• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 /* __wait_queue::flags */
17 #define WQ_FLAG_EXCLUSIVE	0x01
18 #define WQ_FLAG_WOKEN		0x02
19 
20 struct __wait_queue {
21 	unsigned int		flags;
22 	void			*private;
23 	wait_queue_func_t	func;
24 	struct list_head	task_list;
25 };
26 
27 struct wait_bit_key {
28 	void			*flags;
29 	int			bit_nr;
30 #define WAIT_ATOMIC_T_BIT_NR	-1
31 	unsigned long		timeout;
32 };
33 
34 struct wait_bit_queue {
35 	struct wait_bit_key	key;
36 	wait_queue_t		wait;
37 };
38 
39 struct __wait_queue_head {
40 	spinlock_t		lock;
41 	struct list_head	task_list;
42 };
43 typedef struct __wait_queue_head wait_queue_head_t;
44 
45 struct task_struct;
46 
47 /*
48  * Macros for declaration and initialisaton of the datatypes
49  */
50 
51 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52 	.private	= tsk,						\
53 	.func		= default_wake_function,			\
54 	.task_list	= { NULL, NULL } }
55 
56 #define DECLARE_WAITQUEUE(name, tsk)					\
57 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
58 
59 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
61 	.task_list	= { &(name).task_list, &(name).task_list } }
62 
63 #define DECLARE_WAIT_QUEUE_HEAD(name) \
64 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
65 
66 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
67 	{ .flags = word, .bit_nr = bit, }
68 
69 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
70 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
71 
72 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 
74 #define init_waitqueue_head(q)				\
75 	do {						\
76 		static struct lock_class_key __key;	\
77 							\
78 		__init_waitqueue_head((q), #q, &__key);	\
79 	} while (0)
80 
81 #ifdef CONFIG_LOCKDEP
82 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
83 	({ init_waitqueue_head(&name); name; })
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
85 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
86 #else
87 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
88 #endif
89 
init_waitqueue_entry(wait_queue_t * q,struct task_struct * p)90 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
91 {
92 	q->flags	= 0;
93 	q->private	= p;
94 	q->func		= default_wake_function;
95 }
96 
97 static inline void
init_waitqueue_func_entry(wait_queue_t * q,wait_queue_func_t func)98 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
99 {
100 	q->flags	= 0;
101 	q->private	= NULL;
102 	q->func		= func;
103 }
104 
waitqueue_active(wait_queue_head_t * q)105 static inline int waitqueue_active(wait_queue_head_t *q)
106 {
107 	return !list_empty(&q->task_list);
108 }
109 
110 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
111 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
112 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
113 
__add_wait_queue(wait_queue_head_t * head,wait_queue_t * new)114 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
115 {
116 	list_add(&new->task_list, &head->task_list);
117 }
118 
119 /*
120  * Used for wake-one threads:
121  */
122 static inline void
__add_wait_queue_exclusive(wait_queue_head_t * q,wait_queue_t * wait)123 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
124 {
125 	wait->flags |= WQ_FLAG_EXCLUSIVE;
126 	__add_wait_queue(q, wait);
127 }
128 
__add_wait_queue_tail(wait_queue_head_t * head,wait_queue_t * new)129 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
130 					 wait_queue_t *new)
131 {
132 	list_add_tail(&new->task_list, &head->task_list);
133 }
134 
135 static inline void
__add_wait_queue_tail_exclusive(wait_queue_head_t * q,wait_queue_t * wait)136 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
137 {
138 	wait->flags |= WQ_FLAG_EXCLUSIVE;
139 	__add_wait_queue_tail(q, wait);
140 }
141 
142 static inline void
__remove_wait_queue(wait_queue_head_t * head,wait_queue_t * old)143 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
144 {
145 	list_del(&old->task_list);
146 }
147 
148 typedef int wait_bit_action_f(struct wait_bit_key *);
149 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
150 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
151 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
152 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
154 void __wake_up_bit(wait_queue_head_t *, void *, int);
155 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
156 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
157 void wake_up_bit(void *, int);
158 void wake_up_atomic_t(atomic_t *);
159 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
160 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
161 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
162 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
163 wait_queue_head_t *bit_waitqueue(void *, int);
164 
165 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
166 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
167 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
168 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
169 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
170 
171 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
172 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
173 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
174 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
175 
176 /*
177  * Wakeup macros to be used to report events to the targets.
178  */
179 #define wake_up_poll(x, m)						\
180 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
181 #define wake_up_locked_poll(x, m)					\
182 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
183 #define wake_up_interruptible_poll(x, m)				\
184 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
185 #define wake_up_interruptible_sync_poll(x, m)				\
186 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
187 
188 #define ___wait_cond_timeout(condition)					\
189 ({									\
190 	bool __cond = (condition);					\
191 	if (__cond && !__ret)						\
192 		__ret = 1;						\
193 	__cond || !__ret;						\
194 })
195 
196 #define ___wait_is_interruptible(state)					\
197 	(!__builtin_constant_p(state) ||				\
198 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
199 
200 /*
201  * The below macro ___wait_event() has an explicit shadow of the __ret
202  * variable when used from the wait_event_*() macros.
203  *
204  * This is so that both can use the ___wait_cond_timeout() construct
205  * to wrap the condition.
206  *
207  * The type inconsistency of the wait_event_*() __ret variable is also
208  * on purpose; we use long where we can return timeout values and int
209  * otherwise.
210  */
211 
212 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
213 ({									\
214 	__label__ __out;						\
215 	wait_queue_t __wait;						\
216 	long __ret = ret;	/* explicit shadow */			\
217 									\
218 	INIT_LIST_HEAD(&__wait.task_list);				\
219 	if (exclusive)							\
220 		__wait.flags = WQ_FLAG_EXCLUSIVE;			\
221 	else								\
222 		__wait.flags = 0;					\
223 									\
224 	for (;;) {							\
225 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
226 									\
227 		if (condition)						\
228 			break;						\
229 									\
230 		if (___wait_is_interruptible(state) && __int) {		\
231 			__ret = __int;					\
232 			if (exclusive) {				\
233 				abort_exclusive_wait(&wq, &__wait,	\
234 						     state, NULL);	\
235 				goto __out;				\
236 			}						\
237 			break;						\
238 		}							\
239 									\
240 		cmd;							\
241 	}								\
242 	finish_wait(&wq, &__wait);					\
243 __out:	__ret;								\
244 })
245 
246 #define __wait_event(wq, condition)					\
247 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
248 			    schedule())
249 
250 /**
251  * wait_event - sleep until a condition gets true
252  * @wq: the waitqueue to wait on
253  * @condition: a C expression for the event to wait for
254  *
255  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
256  * @condition evaluates to true. The @condition is checked each time
257  * the waitqueue @wq is woken up.
258  *
259  * wake_up() has to be called after changing any variable that could
260  * change the result of the wait condition.
261  */
262 #define wait_event(wq, condition)					\
263 do {									\
264 	if (condition)							\
265 		break;							\
266 	__wait_event(wq, condition);					\
267 } while (0)
268 
269 #define __wait_event_timeout(wq, condition, timeout)			\
270 	___wait_event(wq, ___wait_cond_timeout(condition),		\
271 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
272 		      __ret = schedule_timeout(__ret))
273 
274 /**
275  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
276  * @wq: the waitqueue to wait on
277  * @condition: a C expression for the event to wait for
278  * @timeout: timeout, in jiffies
279  *
280  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
281  * @condition evaluates to true. The @condition is checked each time
282  * the waitqueue @wq is woken up.
283  *
284  * wake_up() has to be called after changing any variable that could
285  * change the result of the wait condition.
286  *
287  * Returns:
288  * 0 if the @condition evaluated to %false after the @timeout elapsed,
289  * 1 if the @condition evaluated to %true after the @timeout elapsed,
290  * or the remaining jiffies (at least 1) if the @condition evaluated
291  * to %true before the @timeout elapsed.
292  */
293 #define wait_event_timeout(wq, condition, timeout)			\
294 ({									\
295 	long __ret = timeout;						\
296 	if (!___wait_cond_timeout(condition))				\
297 		__ret = __wait_event_timeout(wq, condition, timeout);	\
298 	__ret;								\
299 })
300 
301 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
302 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
303 			    cmd1; schedule(); cmd2)
304 
305 /**
306  * wait_event_cmd - sleep until a condition gets true
307  * @wq: the waitqueue to wait on
308  * @condition: a C expression for the event to wait for
309  * @cmd1: the command will be executed before sleep
310  * @cmd2: the command will be executed after sleep
311  *
312  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
313  * @condition evaluates to true. The @condition is checked each time
314  * the waitqueue @wq is woken up.
315  *
316  * wake_up() has to be called after changing any variable that could
317  * change the result of the wait condition.
318  */
319 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
320 do {									\
321 	if (condition)							\
322 		break;							\
323 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
324 } while (0)
325 
326 #define __wait_event_interruptible(wq, condition)			\
327 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
328 		      schedule())
329 
330 /**
331  * wait_event_interruptible - sleep until a condition gets true
332  * @wq: the waitqueue to wait on
333  * @condition: a C expression for the event to wait for
334  *
335  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
336  * @condition evaluates to true or a signal is received.
337  * The @condition is checked each time the waitqueue @wq is woken up.
338  *
339  * wake_up() has to be called after changing any variable that could
340  * change the result of the wait condition.
341  *
342  * The function will return -ERESTARTSYS if it was interrupted by a
343  * signal and 0 if @condition evaluated to true.
344  */
345 #define wait_event_interruptible(wq, condition)				\
346 ({									\
347 	int __ret = 0;							\
348 	if (!(condition))						\
349 		__ret = __wait_event_interruptible(wq, condition);	\
350 	__ret;								\
351 })
352 
353 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
354 	___wait_event(wq, ___wait_cond_timeout(condition),		\
355 		      TASK_INTERRUPTIBLE, 0, timeout,			\
356 		      __ret = schedule_timeout(__ret))
357 
358 /**
359  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
360  * @wq: the waitqueue to wait on
361  * @condition: a C expression for the event to wait for
362  * @timeout: timeout, in jiffies
363  *
364  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
365  * @condition evaluates to true or a signal is received.
366  * The @condition is checked each time the waitqueue @wq is woken up.
367  *
368  * wake_up() has to be called after changing any variable that could
369  * change the result of the wait condition.
370  *
371  * Returns:
372  * 0 if the @condition evaluated to %false after the @timeout elapsed,
373  * 1 if the @condition evaluated to %true after the @timeout elapsed,
374  * the remaining jiffies (at least 1) if the @condition evaluated
375  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
376  * interrupted by a signal.
377  */
378 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
379 ({									\
380 	long __ret = timeout;						\
381 	if (!___wait_cond_timeout(condition))				\
382 		__ret = __wait_event_interruptible_timeout(wq,		\
383 						condition, timeout);	\
384 	__ret;								\
385 })
386 
387 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
388 ({									\
389 	int __ret = 0;							\
390 	struct hrtimer_sleeper __t;					\
391 									\
392 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
393 			      HRTIMER_MODE_REL);			\
394 	hrtimer_init_sleeper(&__t, current);				\
395 	if ((timeout).tv64 != KTIME_MAX)				\
396 		hrtimer_start_range_ns(&__t.timer, timeout,		\
397 				       current->timer_slack_ns,		\
398 				       HRTIMER_MODE_REL);		\
399 									\
400 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
401 		if (!__t.task) {					\
402 			__ret = -ETIME;					\
403 			break;						\
404 		}							\
405 		schedule());						\
406 									\
407 	hrtimer_cancel(&__t.timer);					\
408 	destroy_hrtimer_on_stack(&__t.timer);				\
409 	__ret;								\
410 })
411 
412 /**
413  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
414  * @wq: the waitqueue to wait on
415  * @condition: a C expression for the event to wait for
416  * @timeout: timeout, as a ktime_t
417  *
418  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
419  * @condition evaluates to true or a signal is received.
420  * The @condition is checked each time the waitqueue @wq is woken up.
421  *
422  * wake_up() has to be called after changing any variable that could
423  * change the result of the wait condition.
424  *
425  * The function returns 0 if @condition became true, or -ETIME if the timeout
426  * elapsed.
427  */
428 #define wait_event_hrtimeout(wq, condition, timeout)			\
429 ({									\
430 	int __ret = 0;							\
431 	if (!(condition))						\
432 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
433 					       TASK_UNINTERRUPTIBLE);	\
434 	__ret;								\
435 })
436 
437 /**
438  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
439  * @wq: the waitqueue to wait on
440  * @condition: a C expression for the event to wait for
441  * @timeout: timeout, as a ktime_t
442  *
443  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
444  * @condition evaluates to true or a signal is received.
445  * The @condition is checked each time the waitqueue @wq is woken up.
446  *
447  * wake_up() has to be called after changing any variable that could
448  * change the result of the wait condition.
449  *
450  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
451  * interrupted by a signal, or -ETIME if the timeout elapsed.
452  */
453 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
454 ({									\
455 	long __ret = 0;							\
456 	if (!(condition))						\
457 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
458 					       TASK_INTERRUPTIBLE);	\
459 	__ret;								\
460 })
461 
462 #define __wait_event_interruptible_exclusive(wq, condition)		\
463 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
464 		      schedule())
465 
466 #define wait_event_interruptible_exclusive(wq, condition)		\
467 ({									\
468 	int __ret = 0;							\
469 	if (!(condition))						\
470 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
471 	__ret;								\
472 })
473 
474 
475 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
476 ({									\
477 	int __ret = 0;							\
478 	DEFINE_WAIT(__wait);						\
479 	if (exclusive)							\
480 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
481 	do {								\
482 		if (likely(list_empty(&__wait.task_list)))		\
483 			__add_wait_queue_tail(&(wq), &__wait);		\
484 		set_current_state(TASK_INTERRUPTIBLE);			\
485 		if (signal_pending(current)) {				\
486 			__ret = -ERESTARTSYS;				\
487 			break;						\
488 		}							\
489 		if (irq)						\
490 			spin_unlock_irq(&(wq).lock);			\
491 		else							\
492 			spin_unlock(&(wq).lock);			\
493 		schedule();						\
494 		if (irq)						\
495 			spin_lock_irq(&(wq).lock);			\
496 		else							\
497 			spin_lock(&(wq).lock);				\
498 	} while (!(condition));						\
499 	__remove_wait_queue(&(wq), &__wait);				\
500 	__set_current_state(TASK_RUNNING);				\
501 	__ret;								\
502 })
503 
504 
505 /**
506  * wait_event_interruptible_locked - sleep until a condition gets true
507  * @wq: the waitqueue to wait on
508  * @condition: a C expression for the event to wait for
509  *
510  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
511  * @condition evaluates to true or a signal is received.
512  * The @condition is checked each time the waitqueue @wq is woken up.
513  *
514  * It must be called with wq.lock being held.  This spinlock is
515  * unlocked while sleeping but @condition testing is done while lock
516  * is held and when this macro exits the lock is held.
517  *
518  * The lock is locked/unlocked using spin_lock()/spin_unlock()
519  * functions which must match the way they are locked/unlocked outside
520  * of this macro.
521  *
522  * wake_up_locked() has to be called after changing any variable that could
523  * change the result of the wait condition.
524  *
525  * The function will return -ERESTARTSYS if it was interrupted by a
526  * signal and 0 if @condition evaluated to true.
527  */
528 #define wait_event_interruptible_locked(wq, condition)			\
529 	((condition)							\
530 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
531 
532 /**
533  * wait_event_interruptible_locked_irq - sleep until a condition gets true
534  * @wq: the waitqueue to wait on
535  * @condition: a C expression for the event to wait for
536  *
537  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
538  * @condition evaluates to true or a signal is received.
539  * The @condition is checked each time the waitqueue @wq is woken up.
540  *
541  * It must be called with wq.lock being held.  This spinlock is
542  * unlocked while sleeping but @condition testing is done while lock
543  * is held and when this macro exits the lock is held.
544  *
545  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
546  * functions which must match the way they are locked/unlocked outside
547  * of this macro.
548  *
549  * wake_up_locked() has to be called after changing any variable that could
550  * change the result of the wait condition.
551  *
552  * The function will return -ERESTARTSYS if it was interrupted by a
553  * signal and 0 if @condition evaluated to true.
554  */
555 #define wait_event_interruptible_locked_irq(wq, condition)		\
556 	((condition)							\
557 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
558 
559 /**
560  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
561  * @wq: the waitqueue to wait on
562  * @condition: a C expression for the event to wait for
563  *
564  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
565  * @condition evaluates to true or a signal is received.
566  * The @condition is checked each time the waitqueue @wq is woken up.
567  *
568  * It must be called with wq.lock being held.  This spinlock is
569  * unlocked while sleeping but @condition testing is done while lock
570  * is held and when this macro exits the lock is held.
571  *
572  * The lock is locked/unlocked using spin_lock()/spin_unlock()
573  * functions which must match the way they are locked/unlocked outside
574  * of this macro.
575  *
576  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
577  * set thus when other process waits process on the list if this
578  * process is awaken further processes are not considered.
579  *
580  * wake_up_locked() has to be called after changing any variable that could
581  * change the result of the wait condition.
582  *
583  * The function will return -ERESTARTSYS if it was interrupted by a
584  * signal and 0 if @condition evaluated to true.
585  */
586 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
587 	((condition)							\
588 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
589 
590 /**
591  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
592  * @wq: the waitqueue to wait on
593  * @condition: a C expression for the event to wait for
594  *
595  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
596  * @condition evaluates to true or a signal is received.
597  * The @condition is checked each time the waitqueue @wq is woken up.
598  *
599  * It must be called with wq.lock being held.  This spinlock is
600  * unlocked while sleeping but @condition testing is done while lock
601  * is held and when this macro exits the lock is held.
602  *
603  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
604  * functions which must match the way they are locked/unlocked outside
605  * of this macro.
606  *
607  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
608  * set thus when other process waits process on the list if this
609  * process is awaken further processes are not considered.
610  *
611  * wake_up_locked() has to be called after changing any variable that could
612  * change the result of the wait condition.
613  *
614  * The function will return -ERESTARTSYS if it was interrupted by a
615  * signal and 0 if @condition evaluated to true.
616  */
617 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
618 	((condition)							\
619 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
620 
621 
622 #define __wait_event_killable(wq, condition)				\
623 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
624 
625 /**
626  * wait_event_killable - sleep until a condition gets true
627  * @wq: the waitqueue to wait on
628  * @condition: a C expression for the event to wait for
629  *
630  * The process is put to sleep (TASK_KILLABLE) until the
631  * @condition evaluates to true or a signal is received.
632  * The @condition is checked each time the waitqueue @wq is woken up.
633  *
634  * wake_up() has to be called after changing any variable that could
635  * change the result of the wait condition.
636  *
637  * The function will return -ERESTARTSYS if it was interrupted by a
638  * signal and 0 if @condition evaluated to true.
639  */
640 #define wait_event_killable(wq, condition)				\
641 ({									\
642 	int __ret = 0;							\
643 	if (!(condition))						\
644 		__ret = __wait_event_killable(wq, condition);		\
645 	__ret;								\
646 })
647 
648 
649 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
650 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
651 			    spin_unlock_irq(&lock);			\
652 			    cmd;					\
653 			    schedule();					\
654 			    spin_lock_irq(&lock))
655 
656 /**
657  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
658  *			     condition is checked under the lock. This
659  *			     is expected to be called with the lock
660  *			     taken.
661  * @wq: the waitqueue to wait on
662  * @condition: a C expression for the event to wait for
663  * @lock: a locked spinlock_t, which will be released before cmd
664  *	  and schedule() and reacquired afterwards.
665  * @cmd: a command which is invoked outside the critical section before
666  *	 sleep
667  *
668  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
669  * @condition evaluates to true. The @condition is checked each time
670  * the waitqueue @wq is woken up.
671  *
672  * wake_up() has to be called after changing any variable that could
673  * change the result of the wait condition.
674  *
675  * This is supposed to be called while holding the lock. The lock is
676  * dropped before invoking the cmd and going to sleep and is reacquired
677  * afterwards.
678  */
679 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
680 do {									\
681 	if (condition)							\
682 		break;							\
683 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
684 } while (0)
685 
686 /**
687  * wait_event_lock_irq - sleep until a condition gets true. The
688  *			 condition is checked under the lock. This
689  *			 is expected to be called with the lock
690  *			 taken.
691  * @wq: the waitqueue to wait on
692  * @condition: a C expression for the event to wait for
693  * @lock: a locked spinlock_t, which will be released before schedule()
694  *	  and reacquired afterwards.
695  *
696  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
697  * @condition evaluates to true. The @condition is checked each time
698  * the waitqueue @wq is woken up.
699  *
700  * wake_up() has to be called after changing any variable that could
701  * change the result of the wait condition.
702  *
703  * This is supposed to be called while holding the lock. The lock is
704  * dropped before going to sleep and is reacquired afterwards.
705  */
706 #define wait_event_lock_irq(wq, condition, lock)			\
707 do {									\
708 	if (condition)							\
709 		break;							\
710 	__wait_event_lock_irq(wq, condition, lock, );			\
711 } while (0)
712 
713 
714 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
715 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
716 		      spin_unlock_irq(&lock);				\
717 		      cmd;						\
718 		      schedule();					\
719 		      spin_lock_irq(&lock))
720 
721 /**
722  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
723  *		The condition is checked under the lock. This is expected to
724  *		be called with the lock taken.
725  * @wq: the waitqueue to wait on
726  * @condition: a C expression for the event to wait for
727  * @lock: a locked spinlock_t, which will be released before cmd and
728  *	  schedule() and reacquired afterwards.
729  * @cmd: a command which is invoked outside the critical section before
730  *	 sleep
731  *
732  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
733  * @condition evaluates to true or a signal is received. The @condition is
734  * checked each time the waitqueue @wq is woken up.
735  *
736  * wake_up() has to be called after changing any variable that could
737  * change the result of the wait condition.
738  *
739  * This is supposed to be called while holding the lock. The lock is
740  * dropped before invoking the cmd and going to sleep and is reacquired
741  * afterwards.
742  *
743  * The macro will return -ERESTARTSYS if it was interrupted by a signal
744  * and 0 if @condition evaluated to true.
745  */
746 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
747 ({									\
748 	int __ret = 0;							\
749 	if (!(condition))						\
750 		__ret = __wait_event_interruptible_lock_irq(wq,		\
751 						condition, lock, cmd);	\
752 	__ret;								\
753 })
754 
755 /**
756  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
757  *		The condition is checked under the lock. This is expected
758  *		to be called with the lock taken.
759  * @wq: the waitqueue to wait on
760  * @condition: a C expression for the event to wait for
761  * @lock: a locked spinlock_t, which will be released before schedule()
762  *	  and reacquired afterwards.
763  *
764  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
765  * @condition evaluates to true or signal is received. The @condition is
766  * checked each time the waitqueue @wq is woken up.
767  *
768  * wake_up() has to be called after changing any variable that could
769  * change the result of the wait condition.
770  *
771  * This is supposed to be called while holding the lock. The lock is
772  * dropped before going to sleep and is reacquired afterwards.
773  *
774  * The macro will return -ERESTARTSYS if it was interrupted by a signal
775  * and 0 if @condition evaluated to true.
776  */
777 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
778 ({									\
779 	int __ret = 0;							\
780 	if (!(condition))						\
781 		__ret = __wait_event_interruptible_lock_irq(wq,		\
782 						condition, lock,);	\
783 	__ret;								\
784 })
785 
786 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
787 						    lock, timeout)	\
788 	___wait_event(wq, ___wait_cond_timeout(condition),		\
789 		      TASK_INTERRUPTIBLE, 0, timeout,			\
790 		      spin_unlock_irq(&lock);				\
791 		      __ret = schedule_timeout(__ret);			\
792 		      spin_lock_irq(&lock));
793 
794 /**
795  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
796  *		true or a timeout elapses. The condition is checked under
797  *		the lock. This is expected to be called with the lock taken.
798  * @wq: the waitqueue to wait on
799  * @condition: a C expression for the event to wait for
800  * @lock: a locked spinlock_t, which will be released before schedule()
801  *	  and reacquired afterwards.
802  * @timeout: timeout, in jiffies
803  *
804  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
805  * @condition evaluates to true or signal is received. The @condition is
806  * checked each time the waitqueue @wq is woken up.
807  *
808  * wake_up() has to be called after changing any variable that could
809  * change the result of the wait condition.
810  *
811  * This is supposed to be called while holding the lock. The lock is
812  * dropped before going to sleep and is reacquired afterwards.
813  *
814  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
815  * was interrupted by a signal, and the remaining jiffies otherwise
816  * if the condition evaluated to true before the timeout elapsed.
817  */
818 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
819 						  timeout)		\
820 ({									\
821 	long __ret = timeout;						\
822 	if (!___wait_cond_timeout(condition))				\
823 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
824 					wq, condition, lock, timeout);	\
825 	__ret;								\
826 })
827 
828 /*
829  * Waitqueues which are removed from the waitqueue_head at wakeup time
830  */
831 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
832 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
833 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
834 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
835 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
836 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
837 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
838 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
839 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
840 
841 #define DEFINE_WAIT_FUNC(name, function)				\
842 	wait_queue_t name = {						\
843 		.private	= current,				\
844 		.func		= function,				\
845 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
846 	}
847 
848 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
849 
850 #define DEFINE_WAIT_BIT(name, word, bit)				\
851 	struct wait_bit_queue name = {					\
852 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
853 		.wait	= {						\
854 			.private	= current,			\
855 			.func		= wake_bit_function,		\
856 			.task_list	=				\
857 				LIST_HEAD_INIT((name).wait.task_list),	\
858 		},							\
859 	}
860 
861 #define init_wait(wait)							\
862 	do {								\
863 		(wait)->private = current;				\
864 		(wait)->func = autoremove_wake_function;		\
865 		INIT_LIST_HEAD(&(wait)->task_list);			\
866 		(wait)->flags = 0;					\
867 	} while (0)
868 
869 
870 extern int bit_wait(struct wait_bit_key *);
871 extern int bit_wait_io(struct wait_bit_key *);
872 extern int bit_wait_timeout(struct wait_bit_key *);
873 extern int bit_wait_io_timeout(struct wait_bit_key *);
874 
875 /**
876  * wait_on_bit - wait for a bit to be cleared
877  * @word: the word being waited on, a kernel virtual address
878  * @bit: the bit of the word being waited on
879  * @mode: the task state to sleep in
880  *
881  * There is a standard hashed waitqueue table for generic use. This
882  * is the part of the hashtable's accessor API that waits on a bit.
883  * For instance, if one were to have waiters on a bitflag, one would
884  * call wait_on_bit() in threads waiting for the bit to clear.
885  * One uses wait_on_bit() where one is waiting for the bit to clear,
886  * but has no intention of setting it.
887  * Returned value will be zero if the bit was cleared, or non-zero
888  * if the process received a signal and the mode permitted wakeup
889  * on that signal.
890  */
891 static inline int
wait_on_bit(void * word,int bit,unsigned mode)892 wait_on_bit(void *word, int bit, unsigned mode)
893 {
894 	if (!test_bit(bit, word))
895 		return 0;
896 	return out_of_line_wait_on_bit(word, bit,
897 				       bit_wait,
898 				       mode);
899 }
900 
901 /**
902  * wait_on_bit_io - wait for a bit to be cleared
903  * @word: the word being waited on, a kernel virtual address
904  * @bit: the bit of the word being waited on
905  * @mode: the task state to sleep in
906  *
907  * Use the standard hashed waitqueue table to wait for a bit
908  * to be cleared.  This is similar to wait_on_bit(), but calls
909  * io_schedule() instead of schedule() for the actual waiting.
910  *
911  * Returned value will be zero if the bit was cleared, or non-zero
912  * if the process received a signal and the mode permitted wakeup
913  * on that signal.
914  */
915 static inline int
wait_on_bit_io(void * word,int bit,unsigned mode)916 wait_on_bit_io(void *word, int bit, unsigned mode)
917 {
918 	if (!test_bit(bit, word))
919 		return 0;
920 	return out_of_line_wait_on_bit(word, bit,
921 				       bit_wait_io,
922 				       mode);
923 }
924 
925 /**
926  * wait_on_bit_action - wait for a bit to be cleared
927  * @word: the word being waited on, a kernel virtual address
928  * @bit: the bit of the word being waited on
929  * @action: the function used to sleep, which may take special actions
930  * @mode: the task state to sleep in
931  *
932  * Use the standard hashed waitqueue table to wait for a bit
933  * to be cleared, and allow the waiting action to be specified.
934  * This is like wait_on_bit() but allows fine control of how the waiting
935  * is done.
936  *
937  * Returned value will be zero if the bit was cleared, or non-zero
938  * if the process received a signal and the mode permitted wakeup
939  * on that signal.
940  */
941 static inline int
wait_on_bit_action(void * word,int bit,wait_bit_action_f * action,unsigned mode)942 wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
943 {
944 	if (!test_bit(bit, word))
945 		return 0;
946 	return out_of_line_wait_on_bit(word, bit, action, mode);
947 }
948 
949 /**
950  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
951  * @word: the word being waited on, a kernel virtual address
952  * @bit: the bit of the word being waited on
953  * @mode: the task state to sleep in
954  *
955  * There is a standard hashed waitqueue table for generic use. This
956  * is the part of the hashtable's accessor API that waits on a bit
957  * when one intends to set it, for instance, trying to lock bitflags.
958  * For instance, if one were to have waiters trying to set bitflag
959  * and waiting for it to clear before setting it, one would call
960  * wait_on_bit() in threads waiting to be able to set the bit.
961  * One uses wait_on_bit_lock() where one is waiting for the bit to
962  * clear with the intention of setting it, and when done, clearing it.
963  *
964  * Returns zero if the bit was (eventually) found to be clear and was
965  * set.  Returns non-zero if a signal was delivered to the process and
966  * the @mode allows that signal to wake the process.
967  */
968 static inline int
wait_on_bit_lock(void * word,int bit,unsigned mode)969 wait_on_bit_lock(void *word, int bit, unsigned mode)
970 {
971 	if (!test_and_set_bit(bit, word))
972 		return 0;
973 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
974 }
975 
976 /**
977  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
978  * @word: the word being waited on, a kernel virtual address
979  * @bit: the bit of the word being waited on
980  * @mode: the task state to sleep in
981  *
982  * Use the standard hashed waitqueue table to wait for a bit
983  * to be cleared and then to atomically set it.  This is similar
984  * to wait_on_bit(), but calls io_schedule() instead of schedule()
985  * for the actual waiting.
986  *
987  * Returns zero if the bit was (eventually) found to be clear and was
988  * set.  Returns non-zero if a signal was delivered to the process and
989  * the @mode allows that signal to wake the process.
990  */
991 static inline int
wait_on_bit_lock_io(void * word,int bit,unsigned mode)992 wait_on_bit_lock_io(void *word, int bit, unsigned mode)
993 {
994 	if (!test_and_set_bit(bit, word))
995 		return 0;
996 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
997 }
998 
999 /**
1000  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1001  * @word: the word being waited on, a kernel virtual address
1002  * @bit: the bit of the word being waited on
1003  * @action: the function used to sleep, which may take special actions
1004  * @mode: the task state to sleep in
1005  *
1006  * Use the standard hashed waitqueue table to wait for a bit
1007  * to be cleared and then to set it, and allow the waiting action
1008  * to be specified.
1009  * This is like wait_on_bit() but allows fine control of how the waiting
1010  * is done.
1011  *
1012  * Returns zero if the bit was (eventually) found to be clear and was
1013  * set.  Returns non-zero if a signal was delivered to the process and
1014  * the @mode allows that signal to wake the process.
1015  */
1016 static inline int
wait_on_bit_lock_action(void * word,int bit,wait_bit_action_f * action,unsigned mode)1017 wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
1018 {
1019 	if (!test_and_set_bit(bit, word))
1020 		return 0;
1021 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1022 }
1023 
1024 /**
1025  * wait_on_atomic_t - Wait for an atomic_t to become 0
1026  * @val: The atomic value being waited on, a kernel virtual address
1027  * @action: the function used to sleep, which may take special actions
1028  * @mode: the task state to sleep in
1029  *
1030  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1031  * the purpose of getting a waitqueue, but we set the key to a bit number
1032  * outside of the target 'word'.
1033  */
1034 static inline
wait_on_atomic_t(atomic_t * val,int (* action)(atomic_t *),unsigned mode)1035 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1036 {
1037 	if (atomic_read(val) == 0)
1038 		return 0;
1039 	return out_of_line_wait_on_atomic_t(val, action, mode);
1040 }
1041 
1042 #endif /* _LINUX_WAIT_H */
1043