• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16 
17 /*
18  * bitmaps provide an array of bits, implemented using an an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * These operations actually hold to a slightly stronger rule:
33  * if you don't input any bitmaps to these ops that have some
34  * unused bits set, then they won't output any set unused bits
35  * in output bitmaps.
36  *
37  * The byte ordering of bitmaps is more natural on little
38  * endian architectures.  See the big-endian headers
39  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40  * for the best explanations of this ordering.
41  */
42 
__bitmap_empty(const unsigned long * bitmap,unsigned int bits)43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
44 {
45 	unsigned int k, lim = bits/BITS_PER_LONG;
46 	for (k = 0; k < lim; ++k)
47 		if (bitmap[k])
48 			return 0;
49 
50 	if (bits % BITS_PER_LONG)
51 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 			return 0;
53 
54 	return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57 
__bitmap_full(const unsigned long * bitmap,unsigned int bits)58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
59 {
60 	unsigned int k, lim = bits/BITS_PER_LONG;
61 	for (k = 0; k < lim; ++k)
62 		if (~bitmap[k])
63 			return 0;
64 
65 	if (bits % BITS_PER_LONG)
66 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 			return 0;
68 
69 	return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72 
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)73 int __bitmap_equal(const unsigned long *bitmap1,
74 		const unsigned long *bitmap2, unsigned int bits)
75 {
76 	unsigned int k, lim = bits/BITS_PER_LONG;
77 	for (k = 0; k < lim; ++k)
78 		if (bitmap1[k] != bitmap2[k])
79 			return 0;
80 
81 	if (bits % BITS_PER_LONG)
82 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 			return 0;
84 
85 	return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88 
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
90 {
91 	unsigned int k, lim = bits/BITS_PER_LONG;
92 	for (k = 0; k < lim; ++k)
93 		dst[k] = ~src[k];
94 
95 	if (bits % BITS_PER_LONG)
96 		dst[k] = ~src[k];
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99 
100 /**
101  * __bitmap_shift_right - logical right shift of the bits in a bitmap
102  *   @dst : destination bitmap
103  *   @src : source bitmap
104  *   @shift : shift by this many bits
105  *   @bits : bitmap size, in bits
106  *
107  * Shifting right (dividing) means moving bits in the MS -> LS bit
108  * direction.  Zeros are fed into the vacated MS positions and the
109  * LS bits shifted off the bottom are lost.
110  */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,int shift,int bits)111 void __bitmap_shift_right(unsigned long *dst,
112 			const unsigned long *src, int shift, int bits)
113 {
114 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 	unsigned long mask = (1UL << left) - 1;
117 	for (k = 0; off + k < lim; ++k) {
118 		unsigned long upper, lower;
119 
120 		/*
121 		 * If shift is not word aligned, take lower rem bits of
122 		 * word above and make them the top rem bits of result.
123 		 */
124 		if (!rem || off + k + 1 >= lim)
125 			upper = 0;
126 		else {
127 			upper = src[off + k + 1];
128 			if (off + k + 1 == lim - 1 && left)
129 				upper &= mask;
130 		}
131 		lower = src[off + k];
132 		if (left && off + k == lim - 1)
133 			lower &= mask;
134 		dst[k] = lower >> rem;
135 		if (rem)
136 			dst[k] |= upper << (BITS_PER_LONG - rem);
137 		if (left && k == lim - 1)
138 			dst[k] &= mask;
139 	}
140 	if (off)
141 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142 }
143 EXPORT_SYMBOL(__bitmap_shift_right);
144 
145 
146 /**
147  * __bitmap_shift_left - logical left shift of the bits in a bitmap
148  *   @dst : destination bitmap
149  *   @src : source bitmap
150  *   @shift : shift by this many bits
151  *   @bits : bitmap size, in bits
152  *
153  * Shifting left (multiplying) means moving bits in the LS -> MS
154  * direction.  Zeros are fed into the vacated LS bit positions
155  * and those MS bits shifted off the top are lost.
156  */
157 
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,int shift,int bits)158 void __bitmap_shift_left(unsigned long *dst,
159 			const unsigned long *src, int shift, int bits)
160 {
161 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 	for (k = lim - off - 1; k >= 0; --k) {
164 		unsigned long upper, lower;
165 
166 		/*
167 		 * If shift is not word aligned, take upper rem bits of
168 		 * word below and make them the bottom rem bits of result.
169 		 */
170 		if (rem && k > 0)
171 			lower = src[k - 1];
172 		else
173 			lower = 0;
174 		upper = src[k];
175 		if (left && k == lim - 1)
176 			upper &= (1UL << left) - 1;
177 		dst[k + off] = upper << rem;
178 		if (rem)
179 			dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 		if (left && k + off == lim - 1)
181 			dst[k + off] &= (1UL << left) - 1;
182 	}
183 	if (off)
184 		memset(dst, 0, off*sizeof(unsigned long));
185 }
186 EXPORT_SYMBOL(__bitmap_shift_left);
187 
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 				const unsigned long *bitmap2, unsigned int bits)
190 {
191 	unsigned int k;
192 	unsigned int lim = bits/BITS_PER_LONG;
193 	unsigned long result = 0;
194 
195 	for (k = 0; k < lim; k++)
196 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 	if (bits % BITS_PER_LONG)
198 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 			   BITMAP_LAST_WORD_MASK(bits));
200 	return result != 0;
201 }
202 EXPORT_SYMBOL(__bitmap_and);
203 
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, unsigned int bits)
206 {
207 	unsigned int k;
208 	unsigned int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] | bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_or);
214 
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, unsigned int bits)
217 {
218 	unsigned int k;
219 	unsigned int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] ^ bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_xor);
225 
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, unsigned int bits)
228 {
229 	unsigned int k;
230 	unsigned int lim = bits/BITS_PER_LONG;
231 	unsigned long result = 0;
232 
233 	for (k = 0; k < lim; k++)
234 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
235 	if (bits % BITS_PER_LONG)
236 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 			   BITMAP_LAST_WORD_MASK(bits));
238 	return result != 0;
239 }
240 EXPORT_SYMBOL(__bitmap_andnot);
241 
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)242 int __bitmap_intersects(const unsigned long *bitmap1,
243 			const unsigned long *bitmap2, unsigned int bits)
244 {
245 	unsigned int k, lim = bits/BITS_PER_LONG;
246 	for (k = 0; k < lim; ++k)
247 		if (bitmap1[k] & bitmap2[k])
248 			return 1;
249 
250 	if (bits % BITS_PER_LONG)
251 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 			return 1;
253 	return 0;
254 }
255 EXPORT_SYMBOL(__bitmap_intersects);
256 
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)257 int __bitmap_subset(const unsigned long *bitmap1,
258 		    const unsigned long *bitmap2, unsigned int bits)
259 {
260 	unsigned int k, lim = bits/BITS_PER_LONG;
261 	for (k = 0; k < lim; ++k)
262 		if (bitmap1[k] & ~bitmap2[k])
263 			return 0;
264 
265 	if (bits % BITS_PER_LONG)
266 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 			return 0;
268 	return 1;
269 }
270 EXPORT_SYMBOL(__bitmap_subset);
271 
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
273 {
274 	unsigned int k, lim = bits/BITS_PER_LONG;
275 	int w = 0;
276 
277 	for (k = 0; k < lim; k++)
278 		w += hweight_long(bitmap[k]);
279 
280 	if (bits % BITS_PER_LONG)
281 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
282 
283 	return w;
284 }
285 EXPORT_SYMBOL(__bitmap_weight);
286 
bitmap_set(unsigned long * map,unsigned int start,int len)287 void bitmap_set(unsigned long *map, unsigned int start, int len)
288 {
289 	unsigned long *p = map + BIT_WORD(start);
290 	const unsigned int size = start + len;
291 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
293 
294 	while (len - bits_to_set >= 0) {
295 		*p |= mask_to_set;
296 		len -= bits_to_set;
297 		bits_to_set = BITS_PER_LONG;
298 		mask_to_set = ~0UL;
299 		p++;
300 	}
301 	if (len) {
302 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 		*p |= mask_to_set;
304 	}
305 }
306 EXPORT_SYMBOL(bitmap_set);
307 
bitmap_clear(unsigned long * map,unsigned int start,int len)308 void bitmap_clear(unsigned long *map, unsigned int start, int len)
309 {
310 	unsigned long *p = map + BIT_WORD(start);
311 	const unsigned int size = start + len;
312 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
314 
315 	while (len - bits_to_clear >= 0) {
316 		*p &= ~mask_to_clear;
317 		len -= bits_to_clear;
318 		bits_to_clear = BITS_PER_LONG;
319 		mask_to_clear = ~0UL;
320 		p++;
321 	}
322 	if (len) {
323 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 		*p &= ~mask_to_clear;
325 	}
326 }
327 EXPORT_SYMBOL(bitmap_clear);
328 
329 /**
330  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
331  * @map: The address to base the search on
332  * @size: The bitmap size in bits
333  * @start: The bitnumber to start searching at
334  * @nr: The number of zeroed bits we're looking for
335  * @align_mask: Alignment mask for zero area
336  * @align_offset: Alignment offset for zero area.
337  *
338  * The @align_mask should be one less than a power of 2; the effect is that
339  * the bit offset of all zero areas this function finds plus @align_offset
340  * is multiple of that power of 2.
341  */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)342 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
343 					     unsigned long size,
344 					     unsigned long start,
345 					     unsigned int nr,
346 					     unsigned long align_mask,
347 					     unsigned long align_offset)
348 {
349 	unsigned long index, end, i;
350 again:
351 	index = find_next_zero_bit(map, size, start);
352 
353 	/* Align allocation */
354 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
355 
356 	end = index + nr;
357 	if (end > size)
358 		return end;
359 	i = find_next_bit(map, end, index);
360 	if (i < end) {
361 		start = i + 1;
362 		goto again;
363 	}
364 	return index;
365 }
366 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
367 
368 /*
369  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
370  * second version by Paul Jackson, third by Joe Korty.
371  */
372 
373 #define CHUNKSZ				32
374 #define nbits_to_hold_value(val)	fls(val)
375 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
376 
377 /**
378  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
379  * @buf: byte buffer into which string is placed
380  * @buflen: reserved size of @buf, in bytes
381  * @maskp: pointer to bitmap to convert
382  * @nmaskbits: size of bitmap, in bits
383  *
384  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
385  * comma-separated sets of eight digits per set.  Returns the number of
386  * characters which were written to *buf, excluding the trailing \0.
387  */
bitmap_scnprintf(char * buf,unsigned int buflen,const unsigned long * maskp,int nmaskbits)388 int bitmap_scnprintf(char *buf, unsigned int buflen,
389 	const unsigned long *maskp, int nmaskbits)
390 {
391 	int i, word, bit, len = 0;
392 	unsigned long val;
393 	const char *sep = "";
394 	int chunksz;
395 	u32 chunkmask;
396 
397 	chunksz = nmaskbits & (CHUNKSZ - 1);
398 	if (chunksz == 0)
399 		chunksz = CHUNKSZ;
400 
401 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
402 	for (; i >= 0; i -= CHUNKSZ) {
403 		chunkmask = ((1ULL << chunksz) - 1);
404 		word = i / BITS_PER_LONG;
405 		bit = i % BITS_PER_LONG;
406 		val = (maskp[word] >> bit) & chunkmask;
407 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
408 			(chunksz+3)/4, val);
409 		chunksz = CHUNKSZ;
410 		sep = ",";
411 	}
412 	return len;
413 }
414 EXPORT_SYMBOL(bitmap_scnprintf);
415 
416 /**
417  * __bitmap_parse - convert an ASCII hex string into a bitmap.
418  * @buf: pointer to buffer containing string.
419  * @buflen: buffer size in bytes.  If string is smaller than this
420  *    then it must be terminated with a \0.
421  * @is_user: location of buffer, 0 indicates kernel space
422  * @maskp: pointer to bitmap array that will contain result.
423  * @nmaskbits: size of bitmap, in bits.
424  *
425  * Commas group hex digits into chunks.  Each chunk defines exactly 32
426  * bits of the resultant bitmask.  No chunk may specify a value larger
427  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
428  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
429  * characters and for grouping errors such as "1,,5", ",44", "," and "".
430  * Leading and trailing whitespace accepted, but not embedded whitespace.
431  */
__bitmap_parse(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)432 int __bitmap_parse(const char *buf, unsigned int buflen,
433 		int is_user, unsigned long *maskp,
434 		int nmaskbits)
435 {
436 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
437 	u32 chunk;
438 	const char __user __force *ubuf = (const char __user __force *)buf;
439 
440 	bitmap_zero(maskp, nmaskbits);
441 
442 	nchunks = nbits = totaldigits = c = 0;
443 	do {
444 		chunk = ndigits = 0;
445 
446 		/* Get the next chunk of the bitmap */
447 		while (buflen) {
448 			old_c = c;
449 			if (is_user) {
450 				if (__get_user(c, ubuf++))
451 					return -EFAULT;
452 			}
453 			else
454 				c = *buf++;
455 			buflen--;
456 			if (isspace(c))
457 				continue;
458 
459 			/*
460 			 * If the last character was a space and the current
461 			 * character isn't '\0', we've got embedded whitespace.
462 			 * This is a no-no, so throw an error.
463 			 */
464 			if (totaldigits && c && isspace(old_c))
465 				return -EINVAL;
466 
467 			/* A '\0' or a ',' signal the end of the chunk */
468 			if (c == '\0' || c == ',')
469 				break;
470 
471 			if (!isxdigit(c))
472 				return -EINVAL;
473 
474 			/*
475 			 * Make sure there are at least 4 free bits in 'chunk'.
476 			 * If not, this hexdigit will overflow 'chunk', so
477 			 * throw an error.
478 			 */
479 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
480 				return -EOVERFLOW;
481 
482 			chunk = (chunk << 4) | hex_to_bin(c);
483 			ndigits++; totaldigits++;
484 		}
485 		if (ndigits == 0)
486 			return -EINVAL;
487 		if (nchunks == 0 && chunk == 0)
488 			continue;
489 
490 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
491 		*maskp |= chunk;
492 		nchunks++;
493 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
494 		if (nbits > nmaskbits)
495 			return -EOVERFLOW;
496 	} while (buflen && c == ',');
497 
498 	return 0;
499 }
500 EXPORT_SYMBOL(__bitmap_parse);
501 
502 /**
503  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
504  *
505  * @ubuf: pointer to user buffer containing string.
506  * @ulen: buffer size in bytes.  If string is smaller than this
507  *    then it must be terminated with a \0.
508  * @maskp: pointer to bitmap array that will contain result.
509  * @nmaskbits: size of bitmap, in bits.
510  *
511  * Wrapper for __bitmap_parse(), providing it with user buffer.
512  *
513  * We cannot have this as an inline function in bitmap.h because it needs
514  * linux/uaccess.h to get the access_ok() declaration and this causes
515  * cyclic dependencies.
516  */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)517 int bitmap_parse_user(const char __user *ubuf,
518 			unsigned int ulen, unsigned long *maskp,
519 			int nmaskbits)
520 {
521 	if (!access_ok(VERIFY_READ, ubuf, ulen))
522 		return -EFAULT;
523 	return __bitmap_parse((const char __force *)ubuf,
524 				ulen, 1, maskp, nmaskbits);
525 
526 }
527 EXPORT_SYMBOL(bitmap_parse_user);
528 
529 /*
530  * bscnl_emit(buf, buflen, rbot, rtop, bp)
531  *
532  * Helper routine for bitmap_scnlistprintf().  Write decimal number
533  * or range to buf, suppressing output past buf+buflen, with optional
534  * comma-prefix.  Return len of what was written to *buf, excluding the
535  * trailing \0.
536  */
bscnl_emit(char * buf,int buflen,int rbot,int rtop,int len)537 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
538 {
539 	if (len > 0)
540 		len += scnprintf(buf + len, buflen - len, ",");
541 	if (rbot == rtop)
542 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
543 	else
544 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
545 	return len;
546 }
547 
548 /**
549  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
550  * @buf: byte buffer into which string is placed
551  * @buflen: reserved size of @buf, in bytes
552  * @maskp: pointer to bitmap to convert
553  * @nmaskbits: size of bitmap, in bits
554  *
555  * Output format is a comma-separated list of decimal numbers and
556  * ranges.  Consecutively set bits are shown as two hyphen-separated
557  * decimal numbers, the smallest and largest bit numbers set in
558  * the range.  Output format is compatible with the format
559  * accepted as input by bitmap_parselist().
560  *
561  * The return value is the number of characters which were written to *buf
562  * excluding the trailing '\0', as per ISO C99's scnprintf.
563  */
bitmap_scnlistprintf(char * buf,unsigned int buflen,const unsigned long * maskp,int nmaskbits)564 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
565 	const unsigned long *maskp, int nmaskbits)
566 {
567 	int len = 0;
568 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
569 	int cur, rbot, rtop;
570 
571 	if (buflen == 0)
572 		return 0;
573 	buf[0] = 0;
574 
575 	rbot = cur = find_first_bit(maskp, nmaskbits);
576 	while (cur < nmaskbits) {
577 		rtop = cur;
578 		cur = find_next_bit(maskp, nmaskbits, cur+1);
579 		if (cur >= nmaskbits || cur > rtop + 1) {
580 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
581 			rbot = cur;
582 		}
583 	}
584 	return len;
585 }
586 EXPORT_SYMBOL(bitmap_scnlistprintf);
587 
588 /**
589  * __bitmap_parselist - convert list format ASCII string to bitmap
590  * @buf: read nul-terminated user string from this buffer
591  * @buflen: buffer size in bytes.  If string is smaller than this
592  *    then it must be terminated with a \0.
593  * @is_user: location of buffer, 0 indicates kernel space
594  * @maskp: write resulting mask here
595  * @nmaskbits: number of bits in mask to be written
596  *
597  * Input format is a comma-separated list of decimal numbers and
598  * ranges.  Consecutively set bits are shown as two hyphen-separated
599  * decimal numbers, the smallest and largest bit numbers set in
600  * the range.
601  *
602  * Returns 0 on success, -errno on invalid input strings.
603  * Error values:
604  *    %-EINVAL: second number in range smaller than first
605  *    %-EINVAL: invalid character in string
606  *    %-ERANGE: bit number specified too large for mask
607  */
__bitmap_parselist(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)608 static int __bitmap_parselist(const char *buf, unsigned int buflen,
609 		int is_user, unsigned long *maskp,
610 		int nmaskbits)
611 {
612 	unsigned a, b;
613 	int c, old_c, totaldigits;
614 	const char __user __force *ubuf = (const char __user __force *)buf;
615 	int at_start, in_range;
616 
617 	totaldigits = c = 0;
618 	bitmap_zero(maskp, nmaskbits);
619 	do {
620 		at_start = 1;
621 		in_range = 0;
622 		a = b = 0;
623 
624 		/* Get the next cpu# or a range of cpu#'s */
625 		while (buflen) {
626 			old_c = c;
627 			if (is_user) {
628 				if (__get_user(c, ubuf++))
629 					return -EFAULT;
630 			} else
631 				c = *buf++;
632 			buflen--;
633 			if (isspace(c))
634 				continue;
635 
636 			/*
637 			 * If the last character was a space and the current
638 			 * character isn't '\0', we've got embedded whitespace.
639 			 * This is a no-no, so throw an error.
640 			 */
641 			if (totaldigits && c && isspace(old_c))
642 				return -EINVAL;
643 
644 			/* A '\0' or a ',' signal the end of a cpu# or range */
645 			if (c == '\0' || c == ',')
646 				break;
647 
648 			if (c == '-') {
649 				if (at_start || in_range)
650 					return -EINVAL;
651 				b = 0;
652 				in_range = 1;
653 				continue;
654 			}
655 
656 			if (!isdigit(c))
657 				return -EINVAL;
658 
659 			b = b * 10 + (c - '0');
660 			if (!in_range)
661 				a = b;
662 			at_start = 0;
663 			totaldigits++;
664 		}
665 		if (!(a <= b))
666 			return -EINVAL;
667 		if (b >= nmaskbits)
668 			return -ERANGE;
669 		if (!at_start) {
670 			while (a <= b) {
671 				set_bit(a, maskp);
672 				a++;
673 			}
674 		}
675 	} while (buflen && c == ',');
676 	return 0;
677 }
678 
bitmap_parselist(const char * bp,unsigned long * maskp,int nmaskbits)679 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
680 {
681 	char *nl  = strchrnul(bp, '\n');
682 	int len = nl - bp;
683 
684 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
685 }
686 EXPORT_SYMBOL(bitmap_parselist);
687 
688 
689 /**
690  * bitmap_parselist_user()
691  *
692  * @ubuf: pointer to user buffer containing string.
693  * @ulen: buffer size in bytes.  If string is smaller than this
694  *    then it must be terminated with a \0.
695  * @maskp: pointer to bitmap array that will contain result.
696  * @nmaskbits: size of bitmap, in bits.
697  *
698  * Wrapper for bitmap_parselist(), providing it with user buffer.
699  *
700  * We cannot have this as an inline function in bitmap.h because it needs
701  * linux/uaccess.h to get the access_ok() declaration and this causes
702  * cyclic dependencies.
703  */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)704 int bitmap_parselist_user(const char __user *ubuf,
705 			unsigned int ulen, unsigned long *maskp,
706 			int nmaskbits)
707 {
708 	if (!access_ok(VERIFY_READ, ubuf, ulen))
709 		return -EFAULT;
710 	return __bitmap_parselist((const char __force *)ubuf,
711 					ulen, 1, maskp, nmaskbits);
712 }
713 EXPORT_SYMBOL(bitmap_parselist_user);
714 
715 
716 /**
717  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
718  *	@buf: pointer to a bitmap
719  *	@pos: a bit position in @buf (0 <= @pos < @bits)
720  *	@bits: number of valid bit positions in @buf
721  *
722  * Map the bit at position @pos in @buf (of length @bits) to the
723  * ordinal of which set bit it is.  If it is not set or if @pos
724  * is not a valid bit position, map to -1.
725  *
726  * If for example, just bits 4 through 7 are set in @buf, then @pos
727  * values 4 through 7 will get mapped to 0 through 3, respectively,
728  * and other @pos values will get mapped to -1.  When @pos value 7
729  * gets mapped to (returns) @ord value 3 in this example, that means
730  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
731  *
732  * The bit positions 0 through @bits are valid positions in @buf.
733  */
bitmap_pos_to_ord(const unsigned long * buf,int pos,int bits)734 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
735 {
736 	int i, ord;
737 
738 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
739 		return -1;
740 
741 	i = find_first_bit(buf, bits);
742 	ord = 0;
743 	while (i < pos) {
744 		i = find_next_bit(buf, bits, i + 1);
745 	     	ord++;
746 	}
747 	BUG_ON(i != pos);
748 
749 	return ord;
750 }
751 
752 /**
753  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
754  *	@buf: pointer to bitmap
755  *	@ord: ordinal bit position (n-th set bit, n >= 0)
756  *	@bits: number of valid bit positions in @buf
757  *
758  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
759  * Value of @ord should be in range 0 <= @ord < weight(buf), else
760  * results are undefined.
761  *
762  * If for example, just bits 4 through 7 are set in @buf, then @ord
763  * values 0 through 3 will get mapped to 4 through 7, respectively,
764  * and all other @ord values return undefined values.  When @ord value 3
765  * gets mapped to (returns) @pos value 7 in this example, that means
766  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
767  *
768  * The bit positions 0 through @bits are valid positions in @buf.
769  */
bitmap_ord_to_pos(const unsigned long * buf,int ord,int bits)770 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
771 {
772 	int pos = 0;
773 
774 	if (ord >= 0 && ord < bits) {
775 		int i;
776 
777 		for (i = find_first_bit(buf, bits);
778 		     i < bits && ord > 0;
779 		     i = find_next_bit(buf, bits, i + 1))
780 	     		ord--;
781 		if (i < bits && ord == 0)
782 			pos = i;
783 	}
784 
785 	return pos;
786 }
787 
788 /**
789  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
790  *	@dst: remapped result
791  *	@src: subset to be remapped
792  *	@old: defines domain of map
793  *	@new: defines range of map
794  *	@bits: number of bits in each of these bitmaps
795  *
796  * Let @old and @new define a mapping of bit positions, such that
797  * whatever position is held by the n-th set bit in @old is mapped
798  * to the n-th set bit in @new.  In the more general case, allowing
799  * for the possibility that the weight 'w' of @new is less than the
800  * weight of @old, map the position of the n-th set bit in @old to
801  * the position of the m-th set bit in @new, where m == n % w.
802  *
803  * If either of the @old and @new bitmaps are empty, or if @src and
804  * @dst point to the same location, then this routine copies @src
805  * to @dst.
806  *
807  * The positions of unset bits in @old are mapped to themselves
808  * (the identify map).
809  *
810  * Apply the above specified mapping to @src, placing the result in
811  * @dst, clearing any bits previously set in @dst.
812  *
813  * For example, lets say that @old has bits 4 through 7 set, and
814  * @new has bits 12 through 15 set.  This defines the mapping of bit
815  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
816  * bit positions unchanged.  So if say @src comes into this routine
817  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
818  * 13 and 15 set.
819  */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,int bits)820 void bitmap_remap(unsigned long *dst, const unsigned long *src,
821 		const unsigned long *old, const unsigned long *new,
822 		int bits)
823 {
824 	int oldbit, w;
825 
826 	if (dst == src)		/* following doesn't handle inplace remaps */
827 		return;
828 	bitmap_zero(dst, bits);
829 
830 	w = bitmap_weight(new, bits);
831 	for_each_set_bit(oldbit, src, bits) {
832 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
833 
834 		if (n < 0 || w == 0)
835 			set_bit(oldbit, dst);	/* identity map */
836 		else
837 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
838 	}
839 }
840 EXPORT_SYMBOL(bitmap_remap);
841 
842 /**
843  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
844  *	@oldbit: bit position to be mapped
845  *	@old: defines domain of map
846  *	@new: defines range of map
847  *	@bits: number of bits in each of these bitmaps
848  *
849  * Let @old and @new define a mapping of bit positions, such that
850  * whatever position is held by the n-th set bit in @old is mapped
851  * to the n-th set bit in @new.  In the more general case, allowing
852  * for the possibility that the weight 'w' of @new is less than the
853  * weight of @old, map the position of the n-th set bit in @old to
854  * the position of the m-th set bit in @new, where m == n % w.
855  *
856  * The positions of unset bits in @old are mapped to themselves
857  * (the identify map).
858  *
859  * Apply the above specified mapping to bit position @oldbit, returning
860  * the new bit position.
861  *
862  * For example, lets say that @old has bits 4 through 7 set, and
863  * @new has bits 12 through 15 set.  This defines the mapping of bit
864  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
865  * bit positions unchanged.  So if say @oldbit is 5, then this routine
866  * returns 13.
867  */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)868 int bitmap_bitremap(int oldbit, const unsigned long *old,
869 				const unsigned long *new, int bits)
870 {
871 	int w = bitmap_weight(new, bits);
872 	int n = bitmap_pos_to_ord(old, oldbit, bits);
873 	if (n < 0 || w == 0)
874 		return oldbit;
875 	else
876 		return bitmap_ord_to_pos(new, n % w, bits);
877 }
878 EXPORT_SYMBOL(bitmap_bitremap);
879 
880 /**
881  * bitmap_onto - translate one bitmap relative to another
882  *	@dst: resulting translated bitmap
883  * 	@orig: original untranslated bitmap
884  * 	@relmap: bitmap relative to which translated
885  *	@bits: number of bits in each of these bitmaps
886  *
887  * Set the n-th bit of @dst iff there exists some m such that the
888  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
889  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
890  * (If you understood the previous sentence the first time your
891  * read it, you're overqualified for your current job.)
892  *
893  * In other words, @orig is mapped onto (surjectively) @dst,
894  * using the map { <n, m> | the n-th bit of @relmap is the
895  * m-th set bit of @relmap }.
896  *
897  * Any set bits in @orig above bit number W, where W is the
898  * weight of (number of set bits in) @relmap are mapped nowhere.
899  * In particular, if for all bits m set in @orig, m >= W, then
900  * @dst will end up empty.  In situations where the possibility
901  * of such an empty result is not desired, one way to avoid it is
902  * to use the bitmap_fold() operator, below, to first fold the
903  * @orig bitmap over itself so that all its set bits x are in the
904  * range 0 <= x < W.  The bitmap_fold() operator does this by
905  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
906  *
907  * Example [1] for bitmap_onto():
908  *  Let's say @relmap has bits 30-39 set, and @orig has bits
909  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
910  *  @dst will have bits 31, 33, 35, 37 and 39 set.
911  *
912  *  When bit 0 is set in @orig, it means turn on the bit in
913  *  @dst corresponding to whatever is the first bit (if any)
914  *  that is turned on in @relmap.  Since bit 0 was off in the
915  *  above example, we leave off that bit (bit 30) in @dst.
916  *
917  *  When bit 1 is set in @orig (as in the above example), it
918  *  means turn on the bit in @dst corresponding to whatever
919  *  is the second bit that is turned on in @relmap.  The second
920  *  bit in @relmap that was turned on in the above example was
921  *  bit 31, so we turned on bit 31 in @dst.
922  *
923  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
924  *  because they were the 4th, 6th, 8th and 10th set bits
925  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
926  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
927  *
928  *  When bit 11 is set in @orig, it means turn on the bit in
929  *  @dst corresponding to whatever is the twelfth bit that is
930  *  turned on in @relmap.  In the above example, there were
931  *  only ten bits turned on in @relmap (30..39), so that bit
932  *  11 was set in @orig had no affect on @dst.
933  *
934  * Example [2] for bitmap_fold() + bitmap_onto():
935  *  Let's say @relmap has these ten bits set:
936  *		40 41 42 43 45 48 53 61 74 95
937  *  (for the curious, that's 40 plus the first ten terms of the
938  *  Fibonacci sequence.)
939  *
940  *  Further lets say we use the following code, invoking
941  *  bitmap_fold() then bitmap_onto, as suggested above to
942  *  avoid the possibility of an empty @dst result:
943  *
944  *	unsigned long *tmp;	// a temporary bitmap's bits
945  *
946  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
947  *	bitmap_onto(dst, tmp, relmap, bits);
948  *
949  *  Then this table shows what various values of @dst would be, for
950  *  various @orig's.  I list the zero-based positions of each set bit.
951  *  The tmp column shows the intermediate result, as computed by
952  *  using bitmap_fold() to fold the @orig bitmap modulo ten
953  *  (the weight of @relmap).
954  *
955  *      @orig           tmp            @dst
956  *      0                0             40
957  *      1                1             41
958  *      9                9             95
959  *      10               0             40 (*)
960  *      1 3 5 7          1 3 5 7       41 43 48 61
961  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
962  *      0 9 18 27        0 9 8 7       40 61 74 95
963  *      0 10 20 30       0             40
964  *      0 11 22 33       0 1 2 3       40 41 42 43
965  *      0 12 24 36       0 2 4 6       40 42 45 53
966  *      78 102 211       1 2 8         41 42 74 (*)
967  *
968  * (*) For these marked lines, if we hadn't first done bitmap_fold()
969  *     into tmp, then the @dst result would have been empty.
970  *
971  * If either of @orig or @relmap is empty (no set bits), then @dst
972  * will be returned empty.
973  *
974  * If (as explained above) the only set bits in @orig are in positions
975  * m where m >= W, (where W is the weight of @relmap) then @dst will
976  * once again be returned empty.
977  *
978  * All bits in @dst not set by the above rule are cleared.
979  */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,int bits)980 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
981 			const unsigned long *relmap, int bits)
982 {
983 	int n, m;       	/* same meaning as in above comment */
984 
985 	if (dst == orig)	/* following doesn't handle inplace mappings */
986 		return;
987 	bitmap_zero(dst, bits);
988 
989 	/*
990 	 * The following code is a more efficient, but less
991 	 * obvious, equivalent to the loop:
992 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
993 	 *		n = bitmap_ord_to_pos(orig, m, bits);
994 	 *		if (test_bit(m, orig))
995 	 *			set_bit(n, dst);
996 	 *	}
997 	 */
998 
999 	m = 0;
1000 	for_each_set_bit(n, relmap, bits) {
1001 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1002 		if (test_bit(m, orig))
1003 			set_bit(n, dst);
1004 		m++;
1005 	}
1006 }
1007 EXPORT_SYMBOL(bitmap_onto);
1008 
1009 /**
1010  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1011  *	@dst: resulting smaller bitmap
1012  *	@orig: original larger bitmap
1013  *	@sz: specified size
1014  *	@bits: number of bits in each of these bitmaps
1015  *
1016  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1017  * Clear all other bits in @dst.  See further the comment and
1018  * Example [2] for bitmap_onto() for why and how to use this.
1019  */
bitmap_fold(unsigned long * dst,const unsigned long * orig,int sz,int bits)1020 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1021 			int sz, int bits)
1022 {
1023 	int oldbit;
1024 
1025 	if (dst == orig)	/* following doesn't handle inplace mappings */
1026 		return;
1027 	bitmap_zero(dst, bits);
1028 
1029 	for_each_set_bit(oldbit, orig, bits)
1030 		set_bit(oldbit % sz, dst);
1031 }
1032 EXPORT_SYMBOL(bitmap_fold);
1033 
1034 /*
1035  * Common code for bitmap_*_region() routines.
1036  *	bitmap: array of unsigned longs corresponding to the bitmap
1037  *	pos: the beginning of the region
1038  *	order: region size (log base 2 of number of bits)
1039  *	reg_op: operation(s) to perform on that region of bitmap
1040  *
1041  * Can set, verify and/or release a region of bits in a bitmap,
1042  * depending on which combination of REG_OP_* flag bits is set.
1043  *
1044  * A region of a bitmap is a sequence of bits in the bitmap, of
1045  * some size '1 << order' (a power of two), aligned to that same
1046  * '1 << order' power of two.
1047  *
1048  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1049  * Returns 0 in all other cases and reg_ops.
1050  */
1051 
1052 enum {
1053 	REG_OP_ISFREE,		/* true if region is all zero bits */
1054 	REG_OP_ALLOC,		/* set all bits in region */
1055 	REG_OP_RELEASE,		/* clear all bits in region */
1056 };
1057 
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)1058 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1059 {
1060 	int nbits_reg;		/* number of bits in region */
1061 	int index;		/* index first long of region in bitmap */
1062 	int offset;		/* bit offset region in bitmap[index] */
1063 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1064 	int nbitsinlong;	/* num bits of region in each spanned long */
1065 	unsigned long mask;	/* bitmask for one long of region */
1066 	int i;			/* scans bitmap by longs */
1067 	int ret = 0;		/* return value */
1068 
1069 	/*
1070 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1071 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1072 	 */
1073 	nbits_reg = 1 << order;
1074 	index = pos / BITS_PER_LONG;
1075 	offset = pos - (index * BITS_PER_LONG);
1076 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1077 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1078 
1079 	/*
1080 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1081 	 * overflows if nbitsinlong == BITS_PER_LONG.
1082 	 */
1083 	mask = (1UL << (nbitsinlong - 1));
1084 	mask += mask - 1;
1085 	mask <<= offset;
1086 
1087 	switch (reg_op) {
1088 	case REG_OP_ISFREE:
1089 		for (i = 0; i < nlongs_reg; i++) {
1090 			if (bitmap[index + i] & mask)
1091 				goto done;
1092 		}
1093 		ret = 1;	/* all bits in region free (zero) */
1094 		break;
1095 
1096 	case REG_OP_ALLOC:
1097 		for (i = 0; i < nlongs_reg; i++)
1098 			bitmap[index + i] |= mask;
1099 		break;
1100 
1101 	case REG_OP_RELEASE:
1102 		for (i = 0; i < nlongs_reg; i++)
1103 			bitmap[index + i] &= ~mask;
1104 		break;
1105 	}
1106 done:
1107 	return ret;
1108 }
1109 
1110 /**
1111  * bitmap_find_free_region - find a contiguous aligned mem region
1112  *	@bitmap: array of unsigned longs corresponding to the bitmap
1113  *	@bits: number of bits in the bitmap
1114  *	@order: region size (log base 2 of number of bits) to find
1115  *
1116  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1117  * allocate them (set them to one).  Only consider regions of length
1118  * a power (@order) of two, aligned to that power of two, which
1119  * makes the search algorithm much faster.
1120  *
1121  * Return the bit offset in bitmap of the allocated region,
1122  * or -errno on failure.
1123  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1124 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1125 {
1126 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1127 
1128 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1129 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1130 			continue;
1131 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1132 		return pos;
1133 	}
1134 	return -ENOMEM;
1135 }
1136 EXPORT_SYMBOL(bitmap_find_free_region);
1137 
1138 /**
1139  * bitmap_release_region - release allocated bitmap region
1140  *	@bitmap: array of unsigned longs corresponding to the bitmap
1141  *	@pos: beginning of bit region to release
1142  *	@order: region size (log base 2 of number of bits) to release
1143  *
1144  * This is the complement to __bitmap_find_free_region() and releases
1145  * the found region (by clearing it in the bitmap).
1146  *
1147  * No return value.
1148  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1149 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1150 {
1151 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1152 }
1153 EXPORT_SYMBOL(bitmap_release_region);
1154 
1155 /**
1156  * bitmap_allocate_region - allocate bitmap region
1157  *	@bitmap: array of unsigned longs corresponding to the bitmap
1158  *	@pos: beginning of bit region to allocate
1159  *	@order: region size (log base 2 of number of bits) to allocate
1160  *
1161  * Allocate (set bits in) a specified region of a bitmap.
1162  *
1163  * Return 0 on success, or %-EBUSY if specified region wasn't
1164  * free (not all bits were zero).
1165  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1166 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1167 {
1168 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1169 		return -EBUSY;
1170 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1171 }
1172 EXPORT_SYMBOL(bitmap_allocate_region);
1173 
1174 /**
1175  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1176  * @dst:   destination buffer
1177  * @src:   bitmap to copy
1178  * @nbits: number of bits in the bitmap
1179  *
1180  * Require nbits % BITS_PER_LONG == 0.
1181  */
bitmap_copy_le(void * dst,const unsigned long * src,int nbits)1182 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1183 {
1184 	unsigned long *d = dst;
1185 	int i;
1186 
1187 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1188 		if (BITS_PER_LONG == 64)
1189 			d[i] = cpu_to_le64(src[i]);
1190 		else
1191 			d[i] = cpu_to_le32(src[i]);
1192 	}
1193 }
1194 EXPORT_SYMBOL(bitmap_copy_le);
1195