• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * WQ: wq->mutex protected.
131  *
132  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * MD: wq_mayday_lock protected.
135  */
136 
137 /* struct worker is defined in workqueue_internal.h */
138 
139 struct worker_pool {
140 	spinlock_t		lock;		/* the pool lock */
141 	int			cpu;		/* I: the associated cpu */
142 	int			node;		/* I: the associated node ID */
143 	int			id;		/* I: pool ID */
144 	unsigned int		flags;		/* X: flags */
145 
146 	struct list_head	worklist;	/* L: list of pending works */
147 	int			nr_workers;	/* L: total number of workers */
148 
149 	/* nr_idle includes the ones off idle_list for rebinding */
150 	int			nr_idle;	/* L: currently idle ones */
151 
152 	struct list_head	idle_list;	/* X: list of idle workers */
153 	struct timer_list	idle_timer;	/* L: worker idle timeout */
154 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
155 
156 	/* a workers is either on busy_hash or idle_list, or the manager */
157 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 						/* L: hash of busy workers */
159 
160 	/* see manage_workers() for details on the two manager mutexes */
161 	struct mutex		manager_arb;	/* manager arbitration */
162 	struct mutex		attach_mutex;	/* attach/detach exclusion */
163 	struct list_head	workers;	/* A: attached workers */
164 	struct completion	*detach_completion; /* all workers detached */
165 
166 	struct ida		worker_ida;	/* worker IDs for task name */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static cpumask_var_t *wq_numa_possible_cpumask;
269 					/* possible CPUs of each node */
270 
271 static bool wq_disable_numa;
272 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273 
274 /* see the comment above the definition of WQ_POWER_EFFICIENT */
275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276 static bool wq_power_efficient = true;
277 #else
278 static bool wq_power_efficient;
279 #endif
280 
281 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282 
283 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
284 
285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287 
288 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
289 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
290 
291 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
292 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
293 
294 /* the per-cpu worker pools */
295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 				     cpu_worker_pools);
297 
298 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
299 
300 /* PL: hash of all unbound pools keyed by pool->attrs */
301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302 
303 /* I: attributes used when instantiating standard unbound pools on demand */
304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305 
306 /* I: attributes used when instantiating ordered pools on demand */
307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308 
309 struct workqueue_struct *system_wq __read_mostly;
310 EXPORT_SYMBOL(system_wq);
311 struct workqueue_struct *system_highpri_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_highpri_wq);
313 struct workqueue_struct *system_long_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_long_wq);
315 struct workqueue_struct *system_unbound_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_unbound_wq);
317 struct workqueue_struct *system_freezable_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_freezable_wq);
319 struct workqueue_struct *system_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323 
324 static int worker_thread(void *__worker);
325 static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 				 const struct workqueue_attrs *from);
327 
328 #define CREATE_TRACE_POINTS
329 #include <trace/events/workqueue.h>
330 
331 #define assert_rcu_or_pool_mutex()					\
332 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
333 			   lockdep_is_held(&wq_pool_mutex),		\
334 			   "sched RCU or wq_pool_mutex should be held")
335 
336 #define assert_rcu_or_wq_mutex(wq)					\
337 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
338 			   lockdep_is_held(&wq->mutex),			\
339 			   "sched RCU or wq->mutex should be held")
340 
341 #define for_each_cpu_worker_pool(pool, cpu)				\
342 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
343 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344 	     (pool)++)
345 
346 /**
347  * for_each_pool - iterate through all worker_pools in the system
348  * @pool: iteration cursor
349  * @pi: integer used for iteration
350  *
351  * This must be called either with wq_pool_mutex held or sched RCU read
352  * locked.  If the pool needs to be used beyond the locking in effect, the
353  * caller is responsible for guaranteeing that the pool stays online.
354  *
355  * The if/else clause exists only for the lockdep assertion and can be
356  * ignored.
357  */
358 #define for_each_pool(pool, pi)						\
359 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
360 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
361 		else
362 
363 /**
364  * for_each_pool_worker - iterate through all workers of a worker_pool
365  * @worker: iteration cursor
366  * @pool: worker_pool to iterate workers of
367  *
368  * This must be called with @pool->attach_mutex.
369  *
370  * The if/else clause exists only for the lockdep assertion and can be
371  * ignored.
372  */
373 #define for_each_pool_worker(worker, pool)				\
374 	list_for_each_entry((worker), &(pool)->workers, node)		\
375 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
376 		else
377 
378 /**
379  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
380  * @pwq: iteration cursor
381  * @wq: the target workqueue
382  *
383  * This must be called either with wq->mutex held or sched RCU read locked.
384  * If the pwq needs to be used beyond the locking in effect, the caller is
385  * responsible for guaranteeing that the pwq stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pwq(pwq, wq)						\
391 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
392 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
393 		else
394 
395 #ifdef CONFIG_DEBUG_OBJECTS_WORK
396 
397 static struct debug_obj_descr work_debug_descr;
398 
work_debug_hint(void * addr)399 static void *work_debug_hint(void *addr)
400 {
401 	return ((struct work_struct *) addr)->func;
402 }
403 
404 /*
405  * fixup_init is called when:
406  * - an active object is initialized
407  */
work_fixup_init(void * addr,enum debug_obj_state state)408 static int work_fixup_init(void *addr, enum debug_obj_state state)
409 {
410 	struct work_struct *work = addr;
411 
412 	switch (state) {
413 	case ODEBUG_STATE_ACTIVE:
414 		cancel_work_sync(work);
415 		debug_object_init(work, &work_debug_descr);
416 		return 1;
417 	default:
418 		return 0;
419 	}
420 }
421 
422 /*
423  * fixup_activate is called when:
424  * - an active object is activated
425  * - an unknown object is activated (might be a statically initialized object)
426  */
work_fixup_activate(void * addr,enum debug_obj_state state)427 static int work_fixup_activate(void *addr, enum debug_obj_state state)
428 {
429 	struct work_struct *work = addr;
430 
431 	switch (state) {
432 
433 	case ODEBUG_STATE_NOTAVAILABLE:
434 		/*
435 		 * This is not really a fixup. The work struct was
436 		 * statically initialized. We just make sure that it
437 		 * is tracked in the object tracker.
438 		 */
439 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
440 			debug_object_init(work, &work_debug_descr);
441 			debug_object_activate(work, &work_debug_descr);
442 			return 0;
443 		}
444 		WARN_ON_ONCE(1);
445 		return 0;
446 
447 	case ODEBUG_STATE_ACTIVE:
448 		WARN_ON(1);
449 
450 	default:
451 		return 0;
452 	}
453 }
454 
455 /*
456  * fixup_free is called when:
457  * - an active object is freed
458  */
work_fixup_free(void * addr,enum debug_obj_state state)459 static int work_fixup_free(void *addr, enum debug_obj_state state)
460 {
461 	struct work_struct *work = addr;
462 
463 	switch (state) {
464 	case ODEBUG_STATE_ACTIVE:
465 		cancel_work_sync(work);
466 		debug_object_free(work, &work_debug_descr);
467 		return 1;
468 	default:
469 		return 0;
470 	}
471 }
472 
473 static struct debug_obj_descr work_debug_descr = {
474 	.name		= "work_struct",
475 	.debug_hint	= work_debug_hint,
476 	.fixup_init	= work_fixup_init,
477 	.fixup_activate	= work_fixup_activate,
478 	.fixup_free	= work_fixup_free,
479 };
480 
debug_work_activate(struct work_struct * work)481 static inline void debug_work_activate(struct work_struct *work)
482 {
483 	debug_object_activate(work, &work_debug_descr);
484 }
485 
debug_work_deactivate(struct work_struct * work)486 static inline void debug_work_deactivate(struct work_struct *work)
487 {
488 	debug_object_deactivate(work, &work_debug_descr);
489 }
490 
__init_work(struct work_struct * work,int onstack)491 void __init_work(struct work_struct *work, int onstack)
492 {
493 	if (onstack)
494 		debug_object_init_on_stack(work, &work_debug_descr);
495 	else
496 		debug_object_init(work, &work_debug_descr);
497 }
498 EXPORT_SYMBOL_GPL(__init_work);
499 
destroy_work_on_stack(struct work_struct * work)500 void destroy_work_on_stack(struct work_struct *work)
501 {
502 	debug_object_free(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
505 
destroy_delayed_work_on_stack(struct delayed_work * work)506 void destroy_delayed_work_on_stack(struct delayed_work *work)
507 {
508 	destroy_timer_on_stack(&work->timer);
509 	debug_object_free(&work->work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
512 
513 #else
debug_work_activate(struct work_struct * work)514 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)515 static inline void debug_work_deactivate(struct work_struct *work) { }
516 #endif
517 
518 /**
519  * worker_pool_assign_id - allocate ID and assing it to @pool
520  * @pool: the pool pointer of interest
521  *
522  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
523  * successfully, -errno on failure.
524  */
worker_pool_assign_id(struct worker_pool * pool)525 static int worker_pool_assign_id(struct worker_pool *pool)
526 {
527 	int ret;
528 
529 	lockdep_assert_held(&wq_pool_mutex);
530 
531 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
532 			GFP_KERNEL);
533 	if (ret >= 0) {
534 		pool->id = ret;
535 		return 0;
536 	}
537 	return ret;
538 }
539 
540 /**
541  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
542  * @wq: the target workqueue
543  * @node: the node ID
544  *
545  * This must be called either with pwq_lock held or sched RCU read locked.
546  * If the pwq needs to be used beyond the locking in effect, the caller is
547  * responsible for guaranteeing that the pwq stays online.
548  *
549  * Return: The unbound pool_workqueue for @node.
550  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
552 						  int node)
553 {
554 	assert_rcu_or_wq_mutex(wq);
555 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
556 }
557 
work_color_to_flags(int color)558 static unsigned int work_color_to_flags(int color)
559 {
560 	return color << WORK_STRUCT_COLOR_SHIFT;
561 }
562 
get_work_color(struct work_struct * work)563 static int get_work_color(struct work_struct *work)
564 {
565 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
566 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
567 }
568 
work_next_color(int color)569 static int work_next_color(int color)
570 {
571 	return (color + 1) % WORK_NR_COLORS;
572 }
573 
574 /*
575  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
576  * contain the pointer to the queued pwq.  Once execution starts, the flag
577  * is cleared and the high bits contain OFFQ flags and pool ID.
578  *
579  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
580  * and clear_work_data() can be used to set the pwq, pool or clear
581  * work->data.  These functions should only be called while the work is
582  * owned - ie. while the PENDING bit is set.
583  *
584  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
585  * corresponding to a work.  Pool is available once the work has been
586  * queued anywhere after initialization until it is sync canceled.  pwq is
587  * available only while the work item is queued.
588  *
589  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
590  * canceled.  While being canceled, a work item may have its PENDING set
591  * but stay off timer and worklist for arbitrarily long and nobody should
592  * try to steal the PENDING bit.
593  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)594 static inline void set_work_data(struct work_struct *work, unsigned long data,
595 				 unsigned long flags)
596 {
597 	WARN_ON_ONCE(!work_pending(work));
598 	atomic_long_set(&work->data, data | flags | work_static(work));
599 }
600 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
602 			 unsigned long extra_flags)
603 {
604 	set_work_data(work, (unsigned long)pwq,
605 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
606 }
607 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)608 static void set_work_pool_and_keep_pending(struct work_struct *work,
609 					   int pool_id)
610 {
611 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
612 		      WORK_STRUCT_PENDING);
613 }
614 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)615 static void set_work_pool_and_clear_pending(struct work_struct *work,
616 					    int pool_id)
617 {
618 	/*
619 	 * The following wmb is paired with the implied mb in
620 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
621 	 * here are visible to and precede any updates by the next PENDING
622 	 * owner.
623 	 */
624 	smp_wmb();
625 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
626 	/*
627 	 * The following mb guarantees that previous clear of a PENDING bit
628 	 * will not be reordered with any speculative LOADS or STORES from
629 	 * work->current_func, which is executed afterwards.  This possible
630 	 * reordering can lead to a missed execution on attempt to qeueue
631 	 * the same @work.  E.g. consider this case:
632 	 *
633 	 *   CPU#0                         CPU#1
634 	 *   ----------------------------  --------------------------------
635 	 *
636 	 * 1  STORE event_indicated
637 	 * 2  queue_work_on() {
638 	 * 3    test_and_set_bit(PENDING)
639 	 * 4 }                             set_..._and_clear_pending() {
640 	 * 5                                 set_work_data() # clear bit
641 	 * 6                                 smp_mb()
642 	 * 7                               work->current_func() {
643 	 * 8				      LOAD event_indicated
644 	 *				   }
645 	 *
646 	 * Without an explicit full barrier speculative LOAD on line 8 can
647 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
648 	 * CPU#0 observes the PENDING bit is still set and new execution of
649 	 * a @work is not queued in a hope, that CPU#1 will eventually
650 	 * finish the queued @work.  Meanwhile CPU#1 does not see
651 	 * event_indicated is set, because speculative LOAD was executed
652 	 * before actual STORE.
653 	 */
654 	smp_mb();
655 }
656 
clear_work_data(struct work_struct * work)657 static void clear_work_data(struct work_struct *work)
658 {
659 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
660 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
661 }
662 
get_work_pwq(struct work_struct * work)663 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
664 {
665 	unsigned long data = atomic_long_read(&work->data);
666 
667 	if (data & WORK_STRUCT_PWQ)
668 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
669 	else
670 		return NULL;
671 }
672 
673 /**
674  * get_work_pool - return the worker_pool a given work was associated with
675  * @work: the work item of interest
676  *
677  * Pools are created and destroyed under wq_pool_mutex, and allows read
678  * access under sched-RCU read lock.  As such, this function should be
679  * called under wq_pool_mutex or with preemption disabled.
680  *
681  * All fields of the returned pool are accessible as long as the above
682  * mentioned locking is in effect.  If the returned pool needs to be used
683  * beyond the critical section, the caller is responsible for ensuring the
684  * returned pool is and stays online.
685  *
686  * Return: The worker_pool @work was last associated with.  %NULL if none.
687  */
get_work_pool(struct work_struct * work)688 static struct worker_pool *get_work_pool(struct work_struct *work)
689 {
690 	unsigned long data = atomic_long_read(&work->data);
691 	int pool_id;
692 
693 	assert_rcu_or_pool_mutex();
694 
695 	if (data & WORK_STRUCT_PWQ)
696 		return ((struct pool_workqueue *)
697 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
698 
699 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
700 	if (pool_id == WORK_OFFQ_POOL_NONE)
701 		return NULL;
702 
703 	return idr_find(&worker_pool_idr, pool_id);
704 }
705 
706 /**
707  * get_work_pool_id - return the worker pool ID a given work is associated with
708  * @work: the work item of interest
709  *
710  * Return: The worker_pool ID @work was last associated with.
711  * %WORK_OFFQ_POOL_NONE if none.
712  */
get_work_pool_id(struct work_struct * work)713 static int get_work_pool_id(struct work_struct *work)
714 {
715 	unsigned long data = atomic_long_read(&work->data);
716 
717 	if (data & WORK_STRUCT_PWQ)
718 		return ((struct pool_workqueue *)
719 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
720 
721 	return data >> WORK_OFFQ_POOL_SHIFT;
722 }
723 
mark_work_canceling(struct work_struct * work)724 static void mark_work_canceling(struct work_struct *work)
725 {
726 	unsigned long pool_id = get_work_pool_id(work);
727 
728 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
729 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
730 }
731 
work_is_canceling(struct work_struct * work)732 static bool work_is_canceling(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
737 }
738 
739 /*
740  * Policy functions.  These define the policies on how the global worker
741  * pools are managed.  Unless noted otherwise, these functions assume that
742  * they're being called with pool->lock held.
743  */
744 
__need_more_worker(struct worker_pool * pool)745 static bool __need_more_worker(struct worker_pool *pool)
746 {
747 	return !atomic_read(&pool->nr_running);
748 }
749 
750 /*
751  * Need to wake up a worker?  Called from anything but currently
752  * running workers.
753  *
754  * Note that, because unbound workers never contribute to nr_running, this
755  * function will always return %true for unbound pools as long as the
756  * worklist isn't empty.
757  */
need_more_worker(struct worker_pool * pool)758 static bool need_more_worker(struct worker_pool *pool)
759 {
760 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
761 }
762 
763 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)764 static bool may_start_working(struct worker_pool *pool)
765 {
766 	return pool->nr_idle;
767 }
768 
769 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)770 static bool keep_working(struct worker_pool *pool)
771 {
772 	return !list_empty(&pool->worklist) &&
773 		atomic_read(&pool->nr_running) <= 1;
774 }
775 
776 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)777 static bool need_to_create_worker(struct worker_pool *pool)
778 {
779 	return need_more_worker(pool) && !may_start_working(pool);
780 }
781 
782 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)783 static bool too_many_workers(struct worker_pool *pool)
784 {
785 	bool managing = mutex_is_locked(&pool->manager_arb);
786 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
787 	int nr_busy = pool->nr_workers - nr_idle;
788 
789 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
790 }
791 
792 /*
793  * Wake up functions.
794  */
795 
796 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)797 static struct worker *first_idle_worker(struct worker_pool *pool)
798 {
799 	if (unlikely(list_empty(&pool->idle_list)))
800 		return NULL;
801 
802 	return list_first_entry(&pool->idle_list, struct worker, entry);
803 }
804 
805 /**
806  * wake_up_worker - wake up an idle worker
807  * @pool: worker pool to wake worker from
808  *
809  * Wake up the first idle worker of @pool.
810  *
811  * CONTEXT:
812  * spin_lock_irq(pool->lock).
813  */
wake_up_worker(struct worker_pool * pool)814 static void wake_up_worker(struct worker_pool *pool)
815 {
816 	struct worker *worker = first_idle_worker(pool);
817 
818 	if (likely(worker))
819 		wake_up_process(worker->task);
820 }
821 
822 /**
823  * wq_worker_waking_up - a worker is waking up
824  * @task: task waking up
825  * @cpu: CPU @task is waking up to
826  *
827  * This function is called during try_to_wake_up() when a worker is
828  * being awoken.
829  *
830  * CONTEXT:
831  * spin_lock_irq(rq->lock)
832  */
wq_worker_waking_up(struct task_struct * task,int cpu)833 void wq_worker_waking_up(struct task_struct *task, int cpu)
834 {
835 	struct worker *worker = kthread_data(task);
836 
837 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
838 		WARN_ON_ONCE(worker->pool->cpu != cpu);
839 		atomic_inc(&worker->pool->nr_running);
840 	}
841 }
842 
843 /**
844  * wq_worker_sleeping - a worker is going to sleep
845  * @task: task going to sleep
846  * @cpu: CPU in question, must be the current CPU number
847  *
848  * This function is called during schedule() when a busy worker is
849  * going to sleep.  Worker on the same cpu can be woken up by
850  * returning pointer to its task.
851  *
852  * CONTEXT:
853  * spin_lock_irq(rq->lock)
854  *
855  * Return:
856  * Worker task on @cpu to wake up, %NULL if none.
857  */
wq_worker_sleeping(struct task_struct * task,int cpu)858 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
859 {
860 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
861 	struct worker_pool *pool;
862 
863 	/*
864 	 * Rescuers, which may not have all the fields set up like normal
865 	 * workers, also reach here, let's not access anything before
866 	 * checking NOT_RUNNING.
867 	 */
868 	if (worker->flags & WORKER_NOT_RUNNING)
869 		return NULL;
870 
871 	pool = worker->pool;
872 
873 	/* this can only happen on the local cpu */
874 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
875 		return NULL;
876 
877 	/*
878 	 * The counterpart of the following dec_and_test, implied mb,
879 	 * worklist not empty test sequence is in insert_work().
880 	 * Please read comment there.
881 	 *
882 	 * NOT_RUNNING is clear.  This means that we're bound to and
883 	 * running on the local cpu w/ rq lock held and preemption
884 	 * disabled, which in turn means that none else could be
885 	 * manipulating idle_list, so dereferencing idle_list without pool
886 	 * lock is safe.
887 	 */
888 	if (atomic_dec_and_test(&pool->nr_running) &&
889 	    !list_empty(&pool->worklist))
890 		to_wakeup = first_idle_worker(pool);
891 	return to_wakeup ? to_wakeup->task : NULL;
892 }
893 
894 /**
895  * worker_set_flags - set worker flags and adjust nr_running accordingly
896  * @worker: self
897  * @flags: flags to set
898  *
899  * Set @flags in @worker->flags and adjust nr_running accordingly.
900  *
901  * CONTEXT:
902  * spin_lock_irq(pool->lock)
903  */
worker_set_flags(struct worker * worker,unsigned int flags)904 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
905 {
906 	struct worker_pool *pool = worker->pool;
907 
908 	WARN_ON_ONCE(worker->task != current);
909 
910 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
911 	if ((flags & WORKER_NOT_RUNNING) &&
912 	    !(worker->flags & WORKER_NOT_RUNNING)) {
913 		atomic_dec(&pool->nr_running);
914 	}
915 
916 	worker->flags |= flags;
917 }
918 
919 /**
920  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
921  * @worker: self
922  * @flags: flags to clear
923  *
924  * Clear @flags in @worker->flags and adjust nr_running accordingly.
925  *
926  * CONTEXT:
927  * spin_lock_irq(pool->lock)
928  */
worker_clr_flags(struct worker * worker,unsigned int flags)929 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
930 {
931 	struct worker_pool *pool = worker->pool;
932 	unsigned int oflags = worker->flags;
933 
934 	WARN_ON_ONCE(worker->task != current);
935 
936 	worker->flags &= ~flags;
937 
938 	/*
939 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
940 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
941 	 * of multiple flags, not a single flag.
942 	 */
943 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
944 		if (!(worker->flags & WORKER_NOT_RUNNING))
945 			atomic_inc(&pool->nr_running);
946 }
947 
948 /**
949  * find_worker_executing_work - find worker which is executing a work
950  * @pool: pool of interest
951  * @work: work to find worker for
952  *
953  * Find a worker which is executing @work on @pool by searching
954  * @pool->busy_hash which is keyed by the address of @work.  For a worker
955  * to match, its current execution should match the address of @work and
956  * its work function.  This is to avoid unwanted dependency between
957  * unrelated work executions through a work item being recycled while still
958  * being executed.
959  *
960  * This is a bit tricky.  A work item may be freed once its execution
961  * starts and nothing prevents the freed area from being recycled for
962  * another work item.  If the same work item address ends up being reused
963  * before the original execution finishes, workqueue will identify the
964  * recycled work item as currently executing and make it wait until the
965  * current execution finishes, introducing an unwanted dependency.
966  *
967  * This function checks the work item address and work function to avoid
968  * false positives.  Note that this isn't complete as one may construct a
969  * work function which can introduce dependency onto itself through a
970  * recycled work item.  Well, if somebody wants to shoot oneself in the
971  * foot that badly, there's only so much we can do, and if such deadlock
972  * actually occurs, it should be easy to locate the culprit work function.
973  *
974  * CONTEXT:
975  * spin_lock_irq(pool->lock).
976  *
977  * Return:
978  * Pointer to worker which is executing @work if found, %NULL
979  * otherwise.
980  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)981 static struct worker *find_worker_executing_work(struct worker_pool *pool,
982 						 struct work_struct *work)
983 {
984 	struct worker *worker;
985 
986 	hash_for_each_possible(pool->busy_hash, worker, hentry,
987 			       (unsigned long)work)
988 		if (worker->current_work == work &&
989 		    worker->current_func == work->func)
990 			return worker;
991 
992 	return NULL;
993 }
994 
995 /**
996  * move_linked_works - move linked works to a list
997  * @work: start of series of works to be scheduled
998  * @head: target list to append @work to
999  * @nextp: out paramter for nested worklist walking
1000  *
1001  * Schedule linked works starting from @work to @head.  Work series to
1002  * be scheduled starts at @work and includes any consecutive work with
1003  * WORK_STRUCT_LINKED set in its predecessor.
1004  *
1005  * If @nextp is not NULL, it's updated to point to the next work of
1006  * the last scheduled work.  This allows move_linked_works() to be
1007  * nested inside outer list_for_each_entry_safe().
1008  *
1009  * CONTEXT:
1010  * spin_lock_irq(pool->lock).
1011  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1012 static void move_linked_works(struct work_struct *work, struct list_head *head,
1013 			      struct work_struct **nextp)
1014 {
1015 	struct work_struct *n;
1016 
1017 	/*
1018 	 * Linked worklist will always end before the end of the list,
1019 	 * use NULL for list head.
1020 	 */
1021 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1022 		list_move_tail(&work->entry, head);
1023 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1024 			break;
1025 	}
1026 
1027 	/*
1028 	 * If we're already inside safe list traversal and have moved
1029 	 * multiple works to the scheduled queue, the next position
1030 	 * needs to be updated.
1031 	 */
1032 	if (nextp)
1033 		*nextp = n;
1034 }
1035 
1036 /**
1037  * get_pwq - get an extra reference on the specified pool_workqueue
1038  * @pwq: pool_workqueue to get
1039  *
1040  * Obtain an extra reference on @pwq.  The caller should guarantee that
1041  * @pwq has positive refcnt and be holding the matching pool->lock.
1042  */
get_pwq(struct pool_workqueue * pwq)1043 static void get_pwq(struct pool_workqueue *pwq)
1044 {
1045 	lockdep_assert_held(&pwq->pool->lock);
1046 	WARN_ON_ONCE(pwq->refcnt <= 0);
1047 	pwq->refcnt++;
1048 }
1049 
1050 /**
1051  * put_pwq - put a pool_workqueue reference
1052  * @pwq: pool_workqueue to put
1053  *
1054  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1055  * destruction.  The caller should be holding the matching pool->lock.
1056  */
put_pwq(struct pool_workqueue * pwq)1057 static void put_pwq(struct pool_workqueue *pwq)
1058 {
1059 	lockdep_assert_held(&pwq->pool->lock);
1060 	if (likely(--pwq->refcnt))
1061 		return;
1062 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1063 		return;
1064 	/*
1065 	 * @pwq can't be released under pool->lock, bounce to
1066 	 * pwq_unbound_release_workfn().  This never recurses on the same
1067 	 * pool->lock as this path is taken only for unbound workqueues and
1068 	 * the release work item is scheduled on a per-cpu workqueue.  To
1069 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1070 	 * subclass of 1 in get_unbound_pool().
1071 	 */
1072 	schedule_work(&pwq->unbound_release_work);
1073 }
1074 
1075 /**
1076  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1077  * @pwq: pool_workqueue to put (can be %NULL)
1078  *
1079  * put_pwq() with locking.  This function also allows %NULL @pwq.
1080  */
put_pwq_unlocked(struct pool_workqueue * pwq)1081 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1082 {
1083 	if (pwq) {
1084 		/*
1085 		 * As both pwqs and pools are sched-RCU protected, the
1086 		 * following lock operations are safe.
1087 		 */
1088 		spin_lock_irq(&pwq->pool->lock);
1089 		put_pwq(pwq);
1090 		spin_unlock_irq(&pwq->pool->lock);
1091 	}
1092 }
1093 
pwq_activate_delayed_work(struct work_struct * work)1094 static void pwq_activate_delayed_work(struct work_struct *work)
1095 {
1096 	struct pool_workqueue *pwq = get_work_pwq(work);
1097 
1098 	trace_workqueue_activate_work(work);
1099 	move_linked_works(work, &pwq->pool->worklist, NULL);
1100 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1101 	pwq->nr_active++;
1102 }
1103 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1104 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1105 {
1106 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1107 						    struct work_struct, entry);
1108 
1109 	pwq_activate_delayed_work(work);
1110 }
1111 
1112 /**
1113  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1114  * @pwq: pwq of interest
1115  * @color: color of work which left the queue
1116  *
1117  * A work either has completed or is removed from pending queue,
1118  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1119  *
1120  * CONTEXT:
1121  * spin_lock_irq(pool->lock).
1122  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1123 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1124 {
1125 	/* uncolored work items don't participate in flushing or nr_active */
1126 	if (color == WORK_NO_COLOR)
1127 		goto out_put;
1128 
1129 	pwq->nr_in_flight[color]--;
1130 
1131 	pwq->nr_active--;
1132 	if (!list_empty(&pwq->delayed_works)) {
1133 		/* one down, submit a delayed one */
1134 		if (pwq->nr_active < pwq->max_active)
1135 			pwq_activate_first_delayed(pwq);
1136 	}
1137 
1138 	/* is flush in progress and are we at the flushing tip? */
1139 	if (likely(pwq->flush_color != color))
1140 		goto out_put;
1141 
1142 	/* are there still in-flight works? */
1143 	if (pwq->nr_in_flight[color])
1144 		goto out_put;
1145 
1146 	/* this pwq is done, clear flush_color */
1147 	pwq->flush_color = -1;
1148 
1149 	/*
1150 	 * If this was the last pwq, wake up the first flusher.  It
1151 	 * will handle the rest.
1152 	 */
1153 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1154 		complete(&pwq->wq->first_flusher->done);
1155 out_put:
1156 	put_pwq(pwq);
1157 }
1158 
1159 /**
1160  * try_to_grab_pending - steal work item from worklist and disable irq
1161  * @work: work item to steal
1162  * @is_dwork: @work is a delayed_work
1163  * @flags: place to store irq state
1164  *
1165  * Try to grab PENDING bit of @work.  This function can handle @work in any
1166  * stable state - idle, on timer or on worklist.
1167  *
1168  * Return:
1169  *  1		if @work was pending and we successfully stole PENDING
1170  *  0		if @work was idle and we claimed PENDING
1171  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1172  *  -ENOENT	if someone else is canceling @work, this state may persist
1173  *		for arbitrarily long
1174  *
1175  * Note:
1176  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1177  * interrupted while holding PENDING and @work off queue, irq must be
1178  * disabled on entry.  This, combined with delayed_work->timer being
1179  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1180  *
1181  * On successful return, >= 0, irq is disabled and the caller is
1182  * responsible for releasing it using local_irq_restore(*@flags).
1183  *
1184  * This function is safe to call from any context including IRQ handler.
1185  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1186 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1187 			       unsigned long *flags)
1188 {
1189 	struct worker_pool *pool;
1190 	struct pool_workqueue *pwq;
1191 
1192 	local_irq_save(*flags);
1193 
1194 	/* try to steal the timer if it exists */
1195 	if (is_dwork) {
1196 		struct delayed_work *dwork = to_delayed_work(work);
1197 
1198 		/*
1199 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1200 		 * guaranteed that the timer is not queued anywhere and not
1201 		 * running on the local CPU.
1202 		 */
1203 		if (likely(del_timer(&dwork->timer)))
1204 			return 1;
1205 	}
1206 
1207 	/* try to claim PENDING the normal way */
1208 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1209 		return 0;
1210 
1211 	/*
1212 	 * The queueing is in progress, or it is already queued. Try to
1213 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1214 	 */
1215 	pool = get_work_pool(work);
1216 	if (!pool)
1217 		goto fail;
1218 
1219 	spin_lock(&pool->lock);
1220 	/*
1221 	 * work->data is guaranteed to point to pwq only while the work
1222 	 * item is queued on pwq->wq, and both updating work->data to point
1223 	 * to pwq on queueing and to pool on dequeueing are done under
1224 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1225 	 * points to pwq which is associated with a locked pool, the work
1226 	 * item is currently queued on that pool.
1227 	 */
1228 	pwq = get_work_pwq(work);
1229 	if (pwq && pwq->pool == pool) {
1230 		debug_work_deactivate(work);
1231 
1232 		/*
1233 		 * A delayed work item cannot be grabbed directly because
1234 		 * it might have linked NO_COLOR work items which, if left
1235 		 * on the delayed_list, will confuse pwq->nr_active
1236 		 * management later on and cause stall.  Make sure the work
1237 		 * item is activated before grabbing.
1238 		 */
1239 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1240 			pwq_activate_delayed_work(work);
1241 
1242 		list_del_init(&work->entry);
1243 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1244 
1245 		/* work->data points to pwq iff queued, point to pool */
1246 		set_work_pool_and_keep_pending(work, pool->id);
1247 
1248 		spin_unlock(&pool->lock);
1249 		return 1;
1250 	}
1251 	spin_unlock(&pool->lock);
1252 fail:
1253 	local_irq_restore(*flags);
1254 	if (work_is_canceling(work))
1255 		return -ENOENT;
1256 	cpu_relax();
1257 	return -EAGAIN;
1258 }
1259 
1260 /**
1261  * insert_work - insert a work into a pool
1262  * @pwq: pwq @work belongs to
1263  * @work: work to insert
1264  * @head: insertion point
1265  * @extra_flags: extra WORK_STRUCT_* flags to set
1266  *
1267  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1268  * work_struct flags.
1269  *
1270  * CONTEXT:
1271  * spin_lock_irq(pool->lock).
1272  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1273 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1274 			struct list_head *head, unsigned int extra_flags)
1275 {
1276 	struct worker_pool *pool = pwq->pool;
1277 
1278 	/* we own @work, set data and link */
1279 	set_work_pwq(work, pwq, extra_flags);
1280 	list_add_tail(&work->entry, head);
1281 	get_pwq(pwq);
1282 
1283 	/*
1284 	 * Ensure either wq_worker_sleeping() sees the above
1285 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1286 	 * around lazily while there are works to be processed.
1287 	 */
1288 	smp_mb();
1289 
1290 	if (__need_more_worker(pool))
1291 		wake_up_worker(pool);
1292 }
1293 
1294 /*
1295  * Test whether @work is being queued from another work executing on the
1296  * same workqueue.
1297  */
is_chained_work(struct workqueue_struct * wq)1298 static bool is_chained_work(struct workqueue_struct *wq)
1299 {
1300 	struct worker *worker;
1301 
1302 	worker = current_wq_worker();
1303 	/*
1304 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1305 	 * I'm @worker, it's safe to dereference it without locking.
1306 	 */
1307 	return worker && worker->current_pwq->wq == wq;
1308 }
1309 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1310 static void __queue_work(int cpu, struct workqueue_struct *wq,
1311 			 struct work_struct *work)
1312 {
1313 	struct pool_workqueue *pwq;
1314 	struct worker_pool *last_pool;
1315 	struct list_head *worklist;
1316 	unsigned int work_flags;
1317 	unsigned int req_cpu = cpu;
1318 
1319 	/*
1320 	 * While a work item is PENDING && off queue, a task trying to
1321 	 * steal the PENDING will busy-loop waiting for it to either get
1322 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1323 	 * happen with IRQ disabled.
1324 	 */
1325 	WARN_ON_ONCE(!irqs_disabled());
1326 
1327 	debug_work_activate(work);
1328 
1329 	/* if draining, only works from the same workqueue are allowed */
1330 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1331 	    WARN_ON_ONCE(!is_chained_work(wq)))
1332 		return;
1333 retry:
1334 	if (req_cpu == WORK_CPU_UNBOUND)
1335 		cpu = raw_smp_processor_id();
1336 
1337 	/* pwq which will be used unless @work is executing elsewhere */
1338 	if (!(wq->flags & WQ_UNBOUND))
1339 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1340 	else
1341 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1342 
1343 	/*
1344 	 * If @work was previously on a different pool, it might still be
1345 	 * running there, in which case the work needs to be queued on that
1346 	 * pool to guarantee non-reentrancy.
1347 	 */
1348 	last_pool = get_work_pool(work);
1349 	if (last_pool && last_pool != pwq->pool) {
1350 		struct worker *worker;
1351 
1352 		spin_lock(&last_pool->lock);
1353 
1354 		worker = find_worker_executing_work(last_pool, work);
1355 
1356 		if (worker && worker->current_pwq->wq == wq) {
1357 			pwq = worker->current_pwq;
1358 		} else {
1359 			/* meh... not running there, queue here */
1360 			spin_unlock(&last_pool->lock);
1361 			spin_lock(&pwq->pool->lock);
1362 		}
1363 	} else {
1364 		spin_lock(&pwq->pool->lock);
1365 	}
1366 
1367 	/*
1368 	 * pwq is determined and locked.  For unbound pools, we could have
1369 	 * raced with pwq release and it could already be dead.  If its
1370 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1371 	 * without another pwq replacing it in the numa_pwq_tbl or while
1372 	 * work items are executing on it, so the retrying is guaranteed to
1373 	 * make forward-progress.
1374 	 */
1375 	if (unlikely(!pwq->refcnt)) {
1376 		if (wq->flags & WQ_UNBOUND) {
1377 			spin_unlock(&pwq->pool->lock);
1378 			cpu_relax();
1379 			goto retry;
1380 		}
1381 		/* oops */
1382 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1383 			  wq->name, cpu);
1384 	}
1385 
1386 	/* pwq determined, queue */
1387 	trace_workqueue_queue_work(req_cpu, pwq, work);
1388 
1389 	if (WARN_ON(!list_empty(&work->entry))) {
1390 		spin_unlock(&pwq->pool->lock);
1391 		return;
1392 	}
1393 
1394 	pwq->nr_in_flight[pwq->work_color]++;
1395 	work_flags = work_color_to_flags(pwq->work_color);
1396 
1397 	if (likely(pwq->nr_active < pwq->max_active)) {
1398 		trace_workqueue_activate_work(work);
1399 		pwq->nr_active++;
1400 		worklist = &pwq->pool->worklist;
1401 	} else {
1402 		work_flags |= WORK_STRUCT_DELAYED;
1403 		worklist = &pwq->delayed_works;
1404 	}
1405 
1406 	insert_work(pwq, work, worklist, work_flags);
1407 
1408 	spin_unlock(&pwq->pool->lock);
1409 }
1410 
1411 /**
1412  * queue_work_on - queue work on specific cpu
1413  * @cpu: CPU number to execute work on
1414  * @wq: workqueue to use
1415  * @work: work to queue
1416  *
1417  * We queue the work to a specific CPU, the caller must ensure it
1418  * can't go away.
1419  *
1420  * Return: %false if @work was already on a queue, %true otherwise.
1421  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1422 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1423 		   struct work_struct *work)
1424 {
1425 	bool ret = false;
1426 	unsigned long flags;
1427 
1428 	local_irq_save(flags);
1429 
1430 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1431 		__queue_work(cpu, wq, work);
1432 		ret = true;
1433 	}
1434 
1435 	local_irq_restore(flags);
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL(queue_work_on);
1439 
delayed_work_timer_fn(unsigned long __data)1440 void delayed_work_timer_fn(unsigned long __data)
1441 {
1442 	struct delayed_work *dwork = (struct delayed_work *)__data;
1443 
1444 	/* should have been called from irqsafe timer with irq already off */
1445 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1446 }
1447 EXPORT_SYMBOL(delayed_work_timer_fn);
1448 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1449 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1450 				struct delayed_work *dwork, unsigned long delay)
1451 {
1452 	struct timer_list *timer = &dwork->timer;
1453 	struct work_struct *work = &dwork->work;
1454 
1455 	WARN_ON_ONCE(!wq);
1456 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1457 		     timer->data != (unsigned long)dwork);
1458 	WARN_ON_ONCE(timer_pending(timer));
1459 	WARN_ON_ONCE(!list_empty(&work->entry));
1460 
1461 	/*
1462 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1463 	 * both optimization and correctness.  The earliest @timer can
1464 	 * expire is on the closest next tick and delayed_work users depend
1465 	 * on that there's no such delay when @delay is 0.
1466 	 */
1467 	if (!delay) {
1468 		__queue_work(cpu, wq, &dwork->work);
1469 		return;
1470 	}
1471 
1472 	timer_stats_timer_set_start_info(&dwork->timer);
1473 
1474 	dwork->wq = wq;
1475 	dwork->cpu = cpu;
1476 	timer->expires = jiffies + delay;
1477 
1478 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1479 		add_timer_on(timer, cpu);
1480 	else
1481 		add_timer(timer);
1482 }
1483 
1484 /**
1485  * queue_delayed_work_on - queue work on specific CPU after delay
1486  * @cpu: CPU number to execute work on
1487  * @wq: workqueue to use
1488  * @dwork: work to queue
1489  * @delay: number of jiffies to wait before queueing
1490  *
1491  * Return: %false if @work was already on a queue, %true otherwise.  If
1492  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1493  * execution.
1494  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1495 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1496 			   struct delayed_work *dwork, unsigned long delay)
1497 {
1498 	struct work_struct *work = &dwork->work;
1499 	bool ret = false;
1500 	unsigned long flags;
1501 
1502 	/* read the comment in __queue_work() */
1503 	local_irq_save(flags);
1504 
1505 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1506 		__queue_delayed_work(cpu, wq, dwork, delay);
1507 		ret = true;
1508 	}
1509 
1510 	local_irq_restore(flags);
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL(queue_delayed_work_on);
1514 
1515 /**
1516  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1517  * @cpu: CPU number to execute work on
1518  * @wq: workqueue to use
1519  * @dwork: work to queue
1520  * @delay: number of jiffies to wait before queueing
1521  *
1522  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1523  * modify @dwork's timer so that it expires after @delay.  If @delay is
1524  * zero, @work is guaranteed to be scheduled immediately regardless of its
1525  * current state.
1526  *
1527  * Return: %false if @dwork was idle and queued, %true if @dwork was
1528  * pending and its timer was modified.
1529  *
1530  * This function is safe to call from any context including IRQ handler.
1531  * See try_to_grab_pending() for details.
1532  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1533 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1534 			 struct delayed_work *dwork, unsigned long delay)
1535 {
1536 	unsigned long flags;
1537 	int ret;
1538 
1539 	do {
1540 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1541 	} while (unlikely(ret == -EAGAIN));
1542 
1543 	if (likely(ret >= 0)) {
1544 		__queue_delayed_work(cpu, wq, dwork, delay);
1545 		local_irq_restore(flags);
1546 	}
1547 
1548 	/* -ENOENT from try_to_grab_pending() becomes %true */
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1552 
1553 /**
1554  * worker_enter_idle - enter idle state
1555  * @worker: worker which is entering idle state
1556  *
1557  * @worker is entering idle state.  Update stats and idle timer if
1558  * necessary.
1559  *
1560  * LOCKING:
1561  * spin_lock_irq(pool->lock).
1562  */
worker_enter_idle(struct worker * worker)1563 static void worker_enter_idle(struct worker *worker)
1564 {
1565 	struct worker_pool *pool = worker->pool;
1566 
1567 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1568 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1569 			 (worker->hentry.next || worker->hentry.pprev)))
1570 		return;
1571 
1572 	/* can't use worker_set_flags(), also called from create_worker() */
1573 	worker->flags |= WORKER_IDLE;
1574 	pool->nr_idle++;
1575 	worker->last_active = jiffies;
1576 
1577 	/* idle_list is LIFO */
1578 	list_add(&worker->entry, &pool->idle_list);
1579 
1580 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1581 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1582 
1583 	/*
1584 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1585 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1586 	 * nr_running, the warning may trigger spuriously.  Check iff
1587 	 * unbind is not in progress.
1588 	 */
1589 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1590 		     pool->nr_workers == pool->nr_idle &&
1591 		     atomic_read(&pool->nr_running));
1592 }
1593 
1594 /**
1595  * worker_leave_idle - leave idle state
1596  * @worker: worker which is leaving idle state
1597  *
1598  * @worker is leaving idle state.  Update stats.
1599  *
1600  * LOCKING:
1601  * spin_lock_irq(pool->lock).
1602  */
worker_leave_idle(struct worker * worker)1603 static void worker_leave_idle(struct worker *worker)
1604 {
1605 	struct worker_pool *pool = worker->pool;
1606 
1607 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1608 		return;
1609 	worker_clr_flags(worker, WORKER_IDLE);
1610 	pool->nr_idle--;
1611 	list_del_init(&worker->entry);
1612 }
1613 
alloc_worker(int node)1614 static struct worker *alloc_worker(int node)
1615 {
1616 	struct worker *worker;
1617 
1618 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1619 	if (worker) {
1620 		INIT_LIST_HEAD(&worker->entry);
1621 		INIT_LIST_HEAD(&worker->scheduled);
1622 		INIT_LIST_HEAD(&worker->node);
1623 		/* on creation a worker is in !idle && prep state */
1624 		worker->flags = WORKER_PREP;
1625 	}
1626 	return worker;
1627 }
1628 
1629 /**
1630  * worker_attach_to_pool() - attach a worker to a pool
1631  * @worker: worker to be attached
1632  * @pool: the target pool
1633  *
1634  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1635  * cpu-binding of @worker are kept coordinated with the pool across
1636  * cpu-[un]hotplugs.
1637  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1638 static void worker_attach_to_pool(struct worker *worker,
1639 				   struct worker_pool *pool)
1640 {
1641 	mutex_lock(&pool->attach_mutex);
1642 
1643 	/*
1644 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1645 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1646 	 */
1647 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1648 
1649 	/*
1650 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1651 	 * stable across this function.  See the comments above the
1652 	 * flag definition for details.
1653 	 */
1654 	if (pool->flags & POOL_DISASSOCIATED)
1655 		worker->flags |= WORKER_UNBOUND;
1656 
1657 	list_add_tail(&worker->node, &pool->workers);
1658 
1659 	mutex_unlock(&pool->attach_mutex);
1660 }
1661 
1662 /**
1663  * worker_detach_from_pool() - detach a worker from its pool
1664  * @worker: worker which is attached to its pool
1665  * @pool: the pool @worker is attached to
1666  *
1667  * Undo the attaching which had been done in worker_attach_to_pool().  The
1668  * caller worker shouldn't access to the pool after detached except it has
1669  * other reference to the pool.
1670  */
worker_detach_from_pool(struct worker * worker,struct worker_pool * pool)1671 static void worker_detach_from_pool(struct worker *worker,
1672 				    struct worker_pool *pool)
1673 {
1674 	struct completion *detach_completion = NULL;
1675 
1676 	mutex_lock(&pool->attach_mutex);
1677 	list_del(&worker->node);
1678 	if (list_empty(&pool->workers))
1679 		detach_completion = pool->detach_completion;
1680 	mutex_unlock(&pool->attach_mutex);
1681 
1682 	/* clear leftover flags without pool->lock after it is detached */
1683 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1684 
1685 	if (detach_completion)
1686 		complete(detach_completion);
1687 }
1688 
1689 /**
1690  * create_worker - create a new workqueue worker
1691  * @pool: pool the new worker will belong to
1692  *
1693  * Create and start a new worker which is attached to @pool.
1694  *
1695  * CONTEXT:
1696  * Might sleep.  Does GFP_KERNEL allocations.
1697  *
1698  * Return:
1699  * Pointer to the newly created worker.
1700  */
create_worker(struct worker_pool * pool)1701 static struct worker *create_worker(struct worker_pool *pool)
1702 {
1703 	struct worker *worker = NULL;
1704 	int id = -1;
1705 	char id_buf[16];
1706 
1707 	/* ID is needed to determine kthread name */
1708 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1709 	if (id < 0)
1710 		goto fail;
1711 
1712 	worker = alloc_worker(pool->node);
1713 	if (!worker)
1714 		goto fail;
1715 
1716 	worker->pool = pool;
1717 	worker->id = id;
1718 
1719 	if (pool->cpu >= 0)
1720 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1721 			 pool->attrs->nice < 0  ? "H" : "");
1722 	else
1723 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1724 
1725 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1726 					      "kworker/%s", id_buf);
1727 	if (IS_ERR(worker->task))
1728 		goto fail;
1729 
1730 	set_user_nice(worker->task, pool->attrs->nice);
1731 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1732 
1733 	/* successful, attach the worker to the pool */
1734 	worker_attach_to_pool(worker, pool);
1735 
1736 	/* start the newly created worker */
1737 	spin_lock_irq(&pool->lock);
1738 	worker->pool->nr_workers++;
1739 	worker_enter_idle(worker);
1740 	wake_up_process(worker->task);
1741 	spin_unlock_irq(&pool->lock);
1742 
1743 	return worker;
1744 
1745 fail:
1746 	if (id >= 0)
1747 		ida_simple_remove(&pool->worker_ida, id);
1748 	kfree(worker);
1749 	return NULL;
1750 }
1751 
1752 /**
1753  * destroy_worker - destroy a workqueue worker
1754  * @worker: worker to be destroyed
1755  *
1756  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1757  * be idle.
1758  *
1759  * CONTEXT:
1760  * spin_lock_irq(pool->lock).
1761  */
destroy_worker(struct worker * worker)1762 static void destroy_worker(struct worker *worker)
1763 {
1764 	struct worker_pool *pool = worker->pool;
1765 
1766 	lockdep_assert_held(&pool->lock);
1767 
1768 	/* sanity check frenzy */
1769 	if (WARN_ON(worker->current_work) ||
1770 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1771 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1772 		return;
1773 
1774 	pool->nr_workers--;
1775 	pool->nr_idle--;
1776 
1777 	list_del_init(&worker->entry);
1778 	worker->flags |= WORKER_DIE;
1779 	wake_up_process(worker->task);
1780 }
1781 
idle_worker_timeout(unsigned long __pool)1782 static void idle_worker_timeout(unsigned long __pool)
1783 {
1784 	struct worker_pool *pool = (void *)__pool;
1785 
1786 	spin_lock_irq(&pool->lock);
1787 
1788 	while (too_many_workers(pool)) {
1789 		struct worker *worker;
1790 		unsigned long expires;
1791 
1792 		/* idle_list is kept in LIFO order, check the last one */
1793 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1794 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1795 
1796 		if (time_before(jiffies, expires)) {
1797 			mod_timer(&pool->idle_timer, expires);
1798 			break;
1799 		}
1800 
1801 		destroy_worker(worker);
1802 	}
1803 
1804 	spin_unlock_irq(&pool->lock);
1805 }
1806 
send_mayday(struct work_struct * work)1807 static void send_mayday(struct work_struct *work)
1808 {
1809 	struct pool_workqueue *pwq = get_work_pwq(work);
1810 	struct workqueue_struct *wq = pwq->wq;
1811 
1812 	lockdep_assert_held(&wq_mayday_lock);
1813 
1814 	if (!wq->rescuer)
1815 		return;
1816 
1817 	/* mayday mayday mayday */
1818 	if (list_empty(&pwq->mayday_node)) {
1819 		/*
1820 		 * If @pwq is for an unbound wq, its base ref may be put at
1821 		 * any time due to an attribute change.  Pin @pwq until the
1822 		 * rescuer is done with it.
1823 		 */
1824 		get_pwq(pwq);
1825 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1826 		wake_up_process(wq->rescuer->task);
1827 	}
1828 }
1829 
pool_mayday_timeout(unsigned long __pool)1830 static void pool_mayday_timeout(unsigned long __pool)
1831 {
1832 	struct worker_pool *pool = (void *)__pool;
1833 	struct work_struct *work;
1834 
1835 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1836 	spin_lock(&pool->lock);
1837 
1838 	if (need_to_create_worker(pool)) {
1839 		/*
1840 		 * We've been trying to create a new worker but
1841 		 * haven't been successful.  We might be hitting an
1842 		 * allocation deadlock.  Send distress signals to
1843 		 * rescuers.
1844 		 */
1845 		list_for_each_entry(work, &pool->worklist, entry)
1846 			send_mayday(work);
1847 	}
1848 
1849 	spin_unlock(&pool->lock);
1850 	spin_unlock_irq(&wq_mayday_lock);
1851 
1852 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1853 }
1854 
1855 /**
1856  * maybe_create_worker - create a new worker if necessary
1857  * @pool: pool to create a new worker for
1858  *
1859  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1860  * have at least one idle worker on return from this function.  If
1861  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1862  * sent to all rescuers with works scheduled on @pool to resolve
1863  * possible allocation deadlock.
1864  *
1865  * On return, need_to_create_worker() is guaranteed to be %false and
1866  * may_start_working() %true.
1867  *
1868  * LOCKING:
1869  * spin_lock_irq(pool->lock) which may be released and regrabbed
1870  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1871  * manager.
1872  */
maybe_create_worker(struct worker_pool * pool)1873 static void maybe_create_worker(struct worker_pool *pool)
1874 __releases(&pool->lock)
1875 __acquires(&pool->lock)
1876 {
1877 restart:
1878 	spin_unlock_irq(&pool->lock);
1879 
1880 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1881 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1882 
1883 	while (true) {
1884 		if (create_worker(pool) || !need_to_create_worker(pool))
1885 			break;
1886 
1887 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1888 
1889 		if (!need_to_create_worker(pool))
1890 			break;
1891 	}
1892 
1893 	del_timer_sync(&pool->mayday_timer);
1894 	spin_lock_irq(&pool->lock);
1895 	/*
1896 	 * This is necessary even after a new worker was just successfully
1897 	 * created as @pool->lock was dropped and the new worker might have
1898 	 * already become busy.
1899 	 */
1900 	if (need_to_create_worker(pool))
1901 		goto restart;
1902 }
1903 
1904 /**
1905  * manage_workers - manage worker pool
1906  * @worker: self
1907  *
1908  * Assume the manager role and manage the worker pool @worker belongs
1909  * to.  At any given time, there can be only zero or one manager per
1910  * pool.  The exclusion is handled automatically by this function.
1911  *
1912  * The caller can safely start processing works on false return.  On
1913  * true return, it's guaranteed that need_to_create_worker() is false
1914  * and may_start_working() is true.
1915  *
1916  * CONTEXT:
1917  * spin_lock_irq(pool->lock) which may be released and regrabbed
1918  * multiple times.  Does GFP_KERNEL allocations.
1919  *
1920  * Return:
1921  * %false if the pool doesn't need management and the caller can safely
1922  * start processing works, %true if management function was performed and
1923  * the conditions that the caller verified before calling the function may
1924  * no longer be true.
1925  */
manage_workers(struct worker * worker)1926 static bool manage_workers(struct worker *worker)
1927 {
1928 	struct worker_pool *pool = worker->pool;
1929 
1930 	/*
1931 	 * Anyone who successfully grabs manager_arb wins the arbitration
1932 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1933 	 * failure while holding pool->lock reliably indicates that someone
1934 	 * else is managing the pool and the worker which failed trylock
1935 	 * can proceed to executing work items.  This means that anyone
1936 	 * grabbing manager_arb is responsible for actually performing
1937 	 * manager duties.  If manager_arb is grabbed and released without
1938 	 * actual management, the pool may stall indefinitely.
1939 	 */
1940 	if (!mutex_trylock(&pool->manager_arb))
1941 		return false;
1942 
1943 	maybe_create_worker(pool);
1944 
1945 	mutex_unlock(&pool->manager_arb);
1946 	return true;
1947 }
1948 
1949 /**
1950  * process_one_work - process single work
1951  * @worker: self
1952  * @work: work to process
1953  *
1954  * Process @work.  This function contains all the logics necessary to
1955  * process a single work including synchronization against and
1956  * interaction with other workers on the same cpu, queueing and
1957  * flushing.  As long as context requirement is met, any worker can
1958  * call this function to process a work.
1959  *
1960  * CONTEXT:
1961  * spin_lock_irq(pool->lock) which is released and regrabbed.
1962  */
process_one_work(struct worker * worker,struct work_struct * work)1963 static void process_one_work(struct worker *worker, struct work_struct *work)
1964 __releases(&pool->lock)
1965 __acquires(&pool->lock)
1966 {
1967 	struct pool_workqueue *pwq = get_work_pwq(work);
1968 	struct worker_pool *pool = worker->pool;
1969 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1970 	int work_color;
1971 	struct worker *collision;
1972 #ifdef CONFIG_LOCKDEP
1973 	/*
1974 	 * It is permissible to free the struct work_struct from
1975 	 * inside the function that is called from it, this we need to
1976 	 * take into account for lockdep too.  To avoid bogus "held
1977 	 * lock freed" warnings as well as problems when looking into
1978 	 * work->lockdep_map, make a copy and use that here.
1979 	 */
1980 	struct lockdep_map lockdep_map;
1981 
1982 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1983 #endif
1984 	/* ensure we're on the correct CPU */
1985 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1986 		     raw_smp_processor_id() != pool->cpu);
1987 
1988 	/*
1989 	 * A single work shouldn't be executed concurrently by
1990 	 * multiple workers on a single cpu.  Check whether anyone is
1991 	 * already processing the work.  If so, defer the work to the
1992 	 * currently executing one.
1993 	 */
1994 	collision = find_worker_executing_work(pool, work);
1995 	if (unlikely(collision)) {
1996 		move_linked_works(work, &collision->scheduled, NULL);
1997 		return;
1998 	}
1999 
2000 	/* claim and dequeue */
2001 	debug_work_deactivate(work);
2002 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2003 	worker->current_work = work;
2004 	worker->current_func = work->func;
2005 	worker->current_pwq = pwq;
2006 	work_color = get_work_color(work);
2007 
2008 	list_del_init(&work->entry);
2009 
2010 	/*
2011 	 * CPU intensive works don't participate in concurrency management.
2012 	 * They're the scheduler's responsibility.  This takes @worker out
2013 	 * of concurrency management and the next code block will chain
2014 	 * execution of the pending work items.
2015 	 */
2016 	if (unlikely(cpu_intensive))
2017 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2018 
2019 	/*
2020 	 * Wake up another worker if necessary.  The condition is always
2021 	 * false for normal per-cpu workers since nr_running would always
2022 	 * be >= 1 at this point.  This is used to chain execution of the
2023 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2024 	 * UNBOUND and CPU_INTENSIVE ones.
2025 	 */
2026 	if (need_more_worker(pool))
2027 		wake_up_worker(pool);
2028 
2029 	/*
2030 	 * Record the last pool and clear PENDING which should be the last
2031 	 * update to @work.  Also, do this inside @pool->lock so that
2032 	 * PENDING and queued state changes happen together while IRQ is
2033 	 * disabled.
2034 	 */
2035 	set_work_pool_and_clear_pending(work, pool->id);
2036 
2037 	spin_unlock_irq(&pool->lock);
2038 
2039 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2040 	lock_map_acquire(&lockdep_map);
2041 	trace_workqueue_execute_start(work);
2042 	worker->current_func(work);
2043 	/*
2044 	 * While we must be careful to not use "work" after this, the trace
2045 	 * point will only record its address.
2046 	 */
2047 	trace_workqueue_execute_end(work);
2048 	lock_map_release(&lockdep_map);
2049 	lock_map_release(&pwq->wq->lockdep_map);
2050 
2051 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2052 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2053 		       "     last function: %pf\n",
2054 		       current->comm, preempt_count(), task_pid_nr(current),
2055 		       worker->current_func);
2056 		debug_show_held_locks(current);
2057 		dump_stack();
2058 	}
2059 
2060 	/*
2061 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2062 	 * kernels, where a requeueing work item waiting for something to
2063 	 * happen could deadlock with stop_machine as such work item could
2064 	 * indefinitely requeue itself while all other CPUs are trapped in
2065 	 * stop_machine. At the same time, report a quiescent RCU state so
2066 	 * the same condition doesn't freeze RCU.
2067 	 */
2068 	cond_resched_rcu_qs();
2069 
2070 	spin_lock_irq(&pool->lock);
2071 
2072 	/* clear cpu intensive status */
2073 	if (unlikely(cpu_intensive))
2074 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2075 
2076 	/* we're done with it, release */
2077 	hash_del(&worker->hentry);
2078 	worker->current_work = NULL;
2079 	worker->current_func = NULL;
2080 	worker->current_pwq = NULL;
2081 	worker->desc_valid = false;
2082 	pwq_dec_nr_in_flight(pwq, work_color);
2083 }
2084 
2085 /**
2086  * process_scheduled_works - process scheduled works
2087  * @worker: self
2088  *
2089  * Process all scheduled works.  Please note that the scheduled list
2090  * may change while processing a work, so this function repeatedly
2091  * fetches a work from the top and executes it.
2092  *
2093  * CONTEXT:
2094  * spin_lock_irq(pool->lock) which may be released and regrabbed
2095  * multiple times.
2096  */
process_scheduled_works(struct worker * worker)2097 static void process_scheduled_works(struct worker *worker)
2098 {
2099 	while (!list_empty(&worker->scheduled)) {
2100 		struct work_struct *work = list_first_entry(&worker->scheduled,
2101 						struct work_struct, entry);
2102 		process_one_work(worker, work);
2103 	}
2104 }
2105 
2106 /**
2107  * worker_thread - the worker thread function
2108  * @__worker: self
2109  *
2110  * The worker thread function.  All workers belong to a worker_pool -
2111  * either a per-cpu one or dynamic unbound one.  These workers process all
2112  * work items regardless of their specific target workqueue.  The only
2113  * exception is work items which belong to workqueues with a rescuer which
2114  * will be explained in rescuer_thread().
2115  *
2116  * Return: 0
2117  */
worker_thread(void * __worker)2118 static int worker_thread(void *__worker)
2119 {
2120 	struct worker *worker = __worker;
2121 	struct worker_pool *pool = worker->pool;
2122 
2123 	/* tell the scheduler that this is a workqueue worker */
2124 	worker->task->flags |= PF_WQ_WORKER;
2125 woke_up:
2126 	spin_lock_irq(&pool->lock);
2127 
2128 	/* am I supposed to die? */
2129 	if (unlikely(worker->flags & WORKER_DIE)) {
2130 		spin_unlock_irq(&pool->lock);
2131 		WARN_ON_ONCE(!list_empty(&worker->entry));
2132 		worker->task->flags &= ~PF_WQ_WORKER;
2133 
2134 		set_task_comm(worker->task, "kworker/dying");
2135 		ida_simple_remove(&pool->worker_ida, worker->id);
2136 		worker_detach_from_pool(worker, pool);
2137 		kfree(worker);
2138 		return 0;
2139 	}
2140 
2141 	worker_leave_idle(worker);
2142 recheck:
2143 	/* no more worker necessary? */
2144 	if (!need_more_worker(pool))
2145 		goto sleep;
2146 
2147 	/* do we need to manage? */
2148 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2149 		goto recheck;
2150 
2151 	/*
2152 	 * ->scheduled list can only be filled while a worker is
2153 	 * preparing to process a work or actually processing it.
2154 	 * Make sure nobody diddled with it while I was sleeping.
2155 	 */
2156 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2157 
2158 	/*
2159 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2160 	 * worker or that someone else has already assumed the manager
2161 	 * role.  This is where @worker starts participating in concurrency
2162 	 * management if applicable and concurrency management is restored
2163 	 * after being rebound.  See rebind_workers() for details.
2164 	 */
2165 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2166 
2167 	do {
2168 		struct work_struct *work =
2169 			list_first_entry(&pool->worklist,
2170 					 struct work_struct, entry);
2171 
2172 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2173 			/* optimization path, not strictly necessary */
2174 			process_one_work(worker, work);
2175 			if (unlikely(!list_empty(&worker->scheduled)))
2176 				process_scheduled_works(worker);
2177 		} else {
2178 			move_linked_works(work, &worker->scheduled, NULL);
2179 			process_scheduled_works(worker);
2180 		}
2181 	} while (keep_working(pool));
2182 
2183 	worker_set_flags(worker, WORKER_PREP);
2184 sleep:
2185 	/*
2186 	 * pool->lock is held and there's no work to process and no need to
2187 	 * manage, sleep.  Workers are woken up only while holding
2188 	 * pool->lock or from local cpu, so setting the current state
2189 	 * before releasing pool->lock is enough to prevent losing any
2190 	 * event.
2191 	 */
2192 	worker_enter_idle(worker);
2193 	__set_current_state(TASK_INTERRUPTIBLE);
2194 	spin_unlock_irq(&pool->lock);
2195 	schedule();
2196 	goto woke_up;
2197 }
2198 
2199 /**
2200  * rescuer_thread - the rescuer thread function
2201  * @__rescuer: self
2202  *
2203  * Workqueue rescuer thread function.  There's one rescuer for each
2204  * workqueue which has WQ_MEM_RECLAIM set.
2205  *
2206  * Regular work processing on a pool may block trying to create a new
2207  * worker which uses GFP_KERNEL allocation which has slight chance of
2208  * developing into deadlock if some works currently on the same queue
2209  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2210  * the problem rescuer solves.
2211  *
2212  * When such condition is possible, the pool summons rescuers of all
2213  * workqueues which have works queued on the pool and let them process
2214  * those works so that forward progress can be guaranteed.
2215  *
2216  * This should happen rarely.
2217  *
2218  * Return: 0
2219  */
rescuer_thread(void * __rescuer)2220 static int rescuer_thread(void *__rescuer)
2221 {
2222 	struct worker *rescuer = __rescuer;
2223 	struct workqueue_struct *wq = rescuer->rescue_wq;
2224 	struct list_head *scheduled = &rescuer->scheduled;
2225 	bool should_stop;
2226 
2227 	set_user_nice(current, RESCUER_NICE_LEVEL);
2228 
2229 	/*
2230 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2231 	 * doesn't participate in concurrency management.
2232 	 */
2233 	rescuer->task->flags |= PF_WQ_WORKER;
2234 repeat:
2235 	set_current_state(TASK_INTERRUPTIBLE);
2236 
2237 	/*
2238 	 * By the time the rescuer is requested to stop, the workqueue
2239 	 * shouldn't have any work pending, but @wq->maydays may still have
2240 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2241 	 * all the work items before the rescuer got to them.  Go through
2242 	 * @wq->maydays processing before acting on should_stop so that the
2243 	 * list is always empty on exit.
2244 	 */
2245 	should_stop = kthread_should_stop();
2246 
2247 	/* see whether any pwq is asking for help */
2248 	spin_lock_irq(&wq_mayday_lock);
2249 
2250 	while (!list_empty(&wq->maydays)) {
2251 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2252 					struct pool_workqueue, mayday_node);
2253 		struct worker_pool *pool = pwq->pool;
2254 		struct work_struct *work, *n;
2255 
2256 		__set_current_state(TASK_RUNNING);
2257 		list_del_init(&pwq->mayday_node);
2258 
2259 		spin_unlock_irq(&wq_mayday_lock);
2260 
2261 		worker_attach_to_pool(rescuer, pool);
2262 
2263 		spin_lock_irq(&pool->lock);
2264 		rescuer->pool = pool;
2265 
2266 		/*
2267 		 * Slurp in all works issued via this workqueue and
2268 		 * process'em.
2269 		 */
2270 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2271 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2272 			if (get_work_pwq(work) == pwq)
2273 				move_linked_works(work, scheduled, &n);
2274 
2275 		process_scheduled_works(rescuer);
2276 
2277 		/*
2278 		 * Put the reference grabbed by send_mayday().  @pool won't
2279 		 * go away while we're still attached to it.
2280 		 */
2281 		put_pwq(pwq);
2282 
2283 		/*
2284 		 * Leave this pool.  If need_more_worker() is %true, notify a
2285 		 * regular worker; otherwise, we end up with 0 concurrency
2286 		 * and stalling the execution.
2287 		 */
2288 		if (need_more_worker(pool))
2289 			wake_up_worker(pool);
2290 
2291 		rescuer->pool = NULL;
2292 		spin_unlock_irq(&pool->lock);
2293 
2294 		worker_detach_from_pool(rescuer, pool);
2295 
2296 		spin_lock_irq(&wq_mayday_lock);
2297 	}
2298 
2299 	spin_unlock_irq(&wq_mayday_lock);
2300 
2301 	if (should_stop) {
2302 		__set_current_state(TASK_RUNNING);
2303 		rescuer->task->flags &= ~PF_WQ_WORKER;
2304 		return 0;
2305 	}
2306 
2307 	/* rescuers should never participate in concurrency management */
2308 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2309 	schedule();
2310 	goto repeat;
2311 }
2312 
2313 struct wq_barrier {
2314 	struct work_struct	work;
2315 	struct completion	done;
2316 };
2317 
wq_barrier_func(struct work_struct * work)2318 static void wq_barrier_func(struct work_struct *work)
2319 {
2320 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2321 	complete(&barr->done);
2322 }
2323 
2324 /**
2325  * insert_wq_barrier - insert a barrier work
2326  * @pwq: pwq to insert barrier into
2327  * @barr: wq_barrier to insert
2328  * @target: target work to attach @barr to
2329  * @worker: worker currently executing @target, NULL if @target is not executing
2330  *
2331  * @barr is linked to @target such that @barr is completed only after
2332  * @target finishes execution.  Please note that the ordering
2333  * guarantee is observed only with respect to @target and on the local
2334  * cpu.
2335  *
2336  * Currently, a queued barrier can't be canceled.  This is because
2337  * try_to_grab_pending() can't determine whether the work to be
2338  * grabbed is at the head of the queue and thus can't clear LINKED
2339  * flag of the previous work while there must be a valid next work
2340  * after a work with LINKED flag set.
2341  *
2342  * Note that when @worker is non-NULL, @target may be modified
2343  * underneath us, so we can't reliably determine pwq from @target.
2344  *
2345  * CONTEXT:
2346  * spin_lock_irq(pool->lock).
2347  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2348 static void insert_wq_barrier(struct pool_workqueue *pwq,
2349 			      struct wq_barrier *barr,
2350 			      struct work_struct *target, struct worker *worker)
2351 {
2352 	struct list_head *head;
2353 	unsigned int linked = 0;
2354 
2355 	/*
2356 	 * debugobject calls are safe here even with pool->lock locked
2357 	 * as we know for sure that this will not trigger any of the
2358 	 * checks and call back into the fixup functions where we
2359 	 * might deadlock.
2360 	 */
2361 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2362 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2363 	init_completion(&barr->done);
2364 
2365 	/*
2366 	 * If @target is currently being executed, schedule the
2367 	 * barrier to the worker; otherwise, put it after @target.
2368 	 */
2369 	if (worker)
2370 		head = worker->scheduled.next;
2371 	else {
2372 		unsigned long *bits = work_data_bits(target);
2373 
2374 		head = target->entry.next;
2375 		/* there can already be other linked works, inherit and set */
2376 		linked = *bits & WORK_STRUCT_LINKED;
2377 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2378 	}
2379 
2380 	debug_work_activate(&barr->work);
2381 	insert_work(pwq, &barr->work, head,
2382 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2383 }
2384 
2385 /**
2386  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2387  * @wq: workqueue being flushed
2388  * @flush_color: new flush color, < 0 for no-op
2389  * @work_color: new work color, < 0 for no-op
2390  *
2391  * Prepare pwqs for workqueue flushing.
2392  *
2393  * If @flush_color is non-negative, flush_color on all pwqs should be
2394  * -1.  If no pwq has in-flight commands at the specified color, all
2395  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2396  * has in flight commands, its pwq->flush_color is set to
2397  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2398  * wakeup logic is armed and %true is returned.
2399  *
2400  * The caller should have initialized @wq->first_flusher prior to
2401  * calling this function with non-negative @flush_color.  If
2402  * @flush_color is negative, no flush color update is done and %false
2403  * is returned.
2404  *
2405  * If @work_color is non-negative, all pwqs should have the same
2406  * work_color which is previous to @work_color and all will be
2407  * advanced to @work_color.
2408  *
2409  * CONTEXT:
2410  * mutex_lock(wq->mutex).
2411  *
2412  * Return:
2413  * %true if @flush_color >= 0 and there's something to flush.  %false
2414  * otherwise.
2415  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2416 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2417 				      int flush_color, int work_color)
2418 {
2419 	bool wait = false;
2420 	struct pool_workqueue *pwq;
2421 
2422 	if (flush_color >= 0) {
2423 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2424 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2425 	}
2426 
2427 	for_each_pwq(pwq, wq) {
2428 		struct worker_pool *pool = pwq->pool;
2429 
2430 		spin_lock_irq(&pool->lock);
2431 
2432 		if (flush_color >= 0) {
2433 			WARN_ON_ONCE(pwq->flush_color != -1);
2434 
2435 			if (pwq->nr_in_flight[flush_color]) {
2436 				pwq->flush_color = flush_color;
2437 				atomic_inc(&wq->nr_pwqs_to_flush);
2438 				wait = true;
2439 			}
2440 		}
2441 
2442 		if (work_color >= 0) {
2443 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2444 			pwq->work_color = work_color;
2445 		}
2446 
2447 		spin_unlock_irq(&pool->lock);
2448 	}
2449 
2450 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2451 		complete(&wq->first_flusher->done);
2452 
2453 	return wait;
2454 }
2455 
2456 /**
2457  * flush_workqueue - ensure that any scheduled work has run to completion.
2458  * @wq: workqueue to flush
2459  *
2460  * This function sleeps until all work items which were queued on entry
2461  * have finished execution, but it is not livelocked by new incoming ones.
2462  */
flush_workqueue(struct workqueue_struct * wq)2463 void flush_workqueue(struct workqueue_struct *wq)
2464 {
2465 	struct wq_flusher this_flusher = {
2466 		.list = LIST_HEAD_INIT(this_flusher.list),
2467 		.flush_color = -1,
2468 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2469 	};
2470 	int next_color;
2471 
2472 	lock_map_acquire(&wq->lockdep_map);
2473 	lock_map_release(&wq->lockdep_map);
2474 
2475 	mutex_lock(&wq->mutex);
2476 
2477 	/*
2478 	 * Start-to-wait phase
2479 	 */
2480 	next_color = work_next_color(wq->work_color);
2481 
2482 	if (next_color != wq->flush_color) {
2483 		/*
2484 		 * Color space is not full.  The current work_color
2485 		 * becomes our flush_color and work_color is advanced
2486 		 * by one.
2487 		 */
2488 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2489 		this_flusher.flush_color = wq->work_color;
2490 		wq->work_color = next_color;
2491 
2492 		if (!wq->first_flusher) {
2493 			/* no flush in progress, become the first flusher */
2494 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2495 
2496 			wq->first_flusher = &this_flusher;
2497 
2498 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2499 						       wq->work_color)) {
2500 				/* nothing to flush, done */
2501 				wq->flush_color = next_color;
2502 				wq->first_flusher = NULL;
2503 				goto out_unlock;
2504 			}
2505 		} else {
2506 			/* wait in queue */
2507 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2508 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2509 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2510 		}
2511 	} else {
2512 		/*
2513 		 * Oops, color space is full, wait on overflow queue.
2514 		 * The next flush completion will assign us
2515 		 * flush_color and transfer to flusher_queue.
2516 		 */
2517 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2518 	}
2519 
2520 	mutex_unlock(&wq->mutex);
2521 
2522 	wait_for_completion(&this_flusher.done);
2523 
2524 	/*
2525 	 * Wake-up-and-cascade phase
2526 	 *
2527 	 * First flushers are responsible for cascading flushes and
2528 	 * handling overflow.  Non-first flushers can simply return.
2529 	 */
2530 	if (wq->first_flusher != &this_flusher)
2531 		return;
2532 
2533 	mutex_lock(&wq->mutex);
2534 
2535 	/* we might have raced, check again with mutex held */
2536 	if (wq->first_flusher != &this_flusher)
2537 		goto out_unlock;
2538 
2539 	wq->first_flusher = NULL;
2540 
2541 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2542 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2543 
2544 	while (true) {
2545 		struct wq_flusher *next, *tmp;
2546 
2547 		/* complete all the flushers sharing the current flush color */
2548 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2549 			if (next->flush_color != wq->flush_color)
2550 				break;
2551 			list_del_init(&next->list);
2552 			complete(&next->done);
2553 		}
2554 
2555 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2556 			     wq->flush_color != work_next_color(wq->work_color));
2557 
2558 		/* this flush_color is finished, advance by one */
2559 		wq->flush_color = work_next_color(wq->flush_color);
2560 
2561 		/* one color has been freed, handle overflow queue */
2562 		if (!list_empty(&wq->flusher_overflow)) {
2563 			/*
2564 			 * Assign the same color to all overflowed
2565 			 * flushers, advance work_color and append to
2566 			 * flusher_queue.  This is the start-to-wait
2567 			 * phase for these overflowed flushers.
2568 			 */
2569 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2570 				tmp->flush_color = wq->work_color;
2571 
2572 			wq->work_color = work_next_color(wq->work_color);
2573 
2574 			list_splice_tail_init(&wq->flusher_overflow,
2575 					      &wq->flusher_queue);
2576 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2577 		}
2578 
2579 		if (list_empty(&wq->flusher_queue)) {
2580 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2581 			break;
2582 		}
2583 
2584 		/*
2585 		 * Need to flush more colors.  Make the next flusher
2586 		 * the new first flusher and arm pwqs.
2587 		 */
2588 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2589 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2590 
2591 		list_del_init(&next->list);
2592 		wq->first_flusher = next;
2593 
2594 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2595 			break;
2596 
2597 		/*
2598 		 * Meh... this color is already done, clear first
2599 		 * flusher and repeat cascading.
2600 		 */
2601 		wq->first_flusher = NULL;
2602 	}
2603 
2604 out_unlock:
2605 	mutex_unlock(&wq->mutex);
2606 }
2607 EXPORT_SYMBOL_GPL(flush_workqueue);
2608 
2609 /**
2610  * drain_workqueue - drain a workqueue
2611  * @wq: workqueue to drain
2612  *
2613  * Wait until the workqueue becomes empty.  While draining is in progress,
2614  * only chain queueing is allowed.  IOW, only currently pending or running
2615  * work items on @wq can queue further work items on it.  @wq is flushed
2616  * repeatedly until it becomes empty.  The number of flushing is detemined
2617  * by the depth of chaining and should be relatively short.  Whine if it
2618  * takes too long.
2619  */
drain_workqueue(struct workqueue_struct * wq)2620 void drain_workqueue(struct workqueue_struct *wq)
2621 {
2622 	unsigned int flush_cnt = 0;
2623 	struct pool_workqueue *pwq;
2624 
2625 	/*
2626 	 * __queue_work() needs to test whether there are drainers, is much
2627 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2628 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2629 	 */
2630 	mutex_lock(&wq->mutex);
2631 	if (!wq->nr_drainers++)
2632 		wq->flags |= __WQ_DRAINING;
2633 	mutex_unlock(&wq->mutex);
2634 reflush:
2635 	flush_workqueue(wq);
2636 
2637 	mutex_lock(&wq->mutex);
2638 
2639 	for_each_pwq(pwq, wq) {
2640 		bool drained;
2641 
2642 		spin_lock_irq(&pwq->pool->lock);
2643 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2644 		spin_unlock_irq(&pwq->pool->lock);
2645 
2646 		if (drained)
2647 			continue;
2648 
2649 		if (++flush_cnt == 10 ||
2650 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2651 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2652 				wq->name, flush_cnt);
2653 
2654 		mutex_unlock(&wq->mutex);
2655 		goto reflush;
2656 	}
2657 
2658 	if (!--wq->nr_drainers)
2659 		wq->flags &= ~__WQ_DRAINING;
2660 	mutex_unlock(&wq->mutex);
2661 }
2662 EXPORT_SYMBOL_GPL(drain_workqueue);
2663 
start_flush_work(struct work_struct * work,struct wq_barrier * barr)2664 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2665 {
2666 	struct worker *worker = NULL;
2667 	struct worker_pool *pool;
2668 	struct pool_workqueue *pwq;
2669 
2670 	might_sleep();
2671 
2672 	local_irq_disable();
2673 	pool = get_work_pool(work);
2674 	if (!pool) {
2675 		local_irq_enable();
2676 		return false;
2677 	}
2678 
2679 	spin_lock(&pool->lock);
2680 	/* see the comment in try_to_grab_pending() with the same code */
2681 	pwq = get_work_pwq(work);
2682 	if (pwq) {
2683 		if (unlikely(pwq->pool != pool))
2684 			goto already_gone;
2685 	} else {
2686 		worker = find_worker_executing_work(pool, work);
2687 		if (!worker)
2688 			goto already_gone;
2689 		pwq = worker->current_pwq;
2690 	}
2691 
2692 	insert_wq_barrier(pwq, barr, work, worker);
2693 	spin_unlock_irq(&pool->lock);
2694 
2695 	/*
2696 	 * If @max_active is 1 or rescuer is in use, flushing another work
2697 	 * item on the same workqueue may lead to deadlock.  Make sure the
2698 	 * flusher is not running on the same workqueue by verifying write
2699 	 * access.
2700 	 */
2701 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2702 		lock_map_acquire(&pwq->wq->lockdep_map);
2703 	else
2704 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2705 	lock_map_release(&pwq->wq->lockdep_map);
2706 
2707 	return true;
2708 already_gone:
2709 	spin_unlock_irq(&pool->lock);
2710 	return false;
2711 }
2712 
2713 /**
2714  * flush_work - wait for a work to finish executing the last queueing instance
2715  * @work: the work to flush
2716  *
2717  * Wait until @work has finished execution.  @work is guaranteed to be idle
2718  * on return if it hasn't been requeued since flush started.
2719  *
2720  * Return:
2721  * %true if flush_work() waited for the work to finish execution,
2722  * %false if it was already idle.
2723  */
flush_work(struct work_struct * work)2724 bool flush_work(struct work_struct *work)
2725 {
2726 	struct wq_barrier barr;
2727 
2728 	lock_map_acquire(&work->lockdep_map);
2729 	lock_map_release(&work->lockdep_map);
2730 
2731 	if (start_flush_work(work, &barr)) {
2732 		wait_for_completion(&barr.done);
2733 		destroy_work_on_stack(&barr.work);
2734 		return true;
2735 	} else {
2736 		return false;
2737 	}
2738 }
2739 EXPORT_SYMBOL_GPL(flush_work);
2740 
2741 struct cwt_wait {
2742 	wait_queue_t		wait;
2743 	struct work_struct	*work;
2744 };
2745 
cwt_wakefn(wait_queue_t * wait,unsigned mode,int sync,void * key)2746 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2747 {
2748 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2749 
2750 	if (cwait->work != key)
2751 		return 0;
2752 	return autoremove_wake_function(wait, mode, sync, key);
2753 }
2754 
__cancel_work_timer(struct work_struct * work,bool is_dwork)2755 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2756 {
2757 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2758 	unsigned long flags;
2759 	int ret;
2760 
2761 	do {
2762 		ret = try_to_grab_pending(work, is_dwork, &flags);
2763 		/*
2764 		 * If someone else is already canceling, wait for it to
2765 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2766 		 * because we may get scheduled between @work's completion
2767 		 * and the other canceling task resuming and clearing
2768 		 * CANCELING - flush_work() will return false immediately
2769 		 * as @work is no longer busy, try_to_grab_pending() will
2770 		 * return -ENOENT as @work is still being canceled and the
2771 		 * other canceling task won't be able to clear CANCELING as
2772 		 * we're hogging the CPU.
2773 		 *
2774 		 * Let's wait for completion using a waitqueue.  As this
2775 		 * may lead to the thundering herd problem, use a custom
2776 		 * wake function which matches @work along with exclusive
2777 		 * wait and wakeup.
2778 		 */
2779 		if (unlikely(ret == -ENOENT)) {
2780 			struct cwt_wait cwait;
2781 
2782 			init_wait(&cwait.wait);
2783 			cwait.wait.func = cwt_wakefn;
2784 			cwait.work = work;
2785 
2786 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2787 						  TASK_UNINTERRUPTIBLE);
2788 			if (work_is_canceling(work))
2789 				schedule();
2790 			finish_wait(&cancel_waitq, &cwait.wait);
2791 		}
2792 	} while (unlikely(ret < 0));
2793 
2794 	/* tell other tasks trying to grab @work to back off */
2795 	mark_work_canceling(work);
2796 	local_irq_restore(flags);
2797 
2798 	flush_work(work);
2799 	clear_work_data(work);
2800 
2801 	/*
2802 	 * Paired with prepare_to_wait() above so that either
2803 	 * waitqueue_active() is visible here or !work_is_canceling() is
2804 	 * visible there.
2805 	 */
2806 	smp_mb();
2807 	if (waitqueue_active(&cancel_waitq))
2808 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2809 
2810 	return ret;
2811 }
2812 
2813 /**
2814  * cancel_work_sync - cancel a work and wait for it to finish
2815  * @work: the work to cancel
2816  *
2817  * Cancel @work and wait for its execution to finish.  This function
2818  * can be used even if the work re-queues itself or migrates to
2819  * another workqueue.  On return from this function, @work is
2820  * guaranteed to be not pending or executing on any CPU.
2821  *
2822  * cancel_work_sync(&delayed_work->work) must not be used for
2823  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2824  *
2825  * The caller must ensure that the workqueue on which @work was last
2826  * queued can't be destroyed before this function returns.
2827  *
2828  * Return:
2829  * %true if @work was pending, %false otherwise.
2830  */
cancel_work_sync(struct work_struct * work)2831 bool cancel_work_sync(struct work_struct *work)
2832 {
2833 	return __cancel_work_timer(work, false);
2834 }
2835 EXPORT_SYMBOL_GPL(cancel_work_sync);
2836 
2837 /**
2838  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2839  * @dwork: the delayed work to flush
2840  *
2841  * Delayed timer is cancelled and the pending work is queued for
2842  * immediate execution.  Like flush_work(), this function only
2843  * considers the last queueing instance of @dwork.
2844  *
2845  * Return:
2846  * %true if flush_work() waited for the work to finish execution,
2847  * %false if it was already idle.
2848  */
flush_delayed_work(struct delayed_work * dwork)2849 bool flush_delayed_work(struct delayed_work *dwork)
2850 {
2851 	local_irq_disable();
2852 	if (del_timer_sync(&dwork->timer))
2853 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2854 	local_irq_enable();
2855 	return flush_work(&dwork->work);
2856 }
2857 EXPORT_SYMBOL(flush_delayed_work);
2858 
2859 /**
2860  * cancel_delayed_work - cancel a delayed work
2861  * @dwork: delayed_work to cancel
2862  *
2863  * Kill off a pending delayed_work.
2864  *
2865  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2866  * pending.
2867  *
2868  * Note:
2869  * The work callback function may still be running on return, unless
2870  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2871  * use cancel_delayed_work_sync() to wait on it.
2872  *
2873  * This function is safe to call from any context including IRQ handler.
2874  */
cancel_delayed_work(struct delayed_work * dwork)2875 bool cancel_delayed_work(struct delayed_work *dwork)
2876 {
2877 	unsigned long flags;
2878 	int ret;
2879 
2880 	do {
2881 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2882 	} while (unlikely(ret == -EAGAIN));
2883 
2884 	if (unlikely(ret < 0))
2885 		return false;
2886 
2887 	set_work_pool_and_clear_pending(&dwork->work,
2888 					get_work_pool_id(&dwork->work));
2889 	local_irq_restore(flags);
2890 	return ret;
2891 }
2892 EXPORT_SYMBOL(cancel_delayed_work);
2893 
2894 /**
2895  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2896  * @dwork: the delayed work cancel
2897  *
2898  * This is cancel_work_sync() for delayed works.
2899  *
2900  * Return:
2901  * %true if @dwork was pending, %false otherwise.
2902  */
cancel_delayed_work_sync(struct delayed_work * dwork)2903 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2904 {
2905 	return __cancel_work_timer(&dwork->work, true);
2906 }
2907 EXPORT_SYMBOL(cancel_delayed_work_sync);
2908 
2909 /**
2910  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2911  * @func: the function to call
2912  *
2913  * schedule_on_each_cpu() executes @func on each online CPU using the
2914  * system workqueue and blocks until all CPUs have completed.
2915  * schedule_on_each_cpu() is very slow.
2916  *
2917  * Return:
2918  * 0 on success, -errno on failure.
2919  */
schedule_on_each_cpu(work_func_t func)2920 int schedule_on_each_cpu(work_func_t func)
2921 {
2922 	int cpu;
2923 	struct work_struct __percpu *works;
2924 
2925 	works = alloc_percpu(struct work_struct);
2926 	if (!works)
2927 		return -ENOMEM;
2928 
2929 	get_online_cpus();
2930 
2931 	for_each_online_cpu(cpu) {
2932 		struct work_struct *work = per_cpu_ptr(works, cpu);
2933 
2934 		INIT_WORK(work, func);
2935 		schedule_work_on(cpu, work);
2936 	}
2937 
2938 	for_each_online_cpu(cpu)
2939 		flush_work(per_cpu_ptr(works, cpu));
2940 
2941 	put_online_cpus();
2942 	free_percpu(works);
2943 	return 0;
2944 }
2945 
2946 /**
2947  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2948  *
2949  * Forces execution of the kernel-global workqueue and blocks until its
2950  * completion.
2951  *
2952  * Think twice before calling this function!  It's very easy to get into
2953  * trouble if you don't take great care.  Either of the following situations
2954  * will lead to deadlock:
2955  *
2956  *	One of the work items currently on the workqueue needs to acquire
2957  *	a lock held by your code or its caller.
2958  *
2959  *	Your code is running in the context of a work routine.
2960  *
2961  * They will be detected by lockdep when they occur, but the first might not
2962  * occur very often.  It depends on what work items are on the workqueue and
2963  * what locks they need, which you have no control over.
2964  *
2965  * In most situations flushing the entire workqueue is overkill; you merely
2966  * need to know that a particular work item isn't queued and isn't running.
2967  * In such cases you should use cancel_delayed_work_sync() or
2968  * cancel_work_sync() instead.
2969  */
flush_scheduled_work(void)2970 void flush_scheduled_work(void)
2971 {
2972 	flush_workqueue(system_wq);
2973 }
2974 EXPORT_SYMBOL(flush_scheduled_work);
2975 
2976 /**
2977  * execute_in_process_context - reliably execute the routine with user context
2978  * @fn:		the function to execute
2979  * @ew:		guaranteed storage for the execute work structure (must
2980  *		be available when the work executes)
2981  *
2982  * Executes the function immediately if process context is available,
2983  * otherwise schedules the function for delayed execution.
2984  *
2985  * Return:	0 - function was executed
2986  *		1 - function was scheduled for execution
2987  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)2988 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2989 {
2990 	if (!in_interrupt()) {
2991 		fn(&ew->work);
2992 		return 0;
2993 	}
2994 
2995 	INIT_WORK(&ew->work, fn);
2996 	schedule_work(&ew->work);
2997 
2998 	return 1;
2999 }
3000 EXPORT_SYMBOL_GPL(execute_in_process_context);
3001 
3002 #ifdef CONFIG_SYSFS
3003 /*
3004  * Workqueues with WQ_SYSFS flag set is visible to userland via
3005  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3006  * following attributes.
3007  *
3008  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3009  *  max_active	RW int	: maximum number of in-flight work items
3010  *
3011  * Unbound workqueues have the following extra attributes.
3012  *
3013  *  id		RO int	: the associated pool ID
3014  *  nice	RW int	: nice value of the workers
3015  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3016  */
3017 struct wq_device {
3018 	struct workqueue_struct		*wq;
3019 	struct device			dev;
3020 };
3021 
dev_to_wq(struct device * dev)3022 static struct workqueue_struct *dev_to_wq(struct device *dev)
3023 {
3024 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3025 
3026 	return wq_dev->wq;
3027 }
3028 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)3029 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3030 			    char *buf)
3031 {
3032 	struct workqueue_struct *wq = dev_to_wq(dev);
3033 
3034 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3035 }
3036 static DEVICE_ATTR_RO(per_cpu);
3037 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)3038 static ssize_t max_active_show(struct device *dev,
3039 			       struct device_attribute *attr, char *buf)
3040 {
3041 	struct workqueue_struct *wq = dev_to_wq(dev);
3042 
3043 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3044 }
3045 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3046 static ssize_t max_active_store(struct device *dev,
3047 				struct device_attribute *attr, const char *buf,
3048 				size_t count)
3049 {
3050 	struct workqueue_struct *wq = dev_to_wq(dev);
3051 	int val;
3052 
3053 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3054 		return -EINVAL;
3055 
3056 	workqueue_set_max_active(wq, val);
3057 	return count;
3058 }
3059 static DEVICE_ATTR_RW(max_active);
3060 
3061 static struct attribute *wq_sysfs_attrs[] = {
3062 	&dev_attr_per_cpu.attr,
3063 	&dev_attr_max_active.attr,
3064 	NULL,
3065 };
3066 ATTRIBUTE_GROUPS(wq_sysfs);
3067 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)3068 static ssize_t wq_pool_ids_show(struct device *dev,
3069 				struct device_attribute *attr, char *buf)
3070 {
3071 	struct workqueue_struct *wq = dev_to_wq(dev);
3072 	const char *delim = "";
3073 	int node, written = 0;
3074 
3075 	rcu_read_lock_sched();
3076 	for_each_node(node) {
3077 		written += scnprintf(buf + written, PAGE_SIZE - written,
3078 				     "%s%d:%d", delim, node,
3079 				     unbound_pwq_by_node(wq, node)->pool->id);
3080 		delim = " ";
3081 	}
3082 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3083 	rcu_read_unlock_sched();
3084 
3085 	return written;
3086 }
3087 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)3088 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3089 			    char *buf)
3090 {
3091 	struct workqueue_struct *wq = dev_to_wq(dev);
3092 	int written;
3093 
3094 	mutex_lock(&wq->mutex);
3095 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3096 	mutex_unlock(&wq->mutex);
3097 
3098 	return written;
3099 }
3100 
3101 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)3102 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3103 {
3104 	struct workqueue_attrs *attrs;
3105 
3106 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3107 	if (!attrs)
3108 		return NULL;
3109 
3110 	mutex_lock(&wq->mutex);
3111 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3112 	mutex_unlock(&wq->mutex);
3113 	return attrs;
3114 }
3115 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3116 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3117 			     const char *buf, size_t count)
3118 {
3119 	struct workqueue_struct *wq = dev_to_wq(dev);
3120 	struct workqueue_attrs *attrs;
3121 	int ret;
3122 
3123 	attrs = wq_sysfs_prep_attrs(wq);
3124 	if (!attrs)
3125 		return -ENOMEM;
3126 
3127 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3128 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3129 		ret = apply_workqueue_attrs(wq, attrs);
3130 	else
3131 		ret = -EINVAL;
3132 
3133 	free_workqueue_attrs(attrs);
3134 	return ret ?: count;
3135 }
3136 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)3137 static ssize_t wq_cpumask_show(struct device *dev,
3138 			       struct device_attribute *attr, char *buf)
3139 {
3140 	struct workqueue_struct *wq = dev_to_wq(dev);
3141 	int written;
3142 
3143 	mutex_lock(&wq->mutex);
3144 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3145 	mutex_unlock(&wq->mutex);
3146 
3147 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3148 	return written;
3149 }
3150 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3151 static ssize_t wq_cpumask_store(struct device *dev,
3152 				struct device_attribute *attr,
3153 				const char *buf, size_t count)
3154 {
3155 	struct workqueue_struct *wq = dev_to_wq(dev);
3156 	struct workqueue_attrs *attrs;
3157 	int ret;
3158 
3159 	attrs = wq_sysfs_prep_attrs(wq);
3160 	if (!attrs)
3161 		return -ENOMEM;
3162 
3163 	ret = cpumask_parse(buf, attrs->cpumask);
3164 	if (!ret)
3165 		ret = apply_workqueue_attrs(wq, attrs);
3166 
3167 	free_workqueue_attrs(attrs);
3168 	return ret ?: count;
3169 }
3170 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)3171 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3172 			    char *buf)
3173 {
3174 	struct workqueue_struct *wq = dev_to_wq(dev);
3175 	int written;
3176 
3177 	mutex_lock(&wq->mutex);
3178 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3179 			    !wq->unbound_attrs->no_numa);
3180 	mutex_unlock(&wq->mutex);
3181 
3182 	return written;
3183 }
3184 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3185 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3186 			     const char *buf, size_t count)
3187 {
3188 	struct workqueue_struct *wq = dev_to_wq(dev);
3189 	struct workqueue_attrs *attrs;
3190 	int v, ret;
3191 
3192 	attrs = wq_sysfs_prep_attrs(wq);
3193 	if (!attrs)
3194 		return -ENOMEM;
3195 
3196 	ret = -EINVAL;
3197 	if (sscanf(buf, "%d", &v) == 1) {
3198 		attrs->no_numa = !v;
3199 		ret = apply_workqueue_attrs(wq, attrs);
3200 	}
3201 
3202 	free_workqueue_attrs(attrs);
3203 	return ret ?: count;
3204 }
3205 
3206 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3207 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3208 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3209 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3210 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3211 	__ATTR_NULL,
3212 };
3213 
3214 static struct bus_type wq_subsys = {
3215 	.name				= "workqueue",
3216 	.dev_groups			= wq_sysfs_groups,
3217 };
3218 
wq_sysfs_init(void)3219 static int __init wq_sysfs_init(void)
3220 {
3221 	return subsys_virtual_register(&wq_subsys, NULL);
3222 }
3223 core_initcall(wq_sysfs_init);
3224 
wq_device_release(struct device * dev)3225 static void wq_device_release(struct device *dev)
3226 {
3227 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3228 
3229 	kfree(wq_dev);
3230 }
3231 
3232 /**
3233  * workqueue_sysfs_register - make a workqueue visible in sysfs
3234  * @wq: the workqueue to register
3235  *
3236  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3237  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3238  * which is the preferred method.
3239  *
3240  * Workqueue user should use this function directly iff it wants to apply
3241  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3242  * apply_workqueue_attrs() may race against userland updating the
3243  * attributes.
3244  *
3245  * Return: 0 on success, -errno on failure.
3246  */
workqueue_sysfs_register(struct workqueue_struct * wq)3247 int workqueue_sysfs_register(struct workqueue_struct *wq)
3248 {
3249 	struct wq_device *wq_dev;
3250 	int ret;
3251 
3252 	/*
3253 	 * Adjusting max_active or creating new pwqs by applyting
3254 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3255 	 * workqueues.
3256 	 */
3257 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3258 		return -EINVAL;
3259 
3260 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3261 	if (!wq_dev)
3262 		return -ENOMEM;
3263 
3264 	wq_dev->wq = wq;
3265 	wq_dev->dev.bus = &wq_subsys;
3266 	wq_dev->dev.init_name = wq->name;
3267 	wq_dev->dev.release = wq_device_release;
3268 
3269 	/*
3270 	 * unbound_attrs are created separately.  Suppress uevent until
3271 	 * everything is ready.
3272 	 */
3273 	dev_set_uevent_suppress(&wq_dev->dev, true);
3274 
3275 	ret = device_register(&wq_dev->dev);
3276 	if (ret) {
3277 		kfree(wq_dev);
3278 		wq->wq_dev = NULL;
3279 		return ret;
3280 	}
3281 
3282 	if (wq->flags & WQ_UNBOUND) {
3283 		struct device_attribute *attr;
3284 
3285 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3286 			ret = device_create_file(&wq_dev->dev, attr);
3287 			if (ret) {
3288 				device_unregister(&wq_dev->dev);
3289 				wq->wq_dev = NULL;
3290 				return ret;
3291 			}
3292 		}
3293 	}
3294 
3295 	dev_set_uevent_suppress(&wq_dev->dev, false);
3296 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3297 	return 0;
3298 }
3299 
3300 /**
3301  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3302  * @wq: the workqueue to unregister
3303  *
3304  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3305  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)3306 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3307 {
3308 	struct wq_device *wq_dev = wq->wq_dev;
3309 
3310 	if (!wq->wq_dev)
3311 		return;
3312 
3313 	wq->wq_dev = NULL;
3314 	device_unregister(&wq_dev->dev);
3315 }
3316 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)3317 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3318 #endif	/* CONFIG_SYSFS */
3319 
3320 /**
3321  * free_workqueue_attrs - free a workqueue_attrs
3322  * @attrs: workqueue_attrs to free
3323  *
3324  * Undo alloc_workqueue_attrs().
3325  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3326 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3327 {
3328 	if (attrs) {
3329 		free_cpumask_var(attrs->cpumask);
3330 		kfree(attrs);
3331 	}
3332 }
3333 
3334 /**
3335  * alloc_workqueue_attrs - allocate a workqueue_attrs
3336  * @gfp_mask: allocation mask to use
3337  *
3338  * Allocate a new workqueue_attrs, initialize with default settings and
3339  * return it.
3340  *
3341  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3342  */
alloc_workqueue_attrs(gfp_t gfp_mask)3343 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3344 {
3345 	struct workqueue_attrs *attrs;
3346 
3347 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3348 	if (!attrs)
3349 		goto fail;
3350 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3351 		goto fail;
3352 
3353 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3354 	return attrs;
3355 fail:
3356 	free_workqueue_attrs(attrs);
3357 	return NULL;
3358 }
3359 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3360 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3361 				 const struct workqueue_attrs *from)
3362 {
3363 	to->nice = from->nice;
3364 	cpumask_copy(to->cpumask, from->cpumask);
3365 	/*
3366 	 * Unlike hash and equality test, this function doesn't ignore
3367 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3368 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3369 	 */
3370 	to->no_numa = from->no_numa;
3371 }
3372 
3373 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3374 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3375 {
3376 	u32 hash = 0;
3377 
3378 	hash = jhash_1word(attrs->nice, hash);
3379 	hash = jhash(cpumask_bits(attrs->cpumask),
3380 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3381 	return hash;
3382 }
3383 
3384 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3385 static bool wqattrs_equal(const struct workqueue_attrs *a,
3386 			  const struct workqueue_attrs *b)
3387 {
3388 	if (a->nice != b->nice)
3389 		return false;
3390 	if (!cpumask_equal(a->cpumask, b->cpumask))
3391 		return false;
3392 	return true;
3393 }
3394 
3395 /**
3396  * init_worker_pool - initialize a newly zalloc'd worker_pool
3397  * @pool: worker_pool to initialize
3398  *
3399  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3400  *
3401  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3402  * inside @pool proper are initialized and put_unbound_pool() can be called
3403  * on @pool safely to release it.
3404  */
init_worker_pool(struct worker_pool * pool)3405 static int init_worker_pool(struct worker_pool *pool)
3406 {
3407 	spin_lock_init(&pool->lock);
3408 	pool->id = -1;
3409 	pool->cpu = -1;
3410 	pool->node = NUMA_NO_NODE;
3411 	pool->flags |= POOL_DISASSOCIATED;
3412 	INIT_LIST_HEAD(&pool->worklist);
3413 	INIT_LIST_HEAD(&pool->idle_list);
3414 	hash_init(pool->busy_hash);
3415 
3416 	init_timer_deferrable(&pool->idle_timer);
3417 	pool->idle_timer.function = idle_worker_timeout;
3418 	pool->idle_timer.data = (unsigned long)pool;
3419 
3420 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3421 		    (unsigned long)pool);
3422 
3423 	mutex_init(&pool->manager_arb);
3424 	mutex_init(&pool->attach_mutex);
3425 	INIT_LIST_HEAD(&pool->workers);
3426 
3427 	ida_init(&pool->worker_ida);
3428 	INIT_HLIST_NODE(&pool->hash_node);
3429 	pool->refcnt = 1;
3430 
3431 	/* shouldn't fail above this point */
3432 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3433 	if (!pool->attrs)
3434 		return -ENOMEM;
3435 	return 0;
3436 }
3437 
rcu_free_pool(struct rcu_head * rcu)3438 static void rcu_free_pool(struct rcu_head *rcu)
3439 {
3440 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3441 
3442 	ida_destroy(&pool->worker_ida);
3443 	free_workqueue_attrs(pool->attrs);
3444 	kfree(pool);
3445 }
3446 
3447 /**
3448  * put_unbound_pool - put a worker_pool
3449  * @pool: worker_pool to put
3450  *
3451  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3452  * safe manner.  get_unbound_pool() calls this function on its failure path
3453  * and this function should be able to release pools which went through,
3454  * successfully or not, init_worker_pool().
3455  *
3456  * Should be called with wq_pool_mutex held.
3457  */
put_unbound_pool(struct worker_pool * pool)3458 static void put_unbound_pool(struct worker_pool *pool)
3459 {
3460 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3461 	struct worker *worker;
3462 
3463 	lockdep_assert_held(&wq_pool_mutex);
3464 
3465 	if (--pool->refcnt)
3466 		return;
3467 
3468 	/* sanity checks */
3469 	if (WARN_ON(!(pool->cpu < 0)) ||
3470 	    WARN_ON(!list_empty(&pool->worklist)))
3471 		return;
3472 
3473 	/* release id and unhash */
3474 	if (pool->id >= 0)
3475 		idr_remove(&worker_pool_idr, pool->id);
3476 	hash_del(&pool->hash_node);
3477 
3478 	/*
3479 	 * Become the manager and destroy all workers.  Grabbing
3480 	 * manager_arb prevents @pool's workers from blocking on
3481 	 * attach_mutex.
3482 	 */
3483 	mutex_lock(&pool->manager_arb);
3484 
3485 	spin_lock_irq(&pool->lock);
3486 	while ((worker = first_idle_worker(pool)))
3487 		destroy_worker(worker);
3488 	WARN_ON(pool->nr_workers || pool->nr_idle);
3489 	spin_unlock_irq(&pool->lock);
3490 
3491 	mutex_lock(&pool->attach_mutex);
3492 	if (!list_empty(&pool->workers))
3493 		pool->detach_completion = &detach_completion;
3494 	mutex_unlock(&pool->attach_mutex);
3495 
3496 	if (pool->detach_completion)
3497 		wait_for_completion(pool->detach_completion);
3498 
3499 	mutex_unlock(&pool->manager_arb);
3500 
3501 	/* shut down the timers */
3502 	del_timer_sync(&pool->idle_timer);
3503 	del_timer_sync(&pool->mayday_timer);
3504 
3505 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3506 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3507 }
3508 
3509 /**
3510  * get_unbound_pool - get a worker_pool with the specified attributes
3511  * @attrs: the attributes of the worker_pool to get
3512  *
3513  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3514  * reference count and return it.  If there already is a matching
3515  * worker_pool, it will be used; otherwise, this function attempts to
3516  * create a new one.
3517  *
3518  * Should be called with wq_pool_mutex held.
3519  *
3520  * Return: On success, a worker_pool with the same attributes as @attrs.
3521  * On failure, %NULL.
3522  */
get_unbound_pool(const struct workqueue_attrs * attrs)3523 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3524 {
3525 	u32 hash = wqattrs_hash(attrs);
3526 	struct worker_pool *pool;
3527 	int node;
3528 
3529 	lockdep_assert_held(&wq_pool_mutex);
3530 
3531 	/* do we already have a matching pool? */
3532 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3533 		if (wqattrs_equal(pool->attrs, attrs)) {
3534 			pool->refcnt++;
3535 			return pool;
3536 		}
3537 	}
3538 
3539 	/* nope, create a new one */
3540 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3541 	if (!pool || init_worker_pool(pool) < 0)
3542 		goto fail;
3543 
3544 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3545 	copy_workqueue_attrs(pool->attrs, attrs);
3546 
3547 	/*
3548 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3549 	 * 'struct workqueue_attrs' comments for detail.
3550 	 */
3551 	pool->attrs->no_numa = false;
3552 
3553 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3554 	if (wq_numa_enabled) {
3555 		for_each_node(node) {
3556 			if (cpumask_subset(pool->attrs->cpumask,
3557 					   wq_numa_possible_cpumask[node])) {
3558 				pool->node = node;
3559 				break;
3560 			}
3561 		}
3562 	}
3563 
3564 	if (worker_pool_assign_id(pool) < 0)
3565 		goto fail;
3566 
3567 	/* create and start the initial worker */
3568 	if (!create_worker(pool))
3569 		goto fail;
3570 
3571 	/* install */
3572 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3573 
3574 	return pool;
3575 fail:
3576 	if (pool)
3577 		put_unbound_pool(pool);
3578 	return NULL;
3579 }
3580 
rcu_free_pwq(struct rcu_head * rcu)3581 static void rcu_free_pwq(struct rcu_head *rcu)
3582 {
3583 	kmem_cache_free(pwq_cache,
3584 			container_of(rcu, struct pool_workqueue, rcu));
3585 }
3586 
3587 /*
3588  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3589  * and needs to be destroyed.
3590  */
pwq_unbound_release_workfn(struct work_struct * work)3591 static void pwq_unbound_release_workfn(struct work_struct *work)
3592 {
3593 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3594 						  unbound_release_work);
3595 	struct workqueue_struct *wq = pwq->wq;
3596 	struct worker_pool *pool = pwq->pool;
3597 	bool is_last;
3598 
3599 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3600 		return;
3601 
3602 	mutex_lock(&wq->mutex);
3603 	list_del_rcu(&pwq->pwqs_node);
3604 	is_last = list_empty(&wq->pwqs);
3605 	mutex_unlock(&wq->mutex);
3606 
3607 	mutex_lock(&wq_pool_mutex);
3608 	put_unbound_pool(pool);
3609 	mutex_unlock(&wq_pool_mutex);
3610 
3611 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3612 
3613 	/*
3614 	 * If we're the last pwq going away, @wq is already dead and no one
3615 	 * is gonna access it anymore.  Free it.
3616 	 */
3617 	if (is_last) {
3618 		free_workqueue_attrs(wq->unbound_attrs);
3619 		kfree(wq);
3620 	}
3621 }
3622 
3623 /**
3624  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3625  * @pwq: target pool_workqueue
3626  *
3627  * If @pwq isn't freezing, set @pwq->max_active to the associated
3628  * workqueue's saved_max_active and activate delayed work items
3629  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3630  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3631 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3632 {
3633 	struct workqueue_struct *wq = pwq->wq;
3634 	bool freezable = wq->flags & WQ_FREEZABLE;
3635 
3636 	/* for @wq->saved_max_active */
3637 	lockdep_assert_held(&wq->mutex);
3638 
3639 	/* fast exit for non-freezable wqs */
3640 	if (!freezable && pwq->max_active == wq->saved_max_active)
3641 		return;
3642 
3643 	spin_lock_irq(&pwq->pool->lock);
3644 
3645 	/*
3646 	 * During [un]freezing, the caller is responsible for ensuring that
3647 	 * this function is called at least once after @workqueue_freezing
3648 	 * is updated and visible.
3649 	 */
3650 	if (!freezable || !workqueue_freezing) {
3651 		pwq->max_active = wq->saved_max_active;
3652 
3653 		while (!list_empty(&pwq->delayed_works) &&
3654 		       pwq->nr_active < pwq->max_active)
3655 			pwq_activate_first_delayed(pwq);
3656 
3657 		/*
3658 		 * Need to kick a worker after thawed or an unbound wq's
3659 		 * max_active is bumped.  It's a slow path.  Do it always.
3660 		 */
3661 		wake_up_worker(pwq->pool);
3662 	} else {
3663 		pwq->max_active = 0;
3664 	}
3665 
3666 	spin_unlock_irq(&pwq->pool->lock);
3667 }
3668 
3669 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3670 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3671 		     struct worker_pool *pool)
3672 {
3673 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3674 
3675 	memset(pwq, 0, sizeof(*pwq));
3676 
3677 	pwq->pool = pool;
3678 	pwq->wq = wq;
3679 	pwq->flush_color = -1;
3680 	pwq->refcnt = 1;
3681 	INIT_LIST_HEAD(&pwq->delayed_works);
3682 	INIT_LIST_HEAD(&pwq->pwqs_node);
3683 	INIT_LIST_HEAD(&pwq->mayday_node);
3684 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3685 }
3686 
3687 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3688 static void link_pwq(struct pool_workqueue *pwq)
3689 {
3690 	struct workqueue_struct *wq = pwq->wq;
3691 
3692 	lockdep_assert_held(&wq->mutex);
3693 
3694 	/* may be called multiple times, ignore if already linked */
3695 	if (!list_empty(&pwq->pwqs_node))
3696 		return;
3697 
3698 	/* set the matching work_color */
3699 	pwq->work_color = wq->work_color;
3700 
3701 	/* sync max_active to the current setting */
3702 	pwq_adjust_max_active(pwq);
3703 
3704 	/* link in @pwq */
3705 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3706 }
3707 
3708 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3709 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3710 					const struct workqueue_attrs *attrs)
3711 {
3712 	struct worker_pool *pool;
3713 	struct pool_workqueue *pwq;
3714 
3715 	lockdep_assert_held(&wq_pool_mutex);
3716 
3717 	pool = get_unbound_pool(attrs);
3718 	if (!pool)
3719 		return NULL;
3720 
3721 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3722 	if (!pwq) {
3723 		put_unbound_pool(pool);
3724 		return NULL;
3725 	}
3726 
3727 	init_pwq(pwq, wq, pool);
3728 	return pwq;
3729 }
3730 
3731 /* undo alloc_unbound_pwq(), used only in the error path */
free_unbound_pwq(struct pool_workqueue * pwq)3732 static void free_unbound_pwq(struct pool_workqueue *pwq)
3733 {
3734 	lockdep_assert_held(&wq_pool_mutex);
3735 
3736 	if (pwq) {
3737 		put_unbound_pool(pwq->pool);
3738 		kmem_cache_free(pwq_cache, pwq);
3739 	}
3740 }
3741 
3742 /**
3743  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3744  * @attrs: the wq_attrs of interest
3745  * @node: the target NUMA node
3746  * @cpu_going_down: if >= 0, the CPU to consider as offline
3747  * @cpumask: outarg, the resulting cpumask
3748  *
3749  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3750  * @cpu_going_down is >= 0, that cpu is considered offline during
3751  * calculation.  The result is stored in @cpumask.
3752  *
3753  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3754  * enabled and @node has online CPUs requested by @attrs, the returned
3755  * cpumask is the intersection of the possible CPUs of @node and
3756  * @attrs->cpumask.
3757  *
3758  * The caller is responsible for ensuring that the cpumask of @node stays
3759  * stable.
3760  *
3761  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3762  * %false if equal.
3763  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3764 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3765 				 int cpu_going_down, cpumask_t *cpumask)
3766 {
3767 	if (!wq_numa_enabled || attrs->no_numa)
3768 		goto use_dfl;
3769 
3770 	/* does @node have any online CPUs @attrs wants? */
3771 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3772 	if (cpu_going_down >= 0)
3773 		cpumask_clear_cpu(cpu_going_down, cpumask);
3774 
3775 	if (cpumask_empty(cpumask))
3776 		goto use_dfl;
3777 
3778 	/* yeap, return possible CPUs in @node that @attrs wants */
3779 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3780 	return !cpumask_equal(cpumask, attrs->cpumask);
3781 
3782 use_dfl:
3783 	cpumask_copy(cpumask, attrs->cpumask);
3784 	return false;
3785 }
3786 
3787 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3788 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3789 						   int node,
3790 						   struct pool_workqueue *pwq)
3791 {
3792 	struct pool_workqueue *old_pwq;
3793 
3794 	lockdep_assert_held(&wq->mutex);
3795 
3796 	/* link_pwq() can handle duplicate calls */
3797 	link_pwq(pwq);
3798 
3799 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3800 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3801 	return old_pwq;
3802 }
3803 
3804 /**
3805  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3806  * @wq: the target workqueue
3807  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3808  *
3809  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3810  * machines, this function maps a separate pwq to each NUMA node with
3811  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3812  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3813  * items finish.  Note that a work item which repeatedly requeues itself
3814  * back-to-back will stay on its current pwq.
3815  *
3816  * Performs GFP_KERNEL allocations.
3817  *
3818  * Return: 0 on success and -errno on failure.
3819  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3820 int apply_workqueue_attrs(struct workqueue_struct *wq,
3821 			  const struct workqueue_attrs *attrs)
3822 {
3823 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3824 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3825 	int node, ret;
3826 
3827 	/* only unbound workqueues can change attributes */
3828 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3829 		return -EINVAL;
3830 
3831 	/* creating multiple pwqs breaks ordering guarantee */
3832 	if (!list_empty(&wq->pwqs)) {
3833 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3834 			return -EINVAL;
3835 
3836 		wq->flags &= ~__WQ_ORDERED;
3837 	}
3838 
3839 	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3840 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3841 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3842 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3843 		goto enomem;
3844 
3845 	/* make a copy of @attrs and sanitize it */
3846 	copy_workqueue_attrs(new_attrs, attrs);
3847 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3848 
3849 	/*
3850 	 * We may create multiple pwqs with differing cpumasks.  Make a
3851 	 * copy of @new_attrs which will be modified and used to obtain
3852 	 * pools.
3853 	 */
3854 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3855 
3856 	/*
3857 	 * CPUs should stay stable across pwq creations and installations.
3858 	 * Pin CPUs, determine the target cpumask for each node and create
3859 	 * pwqs accordingly.
3860 	 */
3861 	get_online_cpus();
3862 
3863 	mutex_lock(&wq_pool_mutex);
3864 
3865 	/*
3866 	 * If something goes wrong during CPU up/down, we'll fall back to
3867 	 * the default pwq covering whole @attrs->cpumask.  Always create
3868 	 * it even if we don't use it immediately.
3869 	 */
3870 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3871 	if (!dfl_pwq)
3872 		goto enomem_pwq;
3873 
3874 	for_each_node(node) {
3875 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3876 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3877 			if (!pwq_tbl[node])
3878 				goto enomem_pwq;
3879 		} else {
3880 			dfl_pwq->refcnt++;
3881 			pwq_tbl[node] = dfl_pwq;
3882 		}
3883 	}
3884 
3885 	mutex_unlock(&wq_pool_mutex);
3886 
3887 	/* all pwqs have been created successfully, let's install'em */
3888 	mutex_lock(&wq->mutex);
3889 
3890 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3891 
3892 	/* save the previous pwq and install the new one */
3893 	for_each_node(node)
3894 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3895 
3896 	/* @dfl_pwq might not have been used, ensure it's linked */
3897 	link_pwq(dfl_pwq);
3898 	swap(wq->dfl_pwq, dfl_pwq);
3899 
3900 	mutex_unlock(&wq->mutex);
3901 
3902 	/* put the old pwqs */
3903 	for_each_node(node)
3904 		put_pwq_unlocked(pwq_tbl[node]);
3905 	put_pwq_unlocked(dfl_pwq);
3906 
3907 	put_online_cpus();
3908 	ret = 0;
3909 	/* fall through */
3910 out_free:
3911 	free_workqueue_attrs(tmp_attrs);
3912 	free_workqueue_attrs(new_attrs);
3913 	kfree(pwq_tbl);
3914 	return ret;
3915 
3916 enomem_pwq:
3917 	free_unbound_pwq(dfl_pwq);
3918 	for_each_node(node)
3919 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3920 			free_unbound_pwq(pwq_tbl[node]);
3921 	mutex_unlock(&wq_pool_mutex);
3922 	put_online_cpus();
3923 enomem:
3924 	ret = -ENOMEM;
3925 	goto out_free;
3926 }
3927 
3928 /**
3929  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3930  * @wq: the target workqueue
3931  * @cpu: the CPU coming up or going down
3932  * @online: whether @cpu is coming up or going down
3933  *
3934  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3935  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3936  * @wq accordingly.
3937  *
3938  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3939  * falls back to @wq->dfl_pwq which may not be optimal but is always
3940  * correct.
3941  *
3942  * Note that when the last allowed CPU of a NUMA node goes offline for a
3943  * workqueue with a cpumask spanning multiple nodes, the workers which were
3944  * already executing the work items for the workqueue will lose their CPU
3945  * affinity and may execute on any CPU.  This is similar to how per-cpu
3946  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3947  * affinity, it's the user's responsibility to flush the work item from
3948  * CPU_DOWN_PREPARE.
3949  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)3950 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3951 				   bool online)
3952 {
3953 	int node = cpu_to_node(cpu);
3954 	int cpu_off = online ? -1 : cpu;
3955 	struct pool_workqueue *old_pwq = NULL, *pwq;
3956 	struct workqueue_attrs *target_attrs;
3957 	cpumask_t *cpumask;
3958 
3959 	lockdep_assert_held(&wq_pool_mutex);
3960 
3961 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3962 		return;
3963 
3964 	/*
3965 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3966 	 * Let's use a preallocated one.  The following buf is protected by
3967 	 * CPU hotplug exclusion.
3968 	 */
3969 	target_attrs = wq_update_unbound_numa_attrs_buf;
3970 	cpumask = target_attrs->cpumask;
3971 
3972 	mutex_lock(&wq->mutex);
3973 	if (wq->unbound_attrs->no_numa)
3974 		goto out_unlock;
3975 
3976 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3977 	pwq = unbound_pwq_by_node(wq, node);
3978 
3979 	/*
3980 	 * Let's determine what needs to be done.  If the target cpumask is
3981 	 * different from wq's, we need to compare it to @pwq's and create
3982 	 * a new one if they don't match.  If the target cpumask equals
3983 	 * wq's, the default pwq should be used.
3984 	 */
3985 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3986 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3987 			goto out_unlock;
3988 	} else {
3989 		goto use_dfl_pwq;
3990 	}
3991 
3992 	mutex_unlock(&wq->mutex);
3993 
3994 	/* create a new pwq */
3995 	pwq = alloc_unbound_pwq(wq, target_attrs);
3996 	if (!pwq) {
3997 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3998 			wq->name);
3999 		mutex_lock(&wq->mutex);
4000 		goto use_dfl_pwq;
4001 	}
4002 
4003 	/*
4004 	 * Install the new pwq.  As this function is called only from CPU
4005 	 * hotplug callbacks and applying a new attrs is wrapped with
4006 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4007 	 * inbetween.
4008 	 */
4009 	mutex_lock(&wq->mutex);
4010 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4011 	goto out_unlock;
4012 
4013 use_dfl_pwq:
4014 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4015 	get_pwq(wq->dfl_pwq);
4016 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4017 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4018 out_unlock:
4019 	mutex_unlock(&wq->mutex);
4020 	put_pwq_unlocked(old_pwq);
4021 }
4022 
alloc_and_link_pwqs(struct workqueue_struct * wq)4023 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4024 {
4025 	bool highpri = wq->flags & WQ_HIGHPRI;
4026 	int cpu, ret;
4027 
4028 	if (!(wq->flags & WQ_UNBOUND)) {
4029 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4030 		if (!wq->cpu_pwqs)
4031 			return -ENOMEM;
4032 
4033 		for_each_possible_cpu(cpu) {
4034 			struct pool_workqueue *pwq =
4035 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4036 			struct worker_pool *cpu_pools =
4037 				per_cpu(cpu_worker_pools, cpu);
4038 
4039 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4040 
4041 			mutex_lock(&wq->mutex);
4042 			link_pwq(pwq);
4043 			mutex_unlock(&wq->mutex);
4044 		}
4045 		return 0;
4046 	} else if (wq->flags & __WQ_ORDERED) {
4047 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4048 		/* there should only be single pwq for ordering guarantee */
4049 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4050 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4051 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4052 		return ret;
4053 	} else {
4054 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4055 	}
4056 }
4057 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4058 static int wq_clamp_max_active(int max_active, unsigned int flags,
4059 			       const char *name)
4060 {
4061 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4062 
4063 	if (max_active < 1 || max_active > lim)
4064 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4065 			max_active, name, 1, lim);
4066 
4067 	return clamp_val(max_active, 1, lim);
4068 }
4069 
__alloc_workqueue_key(const char * fmt,unsigned int flags,int max_active,struct lock_class_key * key,const char * lock_name,...)4070 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4071 					       unsigned int flags,
4072 					       int max_active,
4073 					       struct lock_class_key *key,
4074 					       const char *lock_name, ...)
4075 {
4076 	size_t tbl_size = 0;
4077 	va_list args;
4078 	struct workqueue_struct *wq;
4079 	struct pool_workqueue *pwq;
4080 
4081 	/*
4082 	 * Unbound && max_active == 1 used to imply ordered, which is no
4083 	 * longer the case on NUMA machines due to per-node pools.  While
4084 	 * alloc_ordered_workqueue() is the right way to create an ordered
4085 	 * workqueue, keep the previous behavior to avoid subtle breakages
4086 	 * on NUMA.
4087 	 */
4088 	if ((flags & WQ_UNBOUND) && max_active == 1)
4089 		flags |= __WQ_ORDERED;
4090 
4091 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4092 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4093 		flags |= WQ_UNBOUND;
4094 
4095 	/* allocate wq and format name */
4096 	if (flags & WQ_UNBOUND)
4097 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4098 
4099 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4100 	if (!wq)
4101 		return NULL;
4102 
4103 	if (flags & WQ_UNBOUND) {
4104 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4105 		if (!wq->unbound_attrs)
4106 			goto err_free_wq;
4107 	}
4108 
4109 	va_start(args, lock_name);
4110 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4111 	va_end(args);
4112 
4113 	max_active = max_active ?: WQ_DFL_ACTIVE;
4114 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4115 
4116 	/* init wq */
4117 	wq->flags = flags;
4118 	wq->saved_max_active = max_active;
4119 	mutex_init(&wq->mutex);
4120 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4121 	INIT_LIST_HEAD(&wq->pwqs);
4122 	INIT_LIST_HEAD(&wq->flusher_queue);
4123 	INIT_LIST_HEAD(&wq->flusher_overflow);
4124 	INIT_LIST_HEAD(&wq->maydays);
4125 
4126 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4127 	INIT_LIST_HEAD(&wq->list);
4128 
4129 	if (alloc_and_link_pwqs(wq) < 0)
4130 		goto err_free_wq;
4131 
4132 	/*
4133 	 * Workqueues which may be used during memory reclaim should
4134 	 * have a rescuer to guarantee forward progress.
4135 	 */
4136 	if (flags & WQ_MEM_RECLAIM) {
4137 		struct worker *rescuer;
4138 
4139 		rescuer = alloc_worker(NUMA_NO_NODE);
4140 		if (!rescuer)
4141 			goto err_destroy;
4142 
4143 		rescuer->rescue_wq = wq;
4144 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4145 					       wq->name);
4146 		if (IS_ERR(rescuer->task)) {
4147 			kfree(rescuer);
4148 			goto err_destroy;
4149 		}
4150 
4151 		wq->rescuer = rescuer;
4152 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4153 		wake_up_process(rescuer->task);
4154 	}
4155 
4156 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4157 		goto err_destroy;
4158 
4159 	/*
4160 	 * wq_pool_mutex protects global freeze state and workqueues list.
4161 	 * Grab it, adjust max_active and add the new @wq to workqueues
4162 	 * list.
4163 	 */
4164 	mutex_lock(&wq_pool_mutex);
4165 
4166 	mutex_lock(&wq->mutex);
4167 	for_each_pwq(pwq, wq)
4168 		pwq_adjust_max_active(pwq);
4169 	mutex_unlock(&wq->mutex);
4170 
4171 	list_add(&wq->list, &workqueues);
4172 
4173 	mutex_unlock(&wq_pool_mutex);
4174 
4175 	return wq;
4176 
4177 err_free_wq:
4178 	free_workqueue_attrs(wq->unbound_attrs);
4179 	kfree(wq);
4180 	return NULL;
4181 err_destroy:
4182 	destroy_workqueue(wq);
4183 	return NULL;
4184 }
4185 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4186 
4187 /**
4188  * destroy_workqueue - safely terminate a workqueue
4189  * @wq: target workqueue
4190  *
4191  * Safely destroy a workqueue. All work currently pending will be done first.
4192  */
destroy_workqueue(struct workqueue_struct * wq)4193 void destroy_workqueue(struct workqueue_struct *wq)
4194 {
4195 	struct pool_workqueue *pwq;
4196 	int node;
4197 
4198 	/* drain it before proceeding with destruction */
4199 	drain_workqueue(wq);
4200 
4201 	/* sanity checks */
4202 	mutex_lock(&wq->mutex);
4203 	for_each_pwq(pwq, wq) {
4204 		int i;
4205 
4206 		for (i = 0; i < WORK_NR_COLORS; i++) {
4207 			if (WARN_ON(pwq->nr_in_flight[i])) {
4208 				mutex_unlock(&wq->mutex);
4209 				return;
4210 			}
4211 		}
4212 
4213 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4214 		    WARN_ON(pwq->nr_active) ||
4215 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4216 			mutex_unlock(&wq->mutex);
4217 			return;
4218 		}
4219 	}
4220 	mutex_unlock(&wq->mutex);
4221 
4222 	/*
4223 	 * wq list is used to freeze wq, remove from list after
4224 	 * flushing is complete in case freeze races us.
4225 	 */
4226 	mutex_lock(&wq_pool_mutex);
4227 	list_del_init(&wq->list);
4228 	mutex_unlock(&wq_pool_mutex);
4229 
4230 	workqueue_sysfs_unregister(wq);
4231 
4232 	if (wq->rescuer) {
4233 		kthread_stop(wq->rescuer->task);
4234 		kfree(wq->rescuer);
4235 		wq->rescuer = NULL;
4236 	}
4237 
4238 	if (!(wq->flags & WQ_UNBOUND)) {
4239 		/*
4240 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4241 		 * free the pwqs and wq.
4242 		 */
4243 		free_percpu(wq->cpu_pwqs);
4244 		kfree(wq);
4245 	} else {
4246 		/*
4247 		 * We're the sole accessor of @wq at this point.  Directly
4248 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4249 		 * @wq will be freed when the last pwq is released.
4250 		 */
4251 		for_each_node(node) {
4252 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4253 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4254 			put_pwq_unlocked(pwq);
4255 		}
4256 
4257 		/*
4258 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4259 		 * put.  Don't access it afterwards.
4260 		 */
4261 		pwq = wq->dfl_pwq;
4262 		wq->dfl_pwq = NULL;
4263 		put_pwq_unlocked(pwq);
4264 	}
4265 }
4266 EXPORT_SYMBOL_GPL(destroy_workqueue);
4267 
4268 /**
4269  * workqueue_set_max_active - adjust max_active of a workqueue
4270  * @wq: target workqueue
4271  * @max_active: new max_active value.
4272  *
4273  * Set max_active of @wq to @max_active.
4274  *
4275  * CONTEXT:
4276  * Don't call from IRQ context.
4277  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4278 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4279 {
4280 	struct pool_workqueue *pwq;
4281 
4282 	/* disallow meddling with max_active for ordered workqueues */
4283 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4284 		return;
4285 
4286 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4287 
4288 	mutex_lock(&wq->mutex);
4289 
4290 	wq->flags &= ~__WQ_ORDERED;
4291 	wq->saved_max_active = max_active;
4292 
4293 	for_each_pwq(pwq, wq)
4294 		pwq_adjust_max_active(pwq);
4295 
4296 	mutex_unlock(&wq->mutex);
4297 }
4298 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4299 
4300 /**
4301  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4302  *
4303  * Determine whether %current is a workqueue rescuer.  Can be used from
4304  * work functions to determine whether it's being run off the rescuer task.
4305  *
4306  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4307  */
current_is_workqueue_rescuer(void)4308 bool current_is_workqueue_rescuer(void)
4309 {
4310 	struct worker *worker = current_wq_worker();
4311 
4312 	return worker && worker->rescue_wq;
4313 }
4314 
4315 /**
4316  * workqueue_congested - test whether a workqueue is congested
4317  * @cpu: CPU in question
4318  * @wq: target workqueue
4319  *
4320  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4321  * no synchronization around this function and the test result is
4322  * unreliable and only useful as advisory hints or for debugging.
4323  *
4324  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4325  * Note that both per-cpu and unbound workqueues may be associated with
4326  * multiple pool_workqueues which have separate congested states.  A
4327  * workqueue being congested on one CPU doesn't mean the workqueue is also
4328  * contested on other CPUs / NUMA nodes.
4329  *
4330  * Return:
4331  * %true if congested, %false otherwise.
4332  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4333 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4334 {
4335 	struct pool_workqueue *pwq;
4336 	bool ret;
4337 
4338 	rcu_read_lock_sched();
4339 
4340 	if (cpu == WORK_CPU_UNBOUND)
4341 		cpu = smp_processor_id();
4342 
4343 	if (!(wq->flags & WQ_UNBOUND))
4344 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4345 	else
4346 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4347 
4348 	ret = !list_empty(&pwq->delayed_works);
4349 	rcu_read_unlock_sched();
4350 
4351 	return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(workqueue_congested);
4354 
4355 /**
4356  * work_busy - test whether a work is currently pending or running
4357  * @work: the work to be tested
4358  *
4359  * Test whether @work is currently pending or running.  There is no
4360  * synchronization around this function and the test result is
4361  * unreliable and only useful as advisory hints or for debugging.
4362  *
4363  * Return:
4364  * OR'd bitmask of WORK_BUSY_* bits.
4365  */
work_busy(struct work_struct * work)4366 unsigned int work_busy(struct work_struct *work)
4367 {
4368 	struct worker_pool *pool;
4369 	unsigned long flags;
4370 	unsigned int ret = 0;
4371 
4372 	if (work_pending(work))
4373 		ret |= WORK_BUSY_PENDING;
4374 
4375 	local_irq_save(flags);
4376 	pool = get_work_pool(work);
4377 	if (pool) {
4378 		spin_lock(&pool->lock);
4379 		if (find_worker_executing_work(pool, work))
4380 			ret |= WORK_BUSY_RUNNING;
4381 		spin_unlock(&pool->lock);
4382 	}
4383 	local_irq_restore(flags);
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL_GPL(work_busy);
4388 
4389 /**
4390  * set_worker_desc - set description for the current work item
4391  * @fmt: printf-style format string
4392  * @...: arguments for the format string
4393  *
4394  * This function can be called by a running work function to describe what
4395  * the work item is about.  If the worker task gets dumped, this
4396  * information will be printed out together to help debugging.  The
4397  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4398  */
set_worker_desc(const char * fmt,...)4399 void set_worker_desc(const char *fmt, ...)
4400 {
4401 	struct worker *worker = current_wq_worker();
4402 	va_list args;
4403 
4404 	if (worker) {
4405 		va_start(args, fmt);
4406 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4407 		va_end(args);
4408 		worker->desc_valid = true;
4409 	}
4410 }
4411 
4412 /**
4413  * print_worker_info - print out worker information and description
4414  * @log_lvl: the log level to use when printing
4415  * @task: target task
4416  *
4417  * If @task is a worker and currently executing a work item, print out the
4418  * name of the workqueue being serviced and worker description set with
4419  * set_worker_desc() by the currently executing work item.
4420  *
4421  * This function can be safely called on any task as long as the
4422  * task_struct itself is accessible.  While safe, this function isn't
4423  * synchronized and may print out mixups or garbages of limited length.
4424  */
print_worker_info(const char * log_lvl,struct task_struct * task)4425 void print_worker_info(const char *log_lvl, struct task_struct *task)
4426 {
4427 	work_func_t *fn = NULL;
4428 	char name[WQ_NAME_LEN] = { };
4429 	char desc[WORKER_DESC_LEN] = { };
4430 	struct pool_workqueue *pwq = NULL;
4431 	struct workqueue_struct *wq = NULL;
4432 	bool desc_valid = false;
4433 	struct worker *worker;
4434 
4435 	if (!(task->flags & PF_WQ_WORKER))
4436 		return;
4437 
4438 	/*
4439 	 * This function is called without any synchronization and @task
4440 	 * could be in any state.  Be careful with dereferences.
4441 	 */
4442 	worker = probe_kthread_data(task);
4443 
4444 	/*
4445 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4446 	 * the original last '\0' in case the original contains garbage.
4447 	 */
4448 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4449 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4450 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4451 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4452 
4453 	/* copy worker description */
4454 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4455 	if (desc_valid)
4456 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4457 
4458 	if (fn || name[0] || desc[0]) {
4459 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4460 		if (desc[0])
4461 			pr_cont(" (%s)", desc);
4462 		pr_cont("\n");
4463 	}
4464 }
4465 
4466 /*
4467  * CPU hotplug.
4468  *
4469  * There are two challenges in supporting CPU hotplug.  Firstly, there
4470  * are a lot of assumptions on strong associations among work, pwq and
4471  * pool which make migrating pending and scheduled works very
4472  * difficult to implement without impacting hot paths.  Secondly,
4473  * worker pools serve mix of short, long and very long running works making
4474  * blocked draining impractical.
4475  *
4476  * This is solved by allowing the pools to be disassociated from the CPU
4477  * running as an unbound one and allowing it to be reattached later if the
4478  * cpu comes back online.
4479  */
4480 
wq_unbind_fn(struct work_struct * work)4481 static void wq_unbind_fn(struct work_struct *work)
4482 {
4483 	int cpu = smp_processor_id();
4484 	struct worker_pool *pool;
4485 	struct worker *worker;
4486 
4487 	for_each_cpu_worker_pool(pool, cpu) {
4488 		mutex_lock(&pool->attach_mutex);
4489 		spin_lock_irq(&pool->lock);
4490 
4491 		/*
4492 		 * We've blocked all attach/detach operations. Make all workers
4493 		 * unbound and set DISASSOCIATED.  Before this, all workers
4494 		 * except for the ones which are still executing works from
4495 		 * before the last CPU down must be on the cpu.  After
4496 		 * this, they may become diasporas.
4497 		 */
4498 		for_each_pool_worker(worker, pool)
4499 			worker->flags |= WORKER_UNBOUND;
4500 
4501 		pool->flags |= POOL_DISASSOCIATED;
4502 
4503 		spin_unlock_irq(&pool->lock);
4504 		mutex_unlock(&pool->attach_mutex);
4505 
4506 		/*
4507 		 * Call schedule() so that we cross rq->lock and thus can
4508 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4509 		 * This is necessary as scheduler callbacks may be invoked
4510 		 * from other cpus.
4511 		 */
4512 		schedule();
4513 
4514 		/*
4515 		 * Sched callbacks are disabled now.  Zap nr_running.
4516 		 * After this, nr_running stays zero and need_more_worker()
4517 		 * and keep_working() are always true as long as the
4518 		 * worklist is not empty.  This pool now behaves as an
4519 		 * unbound (in terms of concurrency management) pool which
4520 		 * are served by workers tied to the pool.
4521 		 */
4522 		atomic_set(&pool->nr_running, 0);
4523 
4524 		/*
4525 		 * With concurrency management just turned off, a busy
4526 		 * worker blocking could lead to lengthy stalls.  Kick off
4527 		 * unbound chain execution of currently pending work items.
4528 		 */
4529 		spin_lock_irq(&pool->lock);
4530 		wake_up_worker(pool);
4531 		spin_unlock_irq(&pool->lock);
4532 	}
4533 }
4534 
4535 /**
4536  * rebind_workers - rebind all workers of a pool to the associated CPU
4537  * @pool: pool of interest
4538  *
4539  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4540  */
rebind_workers(struct worker_pool * pool)4541 static void rebind_workers(struct worker_pool *pool)
4542 {
4543 	struct worker *worker;
4544 
4545 	lockdep_assert_held(&pool->attach_mutex);
4546 
4547 	/*
4548 	 * Restore CPU affinity of all workers.  As all idle workers should
4549 	 * be on the run-queue of the associated CPU before any local
4550 	 * wake-ups for concurrency management happen, restore CPU affinty
4551 	 * of all workers first and then clear UNBOUND.  As we're called
4552 	 * from CPU_ONLINE, the following shouldn't fail.
4553 	 */
4554 	for_each_pool_worker(worker, pool)
4555 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4556 						  pool->attrs->cpumask) < 0);
4557 
4558 	spin_lock_irq(&pool->lock);
4559 
4560 	/*
4561 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4562 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4563 	 * being reworked and this can go away in time.
4564 	 */
4565 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4566 		spin_unlock_irq(&pool->lock);
4567 		return;
4568 	}
4569 
4570 	pool->flags &= ~POOL_DISASSOCIATED;
4571 
4572 	for_each_pool_worker(worker, pool) {
4573 		unsigned int worker_flags = worker->flags;
4574 
4575 		/*
4576 		 * A bound idle worker should actually be on the runqueue
4577 		 * of the associated CPU for local wake-ups targeting it to
4578 		 * work.  Kick all idle workers so that they migrate to the
4579 		 * associated CPU.  Doing this in the same loop as
4580 		 * replacing UNBOUND with REBOUND is safe as no worker will
4581 		 * be bound before @pool->lock is released.
4582 		 */
4583 		if (worker_flags & WORKER_IDLE)
4584 			wake_up_process(worker->task);
4585 
4586 		/*
4587 		 * We want to clear UNBOUND but can't directly call
4588 		 * worker_clr_flags() or adjust nr_running.  Atomically
4589 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4590 		 * @worker will clear REBOUND using worker_clr_flags() when
4591 		 * it initiates the next execution cycle thus restoring
4592 		 * concurrency management.  Note that when or whether
4593 		 * @worker clears REBOUND doesn't affect correctness.
4594 		 *
4595 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4596 		 * tested without holding any lock in
4597 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4598 		 * fail incorrectly leading to premature concurrency
4599 		 * management operations.
4600 		 */
4601 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4602 		worker_flags |= WORKER_REBOUND;
4603 		worker_flags &= ~WORKER_UNBOUND;
4604 		ACCESS_ONCE(worker->flags) = worker_flags;
4605 	}
4606 
4607 	spin_unlock_irq(&pool->lock);
4608 }
4609 
4610 /**
4611  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4612  * @pool: unbound pool of interest
4613  * @cpu: the CPU which is coming up
4614  *
4615  * An unbound pool may end up with a cpumask which doesn't have any online
4616  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4617  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4618  * online CPU before, cpus_allowed of all its workers should be restored.
4619  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4621 {
4622 	static cpumask_t cpumask;
4623 	struct worker *worker;
4624 
4625 	lockdep_assert_held(&pool->attach_mutex);
4626 
4627 	/* is @cpu allowed for @pool? */
4628 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4629 		return;
4630 
4631 	/* is @cpu the only online CPU? */
4632 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4633 	if (cpumask_weight(&cpumask) != 1)
4634 		return;
4635 
4636 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4637 	for_each_pool_worker(worker, pool)
4638 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4639 						  pool->attrs->cpumask) < 0);
4640 }
4641 
4642 /*
4643  * Workqueues should be brought up before normal priority CPU notifiers.
4644  * This will be registered high priority CPU notifier.
4645  */
workqueue_cpu_up_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4646 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4647 					       unsigned long action,
4648 					       void *hcpu)
4649 {
4650 	int cpu = (unsigned long)hcpu;
4651 	struct worker_pool *pool;
4652 	struct workqueue_struct *wq;
4653 	int pi;
4654 
4655 	switch (action & ~CPU_TASKS_FROZEN) {
4656 	case CPU_UP_PREPARE:
4657 		for_each_cpu_worker_pool(pool, cpu) {
4658 			if (pool->nr_workers)
4659 				continue;
4660 			if (!create_worker(pool))
4661 				return NOTIFY_BAD;
4662 		}
4663 		break;
4664 
4665 	case CPU_DOWN_FAILED:
4666 	case CPU_ONLINE:
4667 		mutex_lock(&wq_pool_mutex);
4668 
4669 		for_each_pool(pool, pi) {
4670 			mutex_lock(&pool->attach_mutex);
4671 
4672 			if (pool->cpu == cpu)
4673 				rebind_workers(pool);
4674 			else if (pool->cpu < 0)
4675 				restore_unbound_workers_cpumask(pool, cpu);
4676 
4677 			mutex_unlock(&pool->attach_mutex);
4678 		}
4679 
4680 		/* update NUMA affinity of unbound workqueues */
4681 		list_for_each_entry(wq, &workqueues, list)
4682 			wq_update_unbound_numa(wq, cpu, true);
4683 
4684 		mutex_unlock(&wq_pool_mutex);
4685 		break;
4686 	}
4687 	return NOTIFY_OK;
4688 }
4689 
4690 /*
4691  * Workqueues should be brought down after normal priority CPU notifiers.
4692  * This will be registered as low priority CPU notifier.
4693  */
workqueue_cpu_down_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4694 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4695 						 unsigned long action,
4696 						 void *hcpu)
4697 {
4698 	int cpu = (unsigned long)hcpu;
4699 	struct work_struct unbind_work;
4700 	struct workqueue_struct *wq;
4701 
4702 	switch (action & ~CPU_TASKS_FROZEN) {
4703 	case CPU_DOWN_PREPARE:
4704 		/* unbinding per-cpu workers should happen on the local CPU */
4705 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4706 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4707 
4708 		/* update NUMA affinity of unbound workqueues */
4709 		mutex_lock(&wq_pool_mutex);
4710 		list_for_each_entry(wq, &workqueues, list)
4711 			wq_update_unbound_numa(wq, cpu, false);
4712 		mutex_unlock(&wq_pool_mutex);
4713 
4714 		/* wait for per-cpu unbinding to finish */
4715 		flush_work(&unbind_work);
4716 		destroy_work_on_stack(&unbind_work);
4717 		break;
4718 	}
4719 	return NOTIFY_OK;
4720 }
4721 
4722 #ifdef CONFIG_SMP
4723 
4724 struct work_for_cpu {
4725 	struct work_struct work;
4726 	long (*fn)(void *);
4727 	void *arg;
4728 	long ret;
4729 };
4730 
work_for_cpu_fn(struct work_struct * work)4731 static void work_for_cpu_fn(struct work_struct *work)
4732 {
4733 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4734 
4735 	wfc->ret = wfc->fn(wfc->arg);
4736 }
4737 
4738 /**
4739  * work_on_cpu - run a function in user context on a particular cpu
4740  * @cpu: the cpu to run on
4741  * @fn: the function to run
4742  * @arg: the function arg
4743  *
4744  * It is up to the caller to ensure that the cpu doesn't go offline.
4745  * The caller must not hold any locks which would prevent @fn from completing.
4746  *
4747  * Return: The value @fn returns.
4748  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)4749 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4750 {
4751 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4752 
4753 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4754 	schedule_work_on(cpu, &wfc.work);
4755 	flush_work(&wfc.work);
4756 	destroy_work_on_stack(&wfc.work);
4757 	return wfc.ret;
4758 }
4759 EXPORT_SYMBOL_GPL(work_on_cpu);
4760 #endif /* CONFIG_SMP */
4761 
4762 #ifdef CONFIG_FREEZER
4763 
4764 /**
4765  * freeze_workqueues_begin - begin freezing workqueues
4766  *
4767  * Start freezing workqueues.  After this function returns, all freezable
4768  * workqueues will queue new works to their delayed_works list instead of
4769  * pool->worklist.
4770  *
4771  * CONTEXT:
4772  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4773  */
freeze_workqueues_begin(void)4774 void freeze_workqueues_begin(void)
4775 {
4776 	struct workqueue_struct *wq;
4777 	struct pool_workqueue *pwq;
4778 
4779 	mutex_lock(&wq_pool_mutex);
4780 
4781 	WARN_ON_ONCE(workqueue_freezing);
4782 	workqueue_freezing = true;
4783 
4784 	list_for_each_entry(wq, &workqueues, list) {
4785 		mutex_lock(&wq->mutex);
4786 		for_each_pwq(pwq, wq)
4787 			pwq_adjust_max_active(pwq);
4788 		mutex_unlock(&wq->mutex);
4789 	}
4790 
4791 	mutex_unlock(&wq_pool_mutex);
4792 }
4793 
4794 /**
4795  * freeze_workqueues_busy - are freezable workqueues still busy?
4796  *
4797  * Check whether freezing is complete.  This function must be called
4798  * between freeze_workqueues_begin() and thaw_workqueues().
4799  *
4800  * CONTEXT:
4801  * Grabs and releases wq_pool_mutex.
4802  *
4803  * Return:
4804  * %true if some freezable workqueues are still busy.  %false if freezing
4805  * is complete.
4806  */
freeze_workqueues_busy(void)4807 bool freeze_workqueues_busy(void)
4808 {
4809 	bool busy = false;
4810 	struct workqueue_struct *wq;
4811 	struct pool_workqueue *pwq;
4812 
4813 	mutex_lock(&wq_pool_mutex);
4814 
4815 	WARN_ON_ONCE(!workqueue_freezing);
4816 
4817 	list_for_each_entry(wq, &workqueues, list) {
4818 		if (!(wq->flags & WQ_FREEZABLE))
4819 			continue;
4820 		/*
4821 		 * nr_active is monotonically decreasing.  It's safe
4822 		 * to peek without lock.
4823 		 */
4824 		rcu_read_lock_sched();
4825 		for_each_pwq(pwq, wq) {
4826 			WARN_ON_ONCE(pwq->nr_active < 0);
4827 			if (pwq->nr_active) {
4828 				busy = true;
4829 				rcu_read_unlock_sched();
4830 				goto out_unlock;
4831 			}
4832 		}
4833 		rcu_read_unlock_sched();
4834 	}
4835 out_unlock:
4836 	mutex_unlock(&wq_pool_mutex);
4837 	return busy;
4838 }
4839 
4840 /**
4841  * thaw_workqueues - thaw workqueues
4842  *
4843  * Thaw workqueues.  Normal queueing is restored and all collected
4844  * frozen works are transferred to their respective pool worklists.
4845  *
4846  * CONTEXT:
4847  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4848  */
thaw_workqueues(void)4849 void thaw_workqueues(void)
4850 {
4851 	struct workqueue_struct *wq;
4852 	struct pool_workqueue *pwq;
4853 
4854 	mutex_lock(&wq_pool_mutex);
4855 
4856 	if (!workqueue_freezing)
4857 		goto out_unlock;
4858 
4859 	workqueue_freezing = false;
4860 
4861 	/* restore max_active and repopulate worklist */
4862 	list_for_each_entry(wq, &workqueues, list) {
4863 		mutex_lock(&wq->mutex);
4864 		for_each_pwq(pwq, wq)
4865 			pwq_adjust_max_active(pwq);
4866 		mutex_unlock(&wq->mutex);
4867 	}
4868 
4869 out_unlock:
4870 	mutex_unlock(&wq_pool_mutex);
4871 }
4872 #endif /* CONFIG_FREEZER */
4873 
wq_numa_init(void)4874 static void __init wq_numa_init(void)
4875 {
4876 	cpumask_var_t *tbl;
4877 	int node, cpu;
4878 
4879 	if (num_possible_nodes() <= 1)
4880 		return;
4881 
4882 	if (wq_disable_numa) {
4883 		pr_info("workqueue: NUMA affinity support disabled\n");
4884 		return;
4885 	}
4886 
4887 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4888 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4889 
4890 	/*
4891 	 * We want masks of possible CPUs of each node which isn't readily
4892 	 * available.  Build one from cpu_to_node() which should have been
4893 	 * fully initialized by now.
4894 	 */
4895 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4896 	BUG_ON(!tbl);
4897 
4898 	for_each_node(node)
4899 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4900 				node_online(node) ? node : NUMA_NO_NODE));
4901 
4902 	for_each_possible_cpu(cpu) {
4903 		node = cpu_to_node(cpu);
4904 		if (WARN_ON(node == NUMA_NO_NODE)) {
4905 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4906 			/* happens iff arch is bonkers, let's just proceed */
4907 			return;
4908 		}
4909 		cpumask_set_cpu(cpu, tbl[node]);
4910 	}
4911 
4912 	wq_numa_possible_cpumask = tbl;
4913 	wq_numa_enabled = true;
4914 }
4915 
init_workqueues(void)4916 static int __init init_workqueues(void)
4917 {
4918 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4919 	int i, cpu;
4920 
4921 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4922 
4923 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4924 
4925 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4926 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4927 
4928 	wq_numa_init();
4929 
4930 	/* initialize CPU pools */
4931 	for_each_possible_cpu(cpu) {
4932 		struct worker_pool *pool;
4933 
4934 		i = 0;
4935 		for_each_cpu_worker_pool(pool, cpu) {
4936 			BUG_ON(init_worker_pool(pool));
4937 			pool->cpu = cpu;
4938 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4939 			pool->attrs->nice = std_nice[i++];
4940 			pool->node = cpu_to_node(cpu);
4941 
4942 			/* alloc pool ID */
4943 			mutex_lock(&wq_pool_mutex);
4944 			BUG_ON(worker_pool_assign_id(pool));
4945 			mutex_unlock(&wq_pool_mutex);
4946 		}
4947 	}
4948 
4949 	/* create the initial worker */
4950 	for_each_online_cpu(cpu) {
4951 		struct worker_pool *pool;
4952 
4953 		for_each_cpu_worker_pool(pool, cpu) {
4954 			pool->flags &= ~POOL_DISASSOCIATED;
4955 			BUG_ON(!create_worker(pool));
4956 		}
4957 	}
4958 
4959 	/* create default unbound and ordered wq attrs */
4960 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4961 		struct workqueue_attrs *attrs;
4962 
4963 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4964 		attrs->nice = std_nice[i];
4965 		unbound_std_wq_attrs[i] = attrs;
4966 
4967 		/*
4968 		 * An ordered wq should have only one pwq as ordering is
4969 		 * guaranteed by max_active which is enforced by pwqs.
4970 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
4971 		 */
4972 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4973 		attrs->nice = std_nice[i];
4974 		attrs->no_numa = true;
4975 		ordered_wq_attrs[i] = attrs;
4976 	}
4977 
4978 	system_wq = alloc_workqueue("events", 0, 0);
4979 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4980 	system_long_wq = alloc_workqueue("events_long", 0, 0);
4981 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4982 					    WQ_UNBOUND_MAX_ACTIVE);
4983 	system_freezable_wq = alloc_workqueue("events_freezable",
4984 					      WQ_FREEZABLE, 0);
4985 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4986 					      WQ_POWER_EFFICIENT, 0);
4987 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4988 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4989 					      0);
4990 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4991 	       !system_unbound_wq || !system_freezable_wq ||
4992 	       !system_power_efficient_wq ||
4993 	       !system_freezable_power_efficient_wq);
4994 	return 0;
4995 }
4996 early_initcall(init_workqueues);
4997