• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 
39 #include <net/sock.h>
40 #include "util.h"
41 
42 #define MQUEUE_MAGIC	0x19800202
43 #define DIRENT_SIZE	20
44 #define FILENT_SIZE	80
45 
46 #define SEND		0
47 #define RECV		1
48 
49 #define STATE_NONE	0
50 #define STATE_PENDING	1
51 #define STATE_READY	2
52 
53 struct posix_msg_tree_node {
54 	struct rb_node		rb_node;
55 	struct list_head	msg_list;
56 	int			priority;
57 };
58 
59 struct ext_wait_queue {		/* queue of sleeping tasks */
60 	struct task_struct *task;
61 	struct list_head list;
62 	struct msg_msg *msg;	/* ptr of loaded message */
63 	int state;		/* one of STATE_* values */
64 };
65 
66 struct mqueue_inode_info {
67 	spinlock_t lock;
68 	struct inode vfs_inode;
69 	wait_queue_head_t wait_q;
70 
71 	struct rb_root msg_tree;
72 	struct posix_msg_tree_node *node_cache;
73 	struct mq_attr attr;
74 
75 	struct sigevent notify;
76 	struct pid *notify_owner;
77 	struct user_namespace *notify_user_ns;
78 	struct user_struct *user;	/* user who created, for accounting */
79 	struct sock *notify_sock;
80 	struct sk_buff *notify_cookie;
81 
82 	/* for tasks waiting for free space and messages, respectively */
83 	struct ext_wait_queue e_wait_q[2];
84 
85 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86 };
87 
88 static const struct inode_operations mqueue_dir_inode_operations;
89 static const struct file_operations mqueue_file_operations;
90 static const struct super_operations mqueue_super_ops;
91 static void remove_notification(struct mqueue_inode_info *info);
92 
93 static struct kmem_cache *mqueue_inode_cachep;
94 
95 static struct ctl_table_header *mq_sysctl_table;
96 
MQUEUE_I(struct inode * inode)97 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98 {
99 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
100 }
101 
102 /*
103  * This routine should be called with the mq_lock held.
104  */
__get_ns_from_inode(struct inode * inode)105 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106 {
107 	return get_ipc_ns(inode->i_sb->s_fs_info);
108 }
109 
get_ns_from_inode(struct inode * inode)110 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111 {
112 	struct ipc_namespace *ns;
113 
114 	spin_lock(&mq_lock);
115 	ns = __get_ns_from_inode(inode);
116 	spin_unlock(&mq_lock);
117 	return ns;
118 }
119 
120 /* Auxiliary functions to manipulate messages' list */
msg_insert(struct msg_msg * msg,struct mqueue_inode_info * info)121 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122 {
123 	struct rb_node **p, *parent = NULL;
124 	struct posix_msg_tree_node *leaf;
125 
126 	p = &info->msg_tree.rb_node;
127 	while (*p) {
128 		parent = *p;
129 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130 
131 		if (likely(leaf->priority == msg->m_type))
132 			goto insert_msg;
133 		else if (msg->m_type < leaf->priority)
134 			p = &(*p)->rb_left;
135 		else
136 			p = &(*p)->rb_right;
137 	}
138 	if (info->node_cache) {
139 		leaf = info->node_cache;
140 		info->node_cache = NULL;
141 	} else {
142 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143 		if (!leaf)
144 			return -ENOMEM;
145 		INIT_LIST_HEAD(&leaf->msg_list);
146 	}
147 	leaf->priority = msg->m_type;
148 	rb_link_node(&leaf->rb_node, parent, p);
149 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
150 insert_msg:
151 	info->attr.mq_curmsgs++;
152 	info->qsize += msg->m_ts;
153 	list_add_tail(&msg->m_list, &leaf->msg_list);
154 	return 0;
155 }
156 
msg_get(struct mqueue_inode_info * info)157 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
158 {
159 	struct rb_node **p, *parent = NULL;
160 	struct posix_msg_tree_node *leaf;
161 	struct msg_msg *msg;
162 
163 try_again:
164 	p = &info->msg_tree.rb_node;
165 	while (*p) {
166 		parent = *p;
167 		/*
168 		 * During insert, low priorities go to the left and high to the
169 		 * right.  On receive, we want the highest priorities first, so
170 		 * walk all the way to the right.
171 		 */
172 		p = &(*p)->rb_right;
173 	}
174 	if (!parent) {
175 		if (info->attr.mq_curmsgs) {
176 			pr_warn_once("Inconsistency in POSIX message queue, "
177 				     "no tree element, but supposedly messages "
178 				     "should exist!\n");
179 			info->attr.mq_curmsgs = 0;
180 		}
181 		return NULL;
182 	}
183 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
184 	if (unlikely(list_empty(&leaf->msg_list))) {
185 		pr_warn_once("Inconsistency in POSIX message queue, "
186 			     "empty leaf node but we haven't implemented "
187 			     "lazy leaf delete!\n");
188 		rb_erase(&leaf->rb_node, &info->msg_tree);
189 		if (info->node_cache) {
190 			kfree(leaf);
191 		} else {
192 			info->node_cache = leaf;
193 		}
194 		goto try_again;
195 	} else {
196 		msg = list_first_entry(&leaf->msg_list,
197 				       struct msg_msg, m_list);
198 		list_del(&msg->m_list);
199 		if (list_empty(&leaf->msg_list)) {
200 			rb_erase(&leaf->rb_node, &info->msg_tree);
201 			if (info->node_cache) {
202 				kfree(leaf);
203 			} else {
204 				info->node_cache = leaf;
205 			}
206 		}
207 	}
208 	info->attr.mq_curmsgs--;
209 	info->qsize -= msg->m_ts;
210 	return msg;
211 }
212 
mqueue_get_inode(struct super_block * sb,struct ipc_namespace * ipc_ns,umode_t mode,struct mq_attr * attr)213 static struct inode *mqueue_get_inode(struct super_block *sb,
214 		struct ipc_namespace *ipc_ns, umode_t mode,
215 		struct mq_attr *attr)
216 {
217 	struct user_struct *u = current_user();
218 	struct inode *inode;
219 	int ret = -ENOMEM;
220 
221 	inode = new_inode(sb);
222 	if (!inode)
223 		goto err;
224 
225 	inode->i_ino = get_next_ino();
226 	inode->i_mode = mode;
227 	inode->i_uid = current_fsuid();
228 	inode->i_gid = current_fsgid();
229 	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
230 
231 	if (S_ISREG(mode)) {
232 		struct mqueue_inode_info *info;
233 		unsigned long mq_bytes, mq_treesize;
234 
235 		inode->i_fop = &mqueue_file_operations;
236 		inode->i_size = FILENT_SIZE;
237 		/* mqueue specific info */
238 		info = MQUEUE_I(inode);
239 		spin_lock_init(&info->lock);
240 		init_waitqueue_head(&info->wait_q);
241 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
242 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
243 		info->notify_owner = NULL;
244 		info->notify_user_ns = NULL;
245 		info->qsize = 0;
246 		info->user = NULL;	/* set when all is ok */
247 		info->msg_tree = RB_ROOT;
248 		info->node_cache = NULL;
249 		memset(&info->attr, 0, sizeof(info->attr));
250 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
251 					   ipc_ns->mq_msg_default);
252 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
253 					    ipc_ns->mq_msgsize_default);
254 		if (attr) {
255 			info->attr.mq_maxmsg = attr->mq_maxmsg;
256 			info->attr.mq_msgsize = attr->mq_msgsize;
257 		}
258 		/*
259 		 * We used to allocate a static array of pointers and account
260 		 * the size of that array as well as one msg_msg struct per
261 		 * possible message into the queue size. That's no longer
262 		 * accurate as the queue is now an rbtree and will grow and
263 		 * shrink depending on usage patterns.  We can, however, still
264 		 * account one msg_msg struct per message, but the nodes are
265 		 * allocated depending on priority usage, and most programs
266 		 * only use one, or a handful, of priorities.  However, since
267 		 * this is pinned memory, we need to assume worst case, so
268 		 * that means the min(mq_maxmsg, max_priorities) * struct
269 		 * posix_msg_tree_node.
270 		 */
271 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
272 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
273 			sizeof(struct posix_msg_tree_node);
274 
275 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
276 					  info->attr.mq_msgsize);
277 
278 		spin_lock(&mq_lock);
279 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
280 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
281 			spin_unlock(&mq_lock);
282 			/* mqueue_evict_inode() releases info->messages */
283 			ret = -EMFILE;
284 			goto out_inode;
285 		}
286 		u->mq_bytes += mq_bytes;
287 		spin_unlock(&mq_lock);
288 
289 		/* all is ok */
290 		info->user = get_uid(u);
291 	} else if (S_ISDIR(mode)) {
292 		inc_nlink(inode);
293 		/* Some things misbehave if size == 0 on a directory */
294 		inode->i_size = 2 * DIRENT_SIZE;
295 		inode->i_op = &mqueue_dir_inode_operations;
296 		inode->i_fop = &simple_dir_operations;
297 	}
298 
299 	return inode;
300 out_inode:
301 	iput(inode);
302 err:
303 	return ERR_PTR(ret);
304 }
305 
mqueue_fill_super(struct super_block * sb,void * data,int silent)306 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
307 {
308 	struct inode *inode;
309 	struct ipc_namespace *ns = data;
310 
311 	sb->s_blocksize = PAGE_CACHE_SIZE;
312 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
313 	sb->s_magic = MQUEUE_MAGIC;
314 	sb->s_op = &mqueue_super_ops;
315 
316 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
317 	if (IS_ERR(inode))
318 		return PTR_ERR(inode);
319 
320 	sb->s_root = d_make_root(inode);
321 	if (!sb->s_root)
322 		return -ENOMEM;
323 	return 0;
324 }
325 
mqueue_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)326 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name,
328 			 void *data)
329 {
330 	if (!(flags & MS_KERNMOUNT)) {
331 		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
332 		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
333 		 * over the ipc namespace.
334 		 */
335 		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
336 			return ERR_PTR(-EPERM);
337 
338 		data = ns;
339 	}
340 	return mount_ns(fs_type, flags, data, mqueue_fill_super);
341 }
342 
init_once(void * foo)343 static void init_once(void *foo)
344 {
345 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
346 
347 	inode_init_once(&p->vfs_inode);
348 }
349 
mqueue_alloc_inode(struct super_block * sb)350 static struct inode *mqueue_alloc_inode(struct super_block *sb)
351 {
352 	struct mqueue_inode_info *ei;
353 
354 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
355 	if (!ei)
356 		return NULL;
357 	return &ei->vfs_inode;
358 }
359 
mqueue_i_callback(struct rcu_head * head)360 static void mqueue_i_callback(struct rcu_head *head)
361 {
362 	struct inode *inode = container_of(head, struct inode, i_rcu);
363 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
364 }
365 
mqueue_destroy_inode(struct inode * inode)366 static void mqueue_destroy_inode(struct inode *inode)
367 {
368 	call_rcu(&inode->i_rcu, mqueue_i_callback);
369 }
370 
mqueue_evict_inode(struct inode * inode)371 static void mqueue_evict_inode(struct inode *inode)
372 {
373 	struct mqueue_inode_info *info;
374 	struct user_struct *user;
375 	unsigned long mq_bytes, mq_treesize;
376 	struct ipc_namespace *ipc_ns;
377 	struct msg_msg *msg;
378 
379 	clear_inode(inode);
380 
381 	if (S_ISDIR(inode->i_mode))
382 		return;
383 
384 	ipc_ns = get_ns_from_inode(inode);
385 	info = MQUEUE_I(inode);
386 	spin_lock(&info->lock);
387 	while ((msg = msg_get(info)) != NULL)
388 		free_msg(msg);
389 	kfree(info->node_cache);
390 	spin_unlock(&info->lock);
391 
392 	/* Total amount of bytes accounted for the mqueue */
393 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
394 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
395 		sizeof(struct posix_msg_tree_node);
396 
397 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
398 				  info->attr.mq_msgsize);
399 
400 	user = info->user;
401 	if (user) {
402 		spin_lock(&mq_lock);
403 		user->mq_bytes -= mq_bytes;
404 		/*
405 		 * get_ns_from_inode() ensures that the
406 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
407 		 * to which we now hold a reference, or it is NULL.
408 		 * We can't put it here under mq_lock, though.
409 		 */
410 		if (ipc_ns)
411 			ipc_ns->mq_queues_count--;
412 		spin_unlock(&mq_lock);
413 		free_uid(user);
414 	}
415 	if (ipc_ns)
416 		put_ipc_ns(ipc_ns);
417 }
418 
mqueue_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)419 static int mqueue_create(struct inode *dir, struct dentry *dentry,
420 				umode_t mode, bool excl)
421 {
422 	struct inode *inode;
423 	struct mq_attr *attr = dentry->d_fsdata;
424 	int error;
425 	struct ipc_namespace *ipc_ns;
426 
427 	spin_lock(&mq_lock);
428 	ipc_ns = __get_ns_from_inode(dir);
429 	if (!ipc_ns) {
430 		error = -EACCES;
431 		goto out_unlock;
432 	}
433 
434 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
435 	    !capable(CAP_SYS_RESOURCE)) {
436 		error = -ENOSPC;
437 		goto out_unlock;
438 	}
439 	ipc_ns->mq_queues_count++;
440 	spin_unlock(&mq_lock);
441 
442 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
443 	if (IS_ERR(inode)) {
444 		error = PTR_ERR(inode);
445 		spin_lock(&mq_lock);
446 		ipc_ns->mq_queues_count--;
447 		goto out_unlock;
448 	}
449 
450 	put_ipc_ns(ipc_ns);
451 	dir->i_size += DIRENT_SIZE;
452 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
453 
454 	d_instantiate(dentry, inode);
455 	dget(dentry);
456 	return 0;
457 out_unlock:
458 	spin_unlock(&mq_lock);
459 	if (ipc_ns)
460 		put_ipc_ns(ipc_ns);
461 	return error;
462 }
463 
mqueue_unlink(struct inode * dir,struct dentry * dentry)464 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
465 {
466 	struct inode *inode = dentry->d_inode;
467 
468 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
469 	dir->i_size -= DIRENT_SIZE;
470 	drop_nlink(inode);
471 	dput(dentry);
472 	return 0;
473 }
474 
475 /*
476 *	This is routine for system read from queue file.
477 *	To avoid mess with doing here some sort of mq_receive we allow
478 *	to read only queue size & notification info (the only values
479 *	that are interesting from user point of view and aren't accessible
480 *	through std routines)
481 */
mqueue_read_file(struct file * filp,char __user * u_data,size_t count,loff_t * off)482 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
483 				size_t count, loff_t *off)
484 {
485 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
486 	char buffer[FILENT_SIZE];
487 	ssize_t ret;
488 
489 	spin_lock(&info->lock);
490 	snprintf(buffer, sizeof(buffer),
491 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
492 			info->qsize,
493 			info->notify_owner ? info->notify.sigev_notify : 0,
494 			(info->notify_owner &&
495 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
496 				info->notify.sigev_signo : 0,
497 			pid_vnr(info->notify_owner));
498 	spin_unlock(&info->lock);
499 	buffer[sizeof(buffer)-1] = '\0';
500 
501 	ret = simple_read_from_buffer(u_data, count, off, buffer,
502 				strlen(buffer));
503 	if (ret <= 0)
504 		return ret;
505 
506 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
507 	return ret;
508 }
509 
mqueue_flush_file(struct file * filp,fl_owner_t id)510 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
511 {
512 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
513 
514 	spin_lock(&info->lock);
515 	if (task_tgid(current) == info->notify_owner)
516 		remove_notification(info);
517 
518 	spin_unlock(&info->lock);
519 	return 0;
520 }
521 
mqueue_poll_file(struct file * filp,struct poll_table_struct * poll_tab)522 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
523 {
524 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
525 	int retval = 0;
526 
527 	poll_wait(filp, &info->wait_q, poll_tab);
528 
529 	spin_lock(&info->lock);
530 	if (info->attr.mq_curmsgs)
531 		retval = POLLIN | POLLRDNORM;
532 
533 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
534 		retval |= POLLOUT | POLLWRNORM;
535 	spin_unlock(&info->lock);
536 
537 	return retval;
538 }
539 
540 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
wq_add(struct mqueue_inode_info * info,int sr,struct ext_wait_queue * ewp)541 static void wq_add(struct mqueue_inode_info *info, int sr,
542 			struct ext_wait_queue *ewp)
543 {
544 	struct ext_wait_queue *walk;
545 
546 	ewp->task = current;
547 
548 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
549 		if (walk->task->static_prio <= current->static_prio) {
550 			list_add_tail(&ewp->list, &walk->list);
551 			return;
552 		}
553 	}
554 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
555 }
556 
557 /*
558  * Puts current task to sleep. Caller must hold queue lock. After return
559  * lock isn't held.
560  * sr: SEND or RECV
561  */
wq_sleep(struct mqueue_inode_info * info,int sr,ktime_t * timeout,struct ext_wait_queue * ewp)562 static int wq_sleep(struct mqueue_inode_info *info, int sr,
563 		    ktime_t *timeout, struct ext_wait_queue *ewp)
564 {
565 	int retval;
566 	signed long time;
567 
568 	wq_add(info, sr, ewp);
569 
570 	for (;;) {
571 		set_current_state(TASK_INTERRUPTIBLE);
572 
573 		spin_unlock(&info->lock);
574 		time = schedule_hrtimeout_range_clock(timeout, 0,
575 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
576 
577 		while (ewp->state == STATE_PENDING)
578 			cpu_relax();
579 
580 		if (ewp->state == STATE_READY) {
581 			retval = 0;
582 			goto out;
583 		}
584 		spin_lock(&info->lock);
585 		if (ewp->state == STATE_READY) {
586 			retval = 0;
587 			goto out_unlock;
588 		}
589 		if (signal_pending(current)) {
590 			retval = -ERESTARTSYS;
591 			break;
592 		}
593 		if (time == 0) {
594 			retval = -ETIMEDOUT;
595 			break;
596 		}
597 	}
598 	list_del(&ewp->list);
599 out_unlock:
600 	spin_unlock(&info->lock);
601 out:
602 	return retval;
603 }
604 
605 /*
606  * Returns waiting task that should be serviced first or NULL if none exists
607  */
wq_get_first_waiter(struct mqueue_inode_info * info,int sr)608 static struct ext_wait_queue *wq_get_first_waiter(
609 		struct mqueue_inode_info *info, int sr)
610 {
611 	struct list_head *ptr;
612 
613 	ptr = info->e_wait_q[sr].list.prev;
614 	if (ptr == &info->e_wait_q[sr].list)
615 		return NULL;
616 	return list_entry(ptr, struct ext_wait_queue, list);
617 }
618 
619 
set_cookie(struct sk_buff * skb,char code)620 static inline void set_cookie(struct sk_buff *skb, char code)
621 {
622 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
623 }
624 
625 /*
626  * The next function is only to split too long sys_mq_timedsend
627  */
__do_notify(struct mqueue_inode_info * info)628 static void __do_notify(struct mqueue_inode_info *info)
629 {
630 	/* notification
631 	 * invoked when there is registered process and there isn't process
632 	 * waiting synchronously for message AND state of queue changed from
633 	 * empty to not empty. Here we are sure that no one is waiting
634 	 * synchronously. */
635 	if (info->notify_owner &&
636 	    info->attr.mq_curmsgs == 1) {
637 		struct siginfo sig_i;
638 		switch (info->notify.sigev_notify) {
639 		case SIGEV_NONE:
640 			break;
641 		case SIGEV_SIGNAL:
642 			/* sends signal */
643 
644 			sig_i.si_signo = info->notify.sigev_signo;
645 			sig_i.si_errno = 0;
646 			sig_i.si_code = SI_MESGQ;
647 			sig_i.si_value = info->notify.sigev_value;
648 			/* map current pid/uid into info->owner's namespaces */
649 			rcu_read_lock();
650 			sig_i.si_pid = task_tgid_nr_ns(current,
651 						ns_of_pid(info->notify_owner));
652 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
653 			rcu_read_unlock();
654 
655 			kill_pid_info(info->notify.sigev_signo,
656 				      &sig_i, info->notify_owner);
657 			break;
658 		case SIGEV_THREAD:
659 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
660 			netlink_sendskb(info->notify_sock, info->notify_cookie);
661 			break;
662 		}
663 		/* after notification unregisters process */
664 		put_pid(info->notify_owner);
665 		put_user_ns(info->notify_user_ns);
666 		info->notify_owner = NULL;
667 		info->notify_user_ns = NULL;
668 	}
669 	wake_up(&info->wait_q);
670 }
671 
prepare_timeout(const struct timespec __user * u_abs_timeout,ktime_t * expires,struct timespec * ts)672 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
673 			   ktime_t *expires, struct timespec *ts)
674 {
675 	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
676 		return -EFAULT;
677 	if (!timespec_valid(ts))
678 		return -EINVAL;
679 
680 	*expires = timespec_to_ktime(*ts);
681 	return 0;
682 }
683 
remove_notification(struct mqueue_inode_info * info)684 static void remove_notification(struct mqueue_inode_info *info)
685 {
686 	if (info->notify_owner != NULL &&
687 	    info->notify.sigev_notify == SIGEV_THREAD) {
688 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
689 		netlink_sendskb(info->notify_sock, info->notify_cookie);
690 	}
691 	put_pid(info->notify_owner);
692 	put_user_ns(info->notify_user_ns);
693 	info->notify_owner = NULL;
694 	info->notify_user_ns = NULL;
695 }
696 
mq_attr_ok(struct ipc_namespace * ipc_ns,struct mq_attr * attr)697 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
698 {
699 	int mq_treesize;
700 	unsigned long total_size;
701 
702 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
703 		return -EINVAL;
704 	if (capable(CAP_SYS_RESOURCE)) {
705 		if (attr->mq_maxmsg > HARD_MSGMAX ||
706 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
707 			return -EINVAL;
708 	} else {
709 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
710 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
711 			return -EINVAL;
712 	}
713 	/* check for overflow */
714 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
715 		return -EOVERFLOW;
716 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
717 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
718 		sizeof(struct posix_msg_tree_node);
719 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
720 	if (total_size + mq_treesize < total_size)
721 		return -EOVERFLOW;
722 	return 0;
723 }
724 
725 /*
726  * Invoked when creating a new queue via sys_mq_open
727  */
do_create(struct ipc_namespace * ipc_ns,struct inode * dir,struct path * path,int oflag,umode_t mode,struct mq_attr * attr)728 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
729 			struct path *path, int oflag, umode_t mode,
730 			struct mq_attr *attr)
731 {
732 	const struct cred *cred = current_cred();
733 	int ret;
734 
735 	if (attr) {
736 		ret = mq_attr_ok(ipc_ns, attr);
737 		if (ret)
738 			return ERR_PTR(ret);
739 		/* store for use during create */
740 		path->dentry->d_fsdata = attr;
741 	} else {
742 		struct mq_attr def_attr;
743 
744 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
745 					 ipc_ns->mq_msg_default);
746 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
747 					  ipc_ns->mq_msgsize_default);
748 		ret = mq_attr_ok(ipc_ns, &def_attr);
749 		if (ret)
750 			return ERR_PTR(ret);
751 	}
752 
753 	mode &= ~current_umask();
754 	ret = vfs_create2(path->mnt, dir, path->dentry, mode, true);
755 	path->dentry->d_fsdata = NULL;
756 	if (ret)
757 		return ERR_PTR(ret);
758 	return dentry_open(path, oflag, cred);
759 }
760 
761 /* Opens existing queue */
do_open(struct path * path,int oflag)762 static struct file *do_open(struct path *path, int oflag)
763 {
764 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
765 						  MAY_READ | MAY_WRITE };
766 	int acc;
767 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
768 		return ERR_PTR(-EINVAL);
769 	acc = oflag2acc[oflag & O_ACCMODE];
770 	if (inode_permission2(path->mnt, path->dentry->d_inode, acc))
771 		return ERR_PTR(-EACCES);
772 	return dentry_open(path, oflag, current_cred());
773 }
774 
SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,umode_t,mode,struct mq_attr __user *,u_attr)775 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
776 		struct mq_attr __user *, u_attr)
777 {
778 	struct path path;
779 	struct file *filp;
780 	struct filename *name;
781 	struct mq_attr attr;
782 	int fd, error;
783 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
784 	struct vfsmount *mnt = ipc_ns->mq_mnt;
785 	struct dentry *root = mnt->mnt_root;
786 	int ro;
787 
788 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
789 		return -EFAULT;
790 
791 	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
792 
793 	if (IS_ERR(name = getname(u_name)))
794 		return PTR_ERR(name);
795 
796 	fd = get_unused_fd_flags(O_CLOEXEC);
797 	if (fd < 0)
798 		goto out_putname;
799 
800 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
801 	error = 0;
802 	mutex_lock(&root->d_inode->i_mutex);
803 	path.dentry = lookup_one_len2(name->name, mnt, root, strlen(name->name));
804 	if (IS_ERR(path.dentry)) {
805 		error = PTR_ERR(path.dentry);
806 		goto out_putfd;
807 	}
808 	path.mnt = mntget(mnt);
809 
810 	if (oflag & O_CREAT) {
811 		if (path.dentry->d_inode) {	/* entry already exists */
812 			audit_inode(name, path.dentry, 0);
813 			if (oflag & O_EXCL) {
814 				error = -EEXIST;
815 				goto out;
816 			}
817 			filp = do_open(&path, oflag);
818 		} else {
819 			if (ro) {
820 				error = ro;
821 				goto out;
822 			}
823 			audit_inode_parent_hidden(name, root);
824 			filp = do_create(ipc_ns, root->d_inode,
825 						&path, oflag, mode,
826 						u_attr ? &attr : NULL);
827 		}
828 	} else {
829 		if (!path.dentry->d_inode) {
830 			error = -ENOENT;
831 			goto out;
832 		}
833 		audit_inode(name, path.dentry, 0);
834 		filp = do_open(&path, oflag);
835 	}
836 
837 	if (!IS_ERR(filp))
838 		fd_install(fd, filp);
839 	else
840 		error = PTR_ERR(filp);
841 out:
842 	path_put(&path);
843 out_putfd:
844 	if (error) {
845 		put_unused_fd(fd);
846 		fd = error;
847 	}
848 	mutex_unlock(&root->d_inode->i_mutex);
849 	if (!ro)
850 		mnt_drop_write(mnt);
851 out_putname:
852 	putname(name);
853 	return fd;
854 }
855 
SYSCALL_DEFINE1(mq_unlink,const char __user *,u_name)856 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
857 {
858 	int err;
859 	struct filename *name;
860 	struct dentry *dentry;
861 	struct inode *inode = NULL;
862 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
863 	struct vfsmount *mnt = ipc_ns->mq_mnt;
864 
865 	name = getname(u_name);
866 	if (IS_ERR(name))
867 		return PTR_ERR(name);
868 
869 	audit_inode_parent_hidden(name, mnt->mnt_root);
870 	err = mnt_want_write(mnt);
871 	if (err)
872 		goto out_name;
873 	mutex_lock_nested(&mnt->mnt_root->d_inode->i_mutex, I_MUTEX_PARENT);
874 	dentry = lookup_one_len2(name->name, mnt, mnt->mnt_root,
875 				strlen(name->name));
876 	if (IS_ERR(dentry)) {
877 		err = PTR_ERR(dentry);
878 		goto out_unlock;
879 	}
880 
881 	inode = dentry->d_inode;
882 	if (!inode) {
883 		err = -ENOENT;
884 	} else {
885 		ihold(inode);
886 		err = vfs_unlink2(mnt, dentry->d_parent->d_inode, dentry, NULL);
887 	}
888 	dput(dentry);
889 
890 out_unlock:
891 	mutex_unlock(&mnt->mnt_root->d_inode->i_mutex);
892 	if (inode)
893 		iput(inode);
894 	mnt_drop_write(mnt);
895 out_name:
896 	putname(name);
897 
898 	return err;
899 }
900 
901 /* Pipelined send and receive functions.
902  *
903  * If a receiver finds no waiting message, then it registers itself in the
904  * list of waiting receivers. A sender checks that list before adding the new
905  * message into the message array. If there is a waiting receiver, then it
906  * bypasses the message array and directly hands the message over to the
907  * receiver.
908  * The receiver accepts the message and returns without grabbing the queue
909  * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
910  * are necessary. The same algorithm is used for sysv semaphores, see
911  * ipc/sem.c for more details.
912  *
913  * The same algorithm is used for senders.
914  */
915 
916 /* pipelined_send() - send a message directly to the task waiting in
917  * sys_mq_timedreceive() (without inserting message into a queue).
918  */
pipelined_send(struct mqueue_inode_info * info,struct msg_msg * message,struct ext_wait_queue * receiver)919 static inline void pipelined_send(struct mqueue_inode_info *info,
920 				  struct msg_msg *message,
921 				  struct ext_wait_queue *receiver)
922 {
923 	receiver->msg = message;
924 	list_del(&receiver->list);
925 	receiver->state = STATE_PENDING;
926 	wake_up_process(receiver->task);
927 	smp_wmb();
928 	receiver->state = STATE_READY;
929 }
930 
931 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
932  * gets its message and put to the queue (we have one free place for sure). */
pipelined_receive(struct mqueue_inode_info * info)933 static inline void pipelined_receive(struct mqueue_inode_info *info)
934 {
935 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
936 
937 	if (!sender) {
938 		/* for poll */
939 		wake_up_interruptible(&info->wait_q);
940 		return;
941 	}
942 	if (msg_insert(sender->msg, info))
943 		return;
944 	list_del(&sender->list);
945 	sender->state = STATE_PENDING;
946 	wake_up_process(sender->task);
947 	smp_wmb();
948 	sender->state = STATE_READY;
949 }
950 
SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,size_t,msg_len,unsigned int,msg_prio,const struct timespec __user *,u_abs_timeout)951 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
952 		size_t, msg_len, unsigned int, msg_prio,
953 		const struct timespec __user *, u_abs_timeout)
954 {
955 	struct fd f;
956 	struct inode *inode;
957 	struct ext_wait_queue wait;
958 	struct ext_wait_queue *receiver;
959 	struct msg_msg *msg_ptr;
960 	struct mqueue_inode_info *info;
961 	ktime_t expires, *timeout = NULL;
962 	struct timespec ts;
963 	struct posix_msg_tree_node *new_leaf = NULL;
964 	int ret = 0;
965 
966 	if (u_abs_timeout) {
967 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
968 		if (res)
969 			return res;
970 		timeout = &expires;
971 	}
972 
973 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
974 		return -EINVAL;
975 
976 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
977 
978 	f = fdget(mqdes);
979 	if (unlikely(!f.file)) {
980 		ret = -EBADF;
981 		goto out;
982 	}
983 
984 	inode = file_inode(f.file);
985 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
986 		ret = -EBADF;
987 		goto out_fput;
988 	}
989 	info = MQUEUE_I(inode);
990 	audit_inode(NULL, f.file->f_path.dentry, 0);
991 
992 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
993 		ret = -EBADF;
994 		goto out_fput;
995 	}
996 
997 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
998 		ret = -EMSGSIZE;
999 		goto out_fput;
1000 	}
1001 
1002 	/* First try to allocate memory, before doing anything with
1003 	 * existing queues. */
1004 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1005 	if (IS_ERR(msg_ptr)) {
1006 		ret = PTR_ERR(msg_ptr);
1007 		goto out_fput;
1008 	}
1009 	msg_ptr->m_ts = msg_len;
1010 	msg_ptr->m_type = msg_prio;
1011 
1012 	/*
1013 	 * msg_insert really wants us to have a valid, spare node struct so
1014 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1015 	 * fall back to that if necessary.
1016 	 */
1017 	if (!info->node_cache)
1018 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1019 
1020 	spin_lock(&info->lock);
1021 
1022 	if (!info->node_cache && new_leaf) {
1023 		/* Save our speculative allocation into the cache */
1024 		INIT_LIST_HEAD(&new_leaf->msg_list);
1025 		info->node_cache = new_leaf;
1026 		new_leaf = NULL;
1027 	} else {
1028 		kfree(new_leaf);
1029 	}
1030 
1031 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1032 		if (f.file->f_flags & O_NONBLOCK) {
1033 			ret = -EAGAIN;
1034 		} else {
1035 			wait.task = current;
1036 			wait.msg = (void *) msg_ptr;
1037 			wait.state = STATE_NONE;
1038 			ret = wq_sleep(info, SEND, timeout, &wait);
1039 			/*
1040 			 * wq_sleep must be called with info->lock held, and
1041 			 * returns with the lock released
1042 			 */
1043 			goto out_free;
1044 		}
1045 	} else {
1046 		receiver = wq_get_first_waiter(info, RECV);
1047 		if (receiver) {
1048 			pipelined_send(info, msg_ptr, receiver);
1049 		} else {
1050 			/* adds message to the queue */
1051 			ret = msg_insert(msg_ptr, info);
1052 			if (ret)
1053 				goto out_unlock;
1054 			__do_notify(info);
1055 		}
1056 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1057 				CURRENT_TIME;
1058 	}
1059 out_unlock:
1060 	spin_unlock(&info->lock);
1061 out_free:
1062 	if (ret)
1063 		free_msg(msg_ptr);
1064 out_fput:
1065 	fdput(f);
1066 out:
1067 	return ret;
1068 }
1069 
SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,size_t,msg_len,unsigned int __user *,u_msg_prio,const struct timespec __user *,u_abs_timeout)1070 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1071 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1072 		const struct timespec __user *, u_abs_timeout)
1073 {
1074 	ssize_t ret;
1075 	struct msg_msg *msg_ptr;
1076 	struct fd f;
1077 	struct inode *inode;
1078 	struct mqueue_inode_info *info;
1079 	struct ext_wait_queue wait;
1080 	ktime_t expires, *timeout = NULL;
1081 	struct timespec ts;
1082 	struct posix_msg_tree_node *new_leaf = NULL;
1083 
1084 	if (u_abs_timeout) {
1085 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1086 		if (res)
1087 			return res;
1088 		timeout = &expires;
1089 	}
1090 
1091 	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1092 
1093 	f = fdget(mqdes);
1094 	if (unlikely(!f.file)) {
1095 		ret = -EBADF;
1096 		goto out;
1097 	}
1098 
1099 	inode = file_inode(f.file);
1100 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1101 		ret = -EBADF;
1102 		goto out_fput;
1103 	}
1104 	info = MQUEUE_I(inode);
1105 	audit_inode(NULL, f.file->f_path.dentry, 0);
1106 
1107 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1108 		ret = -EBADF;
1109 		goto out_fput;
1110 	}
1111 
1112 	/* checks if buffer is big enough */
1113 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1114 		ret = -EMSGSIZE;
1115 		goto out_fput;
1116 	}
1117 
1118 	/*
1119 	 * msg_insert really wants us to have a valid, spare node struct so
1120 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1121 	 * fall back to that if necessary.
1122 	 */
1123 	if (!info->node_cache)
1124 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1125 
1126 	spin_lock(&info->lock);
1127 
1128 	if (!info->node_cache && new_leaf) {
1129 		/* Save our speculative allocation into the cache */
1130 		INIT_LIST_HEAD(&new_leaf->msg_list);
1131 		info->node_cache = new_leaf;
1132 	} else {
1133 		kfree(new_leaf);
1134 	}
1135 
1136 	if (info->attr.mq_curmsgs == 0) {
1137 		if (f.file->f_flags & O_NONBLOCK) {
1138 			spin_unlock(&info->lock);
1139 			ret = -EAGAIN;
1140 		} else {
1141 			wait.task = current;
1142 			wait.state = STATE_NONE;
1143 			ret = wq_sleep(info, RECV, timeout, &wait);
1144 			msg_ptr = wait.msg;
1145 		}
1146 	} else {
1147 		msg_ptr = msg_get(info);
1148 
1149 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1150 				CURRENT_TIME;
1151 
1152 		/* There is now free space in queue. */
1153 		pipelined_receive(info);
1154 		spin_unlock(&info->lock);
1155 		ret = 0;
1156 	}
1157 	if (ret == 0) {
1158 		ret = msg_ptr->m_ts;
1159 
1160 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1161 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1162 			ret = -EFAULT;
1163 		}
1164 		free_msg(msg_ptr);
1165 	}
1166 out_fput:
1167 	fdput(f);
1168 out:
1169 	return ret;
1170 }
1171 
1172 /*
1173  * Notes: the case when user wants us to deregister (with NULL as pointer)
1174  * and he isn't currently owner of notification, will be silently discarded.
1175  * It isn't explicitly defined in the POSIX.
1176  */
SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct sigevent __user *,u_notification)1177 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1178 		const struct sigevent __user *, u_notification)
1179 {
1180 	int ret;
1181 	struct fd f;
1182 	struct sock *sock;
1183 	struct inode *inode;
1184 	struct sigevent notification;
1185 	struct mqueue_inode_info *info;
1186 	struct sk_buff *nc;
1187 
1188 	if (u_notification) {
1189 		if (copy_from_user(&notification, u_notification,
1190 					sizeof(struct sigevent)))
1191 			return -EFAULT;
1192 	}
1193 
1194 	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1195 
1196 	nc = NULL;
1197 	sock = NULL;
1198 	if (u_notification != NULL) {
1199 		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1200 			     notification.sigev_notify != SIGEV_SIGNAL &&
1201 			     notification.sigev_notify != SIGEV_THREAD))
1202 			return -EINVAL;
1203 		if (notification.sigev_notify == SIGEV_SIGNAL &&
1204 			!valid_signal(notification.sigev_signo)) {
1205 			return -EINVAL;
1206 		}
1207 		if (notification.sigev_notify == SIGEV_THREAD) {
1208 			long timeo;
1209 
1210 			/* create the notify skb */
1211 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1212 			if (!nc) {
1213 				ret = -ENOMEM;
1214 				goto out;
1215 			}
1216 			if (copy_from_user(nc->data,
1217 					notification.sigev_value.sival_ptr,
1218 					NOTIFY_COOKIE_LEN)) {
1219 				ret = -EFAULT;
1220 				goto out;
1221 			}
1222 
1223 			/* TODO: add a header? */
1224 			skb_put(nc, NOTIFY_COOKIE_LEN);
1225 			/* and attach it to the socket */
1226 retry:
1227 			f = fdget(notification.sigev_signo);
1228 			if (!f.file) {
1229 				ret = -EBADF;
1230 				goto out;
1231 			}
1232 			sock = netlink_getsockbyfilp(f.file);
1233 			fdput(f);
1234 			if (IS_ERR(sock)) {
1235 				ret = PTR_ERR(sock);
1236 				sock = NULL;
1237 				goto out;
1238 			}
1239 
1240 			timeo = MAX_SCHEDULE_TIMEOUT;
1241 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1242 			if (ret == 1) {
1243 				sock = NULL;
1244 				goto retry;
1245 			}
1246 			if (ret) {
1247 				sock = NULL;
1248 				nc = NULL;
1249 				goto out;
1250 			}
1251 		}
1252 	}
1253 
1254 	f = fdget(mqdes);
1255 	if (!f.file) {
1256 		ret = -EBADF;
1257 		goto out;
1258 	}
1259 
1260 	inode = file_inode(f.file);
1261 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1262 		ret = -EBADF;
1263 		goto out_fput;
1264 	}
1265 	info = MQUEUE_I(inode);
1266 
1267 	ret = 0;
1268 	spin_lock(&info->lock);
1269 	if (u_notification == NULL) {
1270 		if (info->notify_owner == task_tgid(current)) {
1271 			remove_notification(info);
1272 			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1273 		}
1274 	} else if (info->notify_owner != NULL) {
1275 		ret = -EBUSY;
1276 	} else {
1277 		switch (notification.sigev_notify) {
1278 		case SIGEV_NONE:
1279 			info->notify.sigev_notify = SIGEV_NONE;
1280 			break;
1281 		case SIGEV_THREAD:
1282 			info->notify_sock = sock;
1283 			info->notify_cookie = nc;
1284 			sock = NULL;
1285 			nc = NULL;
1286 			info->notify.sigev_notify = SIGEV_THREAD;
1287 			break;
1288 		case SIGEV_SIGNAL:
1289 			info->notify.sigev_signo = notification.sigev_signo;
1290 			info->notify.sigev_value = notification.sigev_value;
1291 			info->notify.sigev_notify = SIGEV_SIGNAL;
1292 			break;
1293 		}
1294 
1295 		info->notify_owner = get_pid(task_tgid(current));
1296 		info->notify_user_ns = get_user_ns(current_user_ns());
1297 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1298 	}
1299 	spin_unlock(&info->lock);
1300 out_fput:
1301 	fdput(f);
1302 out:
1303 	if (sock)
1304 		netlink_detachskb(sock, nc);
1305 	else if (nc)
1306 		dev_kfree_skb(nc);
1307 
1308 	return ret;
1309 }
1310 
SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct mq_attr __user *,u_mqstat,struct mq_attr __user *,u_omqstat)1311 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1312 		const struct mq_attr __user *, u_mqstat,
1313 		struct mq_attr __user *, u_omqstat)
1314 {
1315 	int ret;
1316 	struct mq_attr mqstat, omqstat;
1317 	struct fd f;
1318 	struct inode *inode;
1319 	struct mqueue_inode_info *info;
1320 
1321 	if (u_mqstat != NULL) {
1322 		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1323 			return -EFAULT;
1324 		if (mqstat.mq_flags & (~O_NONBLOCK))
1325 			return -EINVAL;
1326 	}
1327 
1328 	f = fdget(mqdes);
1329 	if (!f.file) {
1330 		ret = -EBADF;
1331 		goto out;
1332 	}
1333 
1334 	inode = file_inode(f.file);
1335 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1336 		ret = -EBADF;
1337 		goto out_fput;
1338 	}
1339 	info = MQUEUE_I(inode);
1340 
1341 	spin_lock(&info->lock);
1342 
1343 	omqstat = info->attr;
1344 	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1345 	if (u_mqstat) {
1346 		audit_mq_getsetattr(mqdes, &mqstat);
1347 		spin_lock(&f.file->f_lock);
1348 		if (mqstat.mq_flags & O_NONBLOCK)
1349 			f.file->f_flags |= O_NONBLOCK;
1350 		else
1351 			f.file->f_flags &= ~O_NONBLOCK;
1352 		spin_unlock(&f.file->f_lock);
1353 
1354 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1355 	}
1356 
1357 	spin_unlock(&info->lock);
1358 
1359 	ret = 0;
1360 	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1361 						sizeof(struct mq_attr)))
1362 		ret = -EFAULT;
1363 
1364 out_fput:
1365 	fdput(f);
1366 out:
1367 	return ret;
1368 }
1369 
1370 static const struct inode_operations mqueue_dir_inode_operations = {
1371 	.lookup = simple_lookup,
1372 	.create = mqueue_create,
1373 	.unlink = mqueue_unlink,
1374 };
1375 
1376 static const struct file_operations mqueue_file_operations = {
1377 	.flush = mqueue_flush_file,
1378 	.poll = mqueue_poll_file,
1379 	.read = mqueue_read_file,
1380 	.llseek = default_llseek,
1381 };
1382 
1383 static const struct super_operations mqueue_super_ops = {
1384 	.alloc_inode = mqueue_alloc_inode,
1385 	.destroy_inode = mqueue_destroy_inode,
1386 	.evict_inode = mqueue_evict_inode,
1387 	.statfs = simple_statfs,
1388 };
1389 
1390 static struct file_system_type mqueue_fs_type = {
1391 	.name = "mqueue",
1392 	.mount = mqueue_mount,
1393 	.kill_sb = kill_litter_super,
1394 	.fs_flags = FS_USERNS_MOUNT,
1395 };
1396 
mq_init_ns(struct ipc_namespace * ns)1397 int mq_init_ns(struct ipc_namespace *ns)
1398 {
1399 	ns->mq_queues_count  = 0;
1400 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1401 	ns->mq_msg_max       = DFLT_MSGMAX;
1402 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1403 	ns->mq_msg_default   = DFLT_MSG;
1404 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1405 
1406 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1407 	if (IS_ERR(ns->mq_mnt)) {
1408 		int err = PTR_ERR(ns->mq_mnt);
1409 		ns->mq_mnt = NULL;
1410 		return err;
1411 	}
1412 	return 0;
1413 }
1414 
mq_clear_sbinfo(struct ipc_namespace * ns)1415 void mq_clear_sbinfo(struct ipc_namespace *ns)
1416 {
1417 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1418 }
1419 
mq_put_mnt(struct ipc_namespace * ns)1420 void mq_put_mnt(struct ipc_namespace *ns)
1421 {
1422 	kern_unmount(ns->mq_mnt);
1423 }
1424 
init_mqueue_fs(void)1425 static int __init init_mqueue_fs(void)
1426 {
1427 	int error;
1428 
1429 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1430 				sizeof(struct mqueue_inode_info), 0,
1431 				SLAB_HWCACHE_ALIGN, init_once);
1432 	if (mqueue_inode_cachep == NULL)
1433 		return -ENOMEM;
1434 
1435 	/* ignore failures - they are not fatal */
1436 	mq_sysctl_table = mq_register_sysctl_table();
1437 
1438 	error = register_filesystem(&mqueue_fs_type);
1439 	if (error)
1440 		goto out_sysctl;
1441 
1442 	spin_lock_init(&mq_lock);
1443 
1444 	error = mq_init_ns(&init_ipc_ns);
1445 	if (error)
1446 		goto out_filesystem;
1447 
1448 	return 0;
1449 
1450 out_filesystem:
1451 	unregister_filesystem(&mqueue_fs_type);
1452 out_sysctl:
1453 	if (mq_sysctl_table)
1454 		unregister_sysctl_table(mq_sysctl_table);
1455 	kmem_cache_destroy(mqueue_inode_cachep);
1456 	return error;
1457 }
1458 
1459 device_initcall(init_mqueue_fs);
1460