1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
count_compact_events(enum vm_event_item item,long delta)27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
release_freepages(struct list_head * freelist)41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
map_pages(struct list_head * list)55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
migrate_async_suitable(int migratetype)65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 /*
71 * Check that the whole (or subset of) a pageblock given by the interval of
72 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73 * with the migration of free compaction scanner. The scanners then need to
74 * use only pfn_valid_within() check for arches that allow holes within
75 * pageblocks.
76 *
77 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78 *
79 * It's possible on some configurations to have a setup like node0 node1 node0
80 * i.e. it's possible that all pages within a zones range of pages do not
81 * belong to a single zone. We assume that a border between node0 and node1
82 * can occur within a single pageblock, but not a node0 node1 node0
83 * interleaving within a single pageblock. It is therefore sufficient to check
84 * the first and last page of a pageblock and avoid checking each individual
85 * page in a pageblock.
86 */
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88 unsigned long end_pfn, struct zone *zone)
89 {
90 struct page *start_page;
91 struct page *end_page;
92
93 /* end_pfn is one past the range we are checking */
94 end_pfn--;
95
96 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97 return NULL;
98
99 start_page = pfn_to_page(start_pfn);
100
101 if (page_zone(start_page) != zone)
102 return NULL;
103
104 end_page = pfn_to_page(end_pfn);
105
106 /* This gives a shorter code than deriving page_zone(end_page) */
107 if (page_zone_id(start_page) != page_zone_id(end_page))
108 return NULL;
109
110 return start_page;
111 }
112
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)115 static inline bool isolation_suitable(struct compact_control *cc,
116 struct page *page)
117 {
118 if (cc->ignore_skip_hint)
119 return true;
120
121 return !get_pageblock_skip(page);
122 }
123
124 /*
125 * This function is called to clear all cached information on pageblocks that
126 * should be skipped for page isolation when the migrate and free page scanner
127 * meet.
128 */
__reset_isolation_suitable(struct zone * zone)129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131 unsigned long start_pfn = zone->zone_start_pfn;
132 unsigned long end_pfn = zone_end_pfn(zone);
133 unsigned long pfn;
134
135 zone->compact_cached_migrate_pfn[0] = start_pfn;
136 zone->compact_cached_migrate_pfn[1] = start_pfn;
137 zone->compact_cached_free_pfn = end_pfn;
138 zone->compact_blockskip_flush = false;
139
140 /* Walk the zone and mark every pageblock as suitable for isolation */
141 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142 struct page *page;
143
144 cond_resched();
145
146 if (!pfn_valid(pfn))
147 continue;
148
149 page = pfn_to_page(pfn);
150 if (zone != page_zone(page))
151 continue;
152
153 clear_pageblock_skip(page);
154 }
155 }
156
reset_isolation_suitable(pg_data_t * pgdat)157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159 int zoneid;
160
161 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162 struct zone *zone = &pgdat->node_zones[zoneid];
163 if (!populated_zone(zone))
164 continue;
165
166 /* Only flush if a full compaction finished recently */
167 if (zone->compact_blockskip_flush)
168 __reset_isolation_suitable(zone);
169 }
170 }
171
172 /*
173 * If no pages were isolated then mark this pageblock to be skipped in the
174 * future. The information is later cleared by __reset_isolation_suitable().
175 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)176 static void update_pageblock_skip(struct compact_control *cc,
177 struct page *page, unsigned long nr_isolated,
178 bool migrate_scanner)
179 {
180 struct zone *zone = cc->zone;
181 unsigned long pfn;
182
183 if (cc->ignore_skip_hint)
184 return;
185
186 if (!page)
187 return;
188
189 if (nr_isolated)
190 return;
191
192 set_pageblock_skip(page);
193
194 pfn = page_to_pfn(page);
195
196 /* Update where async and sync compaction should restart */
197 if (migrate_scanner) {
198 if (cc->finished_update_migrate)
199 return;
200 if (pfn > zone->compact_cached_migrate_pfn[0])
201 zone->compact_cached_migrate_pfn[0] = pfn;
202 if (cc->mode != MIGRATE_ASYNC &&
203 pfn > zone->compact_cached_migrate_pfn[1])
204 zone->compact_cached_migrate_pfn[1] = pfn;
205 } else {
206 if (cc->finished_update_free)
207 return;
208 if (pfn < zone->compact_cached_free_pfn)
209 zone->compact_cached_free_pfn = pfn;
210 }
211 }
212 #else
isolation_suitable(struct compact_control * cc,struct page * page)213 static inline bool isolation_suitable(struct compact_control *cc,
214 struct page *page)
215 {
216 return true;
217 }
218
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)219 static void update_pageblock_skip(struct compact_control *cc,
220 struct page *page, unsigned long nr_isolated,
221 bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225
226 /*
227 * Compaction requires the taking of some coarse locks that are potentially
228 * very heavily contended. For async compaction, back out if the lock cannot
229 * be taken immediately. For sync compaction, spin on the lock if needed.
230 *
231 * Returns true if the lock is held
232 * Returns false if the lock is not held and compaction should abort
233 */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235 struct compact_control *cc)
236 {
237 if (cc->mode == MIGRATE_ASYNC) {
238 if (!spin_trylock_irqsave(lock, *flags)) {
239 cc->contended = COMPACT_CONTENDED_LOCK;
240 return false;
241 }
242 } else {
243 spin_lock_irqsave(lock, *flags);
244 }
245
246 return true;
247 }
248
249 /*
250 * Compaction requires the taking of some coarse locks that are potentially
251 * very heavily contended. The lock should be periodically unlocked to avoid
252 * having disabled IRQs for a long time, even when there is nobody waiting on
253 * the lock. It might also be that allowing the IRQs will result in
254 * need_resched() becoming true. If scheduling is needed, async compaction
255 * aborts. Sync compaction schedules.
256 * Either compaction type will also abort if a fatal signal is pending.
257 * In either case if the lock was locked, it is dropped and not regained.
258 *
259 * Returns true if compaction should abort due to fatal signal pending, or
260 * async compaction due to need_resched()
261 * Returns false when compaction can continue (sync compaction might have
262 * scheduled)
263 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)264 static bool compact_unlock_should_abort(spinlock_t *lock,
265 unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267 if (*locked) {
268 spin_unlock_irqrestore(lock, flags);
269 *locked = false;
270 }
271
272 if (fatal_signal_pending(current)) {
273 cc->contended = COMPACT_CONTENDED_SCHED;
274 return true;
275 }
276
277 if (need_resched()) {
278 if (cc->mode == MIGRATE_ASYNC) {
279 cc->contended = COMPACT_CONTENDED_SCHED;
280 return true;
281 }
282 cond_resched();
283 }
284
285 return false;
286 }
287
288 /*
289 * Aside from avoiding lock contention, compaction also periodically checks
290 * need_resched() and either schedules in sync compaction or aborts async
291 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 * is used where no lock is concerned.
293 *
294 * Returns false when no scheduling was needed, or sync compaction scheduled.
295 * Returns true when async compaction should abort.
296 */
compact_should_abort(struct compact_control * cc)297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299 /* async compaction aborts if contended */
300 if (need_resched()) {
301 if (cc->mode == MIGRATE_ASYNC) {
302 cc->contended = COMPACT_CONTENDED_SCHED;
303 return true;
304 }
305
306 cond_resched();
307 }
308
309 return false;
310 }
311
312 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)313 static bool suitable_migration_target(struct page *page)
314 {
315 /* If the page is a large free page, then disallow migration */
316 if (PageBuddy(page)) {
317 /*
318 * We are checking page_order without zone->lock taken. But
319 * the only small danger is that we skip a potentially suitable
320 * pageblock, so it's not worth to check order for valid range.
321 */
322 if (page_order_unsafe(page) >= pageblock_order)
323 return false;
324 }
325
326 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 return true;
329
330 /* Otherwise skip the block */
331 return false;
332 }
333
334 /*
335 * Isolate free pages onto a private freelist. If @strict is true, will abort
336 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337 * (even though it may still end up isolating some pages).
338 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340 unsigned long *start_pfn,
341 unsigned long end_pfn,
342 struct list_head *freelist,
343 bool strict)
344 {
345 int nr_scanned = 0, total_isolated = 0;
346 struct page *cursor, *valid_page = NULL;
347 unsigned long flags = 0;
348 bool locked = false;
349 unsigned long blockpfn = *start_pfn;
350
351 cursor = pfn_to_page(blockpfn);
352
353 /* Isolate free pages. */
354 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355 int isolated, i;
356 struct page *page = cursor;
357
358 /*
359 * Periodically drop the lock (if held) regardless of its
360 * contention, to give chance to IRQs. Abort if fatal signal
361 * pending or async compaction detects need_resched()
362 */
363 if (!(blockpfn % SWAP_CLUSTER_MAX)
364 && compact_unlock_should_abort(&cc->zone->lock, flags,
365 &locked, cc))
366 break;
367
368 nr_scanned++;
369 if (!pfn_valid_within(blockpfn))
370 goto isolate_fail;
371
372 if (!valid_page)
373 valid_page = page;
374
375 /*
376 * For compound pages such as THP and hugetlbfs, we can save
377 * potentially a lot of iterations if we skip them at once.
378 * The check is racy, but we can consider only valid values
379 * and the only danger is skipping too much.
380 */
381 if (PageCompound(page)) {
382 unsigned int comp_order = compound_order(page);
383
384 if (likely(comp_order < MAX_ORDER)) {
385 blockpfn += (1UL << comp_order) - 1;
386 cursor += (1UL << comp_order) - 1;
387 }
388
389 goto isolate_fail;
390 }
391
392 if (!PageBuddy(page))
393 goto isolate_fail;
394
395 /*
396 * If we already hold the lock, we can skip some rechecking.
397 * Note that if we hold the lock now, checked_pageblock was
398 * already set in some previous iteration (or strict is true),
399 * so it is correct to skip the suitable migration target
400 * recheck as well.
401 */
402 if (!locked) {
403 /*
404 * The zone lock must be held to isolate freepages.
405 * Unfortunately this is a very coarse lock and can be
406 * heavily contended if there are parallel allocations
407 * or parallel compactions. For async compaction do not
408 * spin on the lock and we acquire the lock as late as
409 * possible.
410 */
411 locked = compact_trylock_irqsave(&cc->zone->lock,
412 &flags, cc);
413 if (!locked)
414 break;
415
416 /* Recheck this is a buddy page under lock */
417 if (!PageBuddy(page))
418 goto isolate_fail;
419 }
420
421 /* Found a free page, break it into order-0 pages */
422 isolated = split_free_page(page);
423 if (!isolated)
424 break;
425
426 total_isolated += isolated;
427 cc->nr_freepages += isolated;
428 for (i = 0; i < isolated; i++) {
429 list_add(&page->lru, freelist);
430 page++;
431 }
432 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
433 blockpfn += isolated;
434 break;
435 }
436 /* Advance to the end of split page */
437 blockpfn += isolated - 1;
438 cursor += isolated - 1;
439 continue;
440
441 isolate_fail:
442 if (strict)
443 break;
444 else
445 continue;
446
447 }
448
449 if (locked)
450 spin_unlock_irqrestore(&cc->zone->lock, flags);
451
452 /*
453 * There is a tiny chance that we have read bogus compound_order(),
454 * so be careful to not go outside of the pageblock.
455 */
456 if (unlikely(blockpfn > end_pfn))
457 blockpfn = end_pfn;
458
459 /* Record how far we have got within the block */
460 *start_pfn = blockpfn;
461
462 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
463
464 /*
465 * If strict isolation is requested by CMA then check that all the
466 * pages requested were isolated. If there were any failures, 0 is
467 * returned and CMA will fail.
468 */
469 if (strict && blockpfn < end_pfn)
470 total_isolated = 0;
471
472 /* Update the pageblock-skip if the whole pageblock was scanned */
473 if (blockpfn == end_pfn)
474 update_pageblock_skip(cc, valid_page, total_isolated, false);
475
476 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
477 if (total_isolated)
478 count_compact_events(COMPACTISOLATED, total_isolated);
479 return total_isolated;
480 }
481
482 /**
483 * isolate_freepages_range() - isolate free pages.
484 * @start_pfn: The first PFN to start isolating.
485 * @end_pfn: The one-past-last PFN.
486 *
487 * Non-free pages, invalid PFNs, or zone boundaries within the
488 * [start_pfn, end_pfn) range are considered errors, cause function to
489 * undo its actions and return zero.
490 *
491 * Otherwise, function returns one-past-the-last PFN of isolated page
492 * (which may be greater then end_pfn if end fell in a middle of
493 * a free page).
494 */
495 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)496 isolate_freepages_range(struct compact_control *cc,
497 unsigned long start_pfn, unsigned long end_pfn)
498 {
499 unsigned long isolated, pfn, block_end_pfn;
500 LIST_HEAD(freelist);
501
502 pfn = start_pfn;
503 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
504
505 for (; pfn < end_pfn; pfn += isolated,
506 block_end_pfn += pageblock_nr_pages) {
507 /* Protect pfn from changing by isolate_freepages_block */
508 unsigned long isolate_start_pfn = pfn;
509
510 block_end_pfn = min(block_end_pfn, end_pfn);
511
512 /*
513 * pfn could pass the block_end_pfn if isolated freepage
514 * is more than pageblock order. In this case, we adjust
515 * scanning range to right one.
516 */
517 if (pfn >= block_end_pfn) {
518 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
519 block_end_pfn = min(block_end_pfn, end_pfn);
520 }
521
522 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
523 break;
524
525 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
526 block_end_pfn, &freelist, true);
527
528 /*
529 * In strict mode, isolate_freepages_block() returns 0 if
530 * there are any holes in the block (ie. invalid PFNs or
531 * non-free pages).
532 */
533 if (!isolated)
534 break;
535
536 /*
537 * If we managed to isolate pages, it is always (1 << n) *
538 * pageblock_nr_pages for some non-negative n. (Max order
539 * page may span two pageblocks).
540 */
541 }
542
543 /* split_free_page does not map the pages */
544 map_pages(&freelist);
545
546 if (pfn < end_pfn) {
547 /* Loop terminated early, cleanup. */
548 release_freepages(&freelist);
549 return 0;
550 }
551
552 /* We don't use freelists for anything. */
553 return pfn;
554 }
555
556 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)557 static void acct_isolated(struct zone *zone, struct compact_control *cc)
558 {
559 struct page *page;
560 unsigned int count[2] = { 0, };
561
562 if (list_empty(&cc->migratepages))
563 return;
564
565 list_for_each_entry(page, &cc->migratepages, lru)
566 count[!!page_is_file_cache(page)]++;
567
568 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
569 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
570 }
571
572 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)573 static bool too_many_isolated(struct zone *zone)
574 {
575 unsigned long active, inactive, isolated;
576
577 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
578 zone_page_state(zone, NR_INACTIVE_ANON);
579 active = zone_page_state(zone, NR_ACTIVE_FILE) +
580 zone_page_state(zone, NR_ACTIVE_ANON);
581 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
582 zone_page_state(zone, NR_ISOLATED_ANON);
583
584 return isolated > (inactive + active) / 2;
585 }
586
587 /**
588 * isolate_migratepages_block() - isolate all migrate-able pages within
589 * a single pageblock
590 * @cc: Compaction control structure.
591 * @low_pfn: The first PFN to isolate
592 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
593 * @isolate_mode: Isolation mode to be used.
594 *
595 * Isolate all pages that can be migrated from the range specified by
596 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
597 * Returns zero if there is a fatal signal pending, otherwise PFN of the
598 * first page that was not scanned (which may be both less, equal to or more
599 * than end_pfn).
600 *
601 * The pages are isolated on cc->migratepages list (not required to be empty),
602 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
603 * is neither read nor updated.
604 */
605 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)606 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
607 unsigned long end_pfn, isolate_mode_t isolate_mode)
608 {
609 struct zone *zone = cc->zone;
610 unsigned long nr_scanned = 0, nr_isolated = 0;
611 struct list_head *migratelist = &cc->migratepages;
612 struct lruvec *lruvec;
613 unsigned long flags = 0;
614 bool locked = false;
615 struct page *page = NULL, *valid_page = NULL;
616
617 /*
618 * Ensure that there are not too many pages isolated from the LRU
619 * list by either parallel reclaimers or compaction. If there are,
620 * delay for some time until fewer pages are isolated
621 */
622 while (unlikely(too_many_isolated(zone))) {
623 /* async migration should just abort */
624 if (cc->mode == MIGRATE_ASYNC)
625 return 0;
626
627 congestion_wait(BLK_RW_ASYNC, HZ/10);
628
629 if (fatal_signal_pending(current))
630 return 0;
631 }
632
633 if (compact_should_abort(cc))
634 return 0;
635
636 /* Time to isolate some pages for migration */
637 for (; low_pfn < end_pfn; low_pfn++) {
638 /*
639 * Periodically drop the lock (if held) regardless of its
640 * contention, to give chance to IRQs. Abort async compaction
641 * if contended.
642 */
643 if (!(low_pfn % SWAP_CLUSTER_MAX)
644 && compact_unlock_should_abort(&zone->lru_lock, flags,
645 &locked, cc))
646 break;
647
648 if (!pfn_valid_within(low_pfn))
649 continue;
650 nr_scanned++;
651
652 page = pfn_to_page(low_pfn);
653
654 if (!valid_page)
655 valid_page = page;
656
657 /*
658 * Skip if free. We read page order here without zone lock
659 * which is generally unsafe, but the race window is small and
660 * the worst thing that can happen is that we skip some
661 * potential isolation targets.
662 */
663 if (PageBuddy(page)) {
664 unsigned long freepage_order = page_order_unsafe(page);
665
666 /*
667 * Without lock, we cannot be sure that what we got is
668 * a valid page order. Consider only values in the
669 * valid order range to prevent low_pfn overflow.
670 */
671 if (freepage_order > 0 && freepage_order < MAX_ORDER)
672 low_pfn += (1UL << freepage_order) - 1;
673 continue;
674 }
675
676 /*
677 * Check may be lockless but that's ok as we recheck later.
678 * It's possible to migrate LRU pages and balloon pages
679 * Skip any other type of page
680 */
681 if (!PageLRU(page)) {
682 if (unlikely(balloon_page_movable(page))) {
683 if (balloon_page_isolate(page)) {
684 /* Successfully isolated */
685 goto isolate_success;
686 }
687 }
688 continue;
689 }
690
691 /*
692 * PageLRU is set. lru_lock normally excludes isolation
693 * splitting and collapsing (collapsing has already happened
694 * if PageLRU is set) but the lock is not necessarily taken
695 * here and it is wasteful to take it just to check transhuge.
696 * Check TransHuge without lock and skip the whole pageblock if
697 * it's either a transhuge or hugetlbfs page, as calling
698 * compound_order() without preventing THP from splitting the
699 * page underneath us may return surprising results.
700 */
701 if (PageTransHuge(page)) {
702 if (!locked)
703 low_pfn = ALIGN(low_pfn + 1,
704 pageblock_nr_pages) - 1;
705 else
706 low_pfn += (1 << compound_order(page)) - 1;
707
708 continue;
709 }
710
711 /*
712 * Migration will fail if an anonymous page is pinned in memory,
713 * so avoid taking lru_lock and isolating it unnecessarily in an
714 * admittedly racy check.
715 */
716 if (!page_mapping(page) &&
717 page_count(page) > page_mapcount(page))
718 continue;
719
720 /* If we already hold the lock, we can skip some rechecking */
721 if (!locked) {
722 locked = compact_trylock_irqsave(&zone->lru_lock,
723 &flags, cc);
724 if (!locked)
725 break;
726
727 /* Recheck PageLRU and PageTransHuge under lock */
728 if (!PageLRU(page))
729 continue;
730 if (PageTransHuge(page)) {
731 low_pfn += (1 << compound_order(page)) - 1;
732 continue;
733 }
734 }
735
736 lruvec = mem_cgroup_page_lruvec(page, zone);
737
738 /* Try isolate the page */
739 if (__isolate_lru_page(page, isolate_mode) != 0)
740 continue;
741
742 VM_BUG_ON_PAGE(PageTransCompound(page), page);
743
744 /* Successfully isolated */
745 del_page_from_lru_list(page, lruvec, page_lru(page));
746
747 isolate_success:
748 cc->finished_update_migrate = true;
749 list_add(&page->lru, migratelist);
750 cc->nr_migratepages++;
751 nr_isolated++;
752
753 /* Avoid isolating too much */
754 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
755 ++low_pfn;
756 break;
757 }
758 }
759
760 /*
761 * The PageBuddy() check could have potentially brought us outside
762 * the range to be scanned.
763 */
764 if (unlikely(low_pfn > end_pfn))
765 low_pfn = end_pfn;
766
767 if (locked)
768 spin_unlock_irqrestore(&zone->lru_lock, flags);
769
770 /*
771 * Update the pageblock-skip information and cached scanner pfn,
772 * if the whole pageblock was scanned without isolating any page.
773 */
774 if (low_pfn == end_pfn)
775 update_pageblock_skip(cc, valid_page, nr_isolated, true);
776
777 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
778
779 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
780 if (nr_isolated)
781 count_compact_events(COMPACTISOLATED, nr_isolated);
782
783 return low_pfn;
784 }
785
786 /**
787 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
788 * @cc: Compaction control structure.
789 * @start_pfn: The first PFN to start isolating.
790 * @end_pfn: The one-past-last PFN.
791 *
792 * Returns zero if isolation fails fatally due to e.g. pending signal.
793 * Otherwise, function returns one-past-the-last PFN of isolated page
794 * (which may be greater than end_pfn if end fell in a middle of a THP page).
795 */
796 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)797 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
798 unsigned long end_pfn)
799 {
800 unsigned long pfn, block_end_pfn;
801
802 /* Scan block by block. First and last block may be incomplete */
803 pfn = start_pfn;
804 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
805
806 for (; pfn < end_pfn; pfn = block_end_pfn,
807 block_end_pfn += pageblock_nr_pages) {
808
809 block_end_pfn = min(block_end_pfn, end_pfn);
810
811 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
812 continue;
813
814 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
815 ISOLATE_UNEVICTABLE);
816
817 if (!pfn)
818 break;
819
820 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
821 break;
822 }
823 acct_isolated(cc->zone, cc);
824
825 return pfn;
826 }
827
828 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
829 #ifdef CONFIG_COMPACTION
830 /*
831 * Based on information in the current compact_control, find blocks
832 * suitable for isolating free pages from and then isolate them.
833 */
isolate_freepages(struct compact_control * cc)834 static void isolate_freepages(struct compact_control *cc)
835 {
836 struct zone *zone = cc->zone;
837 struct page *page;
838 unsigned long block_start_pfn; /* start of current pageblock */
839 unsigned long isolate_start_pfn; /* exact pfn we start at */
840 unsigned long block_end_pfn; /* end of current pageblock */
841 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
842 int nr_freepages = cc->nr_freepages;
843 struct list_head *freelist = &cc->freepages;
844
845 /*
846 * Initialise the free scanner. The starting point is where we last
847 * successfully isolated from, zone-cached value, or the end of the
848 * zone when isolating for the first time. For looping we also need
849 * this pfn aligned down to the pageblock boundary, because we do
850 * block_start_pfn -= pageblock_nr_pages in the for loop.
851 * For ending point, take care when isolating in last pageblock of a
852 * a zone which ends in the middle of a pageblock.
853 * The low boundary is the end of the pageblock the migration scanner
854 * is using.
855 */
856 isolate_start_pfn = cc->free_pfn;
857 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
858 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
859 zone_end_pfn(zone));
860 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
861
862 /*
863 * Isolate free pages until enough are available to migrate the
864 * pages on cc->migratepages. We stop searching if the migrate
865 * and free page scanners meet or enough free pages are isolated.
866 */
867 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
868 block_end_pfn = block_start_pfn,
869 block_start_pfn -= pageblock_nr_pages,
870 isolate_start_pfn = block_start_pfn) {
871 unsigned long isolated;
872
873 /*
874 * This can iterate a massively long zone without finding any
875 * suitable migration targets, so periodically check if we need
876 * to schedule, or even abort async compaction.
877 */
878 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
879 && compact_should_abort(cc))
880 break;
881
882 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
883 zone);
884 if (!page)
885 continue;
886
887 /* Check the block is suitable for migration */
888 if (!suitable_migration_target(page))
889 continue;
890
891 /* If isolation recently failed, do not retry */
892 if (!isolation_suitable(cc, page))
893 continue;
894
895 /* Found a block suitable for isolating free pages from. */
896 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
897 block_end_pfn, freelist, false);
898 /* If isolation failed early, do not continue needlessly */
899 if (!isolated && isolate_start_pfn < block_end_pfn &&
900 cc->nr_migratepages > cc->nr_freepages)
901 break;
902
903 nr_freepages += isolated;
904
905 /*
906 * Remember where the free scanner should restart next time,
907 * which is where isolate_freepages_block() left off.
908 * But if it scanned the whole pageblock, isolate_start_pfn
909 * now points at block_end_pfn, which is the start of the next
910 * pageblock.
911 * In that case we will however want to restart at the start
912 * of the previous pageblock.
913 */
914 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
915 isolate_start_pfn :
916 block_start_pfn - pageblock_nr_pages;
917
918 /*
919 * Set a flag that we successfully isolated in this pageblock.
920 * In the next loop iteration, zone->compact_cached_free_pfn
921 * will not be updated and thus it will effectively contain the
922 * highest pageblock we isolated pages from.
923 */
924 if (isolated)
925 cc->finished_update_free = true;
926
927 /*
928 * isolate_freepages_block() might have aborted due to async
929 * compaction being contended
930 */
931 if (cc->contended)
932 break;
933 }
934
935 /* split_free_page does not map the pages */
936 map_pages(freelist);
937
938 /*
939 * If we crossed the migrate scanner, we want to keep it that way
940 * so that compact_finished() may detect this
941 */
942 if (block_start_pfn < low_pfn)
943 cc->free_pfn = cc->migrate_pfn;
944
945 cc->nr_freepages = nr_freepages;
946 }
947
948 /*
949 * This is a migrate-callback that "allocates" freepages by taking pages
950 * from the isolated freelists in the block we are migrating to.
951 */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)952 static struct page *compaction_alloc(struct page *migratepage,
953 unsigned long data,
954 int **result)
955 {
956 struct compact_control *cc = (struct compact_control *)data;
957 struct page *freepage;
958
959 /*
960 * Isolate free pages if necessary, and if we are not aborting due to
961 * contention.
962 */
963 if (list_empty(&cc->freepages)) {
964 if (!cc->contended)
965 isolate_freepages(cc);
966
967 if (list_empty(&cc->freepages))
968 return NULL;
969 }
970
971 freepage = list_entry(cc->freepages.next, struct page, lru);
972 list_del(&freepage->lru);
973 cc->nr_freepages--;
974
975 return freepage;
976 }
977
978 /*
979 * This is a migrate-callback that "frees" freepages back to the isolated
980 * freelist. All pages on the freelist are from the same zone, so there is no
981 * special handling needed for NUMA.
982 */
compaction_free(struct page * page,unsigned long data)983 static void compaction_free(struct page *page, unsigned long data)
984 {
985 struct compact_control *cc = (struct compact_control *)data;
986
987 list_add(&page->lru, &cc->freepages);
988 cc->nr_freepages++;
989 }
990
991 /* possible outcome of isolate_migratepages */
992 typedef enum {
993 ISOLATE_ABORT, /* Abort compaction now */
994 ISOLATE_NONE, /* No pages isolated, continue scanning */
995 ISOLATE_SUCCESS, /* Pages isolated, migrate */
996 } isolate_migrate_t;
997
998 /*
999 * Isolate all pages that can be migrated from the first suitable block,
1000 * starting at the block pointed to by the migrate scanner pfn within
1001 * compact_control.
1002 */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1003 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1004 struct compact_control *cc)
1005 {
1006 unsigned long low_pfn, end_pfn;
1007 struct page *page;
1008 const isolate_mode_t isolate_mode =
1009 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1010
1011 /*
1012 * Start at where we last stopped, or beginning of the zone as
1013 * initialized by compact_zone()
1014 */
1015 low_pfn = cc->migrate_pfn;
1016
1017 /* Only scan within a pageblock boundary */
1018 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1019
1020 /*
1021 * Iterate over whole pageblocks until we find the first suitable.
1022 * Do not cross the free scanner.
1023 */
1024 for (; end_pfn <= cc->free_pfn;
1025 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1026
1027 /*
1028 * This can potentially iterate a massively long zone with
1029 * many pageblocks unsuitable, so periodically check if we
1030 * need to schedule, or even abort async compaction.
1031 */
1032 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1033 && compact_should_abort(cc))
1034 break;
1035
1036 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1037 if (!page)
1038 continue;
1039
1040 /* If isolation recently failed, do not retry */
1041 if (!isolation_suitable(cc, page))
1042 continue;
1043
1044 /*
1045 * For async compaction, also only scan in MOVABLE blocks.
1046 * Async compaction is optimistic to see if the minimum amount
1047 * of work satisfies the allocation.
1048 */
1049 if (cc->mode == MIGRATE_ASYNC &&
1050 !migrate_async_suitable(get_pageblock_migratetype(page)))
1051 continue;
1052
1053 /* Perform the isolation */
1054 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1055 isolate_mode);
1056
1057 if (!low_pfn || cc->contended) {
1058 acct_isolated(zone, cc);
1059 return ISOLATE_ABORT;
1060 }
1061
1062 /*
1063 * Either we isolated something and proceed with migration. Or
1064 * we failed and compact_zone should decide if we should
1065 * continue or not.
1066 */
1067 break;
1068 }
1069
1070 acct_isolated(zone, cc);
1071 /*
1072 * Record where migration scanner will be restarted. If we end up in
1073 * the same pageblock as the free scanner, make the scanners fully
1074 * meet so that compact_finished() terminates compaction.
1075 */
1076 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1077
1078 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1079 }
1080
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1081 static int compact_finished(struct zone *zone, struct compact_control *cc,
1082 const int migratetype)
1083 {
1084 unsigned int order;
1085 unsigned long watermark;
1086
1087 if (cc->contended || fatal_signal_pending(current))
1088 return COMPACT_PARTIAL;
1089
1090 /* Compaction run completes if the migrate and free scanner meet */
1091 if (cc->free_pfn <= cc->migrate_pfn) {
1092 /* Let the next compaction start anew. */
1093 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1094 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1095 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1096
1097 /*
1098 * Mark that the PG_migrate_skip information should be cleared
1099 * by kswapd when it goes to sleep. kswapd does not set the
1100 * flag itself as the decision to be clear should be directly
1101 * based on an allocation request.
1102 */
1103 if (!current_is_kswapd())
1104 zone->compact_blockskip_flush = true;
1105
1106 return COMPACT_COMPLETE;
1107 }
1108
1109 /*
1110 * order == -1 is expected when compacting via
1111 * /proc/sys/vm/compact_memory
1112 */
1113 if (cc->order == -1)
1114 return COMPACT_CONTINUE;
1115
1116 /* Compaction run is not finished if the watermark is not met */
1117 watermark = low_wmark_pages(zone);
1118 watermark += (1 << cc->order);
1119
1120 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1121 return COMPACT_CONTINUE;
1122
1123 /* Direct compactor: Is a suitable page free? */
1124 for (order = cc->order; order < MAX_ORDER; order++) {
1125 struct free_area *area = &zone->free_area[order];
1126
1127 /* Job done if page is free of the right migratetype */
1128 if (!list_empty(&area->free_list[migratetype]))
1129 return COMPACT_PARTIAL;
1130
1131 /* Job done if allocation would set block type */
1132 if (order >= pageblock_order && area->nr_free)
1133 return COMPACT_PARTIAL;
1134 }
1135
1136 return COMPACT_CONTINUE;
1137 }
1138
1139 /*
1140 * compaction_suitable: Is this suitable to run compaction on this zone now?
1141 * Returns
1142 * COMPACT_SKIPPED - If there are too few free pages for compaction
1143 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1144 * COMPACT_CONTINUE - If compaction should run now
1145 */
compaction_suitable(struct zone * zone,int order)1146 unsigned long compaction_suitable(struct zone *zone, int order)
1147 {
1148 int fragindex;
1149 unsigned long watermark;
1150
1151 /*
1152 * order == -1 is expected when compacting via
1153 * /proc/sys/vm/compact_memory
1154 */
1155 if (order == -1)
1156 return COMPACT_CONTINUE;
1157
1158 /*
1159 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1160 * This is because during migration, copies of pages need to be
1161 * allocated and for a short time, the footprint is higher
1162 */
1163 watermark = low_wmark_pages(zone) + (2UL << order);
1164 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1165 return COMPACT_SKIPPED;
1166
1167 /*
1168 * fragmentation index determines if allocation failures are due to
1169 * low memory or external fragmentation
1170 *
1171 * index of -1000 implies allocations might succeed depending on
1172 * watermarks
1173 * index towards 0 implies failure is due to lack of memory
1174 * index towards 1000 implies failure is due to fragmentation
1175 *
1176 * Only compact if a failure would be due to fragmentation.
1177 */
1178 fragindex = fragmentation_index(zone, order);
1179 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1180 return COMPACT_SKIPPED;
1181
1182 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1183 0, 0))
1184 return COMPACT_PARTIAL;
1185
1186 return COMPACT_CONTINUE;
1187 }
1188
compact_zone(struct zone * zone,struct compact_control * cc)1189 static int compact_zone(struct zone *zone, struct compact_control *cc)
1190 {
1191 int ret;
1192 unsigned long start_pfn = zone->zone_start_pfn;
1193 unsigned long end_pfn = zone_end_pfn(zone);
1194 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1195 const bool sync = cc->mode != MIGRATE_ASYNC;
1196
1197 ret = compaction_suitable(zone, cc->order);
1198 switch (ret) {
1199 case COMPACT_PARTIAL:
1200 case COMPACT_SKIPPED:
1201 /* Compaction is likely to fail */
1202 return ret;
1203 case COMPACT_CONTINUE:
1204 /* Fall through to compaction */
1205 ;
1206 }
1207
1208 /*
1209 * Clear pageblock skip if there were failures recently and compaction
1210 * is about to be retried after being deferred. kswapd does not do
1211 * this reset as it'll reset the cached information when going to sleep.
1212 */
1213 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1214 __reset_isolation_suitable(zone);
1215
1216 /*
1217 * Setup to move all movable pages to the end of the zone. Used cached
1218 * information on where the scanners should start but check that it
1219 * is initialised by ensuring the values are within zone boundaries.
1220 */
1221 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1222 cc->free_pfn = zone->compact_cached_free_pfn;
1223 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1224 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1225 zone->compact_cached_free_pfn = cc->free_pfn;
1226 }
1227 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1228 cc->migrate_pfn = start_pfn;
1229 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1230 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1231 }
1232
1233 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1234
1235 migrate_prep_local();
1236
1237 while ((ret = compact_finished(zone, cc, migratetype)) ==
1238 COMPACT_CONTINUE) {
1239 int err;
1240
1241 switch (isolate_migratepages(zone, cc)) {
1242 case ISOLATE_ABORT:
1243 ret = COMPACT_PARTIAL;
1244 putback_movable_pages(&cc->migratepages);
1245 cc->nr_migratepages = 0;
1246 goto out;
1247 case ISOLATE_NONE:
1248 continue;
1249 case ISOLATE_SUCCESS:
1250 ;
1251 }
1252
1253 err = migrate_pages(&cc->migratepages, compaction_alloc,
1254 compaction_free, (unsigned long)cc, cc->mode,
1255 MR_COMPACTION);
1256
1257 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1258 &cc->migratepages);
1259
1260 /* All pages were either migrated or will be released */
1261 cc->nr_migratepages = 0;
1262 if (err) {
1263 putback_movable_pages(&cc->migratepages);
1264 /*
1265 * migrate_pages() may return -ENOMEM when scanners meet
1266 * and we want compact_finished() to detect it
1267 */
1268 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1269 ret = COMPACT_PARTIAL;
1270 goto out;
1271 }
1272 }
1273 }
1274
1275 out:
1276 /* Release free pages and check accounting */
1277 cc->nr_freepages -= release_freepages(&cc->freepages);
1278 VM_BUG_ON(cc->nr_freepages != 0);
1279
1280 trace_mm_compaction_end(ret);
1281
1282 return ret;
1283 }
1284
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum migrate_mode mode,int * contended)1285 static unsigned long compact_zone_order(struct zone *zone, int order,
1286 gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1287 {
1288 unsigned long ret;
1289 struct compact_control cc = {
1290 .nr_freepages = 0,
1291 .nr_migratepages = 0,
1292 .order = order,
1293 .gfp_mask = gfp_mask,
1294 .zone = zone,
1295 .mode = mode,
1296 };
1297 INIT_LIST_HEAD(&cc.freepages);
1298 INIT_LIST_HEAD(&cc.migratepages);
1299
1300 ret = compact_zone(zone, &cc);
1301
1302 VM_BUG_ON(!list_empty(&cc.freepages));
1303 VM_BUG_ON(!list_empty(&cc.migratepages));
1304
1305 *contended = cc.contended;
1306 return ret;
1307 }
1308
1309 int sysctl_extfrag_threshold = 500;
1310
1311 /**
1312 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1313 * @zonelist: The zonelist used for the current allocation
1314 * @order: The order of the current allocation
1315 * @gfp_mask: The GFP mask of the current allocation
1316 * @nodemask: The allowed nodes to allocate from
1317 * @mode: The migration mode for async, sync light, or sync migration
1318 * @contended: Return value that determines if compaction was aborted due to
1319 * need_resched() or lock contention
1320 * @candidate_zone: Return the zone where we think allocation should succeed
1321 *
1322 * This is the main entry point for direct page compaction.
1323 */
try_to_compact_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask,enum migrate_mode mode,int * contended,struct zone ** candidate_zone)1324 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1325 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1326 enum migrate_mode mode, int *contended,
1327 struct zone **candidate_zone)
1328 {
1329 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1330 int may_enter_fs = gfp_mask & __GFP_FS;
1331 int may_perform_io = gfp_mask & __GFP_IO;
1332 struct zoneref *z;
1333 struct zone *zone;
1334 int rc = COMPACT_DEFERRED;
1335 int alloc_flags = 0;
1336 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1337
1338 *contended = COMPACT_CONTENDED_NONE;
1339
1340 /* Check if the GFP flags allow compaction */
1341 if (!order || !may_enter_fs || !may_perform_io)
1342 return COMPACT_SKIPPED;
1343
1344 #ifdef CONFIG_CMA
1345 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1346 alloc_flags |= ALLOC_CMA;
1347 #endif
1348 /* Compact each zone in the list */
1349 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1350 nodemask) {
1351 int status;
1352 int zone_contended;
1353
1354 if (compaction_deferred(zone, order))
1355 continue;
1356
1357 status = compact_zone_order(zone, order, gfp_mask, mode,
1358 &zone_contended);
1359 rc = max(status, rc);
1360 /*
1361 * It takes at least one zone that wasn't lock contended
1362 * to clear all_zones_contended.
1363 */
1364 all_zones_contended &= zone_contended;
1365
1366 /* If a normal allocation would succeed, stop compacting */
1367 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1368 alloc_flags)) {
1369 *candidate_zone = zone;
1370 /*
1371 * We think the allocation will succeed in this zone,
1372 * but it is not certain, hence the false. The caller
1373 * will repeat this with true if allocation indeed
1374 * succeeds in this zone.
1375 */
1376 compaction_defer_reset(zone, order, false);
1377 /*
1378 * It is possible that async compaction aborted due to
1379 * need_resched() and the watermarks were ok thanks to
1380 * somebody else freeing memory. The allocation can
1381 * however still fail so we better signal the
1382 * need_resched() contention anyway (this will not
1383 * prevent the allocation attempt).
1384 */
1385 if (zone_contended == COMPACT_CONTENDED_SCHED)
1386 *contended = COMPACT_CONTENDED_SCHED;
1387
1388 goto break_loop;
1389 }
1390
1391 if (mode != MIGRATE_ASYNC) {
1392 /*
1393 * We think that allocation won't succeed in this zone
1394 * so we defer compaction there. If it ends up
1395 * succeeding after all, it will be reset.
1396 */
1397 defer_compaction(zone, order);
1398 }
1399
1400 /*
1401 * We might have stopped compacting due to need_resched() in
1402 * async compaction, or due to a fatal signal detected. In that
1403 * case do not try further zones and signal need_resched()
1404 * contention.
1405 */
1406 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1407 || fatal_signal_pending(current)) {
1408 *contended = COMPACT_CONTENDED_SCHED;
1409 goto break_loop;
1410 }
1411
1412 continue;
1413 break_loop:
1414 /*
1415 * We might not have tried all the zones, so be conservative
1416 * and assume they are not all lock contended.
1417 */
1418 all_zones_contended = 0;
1419 break;
1420 }
1421
1422 /*
1423 * If at least one zone wasn't deferred or skipped, we report if all
1424 * zones that were tried were lock contended.
1425 */
1426 if (rc > COMPACT_SKIPPED && all_zones_contended)
1427 *contended = COMPACT_CONTENDED_LOCK;
1428
1429 return rc;
1430 }
1431
1432
1433 /* Compact all zones within a node */
__compact_pgdat(pg_data_t * pgdat,struct compact_control * cc)1434 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1435 {
1436 int zoneid;
1437 struct zone *zone;
1438
1439 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1440
1441 zone = &pgdat->node_zones[zoneid];
1442 if (!populated_zone(zone))
1443 continue;
1444
1445 cc->nr_freepages = 0;
1446 cc->nr_migratepages = 0;
1447 cc->zone = zone;
1448 INIT_LIST_HEAD(&cc->freepages);
1449 INIT_LIST_HEAD(&cc->migratepages);
1450
1451 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1452 compact_zone(zone, cc);
1453
1454 if (cc->order > 0) {
1455 if (zone_watermark_ok(zone, cc->order,
1456 low_wmark_pages(zone), 0, 0))
1457 compaction_defer_reset(zone, cc->order, false);
1458 }
1459
1460 VM_BUG_ON(!list_empty(&cc->freepages));
1461 VM_BUG_ON(!list_empty(&cc->migratepages));
1462 }
1463 }
1464
compact_pgdat(pg_data_t * pgdat,int order)1465 void compact_pgdat(pg_data_t *pgdat, int order)
1466 {
1467 struct compact_control cc = {
1468 .order = order,
1469 .mode = MIGRATE_ASYNC,
1470 };
1471
1472 if (!order)
1473 return;
1474
1475 __compact_pgdat(pgdat, &cc);
1476 }
1477
compact_node(int nid)1478 static void compact_node(int nid)
1479 {
1480 struct compact_control cc = {
1481 .order = -1,
1482 .mode = MIGRATE_SYNC,
1483 .ignore_skip_hint = true,
1484 };
1485
1486 __compact_pgdat(NODE_DATA(nid), &cc);
1487 }
1488
1489 /* Compact all nodes in the system */
compact_nodes(void)1490 static void compact_nodes(void)
1491 {
1492 int nid;
1493
1494 /* Flush pending updates to the LRU lists */
1495 lru_add_drain_all();
1496
1497 for_each_online_node(nid)
1498 compact_node(nid);
1499 }
1500
1501 /* The written value is actually unused, all memory is compacted */
1502 int sysctl_compact_memory;
1503
1504 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1505 int sysctl_compaction_handler(struct ctl_table *table, int write,
1506 void __user *buffer, size_t *length, loff_t *ppos)
1507 {
1508 if (write)
1509 compact_nodes();
1510
1511 return 0;
1512 }
1513
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1514 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1515 void __user *buffer, size_t *length, loff_t *ppos)
1516 {
1517 proc_dointvec_minmax(table, write, buffer, length, ppos);
1518
1519 return 0;
1520 }
1521
1522 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1523 static ssize_t sysfs_compact_node(struct device *dev,
1524 struct device_attribute *attr,
1525 const char *buf, size_t count)
1526 {
1527 int nid = dev->id;
1528
1529 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1530 /* Flush pending updates to the LRU lists */
1531 lru_add_drain_all();
1532
1533 compact_node(nid);
1534 }
1535
1536 return count;
1537 }
1538 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1539
compaction_register_node(struct node * node)1540 int compaction_register_node(struct node *node)
1541 {
1542 return device_create_file(&node->dev, &dev_attr_compact);
1543 }
1544
compaction_unregister_node(struct node * node)1545 void compaction_unregister_node(struct node *node)
1546 {
1547 return device_remove_file(&node->dev, &dev_attr_compact);
1548 }
1549 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1550
1551 #endif /* CONFIG_COMPACTION */
1552