1 /*
2 * Frontswap frontend
3 *
4 * This code provides the generic "frontend" layer to call a matching
5 * "backend" driver implementation of frontswap. See
6 * Documentation/vm/frontswap.txt for more information.
7 *
8 * Copyright (C) 2009-2012 Oracle Corp. All rights reserved.
9 * Author: Dan Magenheimer
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2.
12 */
13
14 #include <linux/mman.h>
15 #include <linux/swap.h>
16 #include <linux/swapops.h>
17 #include <linux/security.h>
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/frontswap.h>
21 #include <linux/swapfile.h>
22
23 /*
24 * frontswap_ops is set by frontswap_register_ops to contain the pointers
25 * to the frontswap "backend" implementation functions.
26 */
27 static struct frontswap_ops *frontswap_ops __read_mostly;
28
29 /*
30 * If enabled, frontswap_store will return failure even on success. As
31 * a result, the swap subsystem will always write the page to swap, in
32 * effect converting frontswap into a writethrough cache. In this mode,
33 * there is no direct reduction in swap writes, but a frontswap backend
34 * can unilaterally "reclaim" any pages in use with no data loss, thus
35 * providing increases control over maximum memory usage due to frontswap.
36 */
37 static bool frontswap_writethrough_enabled __read_mostly;
38
39 /*
40 * If enabled, the underlying tmem implementation is capable of doing
41 * exclusive gets, so frontswap_load, on a successful tmem_get must
42 * mark the page as no longer in frontswap AND mark it dirty.
43 */
44 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
45
46 #ifdef CONFIG_DEBUG_FS
47 /*
48 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
49 * properly configured). These are for information only so are not protected
50 * against increment races.
51 */
52 static u64 frontswap_loads;
53 static u64 frontswap_succ_stores;
54 static u64 frontswap_failed_stores;
55 static u64 frontswap_invalidates;
56
inc_frontswap_loads(void)57 static inline void inc_frontswap_loads(void) {
58 frontswap_loads++;
59 }
inc_frontswap_succ_stores(void)60 static inline void inc_frontswap_succ_stores(void) {
61 frontswap_succ_stores++;
62 }
inc_frontswap_failed_stores(void)63 static inline void inc_frontswap_failed_stores(void) {
64 frontswap_failed_stores++;
65 }
inc_frontswap_invalidates(void)66 static inline void inc_frontswap_invalidates(void) {
67 frontswap_invalidates++;
68 }
69 #else
inc_frontswap_loads(void)70 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)71 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)72 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)73 static inline void inc_frontswap_invalidates(void) { }
74 #endif
75
76 /*
77 * Due to the asynchronous nature of the backends loading potentially
78 * _after_ the swap system has been activated, we have chokepoints
79 * on all frontswap functions to not call the backend until the backend
80 * has registered.
81 *
82 * Specifically when no backend is registered (nobody called
83 * frontswap_register_ops) all calls to frontswap_init (which is done via
84 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
85 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
86 * backend registers with frontswap at some later point the previous
87 * calls to frontswap_init are executed (by iterating over the need_init
88 * bitmap) to create tmem_pools and set the respective poolids. All of that is
89 * guarded by us using atomic bit operations on the 'need_init' bitmap.
90 *
91 * This would not guards us against the user deciding to call swapoff right as
92 * we are calling the backend to initialize (so swapon is in action).
93 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
94 * OK. The other scenario where calls to frontswap_store (called via
95 * swap_writepage) is racing with frontswap_invalidate_area (called via
96 * swapoff) is again guarded by the swap subsystem.
97 *
98 * While no backend is registered all calls to frontswap_[store|load|
99 * invalidate_area|invalidate_page] are ignored or fail.
100 *
101 * The time between the backend being registered and the swap file system
102 * calling the backend (via the frontswap_* functions) is indeterminate as
103 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104 * That is OK as we are comfortable missing some of these calls to the newly
105 * registered backend.
106 *
107 * Obviously the opposite (unloading the backend) must be done after all
108 * the frontswap_[store|load|invalidate_area|invalidate_page] start
109 * ignorning or failing the requests - at which point frontswap_ops
110 * would have to be made in some fashion atomic.
111 */
112 static DECLARE_BITMAP(need_init, MAX_SWAPFILES);
113
114 /*
115 * Register operations for frontswap, returning previous thus allowing
116 * detection of multiple backends and possible nesting.
117 */
frontswap_register_ops(struct frontswap_ops * ops)118 struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119 {
120 struct frontswap_ops *old = frontswap_ops;
121 int i;
122
123 for (i = 0; i < MAX_SWAPFILES; i++) {
124 if (test_and_clear_bit(i, need_init)) {
125 struct swap_info_struct *sis = swap_info[i];
126 /* __frontswap_init _should_ have set it! */
127 if (!sis->frontswap_map)
128 return ERR_PTR(-EINVAL);
129 ops->init(i);
130 }
131 }
132 /*
133 * We MUST have frontswap_ops set _after_ the frontswap_init's
134 * have been called. Otherwise __frontswap_store might fail. Hence
135 * the barrier to make sure compiler does not re-order us.
136 */
137 barrier();
138 frontswap_ops = ops;
139 return old;
140 }
141 EXPORT_SYMBOL(frontswap_register_ops);
142
143 /*
144 * Enable/disable frontswap writethrough (see above).
145 */
frontswap_writethrough(bool enable)146 void frontswap_writethrough(bool enable)
147 {
148 frontswap_writethrough_enabled = enable;
149 }
150 EXPORT_SYMBOL(frontswap_writethrough);
151
152 /*
153 * Enable/disable frontswap exclusive gets (see above).
154 */
frontswap_tmem_exclusive_gets(bool enable)155 void frontswap_tmem_exclusive_gets(bool enable)
156 {
157 frontswap_tmem_exclusive_gets_enabled = enable;
158 }
159 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
160
161 /*
162 * Called when a swap device is swapon'd.
163 */
__frontswap_init(unsigned type,unsigned long * map)164 void __frontswap_init(unsigned type, unsigned long *map)
165 {
166 struct swap_info_struct *sis = swap_info[type];
167
168 BUG_ON(sis == NULL);
169
170 /*
171 * p->frontswap is a bitmap that we MUST have to figure out which page
172 * has gone in frontswap. Without it there is no point of continuing.
173 */
174 if (WARN_ON(!map))
175 return;
176 /*
177 * Irregardless of whether the frontswap backend has been loaded
178 * before this function or it will be later, we _MUST_ have the
179 * p->frontswap set to something valid to work properly.
180 */
181 frontswap_map_set(sis, map);
182 if (frontswap_ops)
183 frontswap_ops->init(type);
184 else {
185 BUG_ON(type > MAX_SWAPFILES);
186 set_bit(type, need_init);
187 }
188 }
189 EXPORT_SYMBOL(__frontswap_init);
190
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)191 bool __frontswap_test(struct swap_info_struct *sis,
192 pgoff_t offset)
193 {
194 bool ret = false;
195
196 if (frontswap_ops && sis->frontswap_map)
197 ret = test_bit(offset, sis->frontswap_map);
198 return ret;
199 }
200 EXPORT_SYMBOL(__frontswap_test);
201
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)202 static inline void __frontswap_clear(struct swap_info_struct *sis,
203 pgoff_t offset)
204 {
205 clear_bit(offset, sis->frontswap_map);
206 atomic_dec(&sis->frontswap_pages);
207 }
208
209 /*
210 * "Store" data from a page to frontswap and associate it with the page's
211 * swaptype and offset. Page must be locked and in the swap cache.
212 * If frontswap already contains a page with matching swaptype and
213 * offset, the frontswap implementation may either overwrite the data and
214 * return success or invalidate the page from frontswap and return failure.
215 */
__frontswap_store(struct page * page)216 int __frontswap_store(struct page *page)
217 {
218 int ret = -1, dup = 0;
219 swp_entry_t entry = { .val = page_private(page), };
220 int type = swp_type(entry);
221 struct swap_info_struct *sis = swap_info[type];
222 pgoff_t offset = swp_offset(entry);
223
224 /*
225 * Return if no backend registed.
226 * Don't need to inc frontswap_failed_stores here.
227 */
228 if (!frontswap_ops)
229 return ret;
230
231 BUG_ON(!PageLocked(page));
232 BUG_ON(sis == NULL);
233 if (__frontswap_test(sis, offset))
234 dup = 1;
235 ret = frontswap_ops->store(type, offset, page);
236 if (ret == 0) {
237 set_bit(offset, sis->frontswap_map);
238 inc_frontswap_succ_stores();
239 if (!dup)
240 atomic_inc(&sis->frontswap_pages);
241 } else {
242 /*
243 failed dup always results in automatic invalidate of
244 the (older) page from frontswap
245 */
246 inc_frontswap_failed_stores();
247 if (dup) {
248 __frontswap_clear(sis, offset);
249 frontswap_ops->invalidate_page(type, offset);
250 }
251 }
252 if (frontswap_writethrough_enabled)
253 /* report failure so swap also writes to swap device */
254 ret = -1;
255 return ret;
256 }
257 EXPORT_SYMBOL(__frontswap_store);
258
259 /*
260 * "Get" data from frontswap associated with swaptype and offset that were
261 * specified when the data was put to frontswap and use it to fill the
262 * specified page with data. Page must be locked and in the swap cache.
263 */
__frontswap_load(struct page * page)264 int __frontswap_load(struct page *page)
265 {
266 int ret = -1;
267 swp_entry_t entry = { .val = page_private(page), };
268 int type = swp_type(entry);
269 struct swap_info_struct *sis = swap_info[type];
270 pgoff_t offset = swp_offset(entry);
271
272 BUG_ON(!PageLocked(page));
273 BUG_ON(sis == NULL);
274 /*
275 * __frontswap_test() will check whether there is backend registered
276 */
277 if (__frontswap_test(sis, offset))
278 ret = frontswap_ops->load(type, offset, page);
279 if (ret == 0) {
280 inc_frontswap_loads();
281 if (frontswap_tmem_exclusive_gets_enabled) {
282 SetPageDirty(page);
283 __frontswap_clear(sis, offset);
284 }
285 }
286 return ret;
287 }
288 EXPORT_SYMBOL(__frontswap_load);
289
290 /*
291 * Invalidate any data from frontswap associated with the specified swaptype
292 * and offset so that a subsequent "get" will fail.
293 */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)294 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
295 {
296 struct swap_info_struct *sis = swap_info[type];
297
298 BUG_ON(sis == NULL);
299 /*
300 * __frontswap_test() will check whether there is backend registered
301 */
302 if (__frontswap_test(sis, offset)) {
303 frontswap_ops->invalidate_page(type, offset);
304 __frontswap_clear(sis, offset);
305 inc_frontswap_invalidates();
306 }
307 }
308 EXPORT_SYMBOL(__frontswap_invalidate_page);
309
310 /*
311 * Invalidate all data from frontswap associated with all offsets for the
312 * specified swaptype.
313 */
__frontswap_invalidate_area(unsigned type)314 void __frontswap_invalidate_area(unsigned type)
315 {
316 struct swap_info_struct *sis = swap_info[type];
317
318 if (frontswap_ops) {
319 BUG_ON(sis == NULL);
320 if (sis->frontswap_map == NULL)
321 return;
322 frontswap_ops->invalidate_area(type);
323 atomic_set(&sis->frontswap_pages, 0);
324 bitmap_zero(sis->frontswap_map, sis->max);
325 }
326 clear_bit(type, need_init);
327 }
328 EXPORT_SYMBOL(__frontswap_invalidate_area);
329
__frontswap_curr_pages(void)330 static unsigned long __frontswap_curr_pages(void)
331 {
332 unsigned long totalpages = 0;
333 struct swap_info_struct *si = NULL;
334
335 assert_spin_locked(&swap_lock);
336 plist_for_each_entry(si, &swap_active_head, list)
337 totalpages += atomic_read(&si->frontswap_pages);
338 return totalpages;
339 }
340
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)341 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
342 int *swapid)
343 {
344 int ret = -EINVAL;
345 struct swap_info_struct *si = NULL;
346 int si_frontswap_pages;
347 unsigned long total_pages_to_unuse = total;
348 unsigned long pages = 0, pages_to_unuse = 0;
349
350 assert_spin_locked(&swap_lock);
351 plist_for_each_entry(si, &swap_active_head, list) {
352 si_frontswap_pages = atomic_read(&si->frontswap_pages);
353 if (total_pages_to_unuse < si_frontswap_pages) {
354 pages = pages_to_unuse = total_pages_to_unuse;
355 } else {
356 pages = si_frontswap_pages;
357 pages_to_unuse = 0; /* unuse all */
358 }
359 /* ensure there is enough RAM to fetch pages from frontswap */
360 if (security_vm_enough_memory_mm(current->mm, pages)) {
361 ret = -ENOMEM;
362 continue;
363 }
364 vm_unacct_memory(pages);
365 *unused = pages_to_unuse;
366 *swapid = si->type;
367 ret = 0;
368 break;
369 }
370
371 return ret;
372 }
373
374 /*
375 * Used to check if it's necessory and feasible to unuse pages.
376 * Return 1 when nothing to do, 0 when need to shink pages,
377 * error code when there is an error.
378 */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)379 static int __frontswap_shrink(unsigned long target_pages,
380 unsigned long *pages_to_unuse,
381 int *type)
382 {
383 unsigned long total_pages = 0, total_pages_to_unuse;
384
385 assert_spin_locked(&swap_lock);
386
387 total_pages = __frontswap_curr_pages();
388 if (total_pages <= target_pages) {
389 /* Nothing to do */
390 *pages_to_unuse = 0;
391 return 1;
392 }
393 total_pages_to_unuse = total_pages - target_pages;
394 return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
395 }
396
397 /*
398 * Frontswap, like a true swap device, may unnecessarily retain pages
399 * under certain circumstances; "shrink" frontswap is essentially a
400 * "partial swapoff" and works by calling try_to_unuse to attempt to
401 * unuse enough frontswap pages to attempt to -- subject to memory
402 * constraints -- reduce the number of pages in frontswap to the
403 * number given in the parameter target_pages.
404 */
frontswap_shrink(unsigned long target_pages)405 void frontswap_shrink(unsigned long target_pages)
406 {
407 unsigned long pages_to_unuse = 0;
408 int uninitialized_var(type), ret;
409
410 /*
411 * we don't want to hold swap_lock while doing a very
412 * lengthy try_to_unuse, but swap_list may change
413 * so restart scan from swap_active_head each time
414 */
415 spin_lock(&swap_lock);
416 ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
417 spin_unlock(&swap_lock);
418 if (ret == 0)
419 try_to_unuse(type, true, pages_to_unuse);
420 return;
421 }
422 EXPORT_SYMBOL(frontswap_shrink);
423
424 /*
425 * Count and return the number of frontswap pages across all
426 * swap devices. This is exported so that backend drivers can
427 * determine current usage without reading debugfs.
428 */
frontswap_curr_pages(void)429 unsigned long frontswap_curr_pages(void)
430 {
431 unsigned long totalpages = 0;
432
433 spin_lock(&swap_lock);
434 totalpages = __frontswap_curr_pages();
435 spin_unlock(&swap_lock);
436
437 return totalpages;
438 }
439 EXPORT_SYMBOL(frontswap_curr_pages);
440
init_frontswap(void)441 static int __init init_frontswap(void)
442 {
443 #ifdef CONFIG_DEBUG_FS
444 struct dentry *root = debugfs_create_dir("frontswap", NULL);
445 if (root == NULL)
446 return -ENXIO;
447 debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
448 debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
449 debugfs_create_u64("failed_stores", S_IRUGO, root,
450 &frontswap_failed_stores);
451 debugfs_create_u64("invalidates", S_IRUGO,
452 root, &frontswap_invalidates);
453 #endif
454 return 0;
455 }
456
457 module_init(init_frontswap);
458