• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	int	sempid;		/* pid of last operation */
96 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97 	struct list_head pending_alter; /* pending single-sop operations */
98 					/* that alter the semaphore */
99 	struct list_head pending_const; /* pending single-sop operations */
100 					/* that do not alter the semaphore*/
101 	time_t	sem_otime;	/* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103 
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 	struct list_head	list;	 /* queue of pending operations */
107 	struct task_struct	*sleeper; /* this process */
108 	struct sem_undo		*undo;	 /* undo structure */
109 	int			pid;	 /* process id of requesting process */
110 	int			status;	 /* completion status of operation */
111 	struct sembuf		*sops;	 /* array of pending operations */
112 	struct sembuf		*blocking; /* the operation that blocked */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
sem_init_ns(struct ipc_namespace * ns)173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
sem_exit_ns(struct ipc_namespace * ns)184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
sem_init(void)191 void __init sem_init(void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
unmerge_queues(struct sem_array * sma)206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
merge_queues(struct sem_array * sma)236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
sem_rcu_free(struct rcu_head * head)246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257  * are only control barriers.
258  * The code must pair with spin_unlock(&sem->lock) or
259  * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260  *
261  * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262  */
263 #define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
264 
265 /*
266  * Wait until all currently ongoing simple ops have completed.
267  * Caller must own sem_perm.lock.
268  * New simple ops cannot start, because simple ops first check
269  * that sem_perm.lock is free.
270  * that a) sem_perm.lock is free and b) complex_count is 0.
271  */
sem_wait_array(struct sem_array * sma)272 static void sem_wait_array(struct sem_array *sma)
273 {
274 	int i;
275 	struct sem *sem;
276 
277 	if (sma->complex_count)  {
278 		/* The thread that increased sma->complex_count waited on
279 		 * all sem->lock locks. Thus we don't need to wait again.
280 		 */
281 		return;
282 	}
283 
284 	for (i = 0; i < sma->sem_nsems; i++) {
285 		sem = sma->sem_base + i;
286 		spin_unlock_wait(&sem->lock);
287 	}
288 	ipc_smp_acquire__after_spin_is_unlocked();
289 }
290 
291 /*
292  * If the request contains only one semaphore operation, and there are
293  * no complex transactions pending, lock only the semaphore involved.
294  * Otherwise, lock the entire semaphore array, since we either have
295  * multiple semaphores in our own semops, or we need to look at
296  * semaphores from other pending complex operations.
297  */
sem_lock(struct sem_array * sma,struct sembuf * sops,int nsops)298 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299 			      int nsops)
300 {
301 	struct sem *sem;
302 
303 	if (nsops != 1) {
304 		/* Complex operation - acquire a full lock */
305 		ipc_lock_object(&sma->sem_perm);
306 
307 		/* And wait until all simple ops that are processed
308 		 * right now have dropped their locks.
309 		 */
310 		sem_wait_array(sma);
311 		return -1;
312 	}
313 
314 	/*
315 	 * Only one semaphore affected - try to optimize locking.
316 	 * The rules are:
317 	 * - optimized locking is possible if no complex operation
318 	 *   is either enqueued or processed right now.
319 	 * - The test for enqueued complex ops is simple:
320 	 *      sma->complex_count != 0
321 	 * - Testing for complex ops that are processed right now is
322 	 *   a bit more difficult. Complex ops acquire the full lock
323 	 *   and first wait that the running simple ops have completed.
324 	 *   (see above)
325 	 *   Thus: If we own a simple lock and the global lock is free
326 	 *	and complex_count is now 0, then it will stay 0 and
327 	 *	thus just locking sem->lock is sufficient.
328 	 */
329 	sem = sma->sem_base + sops->sem_num;
330 
331 	if (sma->complex_count == 0) {
332 		/*
333 		 * It appears that no complex operation is around.
334 		 * Acquire the per-semaphore lock.
335 		 */
336 		spin_lock(&sem->lock);
337 
338 		/* Then check that the global lock is free */
339 		if (!spin_is_locked(&sma->sem_perm.lock)) {
340 			/*
341 			 * We need a memory barrier with acquire semantics,
342 			 * otherwise we can race with another thread that does:
343 			 *	complex_count++;
344 			 *	spin_unlock(sem_perm.lock);
345 			 */
346 			ipc_smp_acquire__after_spin_is_unlocked();
347 
348 			/* Now repeat the test of complex_count:
349 			 * It can't change anymore until we drop sem->lock.
350 			 * Thus: if is now 0, then it will stay 0.
351 			 */
352 			if (sma->complex_count == 0) {
353 				/* fast path successful! */
354 				return sops->sem_num;
355 			}
356 		}
357 		spin_unlock(&sem->lock);
358 	}
359 
360 	/* slow path: acquire the full lock */
361 	ipc_lock_object(&sma->sem_perm);
362 
363 	if (sma->complex_count == 0) {
364 		/* False alarm:
365 		 * There is no complex operation, thus we can switch
366 		 * back to the fast path.
367 		 */
368 		spin_lock(&sem->lock);
369 		ipc_unlock_object(&sma->sem_perm);
370 		return sops->sem_num;
371 	} else {
372 		/* Not a false alarm, thus complete the sequence for a
373 		 * full lock.
374 		 */
375 		sem_wait_array(sma);
376 		return -1;
377 	}
378 }
379 
sem_unlock(struct sem_array * sma,int locknum)380 static inline void sem_unlock(struct sem_array *sma, int locknum)
381 {
382 	if (locknum == -1) {
383 		unmerge_queues(sma);
384 		ipc_unlock_object(&sma->sem_perm);
385 	} else {
386 		struct sem *sem = sma->sem_base + locknum;
387 		spin_unlock(&sem->lock);
388 	}
389 }
390 
391 /*
392  * sem_lock_(check_) routines are called in the paths where the rwsem
393  * is not held.
394  *
395  * The caller holds the RCU read lock.
396  */
sem_obtain_lock(struct ipc_namespace * ns,int id,struct sembuf * sops,int nsops,int * locknum)397 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
398 			int id, struct sembuf *sops, int nsops, int *locknum)
399 {
400 	struct kern_ipc_perm *ipcp;
401 	struct sem_array *sma;
402 
403 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
404 	if (IS_ERR(ipcp))
405 		return ERR_CAST(ipcp);
406 
407 	sma = container_of(ipcp, struct sem_array, sem_perm);
408 	*locknum = sem_lock(sma, sops, nsops);
409 
410 	/* ipc_rmid() may have already freed the ID while sem_lock
411 	 * was spinning: verify that the structure is still valid
412 	 */
413 	if (ipc_valid_object(ipcp))
414 		return container_of(ipcp, struct sem_array, sem_perm);
415 
416 	sem_unlock(sma, *locknum);
417 	return ERR_PTR(-EINVAL);
418 }
419 
sem_obtain_object(struct ipc_namespace * ns,int id)420 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
421 {
422 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
423 
424 	if (IS_ERR(ipcp))
425 		return ERR_CAST(ipcp);
426 
427 	return container_of(ipcp, struct sem_array, sem_perm);
428 }
429 
sem_obtain_object_check(struct ipc_namespace * ns,int id)430 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
431 							int id)
432 {
433 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
434 
435 	if (IS_ERR(ipcp))
436 		return ERR_CAST(ipcp);
437 
438 	return container_of(ipcp, struct sem_array, sem_perm);
439 }
440 
sem_lock_and_putref(struct sem_array * sma)441 static inline void sem_lock_and_putref(struct sem_array *sma)
442 {
443 	sem_lock(sma, NULL, -1);
444 	ipc_rcu_putref(sma, sem_rcu_free);
445 }
446 
sem_rmid(struct ipc_namespace * ns,struct sem_array * s)447 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
448 {
449 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
450 }
451 
452 /*
453  * Lockless wakeup algorithm:
454  * Without the check/retry algorithm a lockless wakeup is possible:
455  * - queue.status is initialized to -EINTR before blocking.
456  * - wakeup is performed by
457  *	* unlinking the queue entry from the pending list
458  *	* setting queue.status to IN_WAKEUP
459  *	  This is the notification for the blocked thread that a
460  *	  result value is imminent.
461  *	* call wake_up_process
462  *	* set queue.status to the final value.
463  * - the previously blocked thread checks queue.status:
464  *	* if it's IN_WAKEUP, then it must wait until the value changes
465  *	* if it's not -EINTR, then the operation was completed by
466  *	  update_queue. semtimedop can return queue.status without
467  *	  performing any operation on the sem array.
468  *	* otherwise it must acquire the spinlock and check what's up.
469  *
470  * The two-stage algorithm is necessary to protect against the following
471  * races:
472  * - if queue.status is set after wake_up_process, then the woken up idle
473  *   thread could race forward and try (and fail) to acquire sma->lock
474  *   before update_queue had a chance to set queue.status
475  * - if queue.status is written before wake_up_process and if the
476  *   blocked process is woken up by a signal between writing
477  *   queue.status and the wake_up_process, then the woken up
478  *   process could return from semtimedop and die by calling
479  *   sys_exit before wake_up_process is called. Then wake_up_process
480  *   will oops, because the task structure is already invalid.
481  *   (yes, this happened on s390 with sysv msg).
482  *
483  */
484 #define IN_WAKEUP	1
485 
486 /**
487  * newary - Create a new semaphore set
488  * @ns: namespace
489  * @params: ptr to the structure that contains key, semflg and nsems
490  *
491  * Called with sem_ids.rwsem held (as a writer)
492  */
newary(struct ipc_namespace * ns,struct ipc_params * params)493 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
494 {
495 	int id;
496 	int retval;
497 	struct sem_array *sma;
498 	int size;
499 	key_t key = params->key;
500 	int nsems = params->u.nsems;
501 	int semflg = params->flg;
502 	int i;
503 
504 	if (!nsems)
505 		return -EINVAL;
506 	if (ns->used_sems + nsems > ns->sc_semmns)
507 		return -ENOSPC;
508 
509 	size = sizeof(*sma) + nsems * sizeof(struct sem);
510 	sma = ipc_rcu_alloc(size);
511 	if (!sma)
512 		return -ENOMEM;
513 
514 	memset(sma, 0, size);
515 
516 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
517 	sma->sem_perm.key = key;
518 
519 	sma->sem_perm.security = NULL;
520 	retval = security_sem_alloc(sma);
521 	if (retval) {
522 		ipc_rcu_putref(sma, ipc_rcu_free);
523 		return retval;
524 	}
525 
526 	sma->sem_base = (struct sem *) &sma[1];
527 
528 	for (i = 0; i < nsems; i++) {
529 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
530 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
531 		spin_lock_init(&sma->sem_base[i].lock);
532 	}
533 
534 	sma->complex_count = 0;
535 	INIT_LIST_HEAD(&sma->pending_alter);
536 	INIT_LIST_HEAD(&sma->pending_const);
537 	INIT_LIST_HEAD(&sma->list_id);
538 	sma->sem_nsems = nsems;
539 	sma->sem_ctime = get_seconds();
540 
541 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
542 	if (id < 0) {
543 		ipc_rcu_putref(sma, sem_rcu_free);
544 		return id;
545 	}
546 	ns->used_sems += nsems;
547 
548 	sem_unlock(sma, -1);
549 	rcu_read_unlock();
550 
551 	return sma->sem_perm.id;
552 }
553 
554 
555 /*
556  * Called with sem_ids.rwsem and ipcp locked.
557  */
sem_security(struct kern_ipc_perm * ipcp,int semflg)558 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
559 {
560 	struct sem_array *sma;
561 
562 	sma = container_of(ipcp, struct sem_array, sem_perm);
563 	return security_sem_associate(sma, semflg);
564 }
565 
566 /*
567  * Called with sem_ids.rwsem and ipcp locked.
568  */
sem_more_checks(struct kern_ipc_perm * ipcp,struct ipc_params * params)569 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
570 				struct ipc_params *params)
571 {
572 	struct sem_array *sma;
573 
574 	sma = container_of(ipcp, struct sem_array, sem_perm);
575 	if (params->u.nsems > sma->sem_nsems)
576 		return -EINVAL;
577 
578 	return 0;
579 }
580 
SYSCALL_DEFINE3(semget,key_t,key,int,nsems,int,semflg)581 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
582 {
583 	struct ipc_namespace *ns;
584 	static const struct ipc_ops sem_ops = {
585 		.getnew = newary,
586 		.associate = sem_security,
587 		.more_checks = sem_more_checks,
588 	};
589 	struct ipc_params sem_params;
590 
591 	ns = current->nsproxy->ipc_ns;
592 
593 	if (nsems < 0 || nsems > ns->sc_semmsl)
594 		return -EINVAL;
595 
596 	sem_params.key = key;
597 	sem_params.flg = semflg;
598 	sem_params.u.nsems = nsems;
599 
600 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
601 }
602 
603 /**
604  * perform_atomic_semop - Perform (if possible) a semaphore operation
605  * @sma: semaphore array
606  * @q: struct sem_queue that describes the operation
607  *
608  * Returns 0 if the operation was possible.
609  * Returns 1 if the operation is impossible, the caller must sleep.
610  * Negative values are error codes.
611  */
perform_atomic_semop(struct sem_array * sma,struct sem_queue * q)612 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
613 {
614 	int result, sem_op, nsops, pid;
615 	struct sembuf *sop;
616 	struct sem *curr;
617 	struct sembuf *sops;
618 	struct sem_undo *un;
619 
620 	sops = q->sops;
621 	nsops = q->nsops;
622 	un = q->undo;
623 
624 	for (sop = sops; sop < sops + nsops; sop++) {
625 		curr = sma->sem_base + sop->sem_num;
626 		sem_op = sop->sem_op;
627 		result = curr->semval;
628 
629 		if (!sem_op && result)
630 			goto would_block;
631 
632 		result += sem_op;
633 		if (result < 0)
634 			goto would_block;
635 		if (result > SEMVMX)
636 			goto out_of_range;
637 
638 		if (sop->sem_flg & SEM_UNDO) {
639 			int undo = un->semadj[sop->sem_num] - sem_op;
640 			/* Exceeding the undo range is an error. */
641 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
642 				goto out_of_range;
643 			un->semadj[sop->sem_num] = undo;
644 		}
645 
646 		curr->semval = result;
647 	}
648 
649 	sop--;
650 	pid = q->pid;
651 	while (sop >= sops) {
652 		sma->sem_base[sop->sem_num].sempid = pid;
653 		sop--;
654 	}
655 
656 	return 0;
657 
658 out_of_range:
659 	result = -ERANGE;
660 	goto undo;
661 
662 would_block:
663 	q->blocking = sop;
664 
665 	if (sop->sem_flg & IPC_NOWAIT)
666 		result = -EAGAIN;
667 	else
668 		result = 1;
669 
670 undo:
671 	sop--;
672 	while (sop >= sops) {
673 		sem_op = sop->sem_op;
674 		sma->sem_base[sop->sem_num].semval -= sem_op;
675 		if (sop->sem_flg & SEM_UNDO)
676 			un->semadj[sop->sem_num] += sem_op;
677 		sop--;
678 	}
679 
680 	return result;
681 }
682 
683 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
684  * @q: queue entry that must be signaled
685  * @error: Error value for the signal
686  *
687  * Prepare the wake-up of the queue entry q.
688  */
wake_up_sem_queue_prepare(struct list_head * pt,struct sem_queue * q,int error)689 static void wake_up_sem_queue_prepare(struct list_head *pt,
690 				struct sem_queue *q, int error)
691 {
692 	if (list_empty(pt)) {
693 		/*
694 		 * Hold preempt off so that we don't get preempted and have the
695 		 * wakee busy-wait until we're scheduled back on.
696 		 */
697 		preempt_disable();
698 	}
699 	q->status = IN_WAKEUP;
700 	q->pid = error;
701 
702 	list_add_tail(&q->list, pt);
703 }
704 
705 /**
706  * wake_up_sem_queue_do - do the actual wake-up
707  * @pt: list of tasks to be woken up
708  *
709  * Do the actual wake-up.
710  * The function is called without any locks held, thus the semaphore array
711  * could be destroyed already and the tasks can disappear as soon as the
712  * status is set to the actual return code.
713  */
wake_up_sem_queue_do(struct list_head * pt)714 static void wake_up_sem_queue_do(struct list_head *pt)
715 {
716 	struct sem_queue *q, *t;
717 	int did_something;
718 
719 	did_something = !list_empty(pt);
720 	list_for_each_entry_safe(q, t, pt, list) {
721 		wake_up_process(q->sleeper);
722 		/* q can disappear immediately after writing q->status. */
723 		smp_wmb();
724 		q->status = q->pid;
725 	}
726 	if (did_something)
727 		preempt_enable();
728 }
729 
unlink_queue(struct sem_array * sma,struct sem_queue * q)730 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
731 {
732 	list_del(&q->list);
733 	if (q->nsops > 1)
734 		sma->complex_count--;
735 }
736 
737 /** check_restart(sma, q)
738  * @sma: semaphore array
739  * @q: the operation that just completed
740  *
741  * update_queue is O(N^2) when it restarts scanning the whole queue of
742  * waiting operations. Therefore this function checks if the restart is
743  * really necessary. It is called after a previously waiting operation
744  * modified the array.
745  * Note that wait-for-zero operations are handled without restart.
746  */
check_restart(struct sem_array * sma,struct sem_queue * q)747 static int check_restart(struct sem_array *sma, struct sem_queue *q)
748 {
749 	/* pending complex alter operations are too difficult to analyse */
750 	if (!list_empty(&sma->pending_alter))
751 		return 1;
752 
753 	/* we were a sleeping complex operation. Too difficult */
754 	if (q->nsops > 1)
755 		return 1;
756 
757 	/* It is impossible that someone waits for the new value:
758 	 * - complex operations always restart.
759 	 * - wait-for-zero are handled seperately.
760 	 * - q is a previously sleeping simple operation that
761 	 *   altered the array. It must be a decrement, because
762 	 *   simple increments never sleep.
763 	 * - If there are older (higher priority) decrements
764 	 *   in the queue, then they have observed the original
765 	 *   semval value and couldn't proceed. The operation
766 	 *   decremented to value - thus they won't proceed either.
767 	 */
768 	return 0;
769 }
770 
771 /**
772  * wake_const_ops - wake up non-alter tasks
773  * @sma: semaphore array.
774  * @semnum: semaphore that was modified.
775  * @pt: list head for the tasks that must be woken up.
776  *
777  * wake_const_ops must be called after a semaphore in a semaphore array
778  * was set to 0. If complex const operations are pending, wake_const_ops must
779  * be called with semnum = -1, as well as with the number of each modified
780  * semaphore.
781  * The tasks that must be woken up are added to @pt. The return code
782  * is stored in q->pid.
783  * The function returns 1 if at least one operation was completed successfully.
784  */
wake_const_ops(struct sem_array * sma,int semnum,struct list_head * pt)785 static int wake_const_ops(struct sem_array *sma, int semnum,
786 				struct list_head *pt)
787 {
788 	struct sem_queue *q;
789 	struct list_head *walk;
790 	struct list_head *pending_list;
791 	int semop_completed = 0;
792 
793 	if (semnum == -1)
794 		pending_list = &sma->pending_const;
795 	else
796 		pending_list = &sma->sem_base[semnum].pending_const;
797 
798 	walk = pending_list->next;
799 	while (walk != pending_list) {
800 		int error;
801 
802 		q = container_of(walk, struct sem_queue, list);
803 		walk = walk->next;
804 
805 		error = perform_atomic_semop(sma, q);
806 
807 		if (error <= 0) {
808 			/* operation completed, remove from queue & wakeup */
809 
810 			unlink_queue(sma, q);
811 
812 			wake_up_sem_queue_prepare(pt, q, error);
813 			if (error == 0)
814 				semop_completed = 1;
815 		}
816 	}
817 	return semop_completed;
818 }
819 
820 /**
821  * do_smart_wakeup_zero - wakeup all wait for zero tasks
822  * @sma: semaphore array
823  * @sops: operations that were performed
824  * @nsops: number of operations
825  * @pt: list head of the tasks that must be woken up.
826  *
827  * Checks all required queue for wait-for-zero operations, based
828  * on the actual changes that were performed on the semaphore array.
829  * The function returns 1 if at least one operation was completed successfully.
830  */
do_smart_wakeup_zero(struct sem_array * sma,struct sembuf * sops,int nsops,struct list_head * pt)831 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
832 					int nsops, struct list_head *pt)
833 {
834 	int i;
835 	int semop_completed = 0;
836 	int got_zero = 0;
837 
838 	/* first: the per-semaphore queues, if known */
839 	if (sops) {
840 		for (i = 0; i < nsops; i++) {
841 			int num = sops[i].sem_num;
842 
843 			if (sma->sem_base[num].semval == 0) {
844 				got_zero = 1;
845 				semop_completed |= wake_const_ops(sma, num, pt);
846 			}
847 		}
848 	} else {
849 		/*
850 		 * No sops means modified semaphores not known.
851 		 * Assume all were changed.
852 		 */
853 		for (i = 0; i < sma->sem_nsems; i++) {
854 			if (sma->sem_base[i].semval == 0) {
855 				got_zero = 1;
856 				semop_completed |= wake_const_ops(sma, i, pt);
857 			}
858 		}
859 	}
860 	/*
861 	 * If one of the modified semaphores got 0,
862 	 * then check the global queue, too.
863 	 */
864 	if (got_zero)
865 		semop_completed |= wake_const_ops(sma, -1, pt);
866 
867 	return semop_completed;
868 }
869 
870 
871 /**
872  * update_queue - look for tasks that can be completed.
873  * @sma: semaphore array.
874  * @semnum: semaphore that was modified.
875  * @pt: list head for the tasks that must be woken up.
876  *
877  * update_queue must be called after a semaphore in a semaphore array
878  * was modified. If multiple semaphores were modified, update_queue must
879  * be called with semnum = -1, as well as with the number of each modified
880  * semaphore.
881  * The tasks that must be woken up are added to @pt. The return code
882  * is stored in q->pid.
883  * The function internally checks if const operations can now succeed.
884  *
885  * The function return 1 if at least one semop was completed successfully.
886  */
update_queue(struct sem_array * sma,int semnum,struct list_head * pt)887 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
888 {
889 	struct sem_queue *q;
890 	struct list_head *walk;
891 	struct list_head *pending_list;
892 	int semop_completed = 0;
893 
894 	if (semnum == -1)
895 		pending_list = &sma->pending_alter;
896 	else
897 		pending_list = &sma->sem_base[semnum].pending_alter;
898 
899 again:
900 	walk = pending_list->next;
901 	while (walk != pending_list) {
902 		int error, restart;
903 
904 		q = container_of(walk, struct sem_queue, list);
905 		walk = walk->next;
906 
907 		/* If we are scanning the single sop, per-semaphore list of
908 		 * one semaphore and that semaphore is 0, then it is not
909 		 * necessary to scan further: simple increments
910 		 * that affect only one entry succeed immediately and cannot
911 		 * be in the  per semaphore pending queue, and decrements
912 		 * cannot be successful if the value is already 0.
913 		 */
914 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
915 			break;
916 
917 		error = perform_atomic_semop(sma, q);
918 
919 		/* Does q->sleeper still need to sleep? */
920 		if (error > 0)
921 			continue;
922 
923 		unlink_queue(sma, q);
924 
925 		if (error) {
926 			restart = 0;
927 		} else {
928 			semop_completed = 1;
929 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
930 			restart = check_restart(sma, q);
931 		}
932 
933 		wake_up_sem_queue_prepare(pt, q, error);
934 		if (restart)
935 			goto again;
936 	}
937 	return semop_completed;
938 }
939 
940 /**
941  * set_semotime - set sem_otime
942  * @sma: semaphore array
943  * @sops: operations that modified the array, may be NULL
944  *
945  * sem_otime is replicated to avoid cache line trashing.
946  * This function sets one instance to the current time.
947  */
set_semotime(struct sem_array * sma,struct sembuf * sops)948 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
949 {
950 	if (sops == NULL) {
951 		sma->sem_base[0].sem_otime = get_seconds();
952 	} else {
953 		sma->sem_base[sops[0].sem_num].sem_otime =
954 							get_seconds();
955 	}
956 }
957 
958 /**
959  * do_smart_update - optimized update_queue
960  * @sma: semaphore array
961  * @sops: operations that were performed
962  * @nsops: number of operations
963  * @otime: force setting otime
964  * @pt: list head of the tasks that must be woken up.
965  *
966  * do_smart_update() does the required calls to update_queue and wakeup_zero,
967  * based on the actual changes that were performed on the semaphore array.
968  * Note that the function does not do the actual wake-up: the caller is
969  * responsible for calling wake_up_sem_queue_do(@pt).
970  * It is safe to perform this call after dropping all locks.
971  */
do_smart_update(struct sem_array * sma,struct sembuf * sops,int nsops,int otime,struct list_head * pt)972 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
973 			int otime, struct list_head *pt)
974 {
975 	int i;
976 
977 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
978 
979 	if (!list_empty(&sma->pending_alter)) {
980 		/* semaphore array uses the global queue - just process it. */
981 		otime |= update_queue(sma, -1, pt);
982 	} else {
983 		if (!sops) {
984 			/*
985 			 * No sops, thus the modified semaphores are not
986 			 * known. Check all.
987 			 */
988 			for (i = 0; i < sma->sem_nsems; i++)
989 				otime |= update_queue(sma, i, pt);
990 		} else {
991 			/*
992 			 * Check the semaphores that were increased:
993 			 * - No complex ops, thus all sleeping ops are
994 			 *   decrease.
995 			 * - if we decreased the value, then any sleeping
996 			 *   semaphore ops wont be able to run: If the
997 			 *   previous value was too small, then the new
998 			 *   value will be too small, too.
999 			 */
1000 			for (i = 0; i < nsops; i++) {
1001 				if (sops[i].sem_op > 0) {
1002 					otime |= update_queue(sma,
1003 							sops[i].sem_num, pt);
1004 				}
1005 			}
1006 		}
1007 	}
1008 	if (otime)
1009 		set_semotime(sma, sops);
1010 }
1011 
1012 /*
1013  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1014  */
check_qop(struct sem_array * sma,int semnum,struct sem_queue * q,bool count_zero)1015 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1016 			bool count_zero)
1017 {
1018 	struct sembuf *sop = q->blocking;
1019 
1020 	/*
1021 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1022 	 * semaphores. This violates SUS, therefore it was changed to the
1023 	 * standard compliant behavior.
1024 	 * Give the administrators a chance to notice that an application
1025 	 * might misbehave because it relies on the Linux behavior.
1026 	 */
1027 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1028 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1029 			current->comm, task_pid_nr(current));
1030 
1031 	if (sop->sem_num != semnum)
1032 		return 0;
1033 
1034 	if (count_zero && sop->sem_op == 0)
1035 		return 1;
1036 	if (!count_zero && sop->sem_op < 0)
1037 		return 1;
1038 
1039 	return 0;
1040 }
1041 
1042 /* The following counts are associated to each semaphore:
1043  *   semncnt        number of tasks waiting on semval being nonzero
1044  *   semzcnt        number of tasks waiting on semval being zero
1045  *
1046  * Per definition, a task waits only on the semaphore of the first semop
1047  * that cannot proceed, even if additional operation would block, too.
1048  */
count_semcnt(struct sem_array * sma,ushort semnum,bool count_zero)1049 static int count_semcnt(struct sem_array *sma, ushort semnum,
1050 			bool count_zero)
1051 {
1052 	struct list_head *l;
1053 	struct sem_queue *q;
1054 	int semcnt;
1055 
1056 	semcnt = 0;
1057 	/* First: check the simple operations. They are easy to evaluate */
1058 	if (count_zero)
1059 		l = &sma->sem_base[semnum].pending_const;
1060 	else
1061 		l = &sma->sem_base[semnum].pending_alter;
1062 
1063 	list_for_each_entry(q, l, list) {
1064 		/* all task on a per-semaphore list sleep on exactly
1065 		 * that semaphore
1066 		 */
1067 		semcnt++;
1068 	}
1069 
1070 	/* Then: check the complex operations. */
1071 	list_for_each_entry(q, &sma->pending_alter, list) {
1072 		semcnt += check_qop(sma, semnum, q, count_zero);
1073 	}
1074 	if (count_zero) {
1075 		list_for_each_entry(q, &sma->pending_const, list) {
1076 			semcnt += check_qop(sma, semnum, q, count_zero);
1077 		}
1078 	}
1079 	return semcnt;
1080 }
1081 
1082 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1083  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1084  * remains locked on exit.
1085  */
freeary(struct ipc_namespace * ns,struct kern_ipc_perm * ipcp)1086 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1087 {
1088 	struct sem_undo *un, *tu;
1089 	struct sem_queue *q, *tq;
1090 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1091 	struct list_head tasks;
1092 	int i;
1093 
1094 	/* Free the existing undo structures for this semaphore set.  */
1095 	ipc_assert_locked_object(&sma->sem_perm);
1096 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1097 		list_del(&un->list_id);
1098 		spin_lock(&un->ulp->lock);
1099 		un->semid = -1;
1100 		list_del_rcu(&un->list_proc);
1101 		spin_unlock(&un->ulp->lock);
1102 		kfree_rcu(un, rcu);
1103 	}
1104 
1105 	/* Wake up all pending processes and let them fail with EIDRM. */
1106 	INIT_LIST_HEAD(&tasks);
1107 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1108 		unlink_queue(sma, q);
1109 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1110 	}
1111 
1112 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1113 		unlink_queue(sma, q);
1114 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1115 	}
1116 	for (i = 0; i < sma->sem_nsems; i++) {
1117 		struct sem *sem = sma->sem_base + i;
1118 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1119 			unlink_queue(sma, q);
1120 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1121 		}
1122 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1123 			unlink_queue(sma, q);
1124 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1125 		}
1126 	}
1127 
1128 	/* Remove the semaphore set from the IDR */
1129 	sem_rmid(ns, sma);
1130 	sem_unlock(sma, -1);
1131 	rcu_read_unlock();
1132 
1133 	wake_up_sem_queue_do(&tasks);
1134 	ns->used_sems -= sma->sem_nsems;
1135 	ipc_rcu_putref(sma, sem_rcu_free);
1136 }
1137 
copy_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1138 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1139 {
1140 	switch (version) {
1141 	case IPC_64:
1142 		return copy_to_user(buf, in, sizeof(*in));
1143 	case IPC_OLD:
1144 	    {
1145 		struct semid_ds out;
1146 
1147 		memset(&out, 0, sizeof(out));
1148 
1149 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1150 
1151 		out.sem_otime	= in->sem_otime;
1152 		out.sem_ctime	= in->sem_ctime;
1153 		out.sem_nsems	= in->sem_nsems;
1154 
1155 		return copy_to_user(buf, &out, sizeof(out));
1156 	    }
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 }
1161 
get_semotime(struct sem_array * sma)1162 static time_t get_semotime(struct sem_array *sma)
1163 {
1164 	int i;
1165 	time_t res;
1166 
1167 	res = sma->sem_base[0].sem_otime;
1168 	for (i = 1; i < sma->sem_nsems; i++) {
1169 		time_t to = sma->sem_base[i].sem_otime;
1170 
1171 		if (to > res)
1172 			res = to;
1173 	}
1174 	return res;
1175 }
1176 
semctl_nolock(struct ipc_namespace * ns,int semid,int cmd,int version,void __user * p)1177 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1178 			 int cmd, int version, void __user *p)
1179 {
1180 	int err;
1181 	struct sem_array *sma;
1182 
1183 	switch (cmd) {
1184 	case IPC_INFO:
1185 	case SEM_INFO:
1186 	{
1187 		struct seminfo seminfo;
1188 		int max_id;
1189 
1190 		err = security_sem_semctl(NULL, cmd);
1191 		if (err)
1192 			return err;
1193 
1194 		memset(&seminfo, 0, sizeof(seminfo));
1195 		seminfo.semmni = ns->sc_semmni;
1196 		seminfo.semmns = ns->sc_semmns;
1197 		seminfo.semmsl = ns->sc_semmsl;
1198 		seminfo.semopm = ns->sc_semopm;
1199 		seminfo.semvmx = SEMVMX;
1200 		seminfo.semmnu = SEMMNU;
1201 		seminfo.semmap = SEMMAP;
1202 		seminfo.semume = SEMUME;
1203 		down_read(&sem_ids(ns).rwsem);
1204 		if (cmd == SEM_INFO) {
1205 			seminfo.semusz = sem_ids(ns).in_use;
1206 			seminfo.semaem = ns->used_sems;
1207 		} else {
1208 			seminfo.semusz = SEMUSZ;
1209 			seminfo.semaem = SEMAEM;
1210 		}
1211 		max_id = ipc_get_maxid(&sem_ids(ns));
1212 		up_read(&sem_ids(ns).rwsem);
1213 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1214 			return -EFAULT;
1215 		return (max_id < 0) ? 0 : max_id;
1216 	}
1217 	case IPC_STAT:
1218 	case SEM_STAT:
1219 	{
1220 		struct semid64_ds tbuf;
1221 		int id = 0;
1222 
1223 		memset(&tbuf, 0, sizeof(tbuf));
1224 
1225 		rcu_read_lock();
1226 		if (cmd == SEM_STAT) {
1227 			sma = sem_obtain_object(ns, semid);
1228 			if (IS_ERR(sma)) {
1229 				err = PTR_ERR(sma);
1230 				goto out_unlock;
1231 			}
1232 			id = sma->sem_perm.id;
1233 		} else {
1234 			sma = sem_obtain_object_check(ns, semid);
1235 			if (IS_ERR(sma)) {
1236 				err = PTR_ERR(sma);
1237 				goto out_unlock;
1238 			}
1239 		}
1240 
1241 		err = -EACCES;
1242 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1243 			goto out_unlock;
1244 
1245 		err = security_sem_semctl(sma, cmd);
1246 		if (err)
1247 			goto out_unlock;
1248 
1249 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1250 		tbuf.sem_otime = get_semotime(sma);
1251 		tbuf.sem_ctime = sma->sem_ctime;
1252 		tbuf.sem_nsems = sma->sem_nsems;
1253 		rcu_read_unlock();
1254 		if (copy_semid_to_user(p, &tbuf, version))
1255 			return -EFAULT;
1256 		return id;
1257 	}
1258 	default:
1259 		return -EINVAL;
1260 	}
1261 out_unlock:
1262 	rcu_read_unlock();
1263 	return err;
1264 }
1265 
semctl_setval(struct ipc_namespace * ns,int semid,int semnum,unsigned long arg)1266 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1267 		unsigned long arg)
1268 {
1269 	struct sem_undo *un;
1270 	struct sem_array *sma;
1271 	struct sem *curr;
1272 	int err;
1273 	struct list_head tasks;
1274 	int val;
1275 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1276 	/* big-endian 64bit */
1277 	val = arg >> 32;
1278 #else
1279 	/* 32bit or little-endian 64bit */
1280 	val = arg;
1281 #endif
1282 
1283 	if (val > SEMVMX || val < 0)
1284 		return -ERANGE;
1285 
1286 	INIT_LIST_HEAD(&tasks);
1287 
1288 	rcu_read_lock();
1289 	sma = sem_obtain_object_check(ns, semid);
1290 	if (IS_ERR(sma)) {
1291 		rcu_read_unlock();
1292 		return PTR_ERR(sma);
1293 	}
1294 
1295 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1296 		rcu_read_unlock();
1297 		return -EINVAL;
1298 	}
1299 
1300 
1301 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1302 		rcu_read_unlock();
1303 		return -EACCES;
1304 	}
1305 
1306 	err = security_sem_semctl(sma, SETVAL);
1307 	if (err) {
1308 		rcu_read_unlock();
1309 		return -EACCES;
1310 	}
1311 
1312 	sem_lock(sma, NULL, -1);
1313 
1314 	if (!ipc_valid_object(&sma->sem_perm)) {
1315 		sem_unlock(sma, -1);
1316 		rcu_read_unlock();
1317 		return -EIDRM;
1318 	}
1319 
1320 	curr = &sma->sem_base[semnum];
1321 
1322 	ipc_assert_locked_object(&sma->sem_perm);
1323 	list_for_each_entry(un, &sma->list_id, list_id)
1324 		un->semadj[semnum] = 0;
1325 
1326 	curr->semval = val;
1327 	curr->sempid = task_tgid_vnr(current);
1328 	sma->sem_ctime = get_seconds();
1329 	/* maybe some queued-up processes were waiting for this */
1330 	do_smart_update(sma, NULL, 0, 0, &tasks);
1331 	sem_unlock(sma, -1);
1332 	rcu_read_unlock();
1333 	wake_up_sem_queue_do(&tasks);
1334 	return 0;
1335 }
1336 
semctl_main(struct ipc_namespace * ns,int semid,int semnum,int cmd,void __user * p)1337 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1338 		int cmd, void __user *p)
1339 {
1340 	struct sem_array *sma;
1341 	struct sem *curr;
1342 	int err, nsems;
1343 	ushort fast_sem_io[SEMMSL_FAST];
1344 	ushort *sem_io = fast_sem_io;
1345 	struct list_head tasks;
1346 
1347 	INIT_LIST_HEAD(&tasks);
1348 
1349 	rcu_read_lock();
1350 	sma = sem_obtain_object_check(ns, semid);
1351 	if (IS_ERR(sma)) {
1352 		rcu_read_unlock();
1353 		return PTR_ERR(sma);
1354 	}
1355 
1356 	nsems = sma->sem_nsems;
1357 
1358 	err = -EACCES;
1359 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1360 		goto out_rcu_wakeup;
1361 
1362 	err = security_sem_semctl(sma, cmd);
1363 	if (err)
1364 		goto out_rcu_wakeup;
1365 
1366 	err = -EACCES;
1367 	switch (cmd) {
1368 	case GETALL:
1369 	{
1370 		ushort __user *array = p;
1371 		int i;
1372 
1373 		sem_lock(sma, NULL, -1);
1374 		if (!ipc_valid_object(&sma->sem_perm)) {
1375 			err = -EIDRM;
1376 			goto out_unlock;
1377 		}
1378 		if (nsems > SEMMSL_FAST) {
1379 			if (!ipc_rcu_getref(sma)) {
1380 				err = -EIDRM;
1381 				goto out_unlock;
1382 			}
1383 			sem_unlock(sma, -1);
1384 			rcu_read_unlock();
1385 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1386 			if (sem_io == NULL) {
1387 				ipc_rcu_putref(sma, sem_rcu_free);
1388 				return -ENOMEM;
1389 			}
1390 
1391 			rcu_read_lock();
1392 			sem_lock_and_putref(sma);
1393 			if (!ipc_valid_object(&sma->sem_perm)) {
1394 				err = -EIDRM;
1395 				goto out_unlock;
1396 			}
1397 		}
1398 		for (i = 0; i < sma->sem_nsems; i++)
1399 			sem_io[i] = sma->sem_base[i].semval;
1400 		sem_unlock(sma, -1);
1401 		rcu_read_unlock();
1402 		err = 0;
1403 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1404 			err = -EFAULT;
1405 		goto out_free;
1406 	}
1407 	case SETALL:
1408 	{
1409 		int i;
1410 		struct sem_undo *un;
1411 
1412 		if (!ipc_rcu_getref(sma)) {
1413 			err = -EIDRM;
1414 			goto out_rcu_wakeup;
1415 		}
1416 		rcu_read_unlock();
1417 
1418 		if (nsems > SEMMSL_FAST) {
1419 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1420 			if (sem_io == NULL) {
1421 				ipc_rcu_putref(sma, sem_rcu_free);
1422 				return -ENOMEM;
1423 			}
1424 		}
1425 
1426 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1427 			ipc_rcu_putref(sma, sem_rcu_free);
1428 			err = -EFAULT;
1429 			goto out_free;
1430 		}
1431 
1432 		for (i = 0; i < nsems; i++) {
1433 			if (sem_io[i] > SEMVMX) {
1434 				ipc_rcu_putref(sma, sem_rcu_free);
1435 				err = -ERANGE;
1436 				goto out_free;
1437 			}
1438 		}
1439 		rcu_read_lock();
1440 		sem_lock_and_putref(sma);
1441 		if (!ipc_valid_object(&sma->sem_perm)) {
1442 			err = -EIDRM;
1443 			goto out_unlock;
1444 		}
1445 
1446 		for (i = 0; i < nsems; i++)
1447 			sma->sem_base[i].semval = sem_io[i];
1448 
1449 		ipc_assert_locked_object(&sma->sem_perm);
1450 		list_for_each_entry(un, &sma->list_id, list_id) {
1451 			for (i = 0; i < nsems; i++)
1452 				un->semadj[i] = 0;
1453 		}
1454 		sma->sem_ctime = get_seconds();
1455 		/* maybe some queued-up processes were waiting for this */
1456 		do_smart_update(sma, NULL, 0, 0, &tasks);
1457 		err = 0;
1458 		goto out_unlock;
1459 	}
1460 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1461 	}
1462 	err = -EINVAL;
1463 	if (semnum < 0 || semnum >= nsems)
1464 		goto out_rcu_wakeup;
1465 
1466 	sem_lock(sma, NULL, -1);
1467 	if (!ipc_valid_object(&sma->sem_perm)) {
1468 		err = -EIDRM;
1469 		goto out_unlock;
1470 	}
1471 	curr = &sma->sem_base[semnum];
1472 
1473 	switch (cmd) {
1474 	case GETVAL:
1475 		err = curr->semval;
1476 		goto out_unlock;
1477 	case GETPID:
1478 		err = curr->sempid;
1479 		goto out_unlock;
1480 	case GETNCNT:
1481 		err = count_semcnt(sma, semnum, 0);
1482 		goto out_unlock;
1483 	case GETZCNT:
1484 		err = count_semcnt(sma, semnum, 1);
1485 		goto out_unlock;
1486 	}
1487 
1488 out_unlock:
1489 	sem_unlock(sma, -1);
1490 out_rcu_wakeup:
1491 	rcu_read_unlock();
1492 	wake_up_sem_queue_do(&tasks);
1493 out_free:
1494 	if (sem_io != fast_sem_io)
1495 		ipc_free(sem_io, sizeof(ushort)*nsems);
1496 	return err;
1497 }
1498 
1499 static inline unsigned long
copy_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1500 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1501 {
1502 	switch (version) {
1503 	case IPC_64:
1504 		if (copy_from_user(out, buf, sizeof(*out)))
1505 			return -EFAULT;
1506 		return 0;
1507 	case IPC_OLD:
1508 	    {
1509 		struct semid_ds tbuf_old;
1510 
1511 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1512 			return -EFAULT;
1513 
1514 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1515 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1516 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1517 
1518 		return 0;
1519 	    }
1520 	default:
1521 		return -EINVAL;
1522 	}
1523 }
1524 
1525 /*
1526  * This function handles some semctl commands which require the rwsem
1527  * to be held in write mode.
1528  * NOTE: no locks must be held, the rwsem is taken inside this function.
1529  */
semctl_down(struct ipc_namespace * ns,int semid,int cmd,int version,void __user * p)1530 static int semctl_down(struct ipc_namespace *ns, int semid,
1531 		       int cmd, int version, void __user *p)
1532 {
1533 	struct sem_array *sma;
1534 	int err;
1535 	struct semid64_ds semid64;
1536 	struct kern_ipc_perm *ipcp;
1537 
1538 	if (cmd == IPC_SET) {
1539 		if (copy_semid_from_user(&semid64, p, version))
1540 			return -EFAULT;
1541 	}
1542 
1543 	down_write(&sem_ids(ns).rwsem);
1544 	rcu_read_lock();
1545 
1546 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1547 				      &semid64.sem_perm, 0);
1548 	if (IS_ERR(ipcp)) {
1549 		err = PTR_ERR(ipcp);
1550 		goto out_unlock1;
1551 	}
1552 
1553 	sma = container_of(ipcp, struct sem_array, sem_perm);
1554 
1555 	err = security_sem_semctl(sma, cmd);
1556 	if (err)
1557 		goto out_unlock1;
1558 
1559 	switch (cmd) {
1560 	case IPC_RMID:
1561 		sem_lock(sma, NULL, -1);
1562 		/* freeary unlocks the ipc object and rcu */
1563 		freeary(ns, ipcp);
1564 		goto out_up;
1565 	case IPC_SET:
1566 		sem_lock(sma, NULL, -1);
1567 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1568 		if (err)
1569 			goto out_unlock0;
1570 		sma->sem_ctime = get_seconds();
1571 		break;
1572 	default:
1573 		err = -EINVAL;
1574 		goto out_unlock1;
1575 	}
1576 
1577 out_unlock0:
1578 	sem_unlock(sma, -1);
1579 out_unlock1:
1580 	rcu_read_unlock();
1581 out_up:
1582 	up_write(&sem_ids(ns).rwsem);
1583 	return err;
1584 }
1585 
SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1586 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1587 {
1588 	int version;
1589 	struct ipc_namespace *ns;
1590 	void __user *p = (void __user *)arg;
1591 
1592 	if (semid < 0)
1593 		return -EINVAL;
1594 
1595 	version = ipc_parse_version(&cmd);
1596 	ns = current->nsproxy->ipc_ns;
1597 
1598 	switch (cmd) {
1599 	case IPC_INFO:
1600 	case SEM_INFO:
1601 	case IPC_STAT:
1602 	case SEM_STAT:
1603 		return semctl_nolock(ns, semid, cmd, version, p);
1604 	case GETALL:
1605 	case GETVAL:
1606 	case GETPID:
1607 	case GETNCNT:
1608 	case GETZCNT:
1609 	case SETALL:
1610 		return semctl_main(ns, semid, semnum, cmd, p);
1611 	case SETVAL:
1612 		return semctl_setval(ns, semid, semnum, arg);
1613 	case IPC_RMID:
1614 	case IPC_SET:
1615 		return semctl_down(ns, semid, cmd, version, p);
1616 	default:
1617 		return -EINVAL;
1618 	}
1619 }
1620 
1621 /* If the task doesn't already have a undo_list, then allocate one
1622  * here.  We guarantee there is only one thread using this undo list,
1623  * and current is THE ONE
1624  *
1625  * If this allocation and assignment succeeds, but later
1626  * portions of this code fail, there is no need to free the sem_undo_list.
1627  * Just let it stay associated with the task, and it'll be freed later
1628  * at exit time.
1629  *
1630  * This can block, so callers must hold no locks.
1631  */
get_undo_list(struct sem_undo_list ** undo_listp)1632 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1633 {
1634 	struct sem_undo_list *undo_list;
1635 
1636 	undo_list = current->sysvsem.undo_list;
1637 	if (!undo_list) {
1638 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1639 		if (undo_list == NULL)
1640 			return -ENOMEM;
1641 		spin_lock_init(&undo_list->lock);
1642 		atomic_set(&undo_list->refcnt, 1);
1643 		INIT_LIST_HEAD(&undo_list->list_proc);
1644 
1645 		current->sysvsem.undo_list = undo_list;
1646 	}
1647 	*undo_listp = undo_list;
1648 	return 0;
1649 }
1650 
__lookup_undo(struct sem_undo_list * ulp,int semid)1651 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1652 {
1653 	struct sem_undo *un;
1654 
1655 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1656 		if (un->semid == semid)
1657 			return un;
1658 	}
1659 	return NULL;
1660 }
1661 
lookup_undo(struct sem_undo_list * ulp,int semid)1662 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1663 {
1664 	struct sem_undo *un;
1665 
1666 	assert_spin_locked(&ulp->lock);
1667 
1668 	un = __lookup_undo(ulp, semid);
1669 	if (un) {
1670 		list_del_rcu(&un->list_proc);
1671 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1672 	}
1673 	return un;
1674 }
1675 
1676 /**
1677  * find_alloc_undo - lookup (and if not present create) undo array
1678  * @ns: namespace
1679  * @semid: semaphore array id
1680  *
1681  * The function looks up (and if not present creates) the undo structure.
1682  * The size of the undo structure depends on the size of the semaphore
1683  * array, thus the alloc path is not that straightforward.
1684  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1685  * performs a rcu_read_lock().
1686  */
find_alloc_undo(struct ipc_namespace * ns,int semid)1687 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1688 {
1689 	struct sem_array *sma;
1690 	struct sem_undo_list *ulp;
1691 	struct sem_undo *un, *new;
1692 	int nsems, error;
1693 
1694 	error = get_undo_list(&ulp);
1695 	if (error)
1696 		return ERR_PTR(error);
1697 
1698 	rcu_read_lock();
1699 	spin_lock(&ulp->lock);
1700 	un = lookup_undo(ulp, semid);
1701 	spin_unlock(&ulp->lock);
1702 	if (likely(un != NULL))
1703 		goto out;
1704 
1705 	/* no undo structure around - allocate one. */
1706 	/* step 1: figure out the size of the semaphore array */
1707 	sma = sem_obtain_object_check(ns, semid);
1708 	if (IS_ERR(sma)) {
1709 		rcu_read_unlock();
1710 		return ERR_CAST(sma);
1711 	}
1712 
1713 	nsems = sma->sem_nsems;
1714 	if (!ipc_rcu_getref(sma)) {
1715 		rcu_read_unlock();
1716 		un = ERR_PTR(-EIDRM);
1717 		goto out;
1718 	}
1719 	rcu_read_unlock();
1720 
1721 	/* step 2: allocate new undo structure */
1722 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1723 	if (!new) {
1724 		ipc_rcu_putref(sma, sem_rcu_free);
1725 		return ERR_PTR(-ENOMEM);
1726 	}
1727 
1728 	/* step 3: Acquire the lock on semaphore array */
1729 	rcu_read_lock();
1730 	sem_lock_and_putref(sma);
1731 	if (!ipc_valid_object(&sma->sem_perm)) {
1732 		sem_unlock(sma, -1);
1733 		rcu_read_unlock();
1734 		kfree(new);
1735 		un = ERR_PTR(-EIDRM);
1736 		goto out;
1737 	}
1738 	spin_lock(&ulp->lock);
1739 
1740 	/*
1741 	 * step 4: check for races: did someone else allocate the undo struct?
1742 	 */
1743 	un = lookup_undo(ulp, semid);
1744 	if (un) {
1745 		kfree(new);
1746 		goto success;
1747 	}
1748 	/* step 5: initialize & link new undo structure */
1749 	new->semadj = (short *) &new[1];
1750 	new->ulp = ulp;
1751 	new->semid = semid;
1752 	assert_spin_locked(&ulp->lock);
1753 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1754 	ipc_assert_locked_object(&sma->sem_perm);
1755 	list_add(&new->list_id, &sma->list_id);
1756 	un = new;
1757 
1758 success:
1759 	spin_unlock(&ulp->lock);
1760 	sem_unlock(sma, -1);
1761 out:
1762 	return un;
1763 }
1764 
1765 
1766 /**
1767  * get_queue_result - retrieve the result code from sem_queue
1768  * @q: Pointer to queue structure
1769  *
1770  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1771  * q->status, then we must loop until the value is replaced with the final
1772  * value: This may happen if a task is woken up by an unrelated event (e.g.
1773  * signal) and in parallel the task is woken up by another task because it got
1774  * the requested semaphores.
1775  *
1776  * The function can be called with or without holding the semaphore spinlock.
1777  */
get_queue_result(struct sem_queue * q)1778 static int get_queue_result(struct sem_queue *q)
1779 {
1780 	int error;
1781 
1782 	error = q->status;
1783 	while (unlikely(error == IN_WAKEUP)) {
1784 		cpu_relax();
1785 		error = q->status;
1786 	}
1787 
1788 	return error;
1789 }
1790 
SYSCALL_DEFINE4(semtimedop,int,semid,struct sembuf __user *,tsops,unsigned,nsops,const struct timespec __user *,timeout)1791 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1792 		unsigned, nsops, const struct timespec __user *, timeout)
1793 {
1794 	int error = -EINVAL;
1795 	struct sem_array *sma;
1796 	struct sembuf fast_sops[SEMOPM_FAST];
1797 	struct sembuf *sops = fast_sops, *sop;
1798 	struct sem_undo *un;
1799 	int undos = 0, alter = 0, max, locknum;
1800 	struct sem_queue queue;
1801 	unsigned long jiffies_left = 0;
1802 	struct ipc_namespace *ns;
1803 	struct list_head tasks;
1804 
1805 	ns = current->nsproxy->ipc_ns;
1806 
1807 	if (nsops < 1 || semid < 0)
1808 		return -EINVAL;
1809 	if (nsops > ns->sc_semopm)
1810 		return -E2BIG;
1811 	if (nsops > SEMOPM_FAST) {
1812 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1813 		if (sops == NULL)
1814 			return -ENOMEM;
1815 	}
1816 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1817 		error =  -EFAULT;
1818 		goto out_free;
1819 	}
1820 	if (timeout) {
1821 		struct timespec _timeout;
1822 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1823 			error = -EFAULT;
1824 			goto out_free;
1825 		}
1826 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1827 			_timeout.tv_nsec >= 1000000000L) {
1828 			error = -EINVAL;
1829 			goto out_free;
1830 		}
1831 		jiffies_left = timespec_to_jiffies(&_timeout);
1832 	}
1833 	max = 0;
1834 	for (sop = sops; sop < sops + nsops; sop++) {
1835 		if (sop->sem_num >= max)
1836 			max = sop->sem_num;
1837 		if (sop->sem_flg & SEM_UNDO)
1838 			undos = 1;
1839 		if (sop->sem_op != 0)
1840 			alter = 1;
1841 	}
1842 
1843 	INIT_LIST_HEAD(&tasks);
1844 
1845 	if (undos) {
1846 		/* On success, find_alloc_undo takes the rcu_read_lock */
1847 		un = find_alloc_undo(ns, semid);
1848 		if (IS_ERR(un)) {
1849 			error = PTR_ERR(un);
1850 			goto out_free;
1851 		}
1852 	} else {
1853 		un = NULL;
1854 		rcu_read_lock();
1855 	}
1856 
1857 	sma = sem_obtain_object_check(ns, semid);
1858 	if (IS_ERR(sma)) {
1859 		rcu_read_unlock();
1860 		error = PTR_ERR(sma);
1861 		goto out_free;
1862 	}
1863 
1864 	error = -EFBIG;
1865 	if (max >= sma->sem_nsems)
1866 		goto out_rcu_wakeup;
1867 
1868 	error = -EACCES;
1869 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1870 		goto out_rcu_wakeup;
1871 
1872 	error = security_sem_semop(sma, sops, nsops, alter);
1873 	if (error)
1874 		goto out_rcu_wakeup;
1875 
1876 	error = -EIDRM;
1877 	locknum = sem_lock(sma, sops, nsops);
1878 	/*
1879 	 * We eventually might perform the following check in a lockless
1880 	 * fashion, considering ipc_valid_object() locking constraints.
1881 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1882 	 * only a per-semaphore lock is held and it's OK to proceed with the
1883 	 * check below. More details on the fine grained locking scheme
1884 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1885 	 */
1886 	if (!ipc_valid_object(&sma->sem_perm))
1887 		goto out_unlock_free;
1888 	/*
1889 	 * semid identifiers are not unique - find_alloc_undo may have
1890 	 * allocated an undo structure, it was invalidated by an RMID
1891 	 * and now a new array with received the same id. Check and fail.
1892 	 * This case can be detected checking un->semid. The existence of
1893 	 * "un" itself is guaranteed by rcu.
1894 	 */
1895 	if (un && un->semid == -1)
1896 		goto out_unlock_free;
1897 
1898 	queue.sops = sops;
1899 	queue.nsops = nsops;
1900 	queue.undo = un;
1901 	queue.pid = task_tgid_vnr(current);
1902 	queue.alter = alter;
1903 
1904 	error = perform_atomic_semop(sma, &queue);
1905 	if (error == 0) {
1906 		/* If the operation was successful, then do
1907 		 * the required updates.
1908 		 */
1909 		if (alter)
1910 			do_smart_update(sma, sops, nsops, 1, &tasks);
1911 		else
1912 			set_semotime(sma, sops);
1913 	}
1914 	if (error <= 0)
1915 		goto out_unlock_free;
1916 
1917 	/* We need to sleep on this operation, so we put the current
1918 	 * task into the pending queue and go to sleep.
1919 	 */
1920 
1921 	if (nsops == 1) {
1922 		struct sem *curr;
1923 		curr = &sma->sem_base[sops->sem_num];
1924 
1925 		if (alter) {
1926 			if (sma->complex_count) {
1927 				list_add_tail(&queue.list,
1928 						&sma->pending_alter);
1929 			} else {
1930 
1931 				list_add_tail(&queue.list,
1932 						&curr->pending_alter);
1933 			}
1934 		} else {
1935 			list_add_tail(&queue.list, &curr->pending_const);
1936 		}
1937 	} else {
1938 		if (!sma->complex_count)
1939 			merge_queues(sma);
1940 
1941 		if (alter)
1942 			list_add_tail(&queue.list, &sma->pending_alter);
1943 		else
1944 			list_add_tail(&queue.list, &sma->pending_const);
1945 
1946 		sma->complex_count++;
1947 	}
1948 
1949 	queue.status = -EINTR;
1950 	queue.sleeper = current;
1951 
1952 sleep_again:
1953 	current->state = TASK_INTERRUPTIBLE;
1954 	sem_unlock(sma, locknum);
1955 	rcu_read_unlock();
1956 
1957 	if (timeout)
1958 		jiffies_left = schedule_timeout(jiffies_left);
1959 	else
1960 		schedule();
1961 
1962 	error = get_queue_result(&queue);
1963 
1964 	if (error != -EINTR) {
1965 		/* fast path: update_queue already obtained all requested
1966 		 * resources.
1967 		 * Perform a smp_mb(): User space could assume that semop()
1968 		 * is a memory barrier: Without the mb(), the cpu could
1969 		 * speculatively read in user space stale data that was
1970 		 * overwritten by the previous owner of the semaphore.
1971 		 */
1972 		smp_mb();
1973 
1974 		goto out_free;
1975 	}
1976 
1977 	rcu_read_lock();
1978 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1979 
1980 	/*
1981 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1982 	 */
1983 	error = get_queue_result(&queue);
1984 
1985 	/*
1986 	 * Array removed? If yes, leave without sem_unlock().
1987 	 */
1988 	if (IS_ERR(sma)) {
1989 		rcu_read_unlock();
1990 		goto out_free;
1991 	}
1992 
1993 
1994 	/*
1995 	 * If queue.status != -EINTR we are woken up by another process.
1996 	 * Leave without unlink_queue(), but with sem_unlock().
1997 	 */
1998 	if (error != -EINTR)
1999 		goto out_unlock_free;
2000 
2001 	/*
2002 	 * If an interrupt occurred we have to clean up the queue
2003 	 */
2004 	if (timeout && jiffies_left == 0)
2005 		error = -EAGAIN;
2006 
2007 	/*
2008 	 * If the wakeup was spurious, just retry
2009 	 */
2010 	if (error == -EINTR && !signal_pending(current))
2011 		goto sleep_again;
2012 
2013 	unlink_queue(sma, &queue);
2014 
2015 out_unlock_free:
2016 	sem_unlock(sma, locknum);
2017 out_rcu_wakeup:
2018 	rcu_read_unlock();
2019 	wake_up_sem_queue_do(&tasks);
2020 out_free:
2021 	if (sops != fast_sops)
2022 		kfree(sops);
2023 	return error;
2024 }
2025 
SYSCALL_DEFINE3(semop,int,semid,struct sembuf __user *,tsops,unsigned,nsops)2026 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2027 		unsigned, nsops)
2028 {
2029 	return sys_semtimedop(semid, tsops, nsops, NULL);
2030 }
2031 
2032 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2033  * parent and child tasks.
2034  */
2035 
copy_semundo(unsigned long clone_flags,struct task_struct * tsk)2036 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2037 {
2038 	struct sem_undo_list *undo_list;
2039 	int error;
2040 
2041 	if (clone_flags & CLONE_SYSVSEM) {
2042 		error = get_undo_list(&undo_list);
2043 		if (error)
2044 			return error;
2045 		atomic_inc(&undo_list->refcnt);
2046 		tsk->sysvsem.undo_list = undo_list;
2047 	} else
2048 		tsk->sysvsem.undo_list = NULL;
2049 
2050 	return 0;
2051 }
2052 
2053 /*
2054  * add semadj values to semaphores, free undo structures.
2055  * undo structures are not freed when semaphore arrays are destroyed
2056  * so some of them may be out of date.
2057  * IMPLEMENTATION NOTE: There is some confusion over whether the
2058  * set of adjustments that needs to be done should be done in an atomic
2059  * manner or not. That is, if we are attempting to decrement the semval
2060  * should we queue up and wait until we can do so legally?
2061  * The original implementation attempted to do this (queue and wait).
2062  * The current implementation does not do so. The POSIX standard
2063  * and SVID should be consulted to determine what behavior is mandated.
2064  */
exit_sem(struct task_struct * tsk)2065 void exit_sem(struct task_struct *tsk)
2066 {
2067 	struct sem_undo_list *ulp;
2068 
2069 	ulp = tsk->sysvsem.undo_list;
2070 	if (!ulp)
2071 		return;
2072 	tsk->sysvsem.undo_list = NULL;
2073 
2074 	if (!atomic_dec_and_test(&ulp->refcnt))
2075 		return;
2076 
2077 	for (;;) {
2078 		struct sem_array *sma;
2079 		struct sem_undo *un;
2080 		struct list_head tasks;
2081 		int semid, i;
2082 
2083 		rcu_read_lock();
2084 		un = list_entry_rcu(ulp->list_proc.next,
2085 				    struct sem_undo, list_proc);
2086 		if (&un->list_proc == &ulp->list_proc) {
2087 			/*
2088 			 * We must wait for freeary() before freeing this ulp,
2089 			 * in case we raced with last sem_undo. There is a small
2090 			 * possibility where we exit while freeary() didn't
2091 			 * finish unlocking sem_undo_list.
2092 			 */
2093 			spin_unlock_wait(&ulp->lock);
2094 			rcu_read_unlock();
2095 			break;
2096 		}
2097 		spin_lock(&ulp->lock);
2098 		semid = un->semid;
2099 		spin_unlock(&ulp->lock);
2100 
2101 		/* exit_sem raced with IPC_RMID, nothing to do */
2102 		if (semid == -1) {
2103 			rcu_read_unlock();
2104 			continue;
2105 		}
2106 
2107 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2108 		/* exit_sem raced with IPC_RMID, nothing to do */
2109 		if (IS_ERR(sma)) {
2110 			rcu_read_unlock();
2111 			continue;
2112 		}
2113 
2114 		sem_lock(sma, NULL, -1);
2115 		/* exit_sem raced with IPC_RMID, nothing to do */
2116 		if (!ipc_valid_object(&sma->sem_perm)) {
2117 			sem_unlock(sma, -1);
2118 			rcu_read_unlock();
2119 			continue;
2120 		}
2121 		un = __lookup_undo(ulp, semid);
2122 		if (un == NULL) {
2123 			/* exit_sem raced with IPC_RMID+semget() that created
2124 			 * exactly the same semid. Nothing to do.
2125 			 */
2126 			sem_unlock(sma, -1);
2127 			rcu_read_unlock();
2128 			continue;
2129 		}
2130 
2131 		/* remove un from the linked lists */
2132 		ipc_assert_locked_object(&sma->sem_perm);
2133 		list_del(&un->list_id);
2134 
2135 		spin_lock(&ulp->lock);
2136 		list_del_rcu(&un->list_proc);
2137 		spin_unlock(&ulp->lock);
2138 
2139 		/* perform adjustments registered in un */
2140 		for (i = 0; i < sma->sem_nsems; i++) {
2141 			struct sem *semaphore = &sma->sem_base[i];
2142 			if (un->semadj[i]) {
2143 				semaphore->semval += un->semadj[i];
2144 				/*
2145 				 * Range checks of the new semaphore value,
2146 				 * not defined by sus:
2147 				 * - Some unices ignore the undo entirely
2148 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2149 				 * - some cap the value (e.g. FreeBSD caps
2150 				 *   at 0, but doesn't enforce SEMVMX)
2151 				 *
2152 				 * Linux caps the semaphore value, both at 0
2153 				 * and at SEMVMX.
2154 				 *
2155 				 *	Manfred <manfred@colorfullife.com>
2156 				 */
2157 				if (semaphore->semval < 0)
2158 					semaphore->semval = 0;
2159 				if (semaphore->semval > SEMVMX)
2160 					semaphore->semval = SEMVMX;
2161 				semaphore->sempid = task_tgid_vnr(current);
2162 			}
2163 		}
2164 		/* maybe some queued-up processes were waiting for this */
2165 		INIT_LIST_HEAD(&tasks);
2166 		do_smart_update(sma, NULL, 0, 1, &tasks);
2167 		sem_unlock(sma, -1);
2168 		rcu_read_unlock();
2169 		wake_up_sem_queue_do(&tasks);
2170 
2171 		kfree_rcu(un, rcu);
2172 	}
2173 	kfree(ulp);
2174 }
2175 
2176 #ifdef CONFIG_PROC_FS
sysvipc_sem_proc_show(struct seq_file * s,void * it)2177 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2178 {
2179 	struct user_namespace *user_ns = seq_user_ns(s);
2180 	struct sem_array *sma = it;
2181 	time_t sem_otime;
2182 
2183 	/*
2184 	 * The proc interface isn't aware of sem_lock(), it calls
2185 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2186 	 * In order to stay compatible with sem_lock(), we must wait until
2187 	 * all simple semop() calls have left their critical regions.
2188 	 */
2189 	sem_wait_array(sma);
2190 
2191 	sem_otime = get_semotime(sma);
2192 
2193 	return seq_printf(s,
2194 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2195 			  sma->sem_perm.key,
2196 			  sma->sem_perm.id,
2197 			  sma->sem_perm.mode,
2198 			  sma->sem_nsems,
2199 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2200 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2201 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2202 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2203 			  sem_otime,
2204 			  sma->sem_ctime);
2205 }
2206 #endif
2207