1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19 #include <linux/bug.h>
20 #include <linux/io.h>
21
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
bootmem_debug_setup(char * buf)43 static int __init bootmem_debug_setup(char *buf)
44 {
45 bootmem_debug = 1;
46 return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55 })
56
bootmap_bytes(unsigned long pages)57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61 return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
bootmem_bootmap_pages(unsigned long pages)68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76 * link bdata in order
77 */
link_bootmem(bootmem_data_t * bdata)78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 bootmem_data_t *ent;
81
82 list_for_each_entry(ent, &bdata_list, list) {
83 if (bdata->node_min_pfn < ent->node_min_pfn) {
84 list_add_tail(&bdata->list, &ent->list);
85 return;
86 }
87 }
88
89 list_add_tail(&bdata->list, &bdata_list);
90 }
91
92 /*
93 * Called once to set up the allocator itself.
94 */
init_bootmem_core(bootmem_data_t * bdata,unsigned long mapstart,unsigned long start,unsigned long end)95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117 }
118
119 /**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
init_bootmem_node(pg_data_t * pgdat,unsigned long freepfn,unsigned long startpfn,unsigned long endpfn)128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130 {
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
init_bootmem(unsigned long start,unsigned long pages)141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting physical address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
free_bootmem_late(unsigned long physaddr,unsigned long size)157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(physaddr), size);
162
163 cursor = PFN_UP(physaddr);
164 end = PFN_DOWN(physaddr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
168 totalram_pages++;
169 }
170 }
171
free_all_bootmem_core(bootmem_data_t * bdata)172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 struct page *page;
175 unsigned long *map, start, end, pages, cur, count = 0;
176
177 if (!bdata->node_bootmem_map)
178 return 0;
179
180 map = bdata->node_bootmem_map;
181 start = bdata->node_min_pfn;
182 end = bdata->node_low_pfn;
183
184 bdebug("nid=%td start=%lx end=%lx\n",
185 bdata - bootmem_node_data, start, end);
186
187 while (start < end) {
188 unsigned long idx, vec;
189 unsigned shift;
190
191 idx = start - bdata->node_min_pfn;
192 shift = idx & (BITS_PER_LONG - 1);
193 /*
194 * vec holds at most BITS_PER_LONG map bits,
195 * bit 0 corresponds to start.
196 */
197 vec = ~map[idx / BITS_PER_LONG];
198
199 if (shift) {
200 vec >>= shift;
201 if (end - start >= BITS_PER_LONG)
202 vec |= ~map[idx / BITS_PER_LONG + 1] <<
203 (BITS_PER_LONG - shift);
204 }
205 /*
206 * If we have a properly aligned and fully unreserved
207 * BITS_PER_LONG block of pages in front of us, free
208 * it in one go.
209 */
210 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211 int order = ilog2(BITS_PER_LONG);
212
213 __free_pages_bootmem(pfn_to_page(start), start, order);
214 count += BITS_PER_LONG;
215 start += BITS_PER_LONG;
216 } else {
217 cur = start;
218
219 start = ALIGN(start + 1, BITS_PER_LONG);
220 while (vec && cur != start) {
221 if (vec & 1) {
222 page = pfn_to_page(cur);
223 __free_pages_bootmem(page, cur, 0);
224 count++;
225 }
226 vec >>= 1;
227 ++cur;
228 }
229 }
230 }
231
232 cur = bdata->node_min_pfn;
233 page = virt_to_page(bdata->node_bootmem_map);
234 pages = bdata->node_low_pfn - bdata->node_min_pfn;
235 pages = bootmem_bootmap_pages(pages);
236 count += pages;
237 while (pages--)
238 __free_pages_bootmem(page++, cur++, 0);
239
240 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
241
242 return count;
243 }
244
245 static int reset_managed_pages_done __initdata;
246
reset_node_managed_pages(pg_data_t * pgdat)247 void reset_node_managed_pages(pg_data_t *pgdat)
248 {
249 struct zone *z;
250
251 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
252 z->managed_pages = 0;
253 }
254
reset_all_zones_managed_pages(void)255 void __init reset_all_zones_managed_pages(void)
256 {
257 struct pglist_data *pgdat;
258
259 if (reset_managed_pages_done)
260 return;
261
262 for_each_online_pgdat(pgdat)
263 reset_node_managed_pages(pgdat);
264
265 reset_managed_pages_done = 1;
266 }
267
268 /**
269 * free_all_bootmem - release free pages to the buddy allocator
270 *
271 * Returns the number of pages actually released.
272 */
free_all_bootmem(void)273 unsigned long __init free_all_bootmem(void)
274 {
275 unsigned long total_pages = 0;
276 bootmem_data_t *bdata;
277
278 reset_all_zones_managed_pages();
279
280 list_for_each_entry(bdata, &bdata_list, list)
281 total_pages += free_all_bootmem_core(bdata);
282
283 totalram_pages += total_pages;
284
285 return total_pages;
286 }
287
__free(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx)288 static void __init __free(bootmem_data_t *bdata,
289 unsigned long sidx, unsigned long eidx)
290 {
291 unsigned long idx;
292
293 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
294 sidx + bdata->node_min_pfn,
295 eidx + bdata->node_min_pfn);
296
297 if (bdata->hint_idx > sidx)
298 bdata->hint_idx = sidx;
299
300 for (idx = sidx; idx < eidx; idx++)
301 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
302 BUG();
303 }
304
__reserve(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx,int flags)305 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
306 unsigned long eidx, int flags)
307 {
308 unsigned long idx;
309 int exclusive = flags & BOOTMEM_EXCLUSIVE;
310
311 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
312 bdata - bootmem_node_data,
313 sidx + bdata->node_min_pfn,
314 eidx + bdata->node_min_pfn,
315 flags);
316
317 for (idx = sidx; idx < eidx; idx++)
318 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
319 if (exclusive) {
320 __free(bdata, sidx, idx);
321 return -EBUSY;
322 }
323 bdebug("silent double reserve of PFN %lx\n",
324 idx + bdata->node_min_pfn);
325 }
326 return 0;
327 }
328
mark_bootmem_node(bootmem_data_t * bdata,unsigned long start,unsigned long end,int reserve,int flags)329 static int __init mark_bootmem_node(bootmem_data_t *bdata,
330 unsigned long start, unsigned long end,
331 int reserve, int flags)
332 {
333 unsigned long sidx, eidx;
334
335 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
336 bdata - bootmem_node_data, start, end, reserve, flags);
337
338 BUG_ON(start < bdata->node_min_pfn);
339 BUG_ON(end > bdata->node_low_pfn);
340
341 sidx = start - bdata->node_min_pfn;
342 eidx = end - bdata->node_min_pfn;
343
344 if (reserve)
345 return __reserve(bdata, sidx, eidx, flags);
346 else
347 __free(bdata, sidx, eidx);
348 return 0;
349 }
350
mark_bootmem(unsigned long start,unsigned long end,int reserve,int flags)351 static int __init mark_bootmem(unsigned long start, unsigned long end,
352 int reserve, int flags)
353 {
354 unsigned long pos;
355 bootmem_data_t *bdata;
356
357 pos = start;
358 list_for_each_entry(bdata, &bdata_list, list) {
359 int err;
360 unsigned long max;
361
362 if (pos < bdata->node_min_pfn ||
363 pos >= bdata->node_low_pfn) {
364 BUG_ON(pos != start);
365 continue;
366 }
367
368 max = min(bdata->node_low_pfn, end);
369
370 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
371 if (reserve && err) {
372 mark_bootmem(start, pos, 0, 0);
373 return err;
374 }
375
376 if (max == end)
377 return 0;
378 pos = bdata->node_low_pfn;
379 }
380 BUG();
381 }
382
383 /**
384 * free_bootmem_node - mark a page range as usable
385 * @pgdat: node the range resides on
386 * @physaddr: starting address of the range
387 * @size: size of the range in bytes
388 *
389 * Partial pages will be considered reserved and left as they are.
390 *
391 * The range must reside completely on the specified node.
392 */
free_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size)393 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
394 unsigned long size)
395 {
396 unsigned long start, end;
397
398 kmemleak_free_part(__va(physaddr), size);
399
400 start = PFN_UP(physaddr);
401 end = PFN_DOWN(physaddr + size);
402
403 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
404 }
405
406 /**
407 * free_bootmem - mark a page range as usable
408 * @addr: starting physical address of the range
409 * @size: size of the range in bytes
410 *
411 * Partial pages will be considered reserved and left as they are.
412 *
413 * The range must be contiguous but may span node boundaries.
414 */
free_bootmem(unsigned long physaddr,unsigned long size)415 void __init free_bootmem(unsigned long physaddr, unsigned long size)
416 {
417 unsigned long start, end;
418
419 kmemleak_free_part(__va(physaddr), size);
420
421 start = PFN_UP(physaddr);
422 end = PFN_DOWN(physaddr + size);
423
424 mark_bootmem(start, end, 0, 0);
425 }
426
427 /**
428 * reserve_bootmem_node - mark a page range as reserved
429 * @pgdat: node the range resides on
430 * @physaddr: starting address of the range
431 * @size: size of the range in bytes
432 * @flags: reservation flags (see linux/bootmem.h)
433 *
434 * Partial pages will be reserved.
435 *
436 * The range must reside completely on the specified node.
437 */
reserve_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size,int flags)438 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
439 unsigned long size, int flags)
440 {
441 unsigned long start, end;
442
443 start = PFN_DOWN(physaddr);
444 end = PFN_UP(physaddr + size);
445
446 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
447 }
448
449 /**
450 * reserve_bootmem - mark a page range as reserved
451 * @addr: starting address of the range
452 * @size: size of the range in bytes
453 * @flags: reservation flags (see linux/bootmem.h)
454 *
455 * Partial pages will be reserved.
456 *
457 * The range must be contiguous but may span node boundaries.
458 */
reserve_bootmem(unsigned long addr,unsigned long size,int flags)459 int __init reserve_bootmem(unsigned long addr, unsigned long size,
460 int flags)
461 {
462 unsigned long start, end;
463
464 start = PFN_DOWN(addr);
465 end = PFN_UP(addr + size);
466
467 return mark_bootmem(start, end, 1, flags);
468 }
469
align_idx(struct bootmem_data * bdata,unsigned long idx,unsigned long step)470 static unsigned long __init align_idx(struct bootmem_data *bdata,
471 unsigned long idx, unsigned long step)
472 {
473 unsigned long base = bdata->node_min_pfn;
474
475 /*
476 * Align the index with respect to the node start so that the
477 * combination of both satisfies the requested alignment.
478 */
479
480 return ALIGN(base + idx, step) - base;
481 }
482
align_off(struct bootmem_data * bdata,unsigned long off,unsigned long align)483 static unsigned long __init align_off(struct bootmem_data *bdata,
484 unsigned long off, unsigned long align)
485 {
486 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
487
488 /* Same as align_idx for byte offsets */
489
490 return ALIGN(base + off, align) - base;
491 }
492
alloc_bootmem_bdata(struct bootmem_data * bdata,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)493 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
494 unsigned long size, unsigned long align,
495 unsigned long goal, unsigned long limit)
496 {
497 unsigned long fallback = 0;
498 unsigned long min, max, start, sidx, midx, step;
499
500 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
501 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
502 align, goal, limit);
503
504 BUG_ON(!size);
505 BUG_ON(align & (align - 1));
506 BUG_ON(limit && goal + size > limit);
507
508 if (!bdata->node_bootmem_map)
509 return NULL;
510
511 min = bdata->node_min_pfn;
512 max = bdata->node_low_pfn;
513
514 goal >>= PAGE_SHIFT;
515 limit >>= PAGE_SHIFT;
516
517 if (limit && max > limit)
518 max = limit;
519 if (max <= min)
520 return NULL;
521
522 step = max(align >> PAGE_SHIFT, 1UL);
523
524 if (goal && min < goal && goal < max)
525 start = ALIGN(goal, step);
526 else
527 start = ALIGN(min, step);
528
529 sidx = start - bdata->node_min_pfn;
530 midx = max - bdata->node_min_pfn;
531
532 if (bdata->hint_idx > sidx) {
533 /*
534 * Handle the valid case of sidx being zero and still
535 * catch the fallback below.
536 */
537 fallback = sidx + 1;
538 sidx = align_idx(bdata, bdata->hint_idx, step);
539 }
540
541 while (1) {
542 int merge;
543 void *region;
544 unsigned long eidx, i, start_off, end_off;
545 find_block:
546 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
547 sidx = align_idx(bdata, sidx, step);
548 eidx = sidx + PFN_UP(size);
549
550 if (sidx >= midx || eidx > midx)
551 break;
552
553 for (i = sidx; i < eidx; i++)
554 if (test_bit(i, bdata->node_bootmem_map)) {
555 sidx = align_idx(bdata, i, step);
556 if (sidx == i)
557 sidx += step;
558 goto find_block;
559 }
560
561 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
562 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
563 start_off = align_off(bdata, bdata->last_end_off, align);
564 else
565 start_off = PFN_PHYS(sidx);
566
567 merge = PFN_DOWN(start_off) < sidx;
568 end_off = start_off + size;
569
570 bdata->last_end_off = end_off;
571 bdata->hint_idx = PFN_UP(end_off);
572
573 /*
574 * Reserve the area now:
575 */
576 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
577 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
578 BUG();
579
580 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
581 start_off);
582 memset(region, 0, size);
583 /*
584 * The min_count is set to 0 so that bootmem allocated blocks
585 * are never reported as leaks.
586 */
587 kmemleak_alloc(region, size, 0, 0);
588 return region;
589 }
590
591 if (fallback) {
592 sidx = align_idx(bdata, fallback - 1, step);
593 fallback = 0;
594 goto find_block;
595 }
596
597 return NULL;
598 }
599
alloc_bootmem_core(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)600 static void * __init alloc_bootmem_core(unsigned long size,
601 unsigned long align,
602 unsigned long goal,
603 unsigned long limit)
604 {
605 bootmem_data_t *bdata;
606 void *region;
607
608 if (WARN_ON_ONCE(slab_is_available()))
609 return kzalloc(size, GFP_NOWAIT);
610
611 list_for_each_entry(bdata, &bdata_list, list) {
612 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
613 continue;
614 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
615 break;
616
617 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
618 if (region)
619 return region;
620 }
621
622 return NULL;
623 }
624
___alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)625 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
626 unsigned long align,
627 unsigned long goal,
628 unsigned long limit)
629 {
630 void *ptr;
631
632 restart:
633 ptr = alloc_bootmem_core(size, align, goal, limit);
634 if (ptr)
635 return ptr;
636 if (goal) {
637 goal = 0;
638 goto restart;
639 }
640
641 return NULL;
642 }
643
644 /**
645 * __alloc_bootmem_nopanic - allocate boot memory without panicking
646 * @size: size of the request in bytes
647 * @align: alignment of the region
648 * @goal: preferred starting address of the region
649 *
650 * The goal is dropped if it can not be satisfied and the allocation will
651 * fall back to memory below @goal.
652 *
653 * Allocation may happen on any node in the system.
654 *
655 * Returns NULL on failure.
656 */
__alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal)657 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
658 unsigned long goal)
659 {
660 unsigned long limit = 0;
661
662 return ___alloc_bootmem_nopanic(size, align, goal, limit);
663 }
664
___alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)665 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
666 unsigned long goal, unsigned long limit)
667 {
668 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
669
670 if (mem)
671 return mem;
672 /*
673 * Whoops, we cannot satisfy the allocation request.
674 */
675 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
676 panic("Out of memory");
677 return NULL;
678 }
679
680 /**
681 * __alloc_bootmem - allocate boot memory
682 * @size: size of the request in bytes
683 * @align: alignment of the region
684 * @goal: preferred starting address of the region
685 *
686 * The goal is dropped if it can not be satisfied and the allocation will
687 * fall back to memory below @goal.
688 *
689 * Allocation may happen on any node in the system.
690 *
691 * The function panics if the request can not be satisfied.
692 */
__alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal)693 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
694 unsigned long goal)
695 {
696 unsigned long limit = 0;
697
698 return ___alloc_bootmem(size, align, goal, limit);
699 }
700
___alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)701 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
702 unsigned long size, unsigned long align,
703 unsigned long goal, unsigned long limit)
704 {
705 void *ptr;
706
707 if (WARN_ON_ONCE(slab_is_available()))
708 return kzalloc(size, GFP_NOWAIT);
709 again:
710
711 /* do not panic in alloc_bootmem_bdata() */
712 if (limit && goal + size > limit)
713 limit = 0;
714
715 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
716 if (ptr)
717 return ptr;
718
719 ptr = alloc_bootmem_core(size, align, goal, limit);
720 if (ptr)
721 return ptr;
722
723 if (goal) {
724 goal = 0;
725 goto again;
726 }
727
728 return NULL;
729 }
730
__alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)731 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
732 unsigned long align, unsigned long goal)
733 {
734 if (WARN_ON_ONCE(slab_is_available()))
735 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
736
737 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
738 }
739
___alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)740 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
741 unsigned long align, unsigned long goal,
742 unsigned long limit)
743 {
744 void *ptr;
745
746 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
747 if (ptr)
748 return ptr;
749
750 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
751 panic("Out of memory");
752 return NULL;
753 }
754
755 /**
756 * __alloc_bootmem_node - allocate boot memory from a specific node
757 * @pgdat: node to allocate from
758 * @size: size of the request in bytes
759 * @align: alignment of the region
760 * @goal: preferred starting address of the region
761 *
762 * The goal is dropped if it can not be satisfied and the allocation will
763 * fall back to memory below @goal.
764 *
765 * Allocation may fall back to any node in the system if the specified node
766 * can not hold the requested memory.
767 *
768 * The function panics if the request can not be satisfied.
769 */
__alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)770 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
771 unsigned long align, unsigned long goal)
772 {
773 if (WARN_ON_ONCE(slab_is_available()))
774 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
775
776 return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
777 }
778
__alloc_bootmem_node_high(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)779 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
780 unsigned long align, unsigned long goal)
781 {
782 #ifdef MAX_DMA32_PFN
783 unsigned long end_pfn;
784
785 if (WARN_ON_ONCE(slab_is_available()))
786 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
787
788 /* update goal according ...MAX_DMA32_PFN */
789 end_pfn = pgdat_end_pfn(pgdat);
790
791 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
792 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
793 void *ptr;
794 unsigned long new_goal;
795
796 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
797 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
798 new_goal, 0);
799 if (ptr)
800 return ptr;
801 }
802 #endif
803
804 return __alloc_bootmem_node(pgdat, size, align, goal);
805
806 }
807
808 #ifndef ARCH_LOW_ADDRESS_LIMIT
809 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
810 #endif
811
812 /**
813 * __alloc_bootmem_low - allocate low boot memory
814 * @size: size of the request in bytes
815 * @align: alignment of the region
816 * @goal: preferred starting address of the region
817 *
818 * The goal is dropped if it can not be satisfied and the allocation will
819 * fall back to memory below @goal.
820 *
821 * Allocation may happen on any node in the system.
822 *
823 * The function panics if the request can not be satisfied.
824 */
__alloc_bootmem_low(unsigned long size,unsigned long align,unsigned long goal)825 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
826 unsigned long goal)
827 {
828 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
829 }
830
__alloc_bootmem_low_nopanic(unsigned long size,unsigned long align,unsigned long goal)831 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
832 unsigned long align,
833 unsigned long goal)
834 {
835 return ___alloc_bootmem_nopanic(size, align, goal,
836 ARCH_LOW_ADDRESS_LIMIT);
837 }
838
839 /**
840 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
841 * @pgdat: node to allocate from
842 * @size: size of the request in bytes
843 * @align: alignment of the region
844 * @goal: preferred starting address of the region
845 *
846 * The goal is dropped if it can not be satisfied and the allocation will
847 * fall back to memory below @goal.
848 *
849 * Allocation may fall back to any node in the system if the specified node
850 * can not hold the requested memory.
851 *
852 * The function panics if the request can not be satisfied.
853 */
__alloc_bootmem_low_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)854 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
855 unsigned long align, unsigned long goal)
856 {
857 if (WARN_ON_ONCE(slab_is_available()))
858 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
859
860 return ___alloc_bootmem_node(pgdat, size, align,
861 goal, ARCH_LOW_ADDRESS_LIMIT);
862 }
863