1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86 };
87
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104
105
set_recommended_min_free_kbytes(void)106 static int set_recommended_min_free_kbytes(void)
107 {
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
111
112 if (!khugepaged_enabled())
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147
start_khugepaged(void)148 static int start_khugepaged(void)
149 {
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
160
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
163
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
169
170 return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
175
is_huge_zero_page(struct page * page)176 static inline bool is_huge_zero_page(struct page *page)
177 {
178 return ACCESS_ONCE(huge_zero_page) == page;
179 }
180
is_huge_zero_pmd(pmd_t pmd)181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 return is_huge_zero_page(pmd_page(pmd));
184 }
185
get_huge_zero_page(void)186 static struct page *get_huge_zero_page(void)
187 {
188 struct page *zero_page;
189 retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 return ACCESS_ONCE(huge_zero_page);
192
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 HPAGE_PMD_ORDER);
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 return NULL;
198 }
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
200 preempt_disable();
201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 preempt_enable();
203 __free_pages(zero_page, compound_order(zero_page));
204 goto retry;
205 }
206
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
210 return ACCESS_ONCE(huge_zero_page);
211 }
212
put_huge_zero_page(void)213 static void put_huge_zero_page(void)
214 {
215 /*
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
218 */
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
220 }
221
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
224 {
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227 }
228
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
231 {
232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
235 __free_pages(zero_page, compound_order(zero_page));
236 return HPAGE_PMD_NR;
237 }
238
239 return 0;
240 }
241
242 static struct shrinker huge_zero_page_shrinker = {
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
245 .seeks = DEFAULT_SEEKS,
246 };
247
248 #ifdef CONFIG_SYSFS
249
double_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)250 static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
254 {
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
262 }
double_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)263 static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
268 {
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
283
284 return count;
285 }
286
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)287 static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289 {
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 }
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)294 static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297 {
298 ssize_t ret;
299
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303
304 if (ret > 0) {
305 int err;
306
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
310
311 if (err)
312 ret = err;
313 }
314
315 return ret;
316 }
317 static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
319
single_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)320 static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
323 {
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
326 }
327
single_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)328 static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
332 {
333 unsigned long value;
334 int ret;
335
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
341
342 if (value)
343 set_bit(flag, &transparent_hugepage_flags);
344 else
345 clear_bit(flag, &transparent_hugepage_flags);
346
347 return count;
348 }
349
350 /*
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
354 */
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)355 static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
357 {
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)362 static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365 {
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 }
370 static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
372
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375 {
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)388 static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
390 {
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)394 static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 }
401 static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
404
405 static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
408 &use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411 #endif
412 NULL,
413 };
414
415 static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
417 };
418
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
422 {
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424 }
425
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429 {
430 unsigned long msecs;
431 int err;
432
433 err = kstrtoul(buf, 10, &msecs);
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
436
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
439
440 return count;
441 }
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
445
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
449 {
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451 }
452
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
456 {
457 unsigned long msecs;
458 int err;
459
460 err = kstrtoul(buf, 10, &msecs);
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
463
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
466
467 return count;
468 }
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
472
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
476 {
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
482 {
483 int err;
484 unsigned long pages;
485
486 err = kstrtoul(buf, 10, &pages);
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
489
490 khugepaged_pages_to_scan = pages;
491
492 return count;
493 }
494 static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
497
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
501 {
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 }
504 static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
506
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)507 static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
510 {
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
512 }
513 static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
515
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
518 {
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
525 {
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 }
529 static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
532
533 /*
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
540 */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
544 {
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
550 {
551 int err;
552 unsigned long max_ptes_none;
553
554 err = kstrtoul(buf, 10, &max_ptes_none);
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
557
558 khugepaged_max_ptes_none = max_ptes_none;
559
560 return count;
561 }
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
565
566 static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
575 };
576
577 static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
580 };
581
hugepage_init_sysfs(struct kobject ** hugepage_kobj)582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 {
584 int err;
585
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
588 pr_err("failed to create transparent hugepage kobject\n");
589 return -ENOMEM;
590 }
591
592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 if (err) {
594 pr_err("failed to register transparent hugepage group\n");
595 goto delete_obj;
596 }
597
598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 if (err) {
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group;
602 }
603
604 return 0;
605
606 remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
611 }
612
hugepage_exit_sysfs(struct kobject * hugepage_kobj)613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
618 }
619 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 {
622 return 0;
623 }
624
hugepage_exit_sysfs(struct kobject * hugepage_kobj)625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626 {
627 }
628 #endif /* CONFIG_SYSFS */
629
hugepage_init(void)630 static int __init hugepage_init(void)
631 {
632 int err;
633 struct kobject *hugepage_kobj;
634
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
638 }
639
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
643
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
647
648 register_shrinker(&huge_zero_page_shrinker);
649
650 /*
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
654 */
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
657
658 start_khugepaged();
659
660 return 0;
661 out:
662 hugepage_exit_sysfs(hugepage_kobj);
663 return err;
664 }
665 subsys_initcall(hugepage_init);
666
setup_transparent_hugepage(char * str)667 static int __init setup_transparent_hugepage(char *str)
668 {
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 }
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703 }
704
mk_huge_pmd(struct page * page,pgprot_t prot)705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
711 }
712
__do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * page)713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
717 {
718 struct mem_cgroup *memcg;
719 pgtable_t pgtable;
720 spinlock_t *ptl;
721
722 VM_BUG_ON_PAGE(!PageCompound(page), page);
723
724 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
725 return VM_FAULT_OOM;
726
727 pgtable = pte_alloc_one(mm, haddr);
728 if (unlikely(!pgtable)) {
729 mem_cgroup_cancel_charge(page, memcg);
730 return VM_FAULT_OOM;
731 }
732
733 clear_huge_page(page, haddr, HPAGE_PMD_NR);
734 /*
735 * The memory barrier inside __SetPageUptodate makes sure that
736 * clear_huge_page writes become visible before the set_pmd_at()
737 * write.
738 */
739 __SetPageUptodate(page);
740
741 ptl = pmd_lock(mm, pmd);
742 if (unlikely(!pmd_none(*pmd))) {
743 spin_unlock(ptl);
744 mem_cgroup_cancel_charge(page, memcg);
745 put_page(page);
746 pte_free(mm, pgtable);
747 } else {
748 pmd_t entry;
749 entry = mk_huge_pmd(page, vma->vm_page_prot);
750 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
751 page_add_new_anon_rmap(page, vma, haddr);
752 mem_cgroup_commit_charge(page, memcg, false);
753 lru_cache_add_active_or_unevictable(page, vma);
754 pgtable_trans_huge_deposit(mm, pmd, pgtable);
755 set_pmd_at(mm, haddr, pmd, entry);
756 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
757 atomic_long_inc(&mm->nr_ptes);
758 spin_unlock(ptl);
759 }
760
761 return 0;
762 }
763
alloc_hugepage_gfpmask(int defrag,gfp_t extra_gfp)764 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
765 {
766 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
767 }
768
alloc_hugepage_vma(int defrag,struct vm_area_struct * vma,unsigned long haddr,int nd,gfp_t extra_gfp)769 static inline struct page *alloc_hugepage_vma(int defrag,
770 struct vm_area_struct *vma,
771 unsigned long haddr, int nd,
772 gfp_t extra_gfp)
773 {
774 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
775 HPAGE_PMD_ORDER, vma, haddr, nd);
776 }
777
778 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)779 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
780 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
781 struct page *zero_page)
782 {
783 pmd_t entry;
784 if (!pmd_none(*pmd))
785 return false;
786 entry = mk_pmd(zero_page, vma->vm_page_prot);
787 entry = pmd_wrprotect(entry);
788 entry = pmd_mkhuge(entry);
789 pgtable_trans_huge_deposit(mm, pmd, pgtable);
790 set_pmd_at(mm, haddr, pmd, entry);
791 atomic_long_inc(&mm->nr_ptes);
792 return true;
793 }
794
do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)795 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
796 unsigned long address, pmd_t *pmd,
797 unsigned int flags)
798 {
799 struct page *page;
800 unsigned long haddr = address & HPAGE_PMD_MASK;
801
802 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
803 return VM_FAULT_FALLBACK;
804 if (unlikely(anon_vma_prepare(vma)))
805 return VM_FAULT_OOM;
806 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
807 return VM_FAULT_OOM;
808 if (!(flags & FAULT_FLAG_WRITE) &&
809 transparent_hugepage_use_zero_page()) {
810 spinlock_t *ptl;
811 pgtable_t pgtable;
812 struct page *zero_page;
813 bool set;
814 pgtable = pte_alloc_one(mm, haddr);
815 if (unlikely(!pgtable))
816 return VM_FAULT_OOM;
817 zero_page = get_huge_zero_page();
818 if (unlikely(!zero_page)) {
819 pte_free(mm, pgtable);
820 count_vm_event(THP_FAULT_FALLBACK);
821 return VM_FAULT_FALLBACK;
822 }
823 ptl = pmd_lock(mm, pmd);
824 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
825 zero_page);
826 spin_unlock(ptl);
827 if (!set) {
828 pte_free(mm, pgtable);
829 put_huge_zero_page();
830 }
831 return 0;
832 }
833 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
834 vma, haddr, numa_node_id(), 0);
835 if (unlikely(!page)) {
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
839 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
840 put_page(page);
841 count_vm_event(THP_FAULT_FALLBACK);
842 return VM_FAULT_FALLBACK;
843 }
844
845 count_vm_event(THP_FAULT_ALLOC);
846 return 0;
847 }
848
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)849 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
850 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
851 struct vm_area_struct *vma)
852 {
853 spinlock_t *dst_ptl, *src_ptl;
854 struct page *src_page;
855 pmd_t pmd;
856 pgtable_t pgtable;
857 int ret;
858
859 ret = -ENOMEM;
860 pgtable = pte_alloc_one(dst_mm, addr);
861 if (unlikely(!pgtable))
862 goto out;
863
864 dst_ptl = pmd_lock(dst_mm, dst_pmd);
865 src_ptl = pmd_lockptr(src_mm, src_pmd);
866 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
867
868 ret = -EAGAIN;
869 pmd = *src_pmd;
870 if (unlikely(!pmd_trans_huge(pmd))) {
871 pte_free(dst_mm, pgtable);
872 goto out_unlock;
873 }
874 /*
875 * When page table lock is held, the huge zero pmd should not be
876 * under splitting since we don't split the page itself, only pmd to
877 * a page table.
878 */
879 if (is_huge_zero_pmd(pmd)) {
880 struct page *zero_page;
881 bool set;
882 /*
883 * get_huge_zero_page() will never allocate a new page here,
884 * since we already have a zero page to copy. It just takes a
885 * reference.
886 */
887 zero_page = get_huge_zero_page();
888 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
889 zero_page);
890 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
891 ret = 0;
892 goto out_unlock;
893 }
894
895 if (unlikely(pmd_trans_splitting(pmd))) {
896 /* split huge page running from under us */
897 spin_unlock(src_ptl);
898 spin_unlock(dst_ptl);
899 pte_free(dst_mm, pgtable);
900
901 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
902 goto out;
903 }
904 src_page = pmd_page(pmd);
905 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
906 get_page(src_page);
907 page_dup_rmap(src_page);
908 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
909
910 pmdp_set_wrprotect(src_mm, addr, src_pmd);
911 pmd = pmd_mkold(pmd_wrprotect(pmd));
912 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
913 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
914 atomic_long_inc(&dst_mm->nr_ptes);
915
916 ret = 0;
917 out_unlock:
918 spin_unlock(src_ptl);
919 spin_unlock(dst_ptl);
920 out:
921 return ret;
922 }
923
huge_pmd_set_accessed(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,int dirty)924 void huge_pmd_set_accessed(struct mm_struct *mm,
925 struct vm_area_struct *vma,
926 unsigned long address,
927 pmd_t *pmd, pmd_t orig_pmd,
928 int dirty)
929 {
930 spinlock_t *ptl;
931 pmd_t entry;
932 unsigned long haddr;
933
934 ptl = pmd_lock(mm, pmd);
935 if (unlikely(!pmd_same(*pmd, orig_pmd)))
936 goto unlock;
937
938 entry = pmd_mkyoung(orig_pmd);
939 haddr = address & HPAGE_PMD_MASK;
940 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
941 update_mmu_cache_pmd(vma, address, pmd);
942
943 unlock:
944 spin_unlock(ptl);
945 }
946
947 /*
948 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
949 * during copy_user_huge_page()'s copy_page_rep(): in the case when
950 * the source page gets split and a tail freed before copy completes.
951 * Called under pmd_lock of checked pmd, so safe from splitting itself.
952 */
get_user_huge_page(struct page * page)953 static void get_user_huge_page(struct page *page)
954 {
955 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
956 struct page *endpage = page + HPAGE_PMD_NR;
957
958 atomic_add(HPAGE_PMD_NR, &page->_count);
959 while (++page < endpage)
960 get_huge_page_tail(page);
961 } else {
962 get_page(page);
963 }
964 }
965
put_user_huge_page(struct page * page)966 static void put_user_huge_page(struct page *page)
967 {
968 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
969 struct page *endpage = page + HPAGE_PMD_NR;
970
971 while (page < endpage)
972 put_page(page++);
973 } else {
974 put_page(page);
975 }
976 }
977
do_huge_pmd_wp_page_fallback(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,struct page * page,unsigned long haddr)978 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
979 struct vm_area_struct *vma,
980 unsigned long address,
981 pmd_t *pmd, pmd_t orig_pmd,
982 struct page *page,
983 unsigned long haddr)
984 {
985 struct mem_cgroup *memcg;
986 spinlock_t *ptl;
987 pgtable_t pgtable;
988 pmd_t _pmd;
989 int ret = 0, i;
990 struct page **pages;
991 unsigned long mmun_start; /* For mmu_notifiers */
992 unsigned long mmun_end; /* For mmu_notifiers */
993
994 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
995 GFP_KERNEL);
996 if (unlikely(!pages)) {
997 ret |= VM_FAULT_OOM;
998 goto out;
999 }
1000
1001 for (i = 0; i < HPAGE_PMD_NR; i++) {
1002 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1003 __GFP_OTHER_NODE,
1004 vma, address, page_to_nid(page));
1005 if (unlikely(!pages[i] ||
1006 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1007 &memcg))) {
1008 if (pages[i])
1009 put_page(pages[i]);
1010 while (--i >= 0) {
1011 memcg = (void *)page_private(pages[i]);
1012 set_page_private(pages[i], 0);
1013 mem_cgroup_cancel_charge(pages[i], memcg);
1014 put_page(pages[i]);
1015 }
1016 kfree(pages);
1017 ret |= VM_FAULT_OOM;
1018 goto out;
1019 }
1020 set_page_private(pages[i], (unsigned long)memcg);
1021 }
1022
1023 for (i = 0; i < HPAGE_PMD_NR; i++) {
1024 copy_user_highpage(pages[i], page + i,
1025 haddr + PAGE_SIZE * i, vma);
1026 __SetPageUptodate(pages[i]);
1027 cond_resched();
1028 }
1029
1030 mmun_start = haddr;
1031 mmun_end = haddr + HPAGE_PMD_SIZE;
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
1034 ptl = pmd_lock(mm, pmd);
1035 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1036 goto out_free_pages;
1037 VM_BUG_ON_PAGE(!PageHead(page), page);
1038
1039 pmdp_clear_flush(vma, haddr, pmd);
1040 /* leave pmd empty until pte is filled */
1041
1042 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1043 pmd_populate(mm, &_pmd, pgtable);
1044
1045 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1046 pte_t *pte, entry;
1047 entry = mk_pte(pages[i], vma->vm_page_prot);
1048 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1049 memcg = (void *)page_private(pages[i]);
1050 set_page_private(pages[i], 0);
1051 page_add_new_anon_rmap(pages[i], vma, haddr);
1052 mem_cgroup_commit_charge(pages[i], memcg, false);
1053 lru_cache_add_active_or_unevictable(pages[i], vma);
1054 pte = pte_offset_map(&_pmd, haddr);
1055 VM_BUG_ON(!pte_none(*pte));
1056 set_pte_at(mm, haddr, pte, entry);
1057 pte_unmap(pte);
1058 }
1059 kfree(pages);
1060
1061 smp_wmb(); /* make pte visible before pmd */
1062 pmd_populate(mm, pmd, pgtable);
1063 page_remove_rmap(page);
1064 spin_unlock(ptl);
1065
1066 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1067
1068 ret |= VM_FAULT_WRITE;
1069 put_page(page);
1070
1071 out:
1072 return ret;
1073
1074 out_free_pages:
1075 spin_unlock(ptl);
1076 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1077 for (i = 0; i < HPAGE_PMD_NR; i++) {
1078 memcg = (void *)page_private(pages[i]);
1079 set_page_private(pages[i], 0);
1080 mem_cgroup_cancel_charge(pages[i], memcg);
1081 put_page(pages[i]);
1082 }
1083 kfree(pages);
1084 goto out;
1085 }
1086
do_huge_pmd_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd)1087 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1088 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1089 {
1090 spinlock_t *ptl;
1091 int ret = 0;
1092 struct page *page = NULL, *new_page;
1093 struct mem_cgroup *memcg;
1094 unsigned long haddr;
1095 unsigned long mmun_start; /* For mmu_notifiers */
1096 unsigned long mmun_end; /* For mmu_notifiers */
1097
1098 ptl = pmd_lockptr(mm, pmd);
1099 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1100 haddr = address & HPAGE_PMD_MASK;
1101 if (is_huge_zero_pmd(orig_pmd))
1102 goto alloc;
1103 spin_lock(ptl);
1104 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1105 goto out_unlock;
1106
1107 page = pmd_page(orig_pmd);
1108 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1109 if (page_mapcount(page) == 1) {
1110 pmd_t entry;
1111 entry = pmd_mkyoung(orig_pmd);
1112 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1113 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1114 update_mmu_cache_pmd(vma, address, pmd);
1115 ret |= VM_FAULT_WRITE;
1116 goto out_unlock;
1117 }
1118 get_user_huge_page(page);
1119 spin_unlock(ptl);
1120 alloc:
1121 if (transparent_hugepage_enabled(vma) &&
1122 !transparent_hugepage_debug_cow())
1123 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1124 vma, haddr, numa_node_id(), 0);
1125 else
1126 new_page = NULL;
1127
1128 if (unlikely(!new_page)) {
1129 if (!page) {
1130 split_huge_page_pmd(vma, address, pmd);
1131 ret |= VM_FAULT_FALLBACK;
1132 } else {
1133 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1134 pmd, orig_pmd, page, haddr);
1135 if (ret & VM_FAULT_OOM) {
1136 split_huge_page(page);
1137 ret |= VM_FAULT_FALLBACK;
1138 }
1139 put_user_huge_page(page);
1140 }
1141 count_vm_event(THP_FAULT_FALLBACK);
1142 goto out;
1143 }
1144
1145 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1146 GFP_TRANSHUGE, &memcg))) {
1147 put_page(new_page);
1148 if (page) {
1149 split_huge_page(page);
1150 put_user_huge_page(page);
1151 } else
1152 split_huge_page_pmd(vma, address, pmd);
1153 ret |= VM_FAULT_FALLBACK;
1154 count_vm_event(THP_FAULT_FALLBACK);
1155 goto out;
1156 }
1157
1158 count_vm_event(THP_FAULT_ALLOC);
1159
1160 if (!page)
1161 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1162 else
1163 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1164 __SetPageUptodate(new_page);
1165
1166 mmun_start = haddr;
1167 mmun_end = haddr + HPAGE_PMD_SIZE;
1168 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1169
1170 spin_lock(ptl);
1171 if (page)
1172 put_user_huge_page(page);
1173 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1174 spin_unlock(ptl);
1175 mem_cgroup_cancel_charge(new_page, memcg);
1176 put_page(new_page);
1177 goto out_mn;
1178 } else {
1179 pmd_t entry;
1180 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1181 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1182 pmdp_clear_flush(vma, haddr, pmd);
1183 page_add_new_anon_rmap(new_page, vma, haddr);
1184 mem_cgroup_commit_charge(new_page, memcg, false);
1185 lru_cache_add_active_or_unevictable(new_page, vma);
1186 set_pmd_at(mm, haddr, pmd, entry);
1187 update_mmu_cache_pmd(vma, address, pmd);
1188 if (!page) {
1189 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1190 put_huge_zero_page();
1191 } else {
1192 VM_BUG_ON_PAGE(!PageHead(page), page);
1193 page_remove_rmap(page);
1194 put_page(page);
1195 }
1196 ret |= VM_FAULT_WRITE;
1197 }
1198 spin_unlock(ptl);
1199 out_mn:
1200 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1201 out:
1202 return ret;
1203 out_unlock:
1204 spin_unlock(ptl);
1205 return ret;
1206 }
1207
1208 /*
1209 * FOLL_FORCE can write to even unwritable pmd's, but only
1210 * after we've gone through a COW cycle and they are dirty.
1211 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1212 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1213 {
1214 return pmd_write(pmd) ||
1215 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1216 }
1217
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1218 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1219 unsigned long addr,
1220 pmd_t *pmd,
1221 unsigned int flags)
1222 {
1223 struct mm_struct *mm = vma->vm_mm;
1224 struct page *page = NULL;
1225
1226 assert_spin_locked(pmd_lockptr(mm, pmd));
1227
1228 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1229 goto out;
1230
1231 /* Avoid dumping huge zero page */
1232 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1233 return ERR_PTR(-EFAULT);
1234
1235 /* Full NUMA hinting faults to serialise migration in fault paths */
1236 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1237 goto out;
1238
1239 page = pmd_page(*pmd);
1240 VM_BUG_ON_PAGE(!PageHead(page), page);
1241 if (flags & FOLL_TOUCH) {
1242 pmd_t _pmd;
1243 _pmd = pmd_mkyoung(*pmd);
1244 if (flags & FOLL_WRITE)
1245 _pmd = pmd_mkdirty(_pmd);
1246 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1247 pmd, _pmd, flags & FOLL_WRITE))
1248 update_mmu_cache_pmd(vma, addr, pmd);
1249 }
1250 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1251 if (page->mapping && trylock_page(page)) {
1252 lru_add_drain();
1253 if (page->mapping)
1254 mlock_vma_page(page);
1255 unlock_page(page);
1256 }
1257 }
1258 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1259 VM_BUG_ON_PAGE(!PageCompound(page), page);
1260 if (flags & FOLL_GET)
1261 get_page_foll(page);
1262
1263 out:
1264 return page;
1265 }
1266
1267 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,pmd_t * pmdp)1268 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1269 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1270 {
1271 spinlock_t *ptl;
1272 struct anon_vma *anon_vma = NULL;
1273 struct page *page;
1274 unsigned long haddr = addr & HPAGE_PMD_MASK;
1275 int page_nid = -1, this_nid = numa_node_id();
1276 int target_nid, last_cpupid = -1;
1277 bool page_locked;
1278 bool migrated = false;
1279 int flags = 0;
1280
1281 ptl = pmd_lock(mm, pmdp);
1282 if (unlikely(!pmd_same(pmd, *pmdp)))
1283 goto out_unlock;
1284
1285 /*
1286 * If there are potential migrations, wait for completion and retry
1287 * without disrupting NUMA hinting information. Do not relock and
1288 * check_same as the page may no longer be mapped.
1289 */
1290 if (unlikely(pmd_trans_migrating(*pmdp))) {
1291 page = pmd_page(*pmdp);
1292 if (!get_page_unless_zero(page))
1293 goto out_unlock;
1294 spin_unlock(ptl);
1295 wait_migrate_huge_page(vma->anon_vma, pmdp);
1296 put_page(page);
1297 goto out;
1298 }
1299
1300 page = pmd_page(pmd);
1301 BUG_ON(is_huge_zero_page(page));
1302 page_nid = page_to_nid(page);
1303 last_cpupid = page_cpupid_last(page);
1304 count_vm_numa_event(NUMA_HINT_FAULTS);
1305 if (page_nid == this_nid) {
1306 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1307 flags |= TNF_FAULT_LOCAL;
1308 }
1309
1310 /*
1311 * Avoid grouping on DSO/COW pages in specific and RO pages
1312 * in general, RO pages shouldn't hurt as much anyway since
1313 * they can be in shared cache state.
1314 */
1315 if (!pmd_write(pmd))
1316 flags |= TNF_NO_GROUP;
1317
1318 /*
1319 * Acquire the page lock to serialise THP migrations but avoid dropping
1320 * page_table_lock if at all possible
1321 */
1322 page_locked = trylock_page(page);
1323 target_nid = mpol_misplaced(page, vma, haddr);
1324 if (target_nid == -1) {
1325 /* If the page was locked, there are no parallel migrations */
1326 if (page_locked)
1327 goto clear_pmdnuma;
1328 }
1329
1330 /* Migration could have started since the pmd_trans_migrating check */
1331 if (!page_locked) {
1332 if (!get_page_unless_zero(page))
1333 goto out_unlock;
1334 spin_unlock(ptl);
1335 wait_on_page_locked(page);
1336 put_page(page);
1337 page_nid = -1;
1338 goto out;
1339 }
1340
1341 /*
1342 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1343 * to serialises splits
1344 */
1345 get_page(page);
1346 spin_unlock(ptl);
1347 anon_vma = page_lock_anon_vma_read(page);
1348
1349 /* Confirm the PMD did not change while page_table_lock was released */
1350 spin_lock(ptl);
1351 if (unlikely(!pmd_same(pmd, *pmdp))) {
1352 unlock_page(page);
1353 put_page(page);
1354 page_nid = -1;
1355 goto out_unlock;
1356 }
1357
1358 /* Bail if we fail to protect against THP splits for any reason */
1359 if (unlikely(!anon_vma)) {
1360 put_page(page);
1361 page_nid = -1;
1362 goto clear_pmdnuma;
1363 }
1364
1365 /*
1366 * Migrate the THP to the requested node, returns with page unlocked
1367 * and pmd_numa cleared.
1368 */
1369 spin_unlock(ptl);
1370 migrated = migrate_misplaced_transhuge_page(mm, vma,
1371 pmdp, pmd, addr, page, target_nid);
1372 if (migrated) {
1373 flags |= TNF_MIGRATED;
1374 page_nid = target_nid;
1375 }
1376
1377 goto out;
1378 clear_pmdnuma:
1379 BUG_ON(!PageLocked(page));
1380 pmd = pmd_mknonnuma(pmd);
1381 set_pmd_at(mm, haddr, pmdp, pmd);
1382 VM_BUG_ON(pmd_numa(*pmdp));
1383 update_mmu_cache_pmd(vma, addr, pmdp);
1384 unlock_page(page);
1385 out_unlock:
1386 spin_unlock(ptl);
1387
1388 out:
1389 if (anon_vma)
1390 page_unlock_anon_vma_read(anon_vma);
1391
1392 if (page_nid != -1)
1393 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1394
1395 return 0;
1396 }
1397
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1398 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1399 pmd_t *pmd, unsigned long addr)
1400 {
1401 spinlock_t *ptl;
1402 int ret = 0;
1403
1404 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1405 struct page *page;
1406 pgtable_t pgtable;
1407 pmd_t orig_pmd;
1408 /*
1409 * For architectures like ppc64 we look at deposited pgtable
1410 * when calling pmdp_get_and_clear. So do the
1411 * pgtable_trans_huge_withdraw after finishing pmdp related
1412 * operations.
1413 */
1414 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1415 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1416 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1417 if (is_huge_zero_pmd(orig_pmd)) {
1418 atomic_long_dec(&tlb->mm->nr_ptes);
1419 spin_unlock(ptl);
1420 put_huge_zero_page();
1421 } else {
1422 page = pmd_page(orig_pmd);
1423 page_remove_rmap(page);
1424 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1425 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1426 VM_BUG_ON_PAGE(!PageHead(page), page);
1427 atomic_long_dec(&tlb->mm->nr_ptes);
1428 spin_unlock(ptl);
1429 tlb_remove_page(tlb, page);
1430 }
1431 pte_free(tlb->mm, pgtable);
1432 ret = 1;
1433 }
1434 return ret;
1435 }
1436
mincore_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned char * vec)1437 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1438 unsigned long addr, unsigned long end,
1439 unsigned char *vec)
1440 {
1441 spinlock_t *ptl;
1442 int ret = 0;
1443
1444 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1445 /*
1446 * All logical pages in the range are present
1447 * if backed by a huge page.
1448 */
1449 spin_unlock(ptl);
1450 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1451 ret = 1;
1452 }
1453
1454 return ret;
1455 }
1456
move_huge_pmd(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1457 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1458 unsigned long old_addr,
1459 unsigned long new_addr, unsigned long old_end,
1460 pmd_t *old_pmd, pmd_t *new_pmd)
1461 {
1462 spinlock_t *old_ptl, *new_ptl;
1463 int ret = 0;
1464 pmd_t pmd;
1465
1466 struct mm_struct *mm = vma->vm_mm;
1467
1468 if ((old_addr & ~HPAGE_PMD_MASK) ||
1469 (new_addr & ~HPAGE_PMD_MASK) ||
1470 old_end - old_addr < HPAGE_PMD_SIZE ||
1471 (new_vma->vm_flags & VM_NOHUGEPAGE))
1472 goto out;
1473
1474 /*
1475 * The destination pmd shouldn't be established, free_pgtables()
1476 * should have release it.
1477 */
1478 if (WARN_ON(!pmd_none(*new_pmd))) {
1479 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1480 goto out;
1481 }
1482
1483 /*
1484 * We don't have to worry about the ordering of src and dst
1485 * ptlocks because exclusive mmap_sem prevents deadlock.
1486 */
1487 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1488 if (ret == 1) {
1489 new_ptl = pmd_lockptr(mm, new_pmd);
1490 if (new_ptl != old_ptl)
1491 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1492 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1493 VM_BUG_ON(!pmd_none(*new_pmd));
1494
1495 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1496 pgtable_t pgtable;
1497 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1498 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1499 }
1500 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1501 if (new_ptl != old_ptl)
1502 spin_unlock(new_ptl);
1503 spin_unlock(old_ptl);
1504 }
1505 out:
1506 return ret;
1507 }
1508
1509 /*
1510 * Returns
1511 * - 0 if PMD could not be locked
1512 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1513 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1514 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1515 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1516 unsigned long addr, pgprot_t newprot, int prot_numa)
1517 {
1518 struct mm_struct *mm = vma->vm_mm;
1519 spinlock_t *ptl;
1520 int ret = 0;
1521
1522 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1523 pmd_t entry;
1524 ret = 1;
1525 if (!prot_numa) {
1526 entry = pmdp_get_and_clear(mm, addr, pmd);
1527 if (pmd_numa(entry))
1528 entry = pmd_mknonnuma(entry);
1529 entry = pmd_modify(entry, newprot);
1530 ret = HPAGE_PMD_NR;
1531 set_pmd_at(mm, addr, pmd, entry);
1532 BUG_ON(pmd_write(entry));
1533 } else {
1534 struct page *page = pmd_page(*pmd);
1535
1536 /*
1537 * Do not trap faults against the zero page. The
1538 * read-only data is likely to be read-cached on the
1539 * local CPU cache and it is less useful to know about
1540 * local vs remote hits on the zero page.
1541 */
1542 if (!is_huge_zero_page(page) &&
1543 !pmd_numa(*pmd)) {
1544 pmdp_set_numa(mm, addr, pmd);
1545 ret = HPAGE_PMD_NR;
1546 }
1547 }
1548 spin_unlock(ptl);
1549 }
1550
1551 return ret;
1552 }
1553
1554 /*
1555 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1556 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1557 *
1558 * Note that if it returns 1, this routine returns without unlocking page
1559 * table locks. So callers must unlock them.
1560 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma,spinlock_t ** ptl)1561 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1562 spinlock_t **ptl)
1563 {
1564 *ptl = pmd_lock(vma->vm_mm, pmd);
1565 if (likely(pmd_trans_huge(*pmd))) {
1566 if (unlikely(pmd_trans_splitting(*pmd))) {
1567 spin_unlock(*ptl);
1568 wait_split_huge_page(vma->anon_vma, pmd);
1569 return -1;
1570 } else {
1571 /* Thp mapped by 'pmd' is stable, so we can
1572 * handle it as it is. */
1573 return 1;
1574 }
1575 }
1576 spin_unlock(*ptl);
1577 return 0;
1578 }
1579
1580 /*
1581 * This function returns whether a given @page is mapped onto the @address
1582 * in the virtual space of @mm.
1583 *
1584 * When it's true, this function returns *pmd with holding the page table lock
1585 * and passing it back to the caller via @ptl.
1586 * If it's false, returns NULL without holding the page table lock.
1587 */
page_check_address_pmd(struct page * page,struct mm_struct * mm,unsigned long address,enum page_check_address_pmd_flag flag,spinlock_t ** ptl)1588 pmd_t *page_check_address_pmd(struct page *page,
1589 struct mm_struct *mm,
1590 unsigned long address,
1591 enum page_check_address_pmd_flag flag,
1592 spinlock_t **ptl)
1593 {
1594 pgd_t *pgd;
1595 pud_t *pud;
1596 pmd_t *pmd;
1597
1598 if (address & ~HPAGE_PMD_MASK)
1599 return NULL;
1600
1601 pgd = pgd_offset(mm, address);
1602 if (!pgd_present(*pgd))
1603 return NULL;
1604 pud = pud_offset(pgd, address);
1605 if (!pud_present(*pud))
1606 return NULL;
1607 pmd = pmd_offset(pud, address);
1608
1609 *ptl = pmd_lock(mm, pmd);
1610 if (!pmd_present(*pmd))
1611 goto unlock;
1612 if (pmd_page(*pmd) != page)
1613 goto unlock;
1614 /*
1615 * split_vma() may create temporary aliased mappings. There is
1616 * no risk as long as all huge pmd are found and have their
1617 * splitting bit set before __split_huge_page_refcount
1618 * runs. Finding the same huge pmd more than once during the
1619 * same rmap walk is not a problem.
1620 */
1621 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1622 pmd_trans_splitting(*pmd))
1623 goto unlock;
1624 if (pmd_trans_huge(*pmd)) {
1625 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1626 !pmd_trans_splitting(*pmd));
1627 return pmd;
1628 }
1629 unlock:
1630 spin_unlock(*ptl);
1631 return NULL;
1632 }
1633
__split_huge_page_splitting(struct page * page,struct vm_area_struct * vma,unsigned long address)1634 static int __split_huge_page_splitting(struct page *page,
1635 struct vm_area_struct *vma,
1636 unsigned long address)
1637 {
1638 struct mm_struct *mm = vma->vm_mm;
1639 spinlock_t *ptl;
1640 pmd_t *pmd;
1641 int ret = 0;
1642 /* For mmu_notifiers */
1643 const unsigned long mmun_start = address;
1644 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1645
1646 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1647 pmd = page_check_address_pmd(page, mm, address,
1648 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1649 if (pmd) {
1650 /*
1651 * We can't temporarily set the pmd to null in order
1652 * to split it, the pmd must remain marked huge at all
1653 * times or the VM won't take the pmd_trans_huge paths
1654 * and it won't wait on the anon_vma->root->rwsem to
1655 * serialize against split_huge_page*.
1656 */
1657 pmdp_splitting_flush(vma, address, pmd);
1658 ret = 1;
1659 spin_unlock(ptl);
1660 }
1661 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1662
1663 return ret;
1664 }
1665
__split_huge_page_refcount(struct page * page,struct list_head * list)1666 static void __split_huge_page_refcount(struct page *page,
1667 struct list_head *list)
1668 {
1669 int i;
1670 struct zone *zone = page_zone(page);
1671 struct lruvec *lruvec;
1672 int tail_count = 0;
1673
1674 /* prevent PageLRU to go away from under us, and freeze lru stats */
1675 spin_lock_irq(&zone->lru_lock);
1676 lruvec = mem_cgroup_page_lruvec(page, zone);
1677
1678 compound_lock(page);
1679 /* complete memcg works before add pages to LRU */
1680 mem_cgroup_split_huge_fixup(page);
1681
1682 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1683 struct page *page_tail = page + i;
1684
1685 /* tail_page->_mapcount cannot change */
1686 BUG_ON(page_mapcount(page_tail) < 0);
1687 tail_count += page_mapcount(page_tail);
1688 /* check for overflow */
1689 BUG_ON(tail_count < 0);
1690 BUG_ON(atomic_read(&page_tail->_count) != 0);
1691 /*
1692 * tail_page->_count is zero and not changing from
1693 * under us. But get_page_unless_zero() may be running
1694 * from under us on the tail_page. If we used
1695 * atomic_set() below instead of atomic_add(), we
1696 * would then run atomic_set() concurrently with
1697 * get_page_unless_zero(), and atomic_set() is
1698 * implemented in C not using locked ops. spin_unlock
1699 * on x86 sometime uses locked ops because of PPro
1700 * errata 66, 92, so unless somebody can guarantee
1701 * atomic_set() here would be safe on all archs (and
1702 * not only on x86), it's safer to use atomic_add().
1703 */
1704 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1705 &page_tail->_count);
1706
1707 /* after clearing PageTail the gup refcount can be released */
1708 smp_mb__after_atomic();
1709
1710 /*
1711 * retain hwpoison flag of the poisoned tail page:
1712 * fix for the unsuitable process killed on Guest Machine(KVM)
1713 * by the memory-failure.
1714 */
1715 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1716 page_tail->flags |= (page->flags &
1717 ((1L << PG_referenced) |
1718 (1L << PG_swapbacked) |
1719 (1L << PG_mlocked) |
1720 (1L << PG_uptodate) |
1721 (1L << PG_active) |
1722 (1L << PG_unevictable)));
1723 page_tail->flags |= (1L << PG_dirty);
1724
1725 /* clear PageTail before overwriting first_page */
1726 smp_wmb();
1727
1728 /*
1729 * __split_huge_page_splitting() already set the
1730 * splitting bit in all pmd that could map this
1731 * hugepage, that will ensure no CPU can alter the
1732 * mapcount on the head page. The mapcount is only
1733 * accounted in the head page and it has to be
1734 * transferred to all tail pages in the below code. So
1735 * for this code to be safe, the split the mapcount
1736 * can't change. But that doesn't mean userland can't
1737 * keep changing and reading the page contents while
1738 * we transfer the mapcount, so the pmd splitting
1739 * status is achieved setting a reserved bit in the
1740 * pmd, not by clearing the present bit.
1741 */
1742 page_tail->_mapcount = page->_mapcount;
1743
1744 BUG_ON(page_tail->mapping);
1745 page_tail->mapping = page->mapping;
1746
1747 page_tail->index = page->index + i;
1748 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1749
1750 BUG_ON(!PageAnon(page_tail));
1751 BUG_ON(!PageUptodate(page_tail));
1752 BUG_ON(!PageDirty(page_tail));
1753 BUG_ON(!PageSwapBacked(page_tail));
1754
1755 lru_add_page_tail(page, page_tail, lruvec, list);
1756 }
1757 atomic_sub(tail_count, &page->_count);
1758 BUG_ON(atomic_read(&page->_count) <= 0);
1759
1760 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1761
1762 ClearPageCompound(page);
1763 compound_unlock(page);
1764 spin_unlock_irq(&zone->lru_lock);
1765
1766 for (i = 1; i < HPAGE_PMD_NR; i++) {
1767 struct page *page_tail = page + i;
1768 BUG_ON(page_count(page_tail) <= 0);
1769 /*
1770 * Tail pages may be freed if there wasn't any mapping
1771 * like if add_to_swap() is running on a lru page that
1772 * had its mapping zapped. And freeing these pages
1773 * requires taking the lru_lock so we do the put_page
1774 * of the tail pages after the split is complete.
1775 */
1776 put_page(page_tail);
1777 }
1778
1779 /*
1780 * Only the head page (now become a regular page) is required
1781 * to be pinned by the caller.
1782 */
1783 BUG_ON(page_count(page) <= 0);
1784 }
1785
__split_huge_page_map(struct page * page,struct vm_area_struct * vma,unsigned long address)1786 static int __split_huge_page_map(struct page *page,
1787 struct vm_area_struct *vma,
1788 unsigned long address)
1789 {
1790 struct mm_struct *mm = vma->vm_mm;
1791 spinlock_t *ptl;
1792 pmd_t *pmd, _pmd;
1793 int ret = 0, i;
1794 pgtable_t pgtable;
1795 unsigned long haddr;
1796
1797 pmd = page_check_address_pmd(page, mm, address,
1798 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1799 if (pmd) {
1800 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1801 pmd_populate(mm, &_pmd, pgtable);
1802 if (pmd_write(*pmd))
1803 BUG_ON(page_mapcount(page) != 1);
1804
1805 haddr = address;
1806 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1807 pte_t *pte, entry;
1808 BUG_ON(PageCompound(page+i));
1809 /*
1810 * Note that pmd_numa is not transferred deliberately
1811 * to avoid any possibility that pte_numa leaks to
1812 * a PROT_NONE VMA by accident.
1813 */
1814 entry = mk_pte(page + i, vma->vm_page_prot);
1815 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1816 if (!pmd_write(*pmd))
1817 entry = pte_wrprotect(entry);
1818 if (!pmd_young(*pmd))
1819 entry = pte_mkold(entry);
1820 pte = pte_offset_map(&_pmd, haddr);
1821 BUG_ON(!pte_none(*pte));
1822 set_pte_at(mm, haddr, pte, entry);
1823 pte_unmap(pte);
1824 }
1825
1826 smp_wmb(); /* make pte visible before pmd */
1827 /*
1828 * Up to this point the pmd is present and huge and
1829 * userland has the whole access to the hugepage
1830 * during the split (which happens in place). If we
1831 * overwrite the pmd with the not-huge version
1832 * pointing to the pte here (which of course we could
1833 * if all CPUs were bug free), userland could trigger
1834 * a small page size TLB miss on the small sized TLB
1835 * while the hugepage TLB entry is still established
1836 * in the huge TLB. Some CPU doesn't like that. See
1837 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1838 * Erratum 383 on page 93. Intel should be safe but is
1839 * also warns that it's only safe if the permission
1840 * and cache attributes of the two entries loaded in
1841 * the two TLB is identical (which should be the case
1842 * here). But it is generally safer to never allow
1843 * small and huge TLB entries for the same virtual
1844 * address to be loaded simultaneously. So instead of
1845 * doing "pmd_populate(); flush_tlb_range();" we first
1846 * mark the current pmd notpresent (atomically because
1847 * here the pmd_trans_huge and pmd_trans_splitting
1848 * must remain set at all times on the pmd until the
1849 * split is complete for this pmd), then we flush the
1850 * SMP TLB and finally we write the non-huge version
1851 * of the pmd entry with pmd_populate.
1852 */
1853 pmdp_invalidate(vma, address, pmd);
1854 pmd_populate(mm, pmd, pgtable);
1855 ret = 1;
1856 spin_unlock(ptl);
1857 }
1858
1859 return ret;
1860 }
1861
1862 /* must be called with anon_vma->root->rwsem held */
__split_huge_page(struct page * page,struct anon_vma * anon_vma,struct list_head * list)1863 static void __split_huge_page(struct page *page,
1864 struct anon_vma *anon_vma,
1865 struct list_head *list)
1866 {
1867 int mapcount, mapcount2;
1868 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1869 struct anon_vma_chain *avc;
1870
1871 BUG_ON(!PageHead(page));
1872 BUG_ON(PageTail(page));
1873
1874 mapcount = 0;
1875 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1876 struct vm_area_struct *vma = avc->vma;
1877 unsigned long addr = vma_address(page, vma);
1878 BUG_ON(is_vma_temporary_stack(vma));
1879 mapcount += __split_huge_page_splitting(page, vma, addr);
1880 }
1881 /*
1882 * It is critical that new vmas are added to the tail of the
1883 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1884 * and establishes a child pmd before
1885 * __split_huge_page_splitting() freezes the parent pmd (so if
1886 * we fail to prevent copy_huge_pmd() from running until the
1887 * whole __split_huge_page() is complete), we will still see
1888 * the newly established pmd of the child later during the
1889 * walk, to be able to set it as pmd_trans_splitting too.
1890 */
1891 if (mapcount != page_mapcount(page)) {
1892 pr_err("mapcount %d page_mapcount %d\n",
1893 mapcount, page_mapcount(page));
1894 BUG();
1895 }
1896
1897 __split_huge_page_refcount(page, list);
1898
1899 mapcount2 = 0;
1900 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1901 struct vm_area_struct *vma = avc->vma;
1902 unsigned long addr = vma_address(page, vma);
1903 BUG_ON(is_vma_temporary_stack(vma));
1904 mapcount2 += __split_huge_page_map(page, vma, addr);
1905 }
1906 if (mapcount != mapcount2) {
1907 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1908 mapcount, mapcount2, page_mapcount(page));
1909 BUG();
1910 }
1911 }
1912
1913 /*
1914 * Split a hugepage into normal pages. This doesn't change the position of head
1915 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1916 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1917 * from the hugepage.
1918 * Return 0 if the hugepage is split successfully otherwise return 1.
1919 */
split_huge_page_to_list(struct page * page,struct list_head * list)1920 int split_huge_page_to_list(struct page *page, struct list_head *list)
1921 {
1922 struct anon_vma *anon_vma;
1923 int ret = 1;
1924
1925 BUG_ON(is_huge_zero_page(page));
1926 BUG_ON(!PageAnon(page));
1927
1928 /*
1929 * The caller does not necessarily hold an mmap_sem that would prevent
1930 * the anon_vma disappearing so we first we take a reference to it
1931 * and then lock the anon_vma for write. This is similar to
1932 * page_lock_anon_vma_read except the write lock is taken to serialise
1933 * against parallel split or collapse operations.
1934 */
1935 anon_vma = page_get_anon_vma(page);
1936 if (!anon_vma)
1937 goto out;
1938 anon_vma_lock_write(anon_vma);
1939
1940 ret = 0;
1941 if (!PageCompound(page))
1942 goto out_unlock;
1943
1944 BUG_ON(!PageSwapBacked(page));
1945 __split_huge_page(page, anon_vma, list);
1946 count_vm_event(THP_SPLIT);
1947
1948 BUG_ON(PageCompound(page));
1949 out_unlock:
1950 anon_vma_unlock_write(anon_vma);
1951 put_anon_vma(anon_vma);
1952 out:
1953 return ret;
1954 }
1955
1956 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1957
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)1958 int hugepage_madvise(struct vm_area_struct *vma,
1959 unsigned long *vm_flags, int advice)
1960 {
1961 switch (advice) {
1962 case MADV_HUGEPAGE:
1963 #ifdef CONFIG_S390
1964 /*
1965 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1966 * can't handle this properly after s390_enable_sie, so we simply
1967 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1968 */
1969 if (mm_has_pgste(vma->vm_mm))
1970 return 0;
1971 #endif
1972 /*
1973 * Be somewhat over-protective like KSM for now!
1974 */
1975 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1976 return -EINVAL;
1977 *vm_flags &= ~VM_NOHUGEPAGE;
1978 *vm_flags |= VM_HUGEPAGE;
1979 /*
1980 * If the vma become good for khugepaged to scan,
1981 * register it here without waiting a page fault that
1982 * may not happen any time soon.
1983 */
1984 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1985 return -ENOMEM;
1986 break;
1987 case MADV_NOHUGEPAGE:
1988 /*
1989 * Be somewhat over-protective like KSM for now!
1990 */
1991 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1992 return -EINVAL;
1993 *vm_flags &= ~VM_HUGEPAGE;
1994 *vm_flags |= VM_NOHUGEPAGE;
1995 /*
1996 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1997 * this vma even if we leave the mm registered in khugepaged if
1998 * it got registered before VM_NOHUGEPAGE was set.
1999 */
2000 break;
2001 }
2002
2003 return 0;
2004 }
2005
khugepaged_slab_init(void)2006 static int __init khugepaged_slab_init(void)
2007 {
2008 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2009 sizeof(struct mm_slot),
2010 __alignof__(struct mm_slot), 0, NULL);
2011 if (!mm_slot_cache)
2012 return -ENOMEM;
2013
2014 return 0;
2015 }
2016
alloc_mm_slot(void)2017 static inline struct mm_slot *alloc_mm_slot(void)
2018 {
2019 if (!mm_slot_cache) /* initialization failed */
2020 return NULL;
2021 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2022 }
2023
free_mm_slot(struct mm_slot * mm_slot)2024 static inline void free_mm_slot(struct mm_slot *mm_slot)
2025 {
2026 kmem_cache_free(mm_slot_cache, mm_slot);
2027 }
2028
get_mm_slot(struct mm_struct * mm)2029 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2030 {
2031 struct mm_slot *mm_slot;
2032
2033 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2034 if (mm == mm_slot->mm)
2035 return mm_slot;
2036
2037 return NULL;
2038 }
2039
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)2040 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2041 struct mm_slot *mm_slot)
2042 {
2043 mm_slot->mm = mm;
2044 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2045 }
2046
khugepaged_test_exit(struct mm_struct * mm)2047 static inline int khugepaged_test_exit(struct mm_struct *mm)
2048 {
2049 return atomic_read(&mm->mm_users) == 0;
2050 }
2051
__khugepaged_enter(struct mm_struct * mm)2052 int __khugepaged_enter(struct mm_struct *mm)
2053 {
2054 struct mm_slot *mm_slot;
2055 int wakeup;
2056
2057 mm_slot = alloc_mm_slot();
2058 if (!mm_slot)
2059 return -ENOMEM;
2060
2061 /* __khugepaged_exit() must not run from under us */
2062 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2063 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2064 free_mm_slot(mm_slot);
2065 return 0;
2066 }
2067
2068 spin_lock(&khugepaged_mm_lock);
2069 insert_to_mm_slots_hash(mm, mm_slot);
2070 /*
2071 * Insert just behind the scanning cursor, to let the area settle
2072 * down a little.
2073 */
2074 wakeup = list_empty(&khugepaged_scan.mm_head);
2075 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2076 spin_unlock(&khugepaged_mm_lock);
2077
2078 atomic_inc(&mm->mm_count);
2079 if (wakeup)
2080 wake_up_interruptible(&khugepaged_wait);
2081
2082 return 0;
2083 }
2084
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)2085 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2086 unsigned long vm_flags)
2087 {
2088 unsigned long hstart, hend;
2089 if (!vma->anon_vma)
2090 /*
2091 * Not yet faulted in so we will register later in the
2092 * page fault if needed.
2093 */
2094 return 0;
2095 if (vma->vm_ops || (vm_flags & VM_NO_THP))
2096 /* khugepaged not yet working on file or special mappings */
2097 return 0;
2098 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2099 hend = vma->vm_end & HPAGE_PMD_MASK;
2100 if (hstart < hend)
2101 return khugepaged_enter(vma, vm_flags);
2102 return 0;
2103 }
2104
__khugepaged_exit(struct mm_struct * mm)2105 void __khugepaged_exit(struct mm_struct *mm)
2106 {
2107 struct mm_slot *mm_slot;
2108 int free = 0;
2109
2110 spin_lock(&khugepaged_mm_lock);
2111 mm_slot = get_mm_slot(mm);
2112 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2113 hash_del(&mm_slot->hash);
2114 list_del(&mm_slot->mm_node);
2115 free = 1;
2116 }
2117 spin_unlock(&khugepaged_mm_lock);
2118
2119 if (free) {
2120 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2121 free_mm_slot(mm_slot);
2122 mmdrop(mm);
2123 } else if (mm_slot) {
2124 /*
2125 * This is required to serialize against
2126 * khugepaged_test_exit() (which is guaranteed to run
2127 * under mmap sem read mode). Stop here (after we
2128 * return all pagetables will be destroyed) until
2129 * khugepaged has finished working on the pagetables
2130 * under the mmap_sem.
2131 */
2132 down_write(&mm->mmap_sem);
2133 up_write(&mm->mmap_sem);
2134 }
2135 }
2136
release_pte_page(struct page * page)2137 static void release_pte_page(struct page *page)
2138 {
2139 /* 0 stands for page_is_file_cache(page) == false */
2140 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 unlock_page(page);
2142 putback_lru_page(page);
2143 }
2144
release_pte_pages(pte_t * pte,pte_t * _pte)2145 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2146 {
2147 while (--_pte >= pte) {
2148 pte_t pteval = *_pte;
2149 if (!pte_none(pteval))
2150 release_pte_page(pte_page(pteval));
2151 }
2152 }
2153
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte)2154 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2155 unsigned long address,
2156 pte_t *pte)
2157 {
2158 struct page *page;
2159 pte_t *_pte;
2160 int referenced = 0, none = 0;
2161 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2162 _pte++, address += PAGE_SIZE) {
2163 pte_t pteval = *_pte;
2164 if (pte_none(pteval)) {
2165 if (++none <= khugepaged_max_ptes_none)
2166 continue;
2167 else
2168 goto out;
2169 }
2170 if (!pte_present(pteval) || !pte_write(pteval))
2171 goto out;
2172 page = vm_normal_page(vma, address, pteval);
2173 if (unlikely(!page))
2174 goto out;
2175
2176 VM_BUG_ON_PAGE(PageCompound(page), page);
2177 VM_BUG_ON_PAGE(!PageAnon(page), page);
2178 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2179
2180 /* cannot use mapcount: can't collapse if there's a gup pin */
2181 if (page_count(page) != 1)
2182 goto out;
2183 /*
2184 * We can do it before isolate_lru_page because the
2185 * page can't be freed from under us. NOTE: PG_lock
2186 * is needed to serialize against split_huge_page
2187 * when invoked from the VM.
2188 */
2189 if (!trylock_page(page))
2190 goto out;
2191 /*
2192 * Isolate the page to avoid collapsing an hugepage
2193 * currently in use by the VM.
2194 */
2195 if (isolate_lru_page(page)) {
2196 unlock_page(page);
2197 goto out;
2198 }
2199 /* 0 stands for page_is_file_cache(page) == false */
2200 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2201 VM_BUG_ON_PAGE(!PageLocked(page), page);
2202 VM_BUG_ON_PAGE(PageLRU(page), page);
2203
2204 /* If there is no mapped pte young don't collapse the page */
2205 if (pte_young(pteval) || PageReferenced(page) ||
2206 mmu_notifier_test_young(vma->vm_mm, address))
2207 referenced = 1;
2208 }
2209 if (likely(referenced))
2210 return 1;
2211 out:
2212 release_pte_pages(pte, _pte);
2213 return 0;
2214 }
2215
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl)2216 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2217 struct vm_area_struct *vma,
2218 unsigned long address,
2219 spinlock_t *ptl)
2220 {
2221 pte_t *_pte;
2222 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2223 pte_t pteval = *_pte;
2224 struct page *src_page;
2225
2226 if (pte_none(pteval)) {
2227 clear_user_highpage(page, address);
2228 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2229 } else {
2230 src_page = pte_page(pteval);
2231 copy_user_highpage(page, src_page, address, vma);
2232 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2233 release_pte_page(src_page);
2234 /*
2235 * ptl mostly unnecessary, but preempt has to
2236 * be disabled to update the per-cpu stats
2237 * inside page_remove_rmap().
2238 */
2239 spin_lock(ptl);
2240 /*
2241 * paravirt calls inside pte_clear here are
2242 * superfluous.
2243 */
2244 pte_clear(vma->vm_mm, address, _pte);
2245 page_remove_rmap(src_page);
2246 spin_unlock(ptl);
2247 free_page_and_swap_cache(src_page);
2248 }
2249
2250 address += PAGE_SIZE;
2251 page++;
2252 }
2253 }
2254
khugepaged_alloc_sleep(void)2255 static void khugepaged_alloc_sleep(void)
2256 {
2257 wait_event_freezable_timeout(khugepaged_wait, false,
2258 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2259 }
2260
2261 static int khugepaged_node_load[MAX_NUMNODES];
2262
khugepaged_scan_abort(int nid)2263 static bool khugepaged_scan_abort(int nid)
2264 {
2265 int i;
2266
2267 /*
2268 * If zone_reclaim_mode is disabled, then no extra effort is made to
2269 * allocate memory locally.
2270 */
2271 if (!zone_reclaim_mode)
2272 return false;
2273
2274 /* If there is a count for this node already, it must be acceptable */
2275 if (khugepaged_node_load[nid])
2276 return false;
2277
2278 for (i = 0; i < MAX_NUMNODES; i++) {
2279 if (!khugepaged_node_load[i])
2280 continue;
2281 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2282 return true;
2283 }
2284 return false;
2285 }
2286
2287 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)2288 static int khugepaged_find_target_node(void)
2289 {
2290 static int last_khugepaged_target_node = NUMA_NO_NODE;
2291 int nid, target_node = 0, max_value = 0;
2292
2293 /* find first node with max normal pages hit */
2294 for (nid = 0; nid < MAX_NUMNODES; nid++)
2295 if (khugepaged_node_load[nid] > max_value) {
2296 max_value = khugepaged_node_load[nid];
2297 target_node = nid;
2298 }
2299
2300 /* do some balance if several nodes have the same hit record */
2301 if (target_node <= last_khugepaged_target_node)
2302 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2303 nid++)
2304 if (max_value == khugepaged_node_load[nid]) {
2305 target_node = nid;
2306 break;
2307 }
2308
2309 last_khugepaged_target_node = target_node;
2310 return target_node;
2311 }
2312
khugepaged_prealloc_page(struct page ** hpage,bool * wait)2313 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2314 {
2315 if (IS_ERR(*hpage)) {
2316 if (!*wait)
2317 return false;
2318
2319 *wait = false;
2320 *hpage = NULL;
2321 khugepaged_alloc_sleep();
2322 } else if (*hpage) {
2323 put_page(*hpage);
2324 *hpage = NULL;
2325 }
2326
2327 return true;
2328 }
2329
2330 static struct page
khugepaged_alloc_page(struct page ** hpage,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int node)2331 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2332 struct vm_area_struct *vma, unsigned long address,
2333 int node)
2334 {
2335 VM_BUG_ON_PAGE(*hpage, *hpage);
2336
2337 /*
2338 * Before allocating the hugepage, release the mmap_sem read lock.
2339 * The allocation can take potentially a long time if it involves
2340 * sync compaction, and we do not need to hold the mmap_sem during
2341 * that. We will recheck the vma after taking it again in write mode.
2342 */
2343 up_read(&mm->mmap_sem);
2344
2345 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2346 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2347 if (unlikely(!*hpage)) {
2348 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2349 *hpage = ERR_PTR(-ENOMEM);
2350 return NULL;
2351 }
2352
2353 count_vm_event(THP_COLLAPSE_ALLOC);
2354 return *hpage;
2355 }
2356 #else
khugepaged_find_target_node(void)2357 static int khugepaged_find_target_node(void)
2358 {
2359 return 0;
2360 }
2361
alloc_hugepage(int defrag)2362 static inline struct page *alloc_hugepage(int defrag)
2363 {
2364 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2365 HPAGE_PMD_ORDER);
2366 }
2367
khugepaged_alloc_hugepage(bool * wait)2368 static struct page *khugepaged_alloc_hugepage(bool *wait)
2369 {
2370 struct page *hpage;
2371
2372 do {
2373 hpage = alloc_hugepage(khugepaged_defrag());
2374 if (!hpage) {
2375 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2376 if (!*wait)
2377 return NULL;
2378
2379 *wait = false;
2380 khugepaged_alloc_sleep();
2381 } else
2382 count_vm_event(THP_COLLAPSE_ALLOC);
2383 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2384
2385 return hpage;
2386 }
2387
khugepaged_prealloc_page(struct page ** hpage,bool * wait)2388 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2389 {
2390 if (!*hpage)
2391 *hpage = khugepaged_alloc_hugepage(wait);
2392
2393 if (unlikely(!*hpage))
2394 return false;
2395
2396 return true;
2397 }
2398
2399 static struct page
khugepaged_alloc_page(struct page ** hpage,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int node)2400 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2401 struct vm_area_struct *vma, unsigned long address,
2402 int node)
2403 {
2404 up_read(&mm->mmap_sem);
2405 VM_BUG_ON(!*hpage);
2406 return *hpage;
2407 }
2408 #endif
2409
hugepage_vma_check(struct vm_area_struct * vma)2410 static bool hugepage_vma_check(struct vm_area_struct *vma)
2411 {
2412 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2413 (vma->vm_flags & VM_NOHUGEPAGE))
2414 return false;
2415
2416 if (!vma->anon_vma || vma->vm_ops)
2417 return false;
2418 if (is_vma_temporary_stack(vma))
2419 return false;
2420 return !(vma->vm_flags & VM_NO_THP);
2421 }
2422
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,struct vm_area_struct * vma,int node)2423 static void collapse_huge_page(struct mm_struct *mm,
2424 unsigned long address,
2425 struct page **hpage,
2426 struct vm_area_struct *vma,
2427 int node)
2428 {
2429 pmd_t *pmd, _pmd;
2430 pte_t *pte;
2431 pgtable_t pgtable;
2432 struct page *new_page;
2433 spinlock_t *pmd_ptl, *pte_ptl;
2434 int isolated;
2435 unsigned long hstart, hend;
2436 struct mem_cgroup *memcg;
2437 unsigned long mmun_start; /* For mmu_notifiers */
2438 unsigned long mmun_end; /* For mmu_notifiers */
2439
2440 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2441
2442 /* release the mmap_sem read lock. */
2443 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2444 if (!new_page)
2445 return;
2446
2447 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2448 GFP_TRANSHUGE, &memcg)))
2449 return;
2450
2451 /*
2452 * Prevent all access to pagetables with the exception of
2453 * gup_fast later hanlded by the ptep_clear_flush and the VM
2454 * handled by the anon_vma lock + PG_lock.
2455 */
2456 down_write(&mm->mmap_sem);
2457 if (unlikely(khugepaged_test_exit(mm)))
2458 goto out;
2459
2460 vma = find_vma(mm, address);
2461 if (!vma)
2462 goto out;
2463 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2464 hend = vma->vm_end & HPAGE_PMD_MASK;
2465 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2466 goto out;
2467 if (!hugepage_vma_check(vma))
2468 goto out;
2469 pmd = mm_find_pmd(mm, address);
2470 if (!pmd)
2471 goto out;
2472
2473 anon_vma_lock_write(vma->anon_vma);
2474
2475 pte = pte_offset_map(pmd, address);
2476 pte_ptl = pte_lockptr(mm, pmd);
2477
2478 mmun_start = address;
2479 mmun_end = address + HPAGE_PMD_SIZE;
2480 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2481 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2482 /*
2483 * After this gup_fast can't run anymore. This also removes
2484 * any huge TLB entry from the CPU so we won't allow
2485 * huge and small TLB entries for the same virtual address
2486 * to avoid the risk of CPU bugs in that area.
2487 */
2488 _pmd = pmdp_clear_flush(vma, address, pmd);
2489 spin_unlock(pmd_ptl);
2490 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2491
2492 spin_lock(pte_ptl);
2493 isolated = __collapse_huge_page_isolate(vma, address, pte);
2494 spin_unlock(pte_ptl);
2495
2496 if (unlikely(!isolated)) {
2497 pte_unmap(pte);
2498 spin_lock(pmd_ptl);
2499 BUG_ON(!pmd_none(*pmd));
2500 /*
2501 * We can only use set_pmd_at when establishing
2502 * hugepmds and never for establishing regular pmds that
2503 * points to regular pagetables. Use pmd_populate for that
2504 */
2505 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2506 spin_unlock(pmd_ptl);
2507 anon_vma_unlock_write(vma->anon_vma);
2508 goto out;
2509 }
2510
2511 /*
2512 * All pages are isolated and locked so anon_vma rmap
2513 * can't run anymore.
2514 */
2515 anon_vma_unlock_write(vma->anon_vma);
2516
2517 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2518 pte_unmap(pte);
2519 __SetPageUptodate(new_page);
2520 pgtable = pmd_pgtable(_pmd);
2521
2522 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2523 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2524
2525 /*
2526 * spin_lock() below is not the equivalent of smp_wmb(), so
2527 * this is needed to avoid the copy_huge_page writes to become
2528 * visible after the set_pmd_at() write.
2529 */
2530 smp_wmb();
2531
2532 spin_lock(pmd_ptl);
2533 BUG_ON(!pmd_none(*pmd));
2534 page_add_new_anon_rmap(new_page, vma, address);
2535 mem_cgroup_commit_charge(new_page, memcg, false);
2536 lru_cache_add_active_or_unevictable(new_page, vma);
2537 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2538 set_pmd_at(mm, address, pmd, _pmd);
2539 update_mmu_cache_pmd(vma, address, pmd);
2540 spin_unlock(pmd_ptl);
2541
2542 *hpage = NULL;
2543
2544 khugepaged_pages_collapsed++;
2545 out_up_write:
2546 up_write(&mm->mmap_sem);
2547 return;
2548
2549 out:
2550 mem_cgroup_cancel_charge(new_page, memcg);
2551 goto out_up_write;
2552 }
2553
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)2554 static int khugepaged_scan_pmd(struct mm_struct *mm,
2555 struct vm_area_struct *vma,
2556 unsigned long address,
2557 struct page **hpage)
2558 {
2559 pmd_t *pmd;
2560 pte_t *pte, *_pte;
2561 int ret = 0, referenced = 0, none = 0;
2562 struct page *page;
2563 unsigned long _address;
2564 spinlock_t *ptl;
2565 int node = NUMA_NO_NODE;
2566
2567 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2568
2569 pmd = mm_find_pmd(mm, address);
2570 if (!pmd)
2571 goto out;
2572
2573 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2574 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2575 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2576 _pte++, _address += PAGE_SIZE) {
2577 pte_t pteval = *_pte;
2578 if (pte_none(pteval)) {
2579 if (++none <= khugepaged_max_ptes_none)
2580 continue;
2581 else
2582 goto out_unmap;
2583 }
2584 if (!pte_present(pteval) || !pte_write(pteval))
2585 goto out_unmap;
2586 page = vm_normal_page(vma, _address, pteval);
2587 if (unlikely(!page))
2588 goto out_unmap;
2589 /*
2590 * Record which node the original page is from and save this
2591 * information to khugepaged_node_load[].
2592 * Khupaged will allocate hugepage from the node has the max
2593 * hit record.
2594 */
2595 node = page_to_nid(page);
2596 if (khugepaged_scan_abort(node))
2597 goto out_unmap;
2598 khugepaged_node_load[node]++;
2599 VM_BUG_ON_PAGE(PageCompound(page), page);
2600 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2601 goto out_unmap;
2602 /* cannot use mapcount: can't collapse if there's a gup pin */
2603 if (page_count(page) != 1)
2604 goto out_unmap;
2605 if (pte_young(pteval) || PageReferenced(page) ||
2606 mmu_notifier_test_young(vma->vm_mm, address))
2607 referenced = 1;
2608 }
2609 if (referenced)
2610 ret = 1;
2611 out_unmap:
2612 pte_unmap_unlock(pte, ptl);
2613 if (ret) {
2614 node = khugepaged_find_target_node();
2615 /* collapse_huge_page will return with the mmap_sem released */
2616 collapse_huge_page(mm, address, hpage, vma, node);
2617 }
2618 out:
2619 return ret;
2620 }
2621
collect_mm_slot(struct mm_slot * mm_slot)2622 static void collect_mm_slot(struct mm_slot *mm_slot)
2623 {
2624 struct mm_struct *mm = mm_slot->mm;
2625
2626 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2627
2628 if (khugepaged_test_exit(mm)) {
2629 /* free mm_slot */
2630 hash_del(&mm_slot->hash);
2631 list_del(&mm_slot->mm_node);
2632
2633 /*
2634 * Not strictly needed because the mm exited already.
2635 *
2636 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2637 */
2638
2639 /* khugepaged_mm_lock actually not necessary for the below */
2640 free_mm_slot(mm_slot);
2641 mmdrop(mm);
2642 }
2643 }
2644
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2645 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2646 struct page **hpage)
2647 __releases(&khugepaged_mm_lock)
2648 __acquires(&khugepaged_mm_lock)
2649 {
2650 struct mm_slot *mm_slot;
2651 struct mm_struct *mm;
2652 struct vm_area_struct *vma;
2653 int progress = 0;
2654
2655 VM_BUG_ON(!pages);
2656 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2657
2658 if (khugepaged_scan.mm_slot)
2659 mm_slot = khugepaged_scan.mm_slot;
2660 else {
2661 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2662 struct mm_slot, mm_node);
2663 khugepaged_scan.address = 0;
2664 khugepaged_scan.mm_slot = mm_slot;
2665 }
2666 spin_unlock(&khugepaged_mm_lock);
2667
2668 mm = mm_slot->mm;
2669 down_read(&mm->mmap_sem);
2670 if (unlikely(khugepaged_test_exit(mm)))
2671 vma = NULL;
2672 else
2673 vma = find_vma(mm, khugepaged_scan.address);
2674
2675 progress++;
2676 for (; vma; vma = vma->vm_next) {
2677 unsigned long hstart, hend;
2678
2679 cond_resched();
2680 if (unlikely(khugepaged_test_exit(mm))) {
2681 progress++;
2682 break;
2683 }
2684 if (!hugepage_vma_check(vma)) {
2685 skip:
2686 progress++;
2687 continue;
2688 }
2689 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2690 hend = vma->vm_end & HPAGE_PMD_MASK;
2691 if (hstart >= hend)
2692 goto skip;
2693 if (khugepaged_scan.address > hend)
2694 goto skip;
2695 if (khugepaged_scan.address < hstart)
2696 khugepaged_scan.address = hstart;
2697 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2698
2699 while (khugepaged_scan.address < hend) {
2700 int ret;
2701 cond_resched();
2702 if (unlikely(khugepaged_test_exit(mm)))
2703 goto breakouterloop;
2704
2705 VM_BUG_ON(khugepaged_scan.address < hstart ||
2706 khugepaged_scan.address + HPAGE_PMD_SIZE >
2707 hend);
2708 ret = khugepaged_scan_pmd(mm, vma,
2709 khugepaged_scan.address,
2710 hpage);
2711 /* move to next address */
2712 khugepaged_scan.address += HPAGE_PMD_SIZE;
2713 progress += HPAGE_PMD_NR;
2714 if (ret)
2715 /* we released mmap_sem so break loop */
2716 goto breakouterloop_mmap_sem;
2717 if (progress >= pages)
2718 goto breakouterloop;
2719 }
2720 }
2721 breakouterloop:
2722 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2723 breakouterloop_mmap_sem:
2724
2725 spin_lock(&khugepaged_mm_lock);
2726 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2727 /*
2728 * Release the current mm_slot if this mm is about to die, or
2729 * if we scanned all vmas of this mm.
2730 */
2731 if (khugepaged_test_exit(mm) || !vma) {
2732 /*
2733 * Make sure that if mm_users is reaching zero while
2734 * khugepaged runs here, khugepaged_exit will find
2735 * mm_slot not pointing to the exiting mm.
2736 */
2737 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2738 khugepaged_scan.mm_slot = list_entry(
2739 mm_slot->mm_node.next,
2740 struct mm_slot, mm_node);
2741 khugepaged_scan.address = 0;
2742 } else {
2743 khugepaged_scan.mm_slot = NULL;
2744 khugepaged_full_scans++;
2745 }
2746
2747 collect_mm_slot(mm_slot);
2748 }
2749
2750 return progress;
2751 }
2752
khugepaged_has_work(void)2753 static int khugepaged_has_work(void)
2754 {
2755 return !list_empty(&khugepaged_scan.mm_head) &&
2756 khugepaged_enabled();
2757 }
2758
khugepaged_wait_event(void)2759 static int khugepaged_wait_event(void)
2760 {
2761 return !list_empty(&khugepaged_scan.mm_head) ||
2762 kthread_should_stop();
2763 }
2764
khugepaged_do_scan(void)2765 static void khugepaged_do_scan(void)
2766 {
2767 struct page *hpage = NULL;
2768 unsigned int progress = 0, pass_through_head = 0;
2769 unsigned int pages = khugepaged_pages_to_scan;
2770 bool wait = true;
2771
2772 barrier(); /* write khugepaged_pages_to_scan to local stack */
2773
2774 while (progress < pages) {
2775 if (!khugepaged_prealloc_page(&hpage, &wait))
2776 break;
2777
2778 cond_resched();
2779
2780 if (unlikely(kthread_should_stop() || freezing(current)))
2781 break;
2782
2783 spin_lock(&khugepaged_mm_lock);
2784 if (!khugepaged_scan.mm_slot)
2785 pass_through_head++;
2786 if (khugepaged_has_work() &&
2787 pass_through_head < 2)
2788 progress += khugepaged_scan_mm_slot(pages - progress,
2789 &hpage);
2790 else
2791 progress = pages;
2792 spin_unlock(&khugepaged_mm_lock);
2793 }
2794
2795 if (!IS_ERR_OR_NULL(hpage))
2796 put_page(hpage);
2797 }
2798
khugepaged_wait_work(void)2799 static void khugepaged_wait_work(void)
2800 {
2801 try_to_freeze();
2802
2803 if (khugepaged_has_work()) {
2804 if (!khugepaged_scan_sleep_millisecs)
2805 return;
2806
2807 wait_event_freezable_timeout(khugepaged_wait,
2808 kthread_should_stop(),
2809 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2810 return;
2811 }
2812
2813 if (khugepaged_enabled())
2814 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2815 }
2816
khugepaged(void * none)2817 static int khugepaged(void *none)
2818 {
2819 struct mm_slot *mm_slot;
2820
2821 set_freezable();
2822 set_user_nice(current, MAX_NICE);
2823
2824 while (!kthread_should_stop()) {
2825 khugepaged_do_scan();
2826 khugepaged_wait_work();
2827 }
2828
2829 spin_lock(&khugepaged_mm_lock);
2830 mm_slot = khugepaged_scan.mm_slot;
2831 khugepaged_scan.mm_slot = NULL;
2832 if (mm_slot)
2833 collect_mm_slot(mm_slot);
2834 spin_unlock(&khugepaged_mm_lock);
2835 return 0;
2836 }
2837
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2838 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2839 unsigned long haddr, pmd_t *pmd)
2840 {
2841 struct mm_struct *mm = vma->vm_mm;
2842 pgtable_t pgtable;
2843 pmd_t _pmd;
2844 int i;
2845
2846 pmdp_clear_flush(vma, haddr, pmd);
2847 /* leave pmd empty until pte is filled */
2848
2849 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2850 pmd_populate(mm, &_pmd, pgtable);
2851
2852 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2853 pte_t *pte, entry;
2854 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2855 entry = pte_mkspecial(entry);
2856 pte = pte_offset_map(&_pmd, haddr);
2857 VM_BUG_ON(!pte_none(*pte));
2858 set_pte_at(mm, haddr, pte, entry);
2859 pte_unmap(pte);
2860 }
2861 smp_wmb(); /* make pte visible before pmd */
2862 pmd_populate(mm, pmd, pgtable);
2863 put_huge_zero_page();
2864 }
2865
__split_huge_page_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd)2866 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2867 pmd_t *pmd)
2868 {
2869 spinlock_t *ptl;
2870 struct page *page;
2871 struct mm_struct *mm = vma->vm_mm;
2872 unsigned long haddr = address & HPAGE_PMD_MASK;
2873 unsigned long mmun_start; /* For mmu_notifiers */
2874 unsigned long mmun_end; /* For mmu_notifiers */
2875
2876 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2877
2878 mmun_start = haddr;
2879 mmun_end = haddr + HPAGE_PMD_SIZE;
2880 again:
2881 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2882 ptl = pmd_lock(mm, pmd);
2883 if (unlikely(!pmd_trans_huge(*pmd))) {
2884 spin_unlock(ptl);
2885 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2886 return;
2887 }
2888 if (is_huge_zero_pmd(*pmd)) {
2889 __split_huge_zero_page_pmd(vma, haddr, pmd);
2890 spin_unlock(ptl);
2891 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2892 return;
2893 }
2894 page = pmd_page(*pmd);
2895 VM_BUG_ON_PAGE(!page_count(page), page);
2896 get_page(page);
2897 spin_unlock(ptl);
2898 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2899
2900 split_huge_page(page);
2901
2902 put_page(page);
2903
2904 /*
2905 * We don't always have down_write of mmap_sem here: a racing
2906 * do_huge_pmd_wp_page() might have copied-on-write to another
2907 * huge page before our split_huge_page() got the anon_vma lock.
2908 */
2909 if (unlikely(pmd_trans_huge(*pmd)))
2910 goto again;
2911 }
2912
split_huge_page_pmd_mm(struct mm_struct * mm,unsigned long address,pmd_t * pmd)2913 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2914 pmd_t *pmd)
2915 {
2916 struct vm_area_struct *vma;
2917
2918 vma = find_vma(mm, address);
2919 BUG_ON(vma == NULL);
2920 split_huge_page_pmd(vma, address, pmd);
2921 }
2922
split_huge_page_address(struct mm_struct * mm,unsigned long address)2923 static void split_huge_page_address(struct mm_struct *mm,
2924 unsigned long address)
2925 {
2926 pgd_t *pgd;
2927 pud_t *pud;
2928 pmd_t *pmd;
2929
2930 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2931
2932 pgd = pgd_offset(mm, address);
2933 if (!pgd_present(*pgd))
2934 return;
2935
2936 pud = pud_offset(pgd, address);
2937 if (!pud_present(*pud))
2938 return;
2939
2940 pmd = pmd_offset(pud, address);
2941 if (!pmd_present(*pmd))
2942 return;
2943 /*
2944 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2945 * materialize from under us.
2946 */
2947 split_huge_page_pmd_mm(mm, address, pmd);
2948 }
2949
__vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2950 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2951 unsigned long start,
2952 unsigned long end,
2953 long adjust_next)
2954 {
2955 /*
2956 * If the new start address isn't hpage aligned and it could
2957 * previously contain an hugepage: check if we need to split
2958 * an huge pmd.
2959 */
2960 if (start & ~HPAGE_PMD_MASK &&
2961 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2962 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2963 split_huge_page_address(vma->vm_mm, start);
2964
2965 /*
2966 * If the new end address isn't hpage aligned and it could
2967 * previously contain an hugepage: check if we need to split
2968 * an huge pmd.
2969 */
2970 if (end & ~HPAGE_PMD_MASK &&
2971 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2972 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2973 split_huge_page_address(vma->vm_mm, end);
2974
2975 /*
2976 * If we're also updating the vma->vm_next->vm_start, if the new
2977 * vm_next->vm_start isn't page aligned and it could previously
2978 * contain an hugepage: check if we need to split an huge pmd.
2979 */
2980 if (adjust_next > 0) {
2981 struct vm_area_struct *next = vma->vm_next;
2982 unsigned long nstart = next->vm_start;
2983 nstart += adjust_next << PAGE_SHIFT;
2984 if (nstart & ~HPAGE_PMD_MASK &&
2985 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2986 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2987 split_huge_page_address(next->vm_mm, nstart);
2988 }
2989 }
2990