• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * rational fractions
3  *
4  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
5  *
6  * helper functions when coping with rational numbers
7  */
8 
9 #include <linux/rational.h>
10 #include <linux/compiler.h>
11 #include <linux/export.h>
12 
13 /*
14  * calculate best rational approximation for a given fraction
15  * taking into account restricted register size, e.g. to find
16  * appropriate values for a pll with 5 bit denominator and
17  * 8 bit numerator register fields, trying to set up with a
18  * frequency ratio of 3.1415, one would say:
19  *
20  * rational_best_approximation(31415, 10000,
21  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
22  *
23  * you may look at given_numerator as a fixed point number,
24  * with the fractional part size described in given_denominator.
25  *
26  * for theoretical background, see:
27  * http://en.wikipedia.org/wiki/Continued_fraction
28  */
29 
rational_best_approximation(unsigned long given_numerator,unsigned long given_denominator,unsigned long max_numerator,unsigned long max_denominator,unsigned long * best_numerator,unsigned long * best_denominator)30 void rational_best_approximation(
31 	unsigned long given_numerator, unsigned long given_denominator,
32 	unsigned long max_numerator, unsigned long max_denominator,
33 	unsigned long *best_numerator, unsigned long *best_denominator)
34 {
35 	unsigned long n, d, n0, d0, n1, d1;
36 	n = given_numerator;
37 	d = given_denominator;
38 	n0 = d1 = 0;
39 	n1 = d0 = 1;
40 	for (;;) {
41 		unsigned long t, a;
42 		if ((n1 > max_numerator) || (d1 > max_denominator)) {
43 			n1 = n0;
44 			d1 = d0;
45 			break;
46 		}
47 		if (d == 0)
48 			break;
49 		t = d;
50 		a = n / d;
51 		d = n % d;
52 		n = t;
53 		t = n0 + a * n1;
54 		n0 = n1;
55 		n1 = t;
56 		t = d0 + a * d1;
57 		d0 = d1;
58 		d1 = t;
59 	}
60 	*best_numerator = n1;
61 	*best_denominator = d1;
62 }
63 
64 EXPORT_SYMBOL(rational_best_approximation);
65