     unsigned long start, unsigned long end);
147 };
148 
149 /*
150  * The notifier chains are protected by mmap_sem and/or the reverse map
151  * semaphores. Notifier chains are only changed when all reverse maps and
152  * the mmap_sem locks are taken.
153  *
154  * Therefore notifier chains can only be traversed when either
155  *
156  * 1. mmap_sem is held.
157  * 2. One of the reverse map locks is held (i_mmap_mutex or anon_vma->rwsem).
158  * 3. No other concurrent thread can access the list (release)
159  */
160 struct mmu_notifier {
161 	struct hlist_node hlist;
162 	const struct mmu_notifier_ops *ops;
163 };
164 
mm_has_notifiers(struct mm_struct * mm)165 static inline int mm_has_notifiers(struct mm_struct *mm)
166 {
167 	return unlikely(mm->mmu_notifier_mm);
168 }
169 
170 extern int mmu_notifier_register(struct mmu_notifier *mn,
171 				 struct mm_struct *mm);
172 extern int __mmu_notifier_register(struct mmu_notifier *mn,
173 				   struct mm_struct *mm);
174 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
175 				    struct mm_struct *mm);
176 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
177 					       struct mm_struct *mm);
178 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
179 extern void __mmu_notifier_release(struct mm_struct *mm);
180 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
181 					  unsigned long start,
182 					  unsigned long end);
183 extern int __mmu_notifier_test_young(struct mm_struct *mm,
184 				     unsigned long address);
185 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
186 				      unsigned long address, pte_t pte);
187 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
188 					  unsigned long address);
189 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
190 				  unsigned long start, unsigned long end);
191 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
192 				  unsigned long start, unsigned long end);
193 
mmu_notifier_release(struct mm_struct * mm)194 static inline void mmu_notifier_release(struct mm_struct *mm)
195 {
196 	if (mm_has_notifiers(mm))
197 		__mmu_notifier_release(mm);
198 }
199 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)200 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
201 					  unsigned long start,
202 					  unsigned long end)
203 {
204 	if (mm_has_notifiers(mm))
205 		return __mmu_notifier_clear_flush_young(mm, start, end);
206 	return 0;
207 }
208 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)209 static inline int mmu_notifier_test_young(struct mm_struct *mm,
210 					  unsigned long address)
211 {
212 	if (mm_has_notifiers(mm))
213 		return __mmu_notifier_test_young(mm, address);
214 	return 0;
215 }
216 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)217 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
218 					   unsigned long address, pte_t pte)
219 {
220 	if (mm_has_notifiers(mm))
221 		__mmu_notifier_change_pte(mm, address, pte);
222 }
223 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)224 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
225 					  unsigned long address)
226 {
227 	if (mm_has_notifiers(mm))
228 		__mmu_notifier_invalidate_page(mm, address);
229 }
230 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)231 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
232 				  unsigned long start, unsigned long end)
233 {
234 	if (mm_has_notifiers(mm))
235 		__mmu_notifier_invalidate_range_start(mm, start, end);
236 }
237 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)238 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
239 				  unsigned long start, unsigned long end)
240 {
241 	if (mm_has_notifiers(mm))
242 		__mmu_notifier_invalidate_range_end(mm, start, end);
243 }
244 
mmu_notifier_mm_init(struct mm_struct * mm)245 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
246 {
247 	mm->mmu_notifier_mm = NULL;
248 }
249 
mmu_notifier_mm_destroy(struct mm_struct * mm)250 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
251 {
252 	if (mm_has_notifiers(mm))
253 		__mmu_notifier_mm_destroy(mm);
254 }
255 
256 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
257 ({									\
258 	int __young;							\
259 	struct vm_area_struct *___vma = __vma;				\
260 	unsigned long ___address = __address;				\
261 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
262 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
263 						  ___address,		\
264 						  ___address +		\
265 							PAGE_SIZE);	\
266 	__young;							\
267 })
268 
269 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
270 ({									\
271 	int __young;							\
272 	struct vm_area_struct *___vma = __vma;				\
273 	unsigned long ___address = __address;				\
274 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
275 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
276 						  ___address,		\
277 						  ___address +		\
278 							PMD_SIZE);	\
279 	__young;							\
280 })
281 
282 /*
283  * set_pte_at_notify() sets the pte _after_ running the notifier.
284  * This is safe to start by updating the secondary MMUs, because the primary MMU
285  * pte invalidate must have already happened with a ptep_clear_flush() before
286  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
287  * required when we change both the protection of the mapping from read-only to
288  * read-write and the pfn (like during copy on write page faults). Otherwise the
289  * old page would remain mapped readonly in the secondary MMUs after the new
290  * page is already writable by some CPU through the primary MMU.
291  */
292 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
293 ({									\
294 	struct mm_struct *___mm = __mm;					\
295 	unsigned long ___address = __address;				\
296 	pte_t ___pte = __pte;						\
297 									\
298 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
299 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
300 })
301 
302 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
303 				   void (*func)(struct rcu_head *rcu));
304 extern void mmu_notifier_synchronize(void);
305 
306 #else /* CONFIG_MMU_NOTIFIER */
307 
mmu_notifier_release(struct mm_struct * mm)308 static inline void mmu_notifier_release(struct mm_struct *mm)
309 {
310 }
311 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)312 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
313 					  unsigned long start,
314 					  unsigned long end)
315 {
316 	return 0;
317 }
318 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)319 static inline int mmu_notifier_test_young(struct mm_struct *mm,
320 					  unsigned long address)
321 {
322 	return 0;
323 }
324 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)325 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
326 					   unsigned long address, pte_t pte)
327 {
328 }
329 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)330 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
331 					  unsigned long address)
332 {
333 }
334 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)335 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
336 				  unsigned long start, unsigned long end)
337 {
338 }
339 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)340 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
341 				  unsigned long start, unsigned long end)
342 {
343 }
344 
mmu_notifier_mm_init(struct mm_struct * mm)345 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
346 {
347 }
348 
mmu_notifier_mm_destroy(struct mm_struct * mm)349 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
350 {
351 }
352 
353 #define ptep_clear_flush_young_notify ptep_clear_flush_young
354 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
355 #define set_pte_at_notify set_pte_at
356 
357 #endif /* CONFIG_MMU_NOTIFIER */
358 
359 #endif /* _LINUX_MMU_NOTIFIER_H */
360