1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "timekeeping.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 .resolution = KTIME_LOW_RES,
78 },
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 .resolution = KTIME_LOW_RES,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 .resolution = KTIME_LOW_RES,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 .resolution = KTIME_LOW_RES,
96 },
97 }
98 };
99
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
104 [CLOCK_TAI] = HRTIMER_BASE_TAI,
105 };
106
hrtimer_clockid_to_base(clockid_t clock_id)107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 return hrtimer_clock_to_base_table[clock_id];
110 }
111
112
113 /*
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
116 */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 ktime_t xtim, mono, boot, tai;
120 ktime_t off_real, off_boot, off_tai;
121
122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 boot = ktime_add(mono, off_boot);
124 xtim = ktime_add(mono, off_real);
125 tai = ktime_add(mono, off_tai);
126
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132
133 /*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137 #ifdef CONFIG_SMP
138
139 /*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
154 {
155 struct hrtimer_clock_base *base;
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 }
166 cpu_relax();
167 }
168 }
169
170 /*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 return 0;
190 #endif
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
199 {
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = get_nohz_timer_target(pinned);
204 int basenum = base->index;
205
206 again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
209
210 if (base != new_base) {
211 /*
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
227
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
234 }
235 timer->base = new_base;
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
240 }
241 }
242 return new_base;
243 }
244
245 #else /* CONFIG_SMP */
246
247 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 struct hrtimer_clock_base *base = timer->base;
251
252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253
254 return base;
255 }
256
257 # define switch_hrtimer_base(t, b, p) (b)
258
259 #endif /* !CONFIG_SMP */
260
261 /*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265 #if BITS_PER_LONG < 64
266 /*
267 * Divide a ktime value by a nanosecond value
268 */
__ktime_divns(const ktime_t kt,s64 div)269 s64 __ktime_divns(const ktime_t kt, s64 div)
270 {
271 int sft = 0;
272 s64 dclc;
273 u64 tmp;
274
275 dclc = ktime_to_ns(kt);
276 tmp = dclc < 0 ? -dclc : dclc;
277
278 /* Make sure the divisor is less than 2^32: */
279 while (div >> 32) {
280 sft++;
281 div >>= 1;
282 }
283 tmp >>= sft;
284 do_div(tmp, (unsigned long) div);
285 return dclc < 0 ? -tmp : tmp;
286 }
287 EXPORT_SYMBOL_GPL(__ktime_divns);
288 #endif /* BITS_PER_LONG >= 64 */
289
290 /*
291 * Add two ktime values and do a safety check for overflow:
292 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)293 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
294 {
295 ktime_t res = ktime_add(lhs, rhs);
296
297 /*
298 * We use KTIME_SEC_MAX here, the maximum timeout which we can
299 * return to user space in a timespec:
300 */
301 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
302 res = ktime_set(KTIME_SEC_MAX, 0);
303
304 return res;
305 }
306
307 EXPORT_SYMBOL_GPL(ktime_add_safe);
308
309 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
310
311 static struct debug_obj_descr hrtimer_debug_descr;
312
hrtimer_debug_hint(void * addr)313 static void *hrtimer_debug_hint(void *addr)
314 {
315 return ((struct hrtimer *) addr)->function;
316 }
317
318 /*
319 * fixup_init is called when:
320 * - an active object is initialized
321 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)322 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
323 {
324 struct hrtimer *timer = addr;
325
326 switch (state) {
327 case ODEBUG_STATE_ACTIVE:
328 hrtimer_cancel(timer);
329 debug_object_init(timer, &hrtimer_debug_descr);
330 return 1;
331 default:
332 return 0;
333 }
334 }
335
336 /*
337 * fixup_activate is called when:
338 * - an active object is activated
339 * - an unknown object is activated (might be a statically initialized object)
340 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)341 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
342 {
343 switch (state) {
344
345 case ODEBUG_STATE_NOTAVAILABLE:
346 WARN_ON_ONCE(1);
347 return 0;
348
349 case ODEBUG_STATE_ACTIVE:
350 WARN_ON(1);
351
352 default:
353 return 0;
354 }
355 }
356
357 /*
358 * fixup_free is called when:
359 * - an active object is freed
360 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)361 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
362 {
363 struct hrtimer *timer = addr;
364
365 switch (state) {
366 case ODEBUG_STATE_ACTIVE:
367 hrtimer_cancel(timer);
368 debug_object_free(timer, &hrtimer_debug_descr);
369 return 1;
370 default:
371 return 0;
372 }
373 }
374
375 static struct debug_obj_descr hrtimer_debug_descr = {
376 .name = "hrtimer",
377 .debug_hint = hrtimer_debug_hint,
378 .fixup_init = hrtimer_fixup_init,
379 .fixup_activate = hrtimer_fixup_activate,
380 .fixup_free = hrtimer_fixup_free,
381 };
382
debug_hrtimer_init(struct hrtimer * timer)383 static inline void debug_hrtimer_init(struct hrtimer *timer)
384 {
385 debug_object_init(timer, &hrtimer_debug_descr);
386 }
387
debug_hrtimer_activate(struct hrtimer * timer)388 static inline void debug_hrtimer_activate(struct hrtimer *timer)
389 {
390 debug_object_activate(timer, &hrtimer_debug_descr);
391 }
392
debug_hrtimer_deactivate(struct hrtimer * timer)393 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
394 {
395 debug_object_deactivate(timer, &hrtimer_debug_descr);
396 }
397
debug_hrtimer_free(struct hrtimer * timer)398 static inline void debug_hrtimer_free(struct hrtimer *timer)
399 {
400 debug_object_free(timer, &hrtimer_debug_descr);
401 }
402
403 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
404 enum hrtimer_mode mode);
405
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)406 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
407 enum hrtimer_mode mode)
408 {
409 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
410 __hrtimer_init(timer, clock_id, mode);
411 }
412 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
413
destroy_hrtimer_on_stack(struct hrtimer * timer)414 void destroy_hrtimer_on_stack(struct hrtimer *timer)
415 {
416 debug_object_free(timer, &hrtimer_debug_descr);
417 }
418
419 #else
debug_hrtimer_init(struct hrtimer * timer)420 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)421 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)422 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
423 #endif
424
425 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)426 debug_init(struct hrtimer *timer, clockid_t clockid,
427 enum hrtimer_mode mode)
428 {
429 debug_hrtimer_init(timer);
430 trace_hrtimer_init(timer, clockid, mode);
431 }
432
debug_activate(struct hrtimer * timer)433 static inline void debug_activate(struct hrtimer *timer)
434 {
435 debug_hrtimer_activate(timer);
436 trace_hrtimer_start(timer);
437 }
438
debug_deactivate(struct hrtimer * timer)439 static inline void debug_deactivate(struct hrtimer *timer)
440 {
441 debug_hrtimer_deactivate(timer);
442 trace_hrtimer_cancel(timer);
443 }
444
445 /* High resolution timer related functions */
446 #ifdef CONFIG_HIGH_RES_TIMERS
447
448 /*
449 * High resolution timer enabled ?
450 */
451 static int hrtimer_hres_enabled __read_mostly = 1;
452
453 /*
454 * Enable / Disable high resolution mode
455 */
setup_hrtimer_hres(char * str)456 static int __init setup_hrtimer_hres(char *str)
457 {
458 if (!strcmp(str, "off"))
459 hrtimer_hres_enabled = 0;
460 else if (!strcmp(str, "on"))
461 hrtimer_hres_enabled = 1;
462 else
463 return 0;
464 return 1;
465 }
466
467 __setup("highres=", setup_hrtimer_hres);
468
469 /*
470 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 */
hrtimer_is_hres_enabled(void)472 static inline int hrtimer_is_hres_enabled(void)
473 {
474 return hrtimer_hres_enabled;
475 }
476
477 /*
478 * Is the high resolution mode active ?
479 */
hrtimer_hres_active(void)480 static inline int hrtimer_hres_active(void)
481 {
482 return __this_cpu_read(hrtimer_bases.hres_active);
483 }
484
485 /*
486 * Reprogram the event source with checking both queues for the
487 * next event
488 * Called with interrupts disabled and base->lock held
489 */
490 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)491 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
492 {
493 int i;
494 struct hrtimer_clock_base *base = cpu_base->clock_base;
495 ktime_t expires, expires_next;
496
497 expires_next.tv64 = KTIME_MAX;
498
499 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
500 struct hrtimer *timer;
501 struct timerqueue_node *next;
502
503 next = timerqueue_getnext(&base->active);
504 if (!next)
505 continue;
506 timer = container_of(next, struct hrtimer, node);
507
508 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
509 /*
510 * clock_was_set() has changed base->offset so the
511 * result might be negative. Fix it up to prevent a
512 * false positive in clockevents_program_event()
513 */
514 if (expires.tv64 < 0)
515 expires.tv64 = 0;
516 if (expires.tv64 < expires_next.tv64)
517 expires_next = expires;
518 }
519
520 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
521 return;
522
523 cpu_base->expires_next.tv64 = expires_next.tv64;
524
525 /*
526 * If a hang was detected in the last timer interrupt then we
527 * leave the hang delay active in the hardware. We want the
528 * system to make progress. That also prevents the following
529 * scenario:
530 * T1 expires 50ms from now
531 * T2 expires 5s from now
532 *
533 * T1 is removed, so this code is called and would reprogram
534 * the hardware to 5s from now. Any hrtimer_start after that
535 * will not reprogram the hardware due to hang_detected being
536 * set. So we'd effectivly block all timers until the T2 event
537 * fires.
538 */
539 if (cpu_base->hang_detected)
540 return;
541
542 if (cpu_base->expires_next.tv64 != KTIME_MAX)
543 tick_program_event(cpu_base->expires_next, 1);
544 }
545
546 /*
547 * Shared reprogramming for clock_realtime and clock_monotonic
548 *
549 * When a timer is enqueued and expires earlier than the already enqueued
550 * timers, we have to check, whether it expires earlier than the timer for
551 * which the clock event device was armed.
552 *
553 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
554 * and no expiry check happens. The timer gets enqueued into the rbtree. The
555 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
556 * softirq.
557 *
558 * Called with interrupts disabled and base->cpu_base.lock held
559 */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)560 static int hrtimer_reprogram(struct hrtimer *timer,
561 struct hrtimer_clock_base *base)
562 {
563 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
564 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
565 int res;
566
567 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
568
569 /*
570 * When the callback is running, we do not reprogram the clock event
571 * device. The timer callback is either running on a different CPU or
572 * the callback is executed in the hrtimer_interrupt context. The
573 * reprogramming is handled either by the softirq, which called the
574 * callback or at the end of the hrtimer_interrupt.
575 */
576 if (hrtimer_callback_running(timer))
577 return 0;
578
579 /*
580 * CLOCK_REALTIME timer might be requested with an absolute
581 * expiry time which is less than base->offset. Nothing wrong
582 * about that, just avoid to call into the tick code, which
583 * has now objections against negative expiry values.
584 */
585 if (expires.tv64 < 0)
586 return -ETIME;
587
588 if (expires.tv64 >= cpu_base->expires_next.tv64)
589 return 0;
590
591 /*
592 * If a hang was detected in the last timer interrupt then we
593 * do not schedule a timer which is earlier than the expiry
594 * which we enforced in the hang detection. We want the system
595 * to make progress.
596 */
597 if (cpu_base->hang_detected)
598 return 0;
599
600 /*
601 * Clockevents returns -ETIME, when the event was in the past.
602 */
603 res = tick_program_event(expires, 0);
604 if (!IS_ERR_VALUE(res))
605 cpu_base->expires_next = expires;
606 return res;
607 }
608
609 /*
610 * Initialize the high resolution related parts of cpu_base
611 */
hrtimer_init_hres(struct hrtimer_cpu_base * base)612 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
613 {
614 base->expires_next.tv64 = KTIME_MAX;
615 base->hang_detected = 0;
616 base->hres_active = 0;
617 }
618
hrtimer_update_base(struct hrtimer_cpu_base * base)619 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
620 {
621 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
622 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
623 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
624
625 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
626 }
627
628 /*
629 * Retrigger next event is called after clock was set
630 *
631 * Called with interrupts disabled via on_each_cpu()
632 */
retrigger_next_event(void * arg)633 static void retrigger_next_event(void *arg)
634 {
635 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
636
637 if (!hrtimer_hres_active())
638 return;
639
640 raw_spin_lock(&base->lock);
641 hrtimer_update_base(base);
642 hrtimer_force_reprogram(base, 0);
643 raw_spin_unlock(&base->lock);
644 }
645
646 /*
647 * Switch to high resolution mode
648 */
hrtimer_switch_to_hres(void)649 static int hrtimer_switch_to_hres(void)
650 {
651 int i, cpu = smp_processor_id();
652 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
653 unsigned long flags;
654
655 if (base->hres_active)
656 return 1;
657
658 local_irq_save(flags);
659
660 if (tick_init_highres()) {
661 local_irq_restore(flags);
662 printk(KERN_WARNING "Could not switch to high resolution "
663 "mode on CPU %d\n", cpu);
664 return 0;
665 }
666 base->hres_active = 1;
667 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
668 base->clock_base[i].resolution = KTIME_HIGH_RES;
669
670 tick_setup_sched_timer();
671 /* "Retrigger" the interrupt to get things going */
672 retrigger_next_event(NULL);
673 local_irq_restore(flags);
674 return 1;
675 }
676
clock_was_set_work(struct work_struct * work)677 static void clock_was_set_work(struct work_struct *work)
678 {
679 clock_was_set();
680 }
681
682 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
683
684 /*
685 * Called from timekeeping and resume code to reprogramm the hrtimer
686 * interrupt device on all cpus.
687 */
clock_was_set_delayed(void)688 void clock_was_set_delayed(void)
689 {
690 schedule_work(&hrtimer_work);
691 }
692
693 #else
694
hrtimer_hres_active(void)695 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)696 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)697 static inline int hrtimer_switch_to_hres(void) { return 0; }
698 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)699 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)700 static inline int hrtimer_reprogram(struct hrtimer *timer,
701 struct hrtimer_clock_base *base)
702 {
703 return 0;
704 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)705 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)706 static inline void retrigger_next_event(void *arg) { }
707
708 #endif /* CONFIG_HIGH_RES_TIMERS */
709
710 /*
711 * Clock realtime was set
712 *
713 * Change the offset of the realtime clock vs. the monotonic
714 * clock.
715 *
716 * We might have to reprogram the high resolution timer interrupt. On
717 * SMP we call the architecture specific code to retrigger _all_ high
718 * resolution timer interrupts. On UP we just disable interrupts and
719 * call the high resolution interrupt code.
720 */
clock_was_set(void)721 void clock_was_set(void)
722 {
723 #ifdef CONFIG_HIGH_RES_TIMERS
724 /* Retrigger the CPU local events everywhere */
725 on_each_cpu(retrigger_next_event, NULL, 1);
726 #endif
727 timerfd_clock_was_set();
728 }
729
730 /*
731 * During resume we might have to reprogram the high resolution timer
732 * interrupt on all online CPUs. However, all other CPUs will be
733 * stopped with IRQs interrupts disabled so the clock_was_set() call
734 * must be deferred.
735 */
hrtimers_resume(void)736 void hrtimers_resume(void)
737 {
738 WARN_ONCE(!irqs_disabled(),
739 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
740
741 /* Retrigger on the local CPU */
742 retrigger_next_event(NULL);
743 /* And schedule a retrigger for all others */
744 clock_was_set_delayed();
745 }
746
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)747 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
748 {
749 #ifdef CONFIG_TIMER_STATS
750 if (timer->start_site)
751 return;
752 timer->start_site = __builtin_return_address(0);
753 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
754 timer->start_pid = current->pid;
755 #endif
756 }
757
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)758 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
759 {
760 #ifdef CONFIG_TIMER_STATS
761 timer->start_site = NULL;
762 #endif
763 }
764
timer_stats_account_hrtimer(struct hrtimer * timer)765 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
766 {
767 #ifdef CONFIG_TIMER_STATS
768 if (likely(!timer_stats_active))
769 return;
770 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
771 timer->function, timer->start_comm, 0);
772 #endif
773 }
774
775 /*
776 * Counterpart to lock_hrtimer_base above:
777 */
778 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)779 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
780 {
781 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
782 }
783
784 /**
785 * hrtimer_forward - forward the timer expiry
786 * @timer: hrtimer to forward
787 * @now: forward past this time
788 * @interval: the interval to forward
789 *
790 * Forward the timer expiry so it will expire in the future.
791 * Returns the number of overruns.
792 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)793 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794 {
795 u64 orun = 1;
796 ktime_t delta;
797
798 delta = ktime_sub(now, hrtimer_get_expires(timer));
799
800 if (delta.tv64 < 0)
801 return 0;
802
803 if (interval.tv64 < timer->base->resolution.tv64)
804 interval.tv64 = timer->base->resolution.tv64;
805
806 if (unlikely(delta.tv64 >= interval.tv64)) {
807 s64 incr = ktime_to_ns(interval);
808
809 orun = ktime_divns(delta, incr);
810 hrtimer_add_expires_ns(timer, incr * orun);
811 if (hrtimer_get_expires_tv64(timer) > now.tv64)
812 return orun;
813 /*
814 * This (and the ktime_add() below) is the
815 * correction for exact:
816 */
817 orun++;
818 }
819 hrtimer_add_expires(timer, interval);
820
821 return orun;
822 }
823 EXPORT_SYMBOL_GPL(hrtimer_forward);
824
825 /*
826 * enqueue_hrtimer - internal function to (re)start a timer
827 *
828 * The timer is inserted in expiry order. Insertion into the
829 * red black tree is O(log(n)). Must hold the base lock.
830 *
831 * Returns 1 when the new timer is the leftmost timer in the tree.
832 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)833 static int enqueue_hrtimer(struct hrtimer *timer,
834 struct hrtimer_clock_base *base)
835 {
836 debug_activate(timer);
837
838 timerqueue_add(&base->active, &timer->node);
839 base->cpu_base->active_bases |= 1 << base->index;
840
841 /*
842 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
843 * state of a possibly running callback.
844 */
845 timer->state |= HRTIMER_STATE_ENQUEUED;
846
847 return (&timer->node == base->active.next);
848 }
849
850 /*
851 * __remove_hrtimer - internal function to remove a timer
852 *
853 * Caller must hold the base lock.
854 *
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
859 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)860 static void __remove_hrtimer(struct hrtimer *timer,
861 struct hrtimer_clock_base *base,
862 unsigned long newstate, int reprogram)
863 {
864 struct timerqueue_node *next_timer;
865 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
866 goto out;
867
868 next_timer = timerqueue_getnext(&base->active);
869 timerqueue_del(&base->active, &timer->node);
870 if (&timer->node == next_timer) {
871 #ifdef CONFIG_HIGH_RES_TIMERS
872 /* Reprogram the clock event device. if enabled */
873 if (reprogram && hrtimer_hres_active()) {
874 ktime_t expires;
875
876 expires = ktime_sub(hrtimer_get_expires(timer),
877 base->offset);
878 if (base->cpu_base->expires_next.tv64 == expires.tv64)
879 hrtimer_force_reprogram(base->cpu_base, 1);
880 }
881 #endif
882 }
883 if (!timerqueue_getnext(&base->active))
884 base->cpu_base->active_bases &= ~(1 << base->index);
885 out:
886 timer->state = newstate;
887 }
888
889 /*
890 * remove hrtimer, called with base lock held
891 */
892 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)893 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
894 {
895 if (hrtimer_is_queued(timer)) {
896 unsigned long state;
897 int reprogram;
898
899 /*
900 * Remove the timer and force reprogramming when high
901 * resolution mode is active and the timer is on the current
902 * CPU. If we remove a timer on another CPU, reprogramming is
903 * skipped. The interrupt event on this CPU is fired and
904 * reprogramming happens in the interrupt handler. This is a
905 * rare case and less expensive than a smp call.
906 */
907 debug_deactivate(timer);
908 timer_stats_hrtimer_clear_start_info(timer);
909 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
910 /*
911 * We must preserve the CALLBACK state flag here,
912 * otherwise we could move the timer base in
913 * switch_hrtimer_base.
914 */
915 state = timer->state & HRTIMER_STATE_CALLBACK;
916 __remove_hrtimer(timer, base, state, reprogram);
917 return 1;
918 }
919 return 0;
920 }
921
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode,int wakeup)922 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
923 unsigned long delta_ns, const enum hrtimer_mode mode,
924 int wakeup)
925 {
926 struct hrtimer_clock_base *base, *new_base;
927 unsigned long flags;
928 int ret, leftmost;
929
930 base = lock_hrtimer_base(timer, &flags);
931
932 /* Remove an active timer from the queue: */
933 ret = remove_hrtimer(timer, base);
934
935 if (mode & HRTIMER_MODE_REL) {
936 tim = ktime_add_safe(tim, base->get_time());
937 /*
938 * CONFIG_TIME_LOW_RES is a temporary way for architectures
939 * to signal that they simply return xtime in
940 * do_gettimeoffset(). In this case we want to round up by
941 * resolution when starting a relative timer, to avoid short
942 * timeouts. This will go away with the GTOD framework.
943 */
944 #ifdef CONFIG_TIME_LOW_RES
945 tim = ktime_add_safe(tim, base->resolution);
946 #endif
947 }
948
949 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
950
951 /* Switch the timer base, if necessary: */
952 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
953
954 timer_stats_hrtimer_set_start_info(timer);
955
956 leftmost = enqueue_hrtimer(timer, new_base);
957
958 if (!leftmost) {
959 unlock_hrtimer_base(timer, &flags);
960 return ret;
961 }
962
963 if (!hrtimer_is_hres_active(timer)) {
964 /*
965 * Kick to reschedule the next tick to handle the new timer
966 * on dynticks target.
967 */
968 wake_up_nohz_cpu(new_base->cpu_base->cpu);
969 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
970 hrtimer_reprogram(timer, new_base)) {
971 /*
972 * Only allow reprogramming if the new base is on this CPU.
973 * (it might still be on another CPU if the timer was pending)
974 *
975 * XXX send_remote_softirq() ?
976 */
977 if (wakeup) {
978 /*
979 * We need to drop cpu_base->lock to avoid a
980 * lock ordering issue vs. rq->lock.
981 */
982 raw_spin_unlock(&new_base->cpu_base->lock);
983 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
984 local_irq_restore(flags);
985 return ret;
986 } else {
987 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
988 }
989 }
990
991 unlock_hrtimer_base(timer, &flags);
992
993 return ret;
994 }
995 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
996
997 /**
998 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
999 * @timer: the timer to be added
1000 * @tim: expiry time
1001 * @delta_ns: "slack" range for the timer
1002 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1003 * relative (HRTIMER_MODE_REL)
1004 *
1005 * Returns:
1006 * 0 on success
1007 * 1 when the timer was active
1008 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)1009 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1010 unsigned long delta_ns, const enum hrtimer_mode mode)
1011 {
1012 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1013 }
1014 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1015
1016 /**
1017 * hrtimer_start - (re)start an hrtimer on the current CPU
1018 * @timer: the timer to be added
1019 * @tim: expiry time
1020 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1021 * relative (HRTIMER_MODE_REL)
1022 *
1023 * Returns:
1024 * 0 on success
1025 * 1 when the timer was active
1026 */
1027 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1028 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1029 {
1030 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1031 }
1032 EXPORT_SYMBOL_GPL(hrtimer_start);
1033
1034
1035 /**
1036 * hrtimer_try_to_cancel - try to deactivate a timer
1037 * @timer: hrtimer to stop
1038 *
1039 * Returns:
1040 * 0 when the timer was not active
1041 * 1 when the timer was active
1042 * -1 when the timer is currently excuting the callback function and
1043 * cannot be stopped
1044 */
hrtimer_try_to_cancel(struct hrtimer * timer)1045 int hrtimer_try_to_cancel(struct hrtimer *timer)
1046 {
1047 struct hrtimer_clock_base *base;
1048 unsigned long flags;
1049 int ret = -1;
1050
1051 base = lock_hrtimer_base(timer, &flags);
1052
1053 if (!hrtimer_callback_running(timer))
1054 ret = remove_hrtimer(timer, base);
1055
1056 unlock_hrtimer_base(timer, &flags);
1057
1058 return ret;
1059
1060 }
1061 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1062
1063 /**
1064 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1065 * @timer: the timer to be cancelled
1066 *
1067 * Returns:
1068 * 0 when the timer was not active
1069 * 1 when the timer was active
1070 */
hrtimer_cancel(struct hrtimer * timer)1071 int hrtimer_cancel(struct hrtimer *timer)
1072 {
1073 for (;;) {
1074 int ret = hrtimer_try_to_cancel(timer);
1075
1076 if (ret >= 0)
1077 return ret;
1078 cpu_relax();
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1082
1083 /**
1084 * hrtimer_get_remaining - get remaining time for the timer
1085 * @timer: the timer to read
1086 */
hrtimer_get_remaining(const struct hrtimer * timer)1087 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1088 {
1089 unsigned long flags;
1090 ktime_t rem;
1091
1092 lock_hrtimer_base(timer, &flags);
1093 rem = hrtimer_expires_remaining(timer);
1094 unlock_hrtimer_base(timer, &flags);
1095
1096 return rem;
1097 }
1098 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1099
1100 #ifdef CONFIG_NO_HZ_COMMON
1101 /**
1102 * hrtimer_get_next_event - get the time until next expiry event
1103 *
1104 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1105 * is pending.
1106 */
hrtimer_get_next_event(void)1107 ktime_t hrtimer_get_next_event(void)
1108 {
1109 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1110 struct hrtimer_clock_base *base = cpu_base->clock_base;
1111 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1112 unsigned long flags;
1113 int i;
1114
1115 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1116
1117 if (!hrtimer_hres_active()) {
1118 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1119 struct hrtimer *timer;
1120 struct timerqueue_node *next;
1121
1122 next = timerqueue_getnext(&base->active);
1123 if (!next)
1124 continue;
1125
1126 timer = container_of(next, struct hrtimer, node);
1127 delta.tv64 = hrtimer_get_expires_tv64(timer);
1128 delta = ktime_sub(delta, base->get_time());
1129 if (delta.tv64 < mindelta.tv64)
1130 mindelta.tv64 = delta.tv64;
1131 }
1132 }
1133
1134 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1135
1136 if (mindelta.tv64 < 0)
1137 mindelta.tv64 = 0;
1138 return mindelta;
1139 }
1140 #endif
1141
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1142 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1143 enum hrtimer_mode mode)
1144 {
1145 struct hrtimer_cpu_base *cpu_base;
1146 int base;
1147
1148 memset(timer, 0, sizeof(struct hrtimer));
1149
1150 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1151
1152 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1153 clock_id = CLOCK_MONOTONIC;
1154
1155 base = hrtimer_clockid_to_base(clock_id);
1156 timer->base = &cpu_base->clock_base[base];
1157 timerqueue_init(&timer->node);
1158
1159 #ifdef CONFIG_TIMER_STATS
1160 timer->start_site = NULL;
1161 timer->start_pid = -1;
1162 memset(timer->start_comm, 0, TASK_COMM_LEN);
1163 #endif
1164 }
1165
1166 /**
1167 * hrtimer_init - initialize a timer to the given clock
1168 * @timer: the timer to be initialized
1169 * @clock_id: the clock to be used
1170 * @mode: timer mode abs/rel
1171 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1172 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1173 enum hrtimer_mode mode)
1174 {
1175 debug_init(timer, clock_id, mode);
1176 __hrtimer_init(timer, clock_id, mode);
1177 }
1178 EXPORT_SYMBOL_GPL(hrtimer_init);
1179
1180 /**
1181 * hrtimer_get_res - get the timer resolution for a clock
1182 * @which_clock: which clock to query
1183 * @tp: pointer to timespec variable to store the resolution
1184 *
1185 * Store the resolution of the clock selected by @which_clock in the
1186 * variable pointed to by @tp.
1187 */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1188 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1189 {
1190 struct hrtimer_cpu_base *cpu_base;
1191 int base = hrtimer_clockid_to_base(which_clock);
1192
1193 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1194 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1199
__run_hrtimer(struct hrtimer * timer,ktime_t * now)1200 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1201 {
1202 struct hrtimer_clock_base *base = timer->base;
1203 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1204 enum hrtimer_restart (*fn)(struct hrtimer *);
1205 int restart;
1206
1207 WARN_ON(!irqs_disabled());
1208
1209 debug_deactivate(timer);
1210 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1211 timer_stats_account_hrtimer(timer);
1212 fn = timer->function;
1213
1214 /*
1215 * Because we run timers from hardirq context, there is no chance
1216 * they get migrated to another cpu, therefore its safe to unlock
1217 * the timer base.
1218 */
1219 raw_spin_unlock(&cpu_base->lock);
1220 trace_hrtimer_expire_entry(timer, now);
1221 restart = fn(timer);
1222 trace_hrtimer_expire_exit(timer);
1223 raw_spin_lock(&cpu_base->lock);
1224
1225 /*
1226 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1227 * we do not reprogramm the event hardware. Happens either in
1228 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 */
1230 if (restart != HRTIMER_NORESTART) {
1231 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1232 enqueue_hrtimer(timer, base);
1233 }
1234
1235 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1236
1237 timer->state &= ~HRTIMER_STATE_CALLBACK;
1238 }
1239
1240 #ifdef CONFIG_HIGH_RES_TIMERS
1241
1242 /*
1243 * High resolution timer interrupt
1244 * Called with interrupts disabled
1245 */
hrtimer_interrupt(struct clock_event_device * dev)1246 void hrtimer_interrupt(struct clock_event_device *dev)
1247 {
1248 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1249 ktime_t expires_next, now, entry_time, delta;
1250 int i, retries = 0;
1251
1252 BUG_ON(!cpu_base->hres_active);
1253 cpu_base->nr_events++;
1254 dev->next_event.tv64 = KTIME_MAX;
1255
1256 raw_spin_lock(&cpu_base->lock);
1257 entry_time = now = hrtimer_update_base(cpu_base);
1258 retry:
1259 expires_next.tv64 = KTIME_MAX;
1260 /*
1261 * We set expires_next to KTIME_MAX here with cpu_base->lock
1262 * held to prevent that a timer is enqueued in our queue via
1263 * the migration code. This does not affect enqueueing of
1264 * timers which run their callback and need to be requeued on
1265 * this CPU.
1266 */
1267 cpu_base->expires_next.tv64 = KTIME_MAX;
1268
1269 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1270 struct hrtimer_clock_base *base;
1271 struct timerqueue_node *node;
1272 ktime_t basenow;
1273
1274 if (!(cpu_base->active_bases & (1 << i)))
1275 continue;
1276
1277 base = cpu_base->clock_base + i;
1278 basenow = ktime_add(now, base->offset);
1279
1280 while ((node = timerqueue_getnext(&base->active))) {
1281 struct hrtimer *timer;
1282
1283 timer = container_of(node, struct hrtimer, node);
1284
1285 /*
1286 * The immediate goal for using the softexpires is
1287 * minimizing wakeups, not running timers at the
1288 * earliest interrupt after their soft expiration.
1289 * This allows us to avoid using a Priority Search
1290 * Tree, which can answer a stabbing querry for
1291 * overlapping intervals and instead use the simple
1292 * BST we already have.
1293 * We don't add extra wakeups by delaying timers that
1294 * are right-of a not yet expired timer, because that
1295 * timer will have to trigger a wakeup anyway.
1296 */
1297
1298 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1299 ktime_t expires;
1300
1301 expires = ktime_sub(hrtimer_get_expires(timer),
1302 base->offset);
1303 if (expires.tv64 < 0)
1304 expires.tv64 = KTIME_MAX;
1305 if (expires.tv64 < expires_next.tv64)
1306 expires_next = expires;
1307 break;
1308 }
1309
1310 __run_hrtimer(timer, &basenow);
1311 }
1312 }
1313
1314 /*
1315 * Store the new expiry value so the migration code can verify
1316 * against it.
1317 */
1318 cpu_base->expires_next = expires_next;
1319 raw_spin_unlock(&cpu_base->lock);
1320
1321 /* Reprogramming necessary ? */
1322 if (expires_next.tv64 == KTIME_MAX ||
1323 !tick_program_event(expires_next, 0)) {
1324 cpu_base->hang_detected = 0;
1325 return;
1326 }
1327
1328 /*
1329 * The next timer was already expired due to:
1330 * - tracing
1331 * - long lasting callbacks
1332 * - being scheduled away when running in a VM
1333 *
1334 * We need to prevent that we loop forever in the hrtimer
1335 * interrupt routine. We give it 3 attempts to avoid
1336 * overreacting on some spurious event.
1337 *
1338 * Acquire base lock for updating the offsets and retrieving
1339 * the current time.
1340 */
1341 raw_spin_lock(&cpu_base->lock);
1342 now = hrtimer_update_base(cpu_base);
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1346 /*
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1351 */
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 raw_spin_unlock(&cpu_base->lock);
1355 delta = ktime_sub(now, entry_time);
1356 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1357 cpu_base->max_hang_time = delta;
1358 /*
1359 * Limit it to a sensible value as we enforce a longer
1360 * delay. Give the CPU at least 100ms to catch up.
1361 */
1362 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 else
1365 expires_next = ktime_add(now, delta);
1366 tick_program_event(expires_next, 1);
1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 ktime_to_ns(delta));
1369 }
1370
1371 /*
1372 * local version of hrtimer_peek_ahead_timers() called with interrupts
1373 * disabled.
1374 */
__hrtimer_peek_ahead_timers(void)1375 static void __hrtimer_peek_ahead_timers(void)
1376 {
1377 struct tick_device *td;
1378
1379 if (!hrtimer_hres_active())
1380 return;
1381
1382 td = this_cpu_ptr(&tick_cpu_device);
1383 if (td && td->evtdev)
1384 hrtimer_interrupt(td->evtdev);
1385 }
1386
1387 /**
1388 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1389 *
1390 * hrtimer_peek_ahead_timers will peek at the timer queue of
1391 * the current cpu and check if there are any timers for which
1392 * the soft expires time has passed. If any such timers exist,
1393 * they are run immediately and then removed from the timer queue.
1394 *
1395 */
hrtimer_peek_ahead_timers(void)1396 void hrtimer_peek_ahead_timers(void)
1397 {
1398 unsigned long flags;
1399
1400 local_irq_save(flags);
1401 __hrtimer_peek_ahead_timers();
1402 local_irq_restore(flags);
1403 }
1404
run_hrtimer_softirq(struct softirq_action * h)1405 static void run_hrtimer_softirq(struct softirq_action *h)
1406 {
1407 hrtimer_peek_ahead_timers();
1408 }
1409
1410 #else /* CONFIG_HIGH_RES_TIMERS */
1411
__hrtimer_peek_ahead_timers(void)1412 static inline void __hrtimer_peek_ahead_timers(void) { }
1413
1414 #endif /* !CONFIG_HIGH_RES_TIMERS */
1415
1416 /*
1417 * Called from timer softirq every jiffy, expire hrtimers:
1418 *
1419 * For HRT its the fall back code to run the softirq in the timer
1420 * softirq context in case the hrtimer initialization failed or has
1421 * not been done yet.
1422 */
hrtimer_run_pending(void)1423 void hrtimer_run_pending(void)
1424 {
1425 if (hrtimer_hres_active())
1426 return;
1427
1428 /*
1429 * This _is_ ugly: We have to check in the softirq context,
1430 * whether we can switch to highres and / or nohz mode. The
1431 * clocksource switch happens in the timer interrupt with
1432 * xtime_lock held. Notification from there only sets the
1433 * check bit in the tick_oneshot code, otherwise we might
1434 * deadlock vs. xtime_lock.
1435 */
1436 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1437 hrtimer_switch_to_hres();
1438 }
1439
1440 /*
1441 * Called from hardirq context every jiffy
1442 */
hrtimer_run_queues(void)1443 void hrtimer_run_queues(void)
1444 {
1445 struct timerqueue_node *node;
1446 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1447 struct hrtimer_clock_base *base;
1448 int index, gettime = 1;
1449
1450 if (hrtimer_hres_active())
1451 return;
1452
1453 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1454 base = &cpu_base->clock_base[index];
1455 if (!timerqueue_getnext(&base->active))
1456 continue;
1457
1458 if (gettime) {
1459 hrtimer_get_softirq_time(cpu_base);
1460 gettime = 0;
1461 }
1462
1463 raw_spin_lock(&cpu_base->lock);
1464
1465 while ((node = timerqueue_getnext(&base->active))) {
1466 struct hrtimer *timer;
1467
1468 timer = container_of(node, struct hrtimer, node);
1469 if (base->softirq_time.tv64 <=
1470 hrtimer_get_expires_tv64(timer))
1471 break;
1472
1473 __run_hrtimer(timer, &base->softirq_time);
1474 }
1475 raw_spin_unlock(&cpu_base->lock);
1476 }
1477 }
1478
1479 /*
1480 * Sleep related functions:
1481 */
hrtimer_wakeup(struct hrtimer * timer)1482 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1483 {
1484 struct hrtimer_sleeper *t =
1485 container_of(timer, struct hrtimer_sleeper, timer);
1486 struct task_struct *task = t->task;
1487
1488 t->task = NULL;
1489 if (task)
1490 wake_up_process(task);
1491
1492 return HRTIMER_NORESTART;
1493 }
1494
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1495 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1496 {
1497 sl->timer.function = hrtimer_wakeup;
1498 sl->task = task;
1499 }
1500 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1501
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1502 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1503 {
1504 hrtimer_init_sleeper(t, current);
1505
1506 do {
1507 set_current_state(TASK_INTERRUPTIBLE);
1508 hrtimer_start_expires(&t->timer, mode);
1509 if (!hrtimer_active(&t->timer))
1510 t->task = NULL;
1511
1512 if (likely(t->task))
1513 freezable_schedule();
1514
1515 hrtimer_cancel(&t->timer);
1516 mode = HRTIMER_MODE_ABS;
1517
1518 } while (t->task && !signal_pending(current));
1519
1520 __set_current_state(TASK_RUNNING);
1521
1522 return t->task == NULL;
1523 }
1524
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1525 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1526 {
1527 struct timespec rmt;
1528 ktime_t rem;
1529
1530 rem = hrtimer_expires_remaining(timer);
1531 if (rem.tv64 <= 0)
1532 return 0;
1533 rmt = ktime_to_timespec(rem);
1534
1535 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1536 return -EFAULT;
1537
1538 return 1;
1539 }
1540
hrtimer_nanosleep_restart(struct restart_block * restart)1541 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1542 {
1543 struct hrtimer_sleeper t;
1544 struct timespec __user *rmtp;
1545 int ret = 0;
1546
1547 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1548 HRTIMER_MODE_ABS);
1549 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1550
1551 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1552 goto out;
1553
1554 rmtp = restart->nanosleep.rmtp;
1555 if (rmtp) {
1556 ret = update_rmtp(&t.timer, rmtp);
1557 if (ret <= 0)
1558 goto out;
1559 }
1560
1561 /* The other values in restart are already filled in */
1562 ret = -ERESTART_RESTARTBLOCK;
1563 out:
1564 destroy_hrtimer_on_stack(&t.timer);
1565 return ret;
1566 }
1567
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1568 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1569 const enum hrtimer_mode mode, const clockid_t clockid)
1570 {
1571 struct restart_block *restart;
1572 struct hrtimer_sleeper t;
1573 int ret = 0;
1574 unsigned long slack;
1575
1576 slack = current->timer_slack_ns;
1577 if (dl_task(current) || rt_task(current))
1578 slack = 0;
1579
1580 hrtimer_init_on_stack(&t.timer, clockid, mode);
1581 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1582 if (do_nanosleep(&t, mode))
1583 goto out;
1584
1585 /* Absolute timers do not update the rmtp value and restart: */
1586 if (mode == HRTIMER_MODE_ABS) {
1587 ret = -ERESTARTNOHAND;
1588 goto out;
1589 }
1590
1591 if (rmtp) {
1592 ret = update_rmtp(&t.timer, rmtp);
1593 if (ret <= 0)
1594 goto out;
1595 }
1596
1597 restart = ¤t->restart_block;
1598 restart->fn = hrtimer_nanosleep_restart;
1599 restart->nanosleep.clockid = t.timer.base->clockid;
1600 restart->nanosleep.rmtp = rmtp;
1601 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1602
1603 ret = -ERESTART_RESTARTBLOCK;
1604 out:
1605 destroy_hrtimer_on_stack(&t.timer);
1606 return ret;
1607 }
1608
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1609 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1610 struct timespec __user *, rmtp)
1611 {
1612 struct timespec tu;
1613
1614 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1615 return -EFAULT;
1616
1617 if (!timespec_valid(&tu))
1618 return -EINVAL;
1619
1620 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1621 }
1622
1623 /*
1624 * Functions related to boot-time initialization:
1625 */
init_hrtimers_cpu(int cpu)1626 static void init_hrtimers_cpu(int cpu)
1627 {
1628 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1629 int i;
1630
1631 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1632 cpu_base->clock_base[i].cpu_base = cpu_base;
1633 timerqueue_init_head(&cpu_base->clock_base[i].active);
1634 }
1635
1636 cpu_base->active_bases = 0;
1637 cpu_base->cpu = cpu;
1638 hrtimer_init_hres(cpu_base);
1639 }
1640
1641 #ifdef CONFIG_HOTPLUG_CPU
1642
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1643 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1644 struct hrtimer_clock_base *new_base)
1645 {
1646 struct hrtimer *timer;
1647 struct timerqueue_node *node;
1648
1649 while ((node = timerqueue_getnext(&old_base->active))) {
1650 timer = container_of(node, struct hrtimer, node);
1651 BUG_ON(hrtimer_callback_running(timer));
1652 debug_deactivate(timer);
1653
1654 /*
1655 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1656 * timer could be seen as !active and just vanish away
1657 * under us on another CPU
1658 */
1659 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1660 timer->base = new_base;
1661 /*
1662 * Enqueue the timers on the new cpu. This does not
1663 * reprogram the event device in case the timer
1664 * expires before the earliest on this CPU, but we run
1665 * hrtimer_interrupt after we migrated everything to
1666 * sort out already expired timers and reprogram the
1667 * event device.
1668 */
1669 enqueue_hrtimer(timer, new_base);
1670
1671 /* Clear the migration state bit */
1672 timer->state &= ~HRTIMER_STATE_MIGRATE;
1673 }
1674 }
1675
migrate_hrtimers(int scpu)1676 static void migrate_hrtimers(int scpu)
1677 {
1678 struct hrtimer_cpu_base *old_base, *new_base;
1679 int i;
1680
1681 BUG_ON(cpu_online(scpu));
1682 tick_cancel_sched_timer(scpu);
1683
1684 local_irq_disable();
1685 old_base = &per_cpu(hrtimer_bases, scpu);
1686 new_base = this_cpu_ptr(&hrtimer_bases);
1687 /*
1688 * The caller is globally serialized and nobody else
1689 * takes two locks at once, deadlock is not possible.
1690 */
1691 raw_spin_lock(&new_base->lock);
1692 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1693
1694 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1695 migrate_hrtimer_list(&old_base->clock_base[i],
1696 &new_base->clock_base[i]);
1697 }
1698
1699 raw_spin_unlock(&old_base->lock);
1700 raw_spin_unlock(&new_base->lock);
1701
1702 /* Check, if we got expired work to do */
1703 __hrtimer_peek_ahead_timers();
1704 local_irq_enable();
1705 }
1706
1707 #endif /* CONFIG_HOTPLUG_CPU */
1708
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1709 static int hrtimer_cpu_notify(struct notifier_block *self,
1710 unsigned long action, void *hcpu)
1711 {
1712 int scpu = (long)hcpu;
1713
1714 switch (action) {
1715
1716 case CPU_UP_PREPARE:
1717 case CPU_UP_PREPARE_FROZEN:
1718 init_hrtimers_cpu(scpu);
1719 break;
1720
1721 #ifdef CONFIG_HOTPLUG_CPU
1722 case CPU_DYING:
1723 case CPU_DYING_FROZEN:
1724 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1725 break;
1726 case CPU_DEAD:
1727 case CPU_DEAD_FROZEN:
1728 {
1729 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1730 migrate_hrtimers(scpu);
1731 break;
1732 }
1733 #endif
1734
1735 default:
1736 break;
1737 }
1738
1739 return NOTIFY_OK;
1740 }
1741
1742 static struct notifier_block hrtimers_nb = {
1743 .notifier_call = hrtimer_cpu_notify,
1744 };
1745
hrtimers_init(void)1746 void __init hrtimers_init(void)
1747 {
1748 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1749 (void *)(long)smp_processor_id());
1750 register_cpu_notifier(&hrtimers_nb);
1751 #ifdef CONFIG_HIGH_RES_TIMERS
1752 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1753 #endif
1754 }
1755
1756 /**
1757 * schedule_hrtimeout_range_clock - sleep until timeout
1758 * @expires: timeout value (ktime_t)
1759 * @delta: slack in expires timeout (ktime_t)
1760 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1761 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1762 */
1763 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode,int clock)1764 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1765 const enum hrtimer_mode mode, int clock)
1766 {
1767 struct hrtimer_sleeper t;
1768
1769 /*
1770 * Optimize when a zero timeout value is given. It does not
1771 * matter whether this is an absolute or a relative time.
1772 */
1773 if (expires && !expires->tv64) {
1774 __set_current_state(TASK_RUNNING);
1775 return 0;
1776 }
1777
1778 /*
1779 * A NULL parameter means "infinite"
1780 */
1781 if (!expires) {
1782 schedule();
1783 return -EINTR;
1784 }
1785
1786 hrtimer_init_on_stack(&t.timer, clock, mode);
1787 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1788
1789 hrtimer_init_sleeper(&t, current);
1790
1791 hrtimer_start_expires(&t.timer, mode);
1792 if (!hrtimer_active(&t.timer))
1793 t.task = NULL;
1794
1795 if (likely(t.task))
1796 schedule();
1797
1798 hrtimer_cancel(&t.timer);
1799 destroy_hrtimer_on_stack(&t.timer);
1800
1801 __set_current_state(TASK_RUNNING);
1802
1803 return !t.task ? 0 : -EINTR;
1804 }
1805
1806 /**
1807 * schedule_hrtimeout_range - sleep until timeout
1808 * @expires: timeout value (ktime_t)
1809 * @delta: slack in expires timeout (ktime_t)
1810 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1811 *
1812 * Make the current task sleep until the given expiry time has
1813 * elapsed. The routine will return immediately unless
1814 * the current task state has been set (see set_current_state()).
1815 *
1816 * The @delta argument gives the kernel the freedom to schedule the
1817 * actual wakeup to a time that is both power and performance friendly.
1818 * The kernel give the normal best effort behavior for "@expires+@delta",
1819 * but may decide to fire the timer earlier, but no earlier than @expires.
1820 *
1821 * You can set the task state as follows -
1822 *
1823 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1824 * pass before the routine returns.
1825 *
1826 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1827 * delivered to the current task.
1828 *
1829 * The current task state is guaranteed to be TASK_RUNNING when this
1830 * routine returns.
1831 *
1832 * Returns 0 when the timer has expired otherwise -EINTR
1833 */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1834 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1835 const enum hrtimer_mode mode)
1836 {
1837 return schedule_hrtimeout_range_clock(expires, delta, mode,
1838 CLOCK_MONOTONIC);
1839 }
1840 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1841
1842 /**
1843 * schedule_hrtimeout - sleep until timeout
1844 * @expires: timeout value (ktime_t)
1845 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1846 *
1847 * Make the current task sleep until the given expiry time has
1848 * elapsed. The routine will return immediately unless
1849 * the current task state has been set (see set_current_state()).
1850 *
1851 * You can set the task state as follows -
1852 *
1853 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1854 * pass before the routine returns.
1855 *
1856 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1857 * delivered to the current task.
1858 *
1859 * The current task state is guaranteed to be TASK_RUNNING when this
1860 * routine returns.
1861 *
1862 * Returns 0 when the timer has expired otherwise -EINTR
1863 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1864 int __sched schedule_hrtimeout(ktime_t *expires,
1865 const enum hrtimer_mode mode)
1866 {
1867 return schedule_hrtimeout_range(expires, 0, mode);
1868 }
1869 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1870