1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
54 */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 /*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
unlock_or_release_subpool(struct hugepage_subpool * spool)64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74 }
75
hugepage_new_subpool(long nr_blocks)76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90 }
91
hugepage_put_subpool(struct hugepage_subpool * spool)92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98 }
99
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102 {
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117 }
118
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121 {
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130 }
131
subpool_inode(struct inode * inode)132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136
subpool_vma(struct vm_area_struct * vma)137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139 return subpool_inode(file_inode(vma->vm_file));
140 }
141
142 /*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
145 *
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
148 */
149 struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153 };
154
region_add(struct resv_map * resv,long f,long t)155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157 struct list_head *head = &resv->regions;
158 struct file_region *rg, *nrg, *trg;
159
160 spin_lock(&resv->lock);
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
190 spin_unlock(&resv->lock);
191 return 0;
192 }
193
region_chg(struct resv_map * resv,long f,long t)194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196 struct list_head *head = &resv->regions;
197 struct file_region *rg, *nrg = NULL;
198 long chg = 0;
199
200 retry:
201 spin_lock(&resv->lock);
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
222
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
238 goto out;
239
240 /* We overlap with this area, if it extends further than
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
249
250 out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255 out_nrg:
256 spin_unlock(&resv->lock);
257 return chg;
258 }
259
region_truncate(struct resv_map * resv,long end)260 static long region_truncate(struct resv_map *resv, long end)
261 {
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *trg;
264 long chg = 0;
265
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
272 goto out;
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
289
290 out:
291 spin_unlock(&resv->lock);
292 return chg;
293 }
294
region_count(struct resv_map * resv,long f,long t)295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297 struct list_head *head = &resv->regions;
298 struct file_region *rg;
299 long chg = 0;
300
301 spin_lock(&resv->lock);
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
304 long seg_from;
305 long seg_to;
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
317 spin_unlock(&resv->lock);
318
319 return chg;
320 }
321
322 /*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
328 {
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
331 }
332
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335 {
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338
339 /*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
vma_kernel_pagesize(struct vm_area_struct * vma)343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
352 return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356 /*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365 return vma_kernel_pagesize(vma);
366 }
367 #endif
368
369 /*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374 #define HPAGE_RESV_OWNER (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378 /*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
396 */
get_vma_private_data(struct vm_area_struct * vma)397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399 return (unsigned long)vma->vm_private_data;
400 }
401
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)402 static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404 {
405 vma->vm_private_data = (void *)value;
406 }
407
resv_map_alloc(void)408 struct resv_map *resv_map_alloc(void)
409 {
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
415 spin_lock_init(&resv_map->lock);
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419 }
420
resv_map_release(struct kref * ref)421 void resv_map_release(struct kref *ref)
422 {
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
426 region_truncate(resv_map, 0);
427 kfree(resv_map);
428 }
429
inode_resv_map(struct inode * inode)430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432 return inode->i_mapping->private_data;
433 }
434
vma_resv_map(struct vm_area_struct * vma)435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
447 }
448 }
449
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
454
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
470
471 return (get_vma_private_data(vma) & flag) != 0;
472 }
473
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478 if (!(vma->vm_flags & VM_MAYSHARE))
479 vma->vm_private_data = (void *)0;
480 }
481
482 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
500
501 /* Shared mappings always use reserves */
502 if (vma->vm_flags & VM_MAYSHARE)
503 return 1;
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
511
512 return 0;
513 }
514
enqueue_huge_page(struct hstate * h,struct page * page)515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517 int nid = page_to_nid(page);
518 list_move(&page->lru, &h->hugepage_freelists[nid]);
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
521 }
522
dequeue_huge_page_node(struct hstate * h,int nid)523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525 struct page *page;
526
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
535 return NULL;
536 list_move(&page->lru, &h->hugepage_activelist);
537 set_page_refcounted(page);
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541 }
542
543 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550 }
551
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
554 unsigned long address, int avoid_reserve,
555 long chg)
556 {
557 struct page *page = NULL;
558 struct mempolicy *mpol;
559 nodemask_t *nodemask;
560 struct zonelist *zonelist;
561 struct zone *zone;
562 struct zoneref *z;
563 unsigned int cpuset_mems_cookie;
564
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
570 if (!vma_has_reserves(vma, chg) &&
571 h->free_huge_pages - h->resv_huge_pages == 0)
572 goto err;
573
574 /* If reserves cannot be used, ensure enough pages are in the pool */
575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 goto err;
577
578 retry_cpuset:
579 cpuset_mems_cookie = read_mems_allowed_begin();
580 zonelist = huge_zonelist(vma, address,
581 htlb_alloc_mask(h), &mpol, &nodemask);
582
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
585 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
593 SetPagePrivate(page);
594 h->resv_huge_pages--;
595 break;
596 }
597 }
598 }
599
600 mpol_cond_put(mpol);
601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 goto retry_cpuset;
603 return page;
604
605 err:
606 return NULL;
607 }
608
609 /*
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
615 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617 {
618 nid = next_node(nid, *nodes_allowed);
619 if (nid == MAX_NUMNODES)
620 nid = first_node(*nodes_allowed);
621 VM_BUG_ON(nid >= MAX_NUMNODES);
622
623 return nid;
624 }
625
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628 if (!node_isset(nid, *nodes_allowed))
629 nid = next_node_allowed(nid, nodes_allowed);
630 return nid;
631 }
632
633 /*
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
638 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)639 static int hstate_next_node_to_alloc(struct hstate *h,
640 nodemask_t *nodes_allowed)
641 {
642 int nid;
643
644 VM_BUG_ON(!nodes_allowed);
645
646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649 return nid;
650 }
651
652 /*
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
657 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659 {
660 int nid;
661
662 VM_BUG_ON(!nodes_allowed);
663
664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667 return nid;
668 }
669
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
672 nr_nodes > 0 && \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
674 nr_nodes--)
675
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
678 nr_nodes > 0 && \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
680 nr_nodes--)
681
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
destroy_compound_gigantic_page(struct page * page,unsigned int order)683 static void destroy_compound_gigantic_page(struct page *page,
684 unsigned int order)
685 {
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
689
690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 __ClearPageTail(p);
692 set_page_refcounted(p);
693 p->first_page = NULL;
694 }
695
696 set_compound_order(page, 0);
697 __ClearPageHead(page);
698 }
699
free_gigantic_page(struct page * page,unsigned int order)700 static void free_gigantic_page(struct page *page, unsigned int order)
701 {
702 free_contig_range(page_to_pfn(page), 1 << order);
703 }
704
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages)705 static int __alloc_gigantic_page(unsigned long start_pfn,
706 unsigned long nr_pages)
707 {
708 unsigned long end_pfn = start_pfn + nr_pages;
709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710 }
711
pfn_range_valid_gigantic(unsigned long start_pfn,unsigned long nr_pages)712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 unsigned long nr_pages)
714 {
715 unsigned long i, end_pfn = start_pfn + nr_pages;
716 struct page *page;
717
718 for (i = start_pfn; i < end_pfn; i++) {
719 if (!pfn_valid(i))
720 return false;
721
722 page = pfn_to_page(i);
723
724 if (PageReserved(page))
725 return false;
726
727 if (page_count(page) > 0)
728 return false;
729
730 if (PageHuge(page))
731 return false;
732 }
733
734 return true;
735 }
736
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)737 static bool zone_spans_last_pfn(const struct zone *zone,
738 unsigned long start_pfn, unsigned long nr_pages)
739 {
740 unsigned long last_pfn = start_pfn + nr_pages - 1;
741 return zone_spans_pfn(zone, last_pfn);
742 }
743
alloc_gigantic_page(int nid,unsigned int order)744 static struct page *alloc_gigantic_page(int nid, unsigned int order)
745 {
746 unsigned long nr_pages = 1 << order;
747 unsigned long ret, pfn, flags;
748 struct zone *z;
749
750 z = NODE_DATA(nid)->node_zones;
751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 spin_lock_irqsave(&z->lock, flags);
753
754 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 /*
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
763 */
764 spin_unlock_irqrestore(&z->lock, flags);
765 ret = __alloc_gigantic_page(pfn, nr_pages);
766 if (!ret)
767 return pfn_to_page(pfn);
768 spin_lock_irqsave(&z->lock, flags);
769 }
770 pfn += nr_pages;
771 }
772
773 spin_unlock_irqrestore(&z->lock, flags);
774 }
775
776 return NULL;
777 }
778
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
781
alloc_fresh_gigantic_page_node(struct hstate * h,int nid)782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783 {
784 struct page *page;
785
786 page = alloc_gigantic_page(nid, huge_page_order(h));
787 if (page) {
788 prep_compound_gigantic_page(page, huge_page_order(h));
789 prep_new_huge_page(h, page, nid);
790 }
791
792 return page;
793 }
794
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)795 static int alloc_fresh_gigantic_page(struct hstate *h,
796 nodemask_t *nodes_allowed)
797 {
798 struct page *page = NULL;
799 int nr_nodes, node;
800
801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 page = alloc_fresh_gigantic_page_node(h, node);
803 if (page)
804 return 1;
805 }
806
807 return 0;
808 }
809
gigantic_page_supported(void)810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
gigantic_page_supported(void)812 static inline bool gigantic_page_supported(void) { return false; }
free_gigantic_page(struct page * page,unsigned int order)813 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)814 static inline void destroy_compound_gigantic_page(struct page *page,
815 unsigned int order) { }
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 nodemask_t *nodes_allowed) { return 0; }
818 #endif
819
update_and_free_page(struct hstate * h,struct page * page)820 static void update_and_free_page(struct hstate *h, struct page *page)
821 {
822 int i;
823
824 if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 return;
826
827 h->nr_huge_pages--;
828 h->nr_huge_pages_node[page_to_nid(page)]--;
829 for (i = 0; i < pages_per_huge_page(h); i++) {
830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 1 << PG_referenced | 1 << PG_dirty |
832 1 << PG_active | 1 << PG_private |
833 1 << PG_writeback);
834 }
835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836 set_compound_page_dtor(page, NULL);
837 set_page_refcounted(page);
838 if (hstate_is_gigantic(h)) {
839 destroy_compound_gigantic_page(page, huge_page_order(h));
840 free_gigantic_page(page, huge_page_order(h));
841 } else {
842 arch_release_hugepage(page);
843 __free_pages(page, huge_page_order(h));
844 }
845 }
846
size_to_hstate(unsigned long size)847 struct hstate *size_to_hstate(unsigned long size)
848 {
849 struct hstate *h;
850
851 for_each_hstate(h) {
852 if (huge_page_size(h) == size)
853 return h;
854 }
855 return NULL;
856 }
857
858 /*
859 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
860 * to hstate->hugepage_activelist.)
861 *
862 * This function can be called for tail pages, but never returns true for them.
863 */
page_huge_active(struct page * page)864 bool page_huge_active(struct page *page)
865 {
866 VM_BUG_ON_PAGE(!PageHuge(page), page);
867 return PageHead(page) && PagePrivate(&page[1]);
868 }
869
870 /* never called for tail page */
set_page_huge_active(struct page * page)871 static void set_page_huge_active(struct page *page)
872 {
873 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
874 SetPagePrivate(&page[1]);
875 }
876
clear_page_huge_active(struct page * page)877 static void clear_page_huge_active(struct page *page)
878 {
879 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
880 ClearPagePrivate(&page[1]);
881 }
882
free_huge_page(struct page * page)883 void free_huge_page(struct page *page)
884 {
885 /*
886 * Can't pass hstate in here because it is called from the
887 * compound page destructor.
888 */
889 struct hstate *h = page_hstate(page);
890 int nid = page_to_nid(page);
891 struct hugepage_subpool *spool =
892 (struct hugepage_subpool *)page_private(page);
893 bool restore_reserve;
894
895 set_page_private(page, 0);
896 page->mapping = NULL;
897 BUG_ON(page_count(page));
898 BUG_ON(page_mapcount(page));
899 restore_reserve = PagePrivate(page);
900 ClearPagePrivate(page);
901
902 spin_lock(&hugetlb_lock);
903 clear_page_huge_active(page);
904 hugetlb_cgroup_uncharge_page(hstate_index(h),
905 pages_per_huge_page(h), page);
906 if (restore_reserve)
907 h->resv_huge_pages++;
908
909 if (h->surplus_huge_pages_node[nid]) {
910 /* remove the page from active list */
911 list_del(&page->lru);
912 update_and_free_page(h, page);
913 h->surplus_huge_pages--;
914 h->surplus_huge_pages_node[nid]--;
915 } else {
916 arch_clear_hugepage_flags(page);
917 enqueue_huge_page(h, page);
918 }
919 spin_unlock(&hugetlb_lock);
920 hugepage_subpool_put_pages(spool, 1);
921 }
922
prep_new_huge_page(struct hstate * h,struct page * page,int nid)923 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
924 {
925 INIT_LIST_HEAD(&page->lru);
926 set_compound_page_dtor(page, free_huge_page);
927 spin_lock(&hugetlb_lock);
928 set_hugetlb_cgroup(page, NULL);
929 h->nr_huge_pages++;
930 h->nr_huge_pages_node[nid]++;
931 spin_unlock(&hugetlb_lock);
932 put_page(page); /* free it into the hugepage allocator */
933 }
934
prep_compound_gigantic_page(struct page * page,unsigned int order)935 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
936 {
937 int i;
938 int nr_pages = 1 << order;
939 struct page *p = page + 1;
940
941 /* we rely on prep_new_huge_page to set the destructor */
942 set_compound_order(page, order);
943 __SetPageHead(page);
944 __ClearPageReserved(page);
945 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
946 __SetPageTail(p);
947 /*
948 * For gigantic hugepages allocated through bootmem at
949 * boot, it's safer to be consistent with the not-gigantic
950 * hugepages and clear the PG_reserved bit from all tail pages
951 * too. Otherwse drivers using get_user_pages() to access tail
952 * pages may get the reference counting wrong if they see
953 * PG_reserved set on a tail page (despite the head page not
954 * having PG_reserved set). Enforcing this consistency between
955 * head and tail pages allows drivers to optimize away a check
956 * on the head page when they need know if put_page() is needed
957 * after get_user_pages().
958 */
959 __ClearPageReserved(p);
960 set_page_count(p, 0);
961 p->first_page = page;
962 }
963 }
964
965 /*
966 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
967 * transparent huge pages. See the PageTransHuge() documentation for more
968 * details.
969 */
PageHuge(struct page * page)970 int PageHuge(struct page *page)
971 {
972 if (!PageCompound(page))
973 return 0;
974
975 page = compound_head(page);
976 return get_compound_page_dtor(page) == free_huge_page;
977 }
978 EXPORT_SYMBOL_GPL(PageHuge);
979
980 /*
981 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
982 * normal or transparent huge pages.
983 */
PageHeadHuge(struct page * page_head)984 int PageHeadHuge(struct page *page_head)
985 {
986 if (!PageHead(page_head))
987 return 0;
988
989 return get_compound_page_dtor(page_head) == free_huge_page;
990 }
991
__basepage_index(struct page * page)992 pgoff_t __basepage_index(struct page *page)
993 {
994 struct page *page_head = compound_head(page);
995 pgoff_t index = page_index(page_head);
996 unsigned long compound_idx;
997
998 if (!PageHuge(page_head))
999 return page_index(page);
1000
1001 if (compound_order(page_head) >= MAX_ORDER)
1002 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1003 else
1004 compound_idx = page - page_head;
1005
1006 return (index << compound_order(page_head)) + compound_idx;
1007 }
1008
alloc_fresh_huge_page_node(struct hstate * h,int nid)1009 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1010 {
1011 struct page *page;
1012
1013 page = alloc_pages_exact_node(nid,
1014 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1015 __GFP_REPEAT|__GFP_NOWARN,
1016 huge_page_order(h));
1017 if (page) {
1018 if (arch_prepare_hugepage(page)) {
1019 __free_pages(page, huge_page_order(h));
1020 return NULL;
1021 }
1022 prep_new_huge_page(h, page, nid);
1023 }
1024
1025 return page;
1026 }
1027
alloc_fresh_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1028 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1029 {
1030 struct page *page;
1031 int nr_nodes, node;
1032 int ret = 0;
1033
1034 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1035 page = alloc_fresh_huge_page_node(h, node);
1036 if (page) {
1037 ret = 1;
1038 break;
1039 }
1040 }
1041
1042 if (ret)
1043 count_vm_event(HTLB_BUDDY_PGALLOC);
1044 else
1045 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1046
1047 return ret;
1048 }
1049
1050 /*
1051 * Free huge page from pool from next node to free.
1052 * Attempt to keep persistent huge pages more or less
1053 * balanced over allowed nodes.
1054 * Called with hugetlb_lock locked.
1055 */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1056 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1057 bool acct_surplus)
1058 {
1059 int nr_nodes, node;
1060 int ret = 0;
1061
1062 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1063 /*
1064 * If we're returning unused surplus pages, only examine
1065 * nodes with surplus pages.
1066 */
1067 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1068 !list_empty(&h->hugepage_freelists[node])) {
1069 struct page *page =
1070 list_entry(h->hugepage_freelists[node].next,
1071 struct page, lru);
1072 list_del(&page->lru);
1073 h->free_huge_pages--;
1074 h->free_huge_pages_node[node]--;
1075 if (acct_surplus) {
1076 h->surplus_huge_pages--;
1077 h->surplus_huge_pages_node[node]--;
1078 }
1079 update_and_free_page(h, page);
1080 ret = 1;
1081 break;
1082 }
1083 }
1084
1085 return ret;
1086 }
1087
1088 /*
1089 * Dissolve a given free hugepage into free buddy pages. This function does
1090 * nothing for in-use (including surplus) hugepages.
1091 */
dissolve_free_huge_page(struct page * page)1092 static void dissolve_free_huge_page(struct page *page)
1093 {
1094 spin_lock(&hugetlb_lock);
1095 if (PageHuge(page) && !page_count(page)) {
1096 struct hstate *h = page_hstate(page);
1097 int nid = page_to_nid(page);
1098 list_del(&page->lru);
1099 h->free_huge_pages--;
1100 h->free_huge_pages_node[nid]--;
1101 update_and_free_page(h, page);
1102 }
1103 spin_unlock(&hugetlb_lock);
1104 }
1105
1106 /*
1107 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1108 * make specified memory blocks removable from the system.
1109 * Note that start_pfn should aligned with (minimum) hugepage size.
1110 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1111 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1112 {
1113 unsigned int order = 8 * sizeof(void *);
1114 unsigned long pfn;
1115 struct hstate *h;
1116
1117 if (!hugepages_supported())
1118 return;
1119
1120 /* Set scan step to minimum hugepage size */
1121 for_each_hstate(h)
1122 if (order > huge_page_order(h))
1123 order = huge_page_order(h);
1124 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1125 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1126 dissolve_free_huge_page(pfn_to_page(pfn));
1127 }
1128
alloc_buddy_huge_page(struct hstate * h,int nid)1129 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1130 {
1131 struct page *page;
1132 unsigned int r_nid;
1133
1134 if (hstate_is_gigantic(h))
1135 return NULL;
1136
1137 /*
1138 * Assume we will successfully allocate the surplus page to
1139 * prevent racing processes from causing the surplus to exceed
1140 * overcommit
1141 *
1142 * This however introduces a different race, where a process B
1143 * tries to grow the static hugepage pool while alloc_pages() is
1144 * called by process A. B will only examine the per-node
1145 * counters in determining if surplus huge pages can be
1146 * converted to normal huge pages in adjust_pool_surplus(). A
1147 * won't be able to increment the per-node counter, until the
1148 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1149 * no more huge pages can be converted from surplus to normal
1150 * state (and doesn't try to convert again). Thus, we have a
1151 * case where a surplus huge page exists, the pool is grown, and
1152 * the surplus huge page still exists after, even though it
1153 * should just have been converted to a normal huge page. This
1154 * does not leak memory, though, as the hugepage will be freed
1155 * once it is out of use. It also does not allow the counters to
1156 * go out of whack in adjust_pool_surplus() as we don't modify
1157 * the node values until we've gotten the hugepage and only the
1158 * per-node value is checked there.
1159 */
1160 spin_lock(&hugetlb_lock);
1161 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1162 spin_unlock(&hugetlb_lock);
1163 return NULL;
1164 } else {
1165 h->nr_huge_pages++;
1166 h->surplus_huge_pages++;
1167 }
1168 spin_unlock(&hugetlb_lock);
1169
1170 if (nid == NUMA_NO_NODE)
1171 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1172 __GFP_REPEAT|__GFP_NOWARN,
1173 huge_page_order(h));
1174 else
1175 page = alloc_pages_exact_node(nid,
1176 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1177 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1178
1179 if (page && arch_prepare_hugepage(page)) {
1180 __free_pages(page, huge_page_order(h));
1181 page = NULL;
1182 }
1183
1184 spin_lock(&hugetlb_lock);
1185 if (page) {
1186 INIT_LIST_HEAD(&page->lru);
1187 r_nid = page_to_nid(page);
1188 set_compound_page_dtor(page, free_huge_page);
1189 set_hugetlb_cgroup(page, NULL);
1190 /*
1191 * We incremented the global counters already
1192 */
1193 h->nr_huge_pages_node[r_nid]++;
1194 h->surplus_huge_pages_node[r_nid]++;
1195 __count_vm_event(HTLB_BUDDY_PGALLOC);
1196 } else {
1197 h->nr_huge_pages--;
1198 h->surplus_huge_pages--;
1199 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1200 }
1201 spin_unlock(&hugetlb_lock);
1202
1203 return page;
1204 }
1205
1206 /*
1207 * This allocation function is useful in the context where vma is irrelevant.
1208 * E.g. soft-offlining uses this function because it only cares physical
1209 * address of error page.
1210 */
alloc_huge_page_node(struct hstate * h,int nid)1211 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1212 {
1213 struct page *page = NULL;
1214
1215 spin_lock(&hugetlb_lock);
1216 if (h->free_huge_pages - h->resv_huge_pages > 0)
1217 page = dequeue_huge_page_node(h, nid);
1218 spin_unlock(&hugetlb_lock);
1219
1220 if (!page)
1221 page = alloc_buddy_huge_page(h, nid);
1222
1223 return page;
1224 }
1225
1226 /*
1227 * Increase the hugetlb pool such that it can accommodate a reservation
1228 * of size 'delta'.
1229 */
gather_surplus_pages(struct hstate * h,int delta)1230 static int gather_surplus_pages(struct hstate *h, int delta)
1231 {
1232 struct list_head surplus_list;
1233 struct page *page, *tmp;
1234 int ret, i;
1235 int needed, allocated;
1236 bool alloc_ok = true;
1237
1238 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1239 if (needed <= 0) {
1240 h->resv_huge_pages += delta;
1241 return 0;
1242 }
1243
1244 allocated = 0;
1245 INIT_LIST_HEAD(&surplus_list);
1246
1247 ret = -ENOMEM;
1248 retry:
1249 spin_unlock(&hugetlb_lock);
1250 for (i = 0; i < needed; i++) {
1251 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1252 if (!page) {
1253 alloc_ok = false;
1254 break;
1255 }
1256 list_add(&page->lru, &surplus_list);
1257 }
1258 allocated += i;
1259
1260 /*
1261 * After retaking hugetlb_lock, we need to recalculate 'needed'
1262 * because either resv_huge_pages or free_huge_pages may have changed.
1263 */
1264 spin_lock(&hugetlb_lock);
1265 needed = (h->resv_huge_pages + delta) -
1266 (h->free_huge_pages + allocated);
1267 if (needed > 0) {
1268 if (alloc_ok)
1269 goto retry;
1270 /*
1271 * We were not able to allocate enough pages to
1272 * satisfy the entire reservation so we free what
1273 * we've allocated so far.
1274 */
1275 goto free;
1276 }
1277 /*
1278 * The surplus_list now contains _at_least_ the number of extra pages
1279 * needed to accommodate the reservation. Add the appropriate number
1280 * of pages to the hugetlb pool and free the extras back to the buddy
1281 * allocator. Commit the entire reservation here to prevent another
1282 * process from stealing the pages as they are added to the pool but
1283 * before they are reserved.
1284 */
1285 needed += allocated;
1286 h->resv_huge_pages += delta;
1287 ret = 0;
1288
1289 /* Free the needed pages to the hugetlb pool */
1290 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1291 if ((--needed) < 0)
1292 break;
1293 /*
1294 * This page is now managed by the hugetlb allocator and has
1295 * no users -- drop the buddy allocator's reference.
1296 */
1297 put_page_testzero(page);
1298 VM_BUG_ON_PAGE(page_count(page), page);
1299 enqueue_huge_page(h, page);
1300 }
1301 free:
1302 spin_unlock(&hugetlb_lock);
1303
1304 /* Free unnecessary surplus pages to the buddy allocator */
1305 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1306 put_page(page);
1307 spin_lock(&hugetlb_lock);
1308
1309 return ret;
1310 }
1311
1312 /*
1313 * When releasing a hugetlb pool reservation, any surplus pages that were
1314 * allocated to satisfy the reservation must be explicitly freed if they were
1315 * never used.
1316 * Called with hugetlb_lock held.
1317 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1318 static void return_unused_surplus_pages(struct hstate *h,
1319 unsigned long unused_resv_pages)
1320 {
1321 unsigned long nr_pages;
1322
1323 /* Uncommit the reservation */
1324 h->resv_huge_pages -= unused_resv_pages;
1325
1326 /* Cannot return gigantic pages currently */
1327 if (hstate_is_gigantic(h))
1328 return;
1329
1330 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1331
1332 /*
1333 * We want to release as many surplus pages as possible, spread
1334 * evenly across all nodes with memory. Iterate across these nodes
1335 * until we can no longer free unreserved surplus pages. This occurs
1336 * when the nodes with surplus pages have no free pages.
1337 * free_pool_huge_page() will balance the the freed pages across the
1338 * on-line nodes with memory and will handle the hstate accounting.
1339 */
1340 while (nr_pages--) {
1341 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1342 break;
1343 cond_resched_lock(&hugetlb_lock);
1344 }
1345 }
1346
1347 /*
1348 * Determine if the huge page at addr within the vma has an associated
1349 * reservation. Where it does not we will need to logically increase
1350 * reservation and actually increase subpool usage before an allocation
1351 * can occur. Where any new reservation would be required the
1352 * reservation change is prepared, but not committed. Once the page
1353 * has been allocated from the subpool and instantiated the change should
1354 * be committed via vma_commit_reservation. No action is required on
1355 * failure.
1356 */
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1357 static long vma_needs_reservation(struct hstate *h,
1358 struct vm_area_struct *vma, unsigned long addr)
1359 {
1360 struct resv_map *resv;
1361 pgoff_t idx;
1362 long chg;
1363
1364 resv = vma_resv_map(vma);
1365 if (!resv)
1366 return 1;
1367
1368 idx = vma_hugecache_offset(h, vma, addr);
1369 chg = region_chg(resv, idx, idx + 1);
1370
1371 if (vma->vm_flags & VM_MAYSHARE)
1372 return chg;
1373 else
1374 return chg < 0 ? chg : 0;
1375 }
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1376 static void vma_commit_reservation(struct hstate *h,
1377 struct vm_area_struct *vma, unsigned long addr)
1378 {
1379 struct resv_map *resv;
1380 pgoff_t idx;
1381
1382 resv = vma_resv_map(vma);
1383 if (!resv)
1384 return;
1385
1386 idx = vma_hugecache_offset(h, vma, addr);
1387 region_add(resv, idx, idx + 1);
1388 }
1389
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1390 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1391 unsigned long addr, int avoid_reserve)
1392 {
1393 struct hugepage_subpool *spool = subpool_vma(vma);
1394 struct hstate *h = hstate_vma(vma);
1395 struct page *page;
1396 long chg;
1397 int ret, idx;
1398 struct hugetlb_cgroup *h_cg;
1399
1400 idx = hstate_index(h);
1401 /*
1402 * Processes that did not create the mapping will have no
1403 * reserves and will not have accounted against subpool
1404 * limit. Check that the subpool limit can be made before
1405 * satisfying the allocation MAP_NORESERVE mappings may also
1406 * need pages and subpool limit allocated allocated if no reserve
1407 * mapping overlaps.
1408 */
1409 chg = vma_needs_reservation(h, vma, addr);
1410 if (chg < 0)
1411 return ERR_PTR(-ENOMEM);
1412 if (chg || avoid_reserve)
1413 if (hugepage_subpool_get_pages(spool, 1))
1414 return ERR_PTR(-ENOSPC);
1415
1416 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1417 if (ret)
1418 goto out_subpool_put;
1419
1420 spin_lock(&hugetlb_lock);
1421 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1422 if (!page) {
1423 spin_unlock(&hugetlb_lock);
1424 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1425 if (!page)
1426 goto out_uncharge_cgroup;
1427
1428 spin_lock(&hugetlb_lock);
1429 list_move(&page->lru, &h->hugepage_activelist);
1430 /* Fall through */
1431 }
1432 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1433 spin_unlock(&hugetlb_lock);
1434
1435 set_page_private(page, (unsigned long)spool);
1436
1437 vma_commit_reservation(h, vma, addr);
1438 return page;
1439
1440 out_uncharge_cgroup:
1441 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1442 out_subpool_put:
1443 if (chg || avoid_reserve)
1444 hugepage_subpool_put_pages(spool, 1);
1445 return ERR_PTR(-ENOSPC);
1446 }
1447
1448 /*
1449 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1450 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1451 * where no ERR_VALUE is expected to be returned.
1452 */
alloc_huge_page_noerr(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1453 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1454 unsigned long addr, int avoid_reserve)
1455 {
1456 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1457 if (IS_ERR(page))
1458 page = NULL;
1459 return page;
1460 }
1461
alloc_bootmem_huge_page(struct hstate * h)1462 int __weak alloc_bootmem_huge_page(struct hstate *h)
1463 {
1464 struct huge_bootmem_page *m;
1465 int nr_nodes, node;
1466
1467 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1468 void *addr;
1469
1470 addr = memblock_virt_alloc_try_nid_nopanic(
1471 huge_page_size(h), huge_page_size(h),
1472 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1473 if (addr) {
1474 /*
1475 * Use the beginning of the huge page to store the
1476 * huge_bootmem_page struct (until gather_bootmem
1477 * puts them into the mem_map).
1478 */
1479 m = addr;
1480 goto found;
1481 }
1482 }
1483 return 0;
1484
1485 found:
1486 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1487 /* Put them into a private list first because mem_map is not up yet */
1488 list_add(&m->list, &huge_boot_pages);
1489 m->hstate = h;
1490 return 1;
1491 }
1492
prep_compound_huge_page(struct page * page,unsigned int order)1493 static void __init prep_compound_huge_page(struct page *page,
1494 unsigned int order)
1495 {
1496 if (unlikely(order > (MAX_ORDER - 1)))
1497 prep_compound_gigantic_page(page, order);
1498 else
1499 prep_compound_page(page, order);
1500 }
1501
1502 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)1503 static void __init gather_bootmem_prealloc(void)
1504 {
1505 struct huge_bootmem_page *m;
1506
1507 list_for_each_entry(m, &huge_boot_pages, list) {
1508 struct hstate *h = m->hstate;
1509 struct page *page;
1510
1511 #ifdef CONFIG_HIGHMEM
1512 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1513 memblock_free_late(__pa(m),
1514 sizeof(struct huge_bootmem_page));
1515 #else
1516 page = virt_to_page(m);
1517 #endif
1518 WARN_ON(page_count(page) != 1);
1519 prep_compound_huge_page(page, h->order);
1520 WARN_ON(PageReserved(page));
1521 prep_new_huge_page(h, page, page_to_nid(page));
1522 /*
1523 * If we had gigantic hugepages allocated at boot time, we need
1524 * to restore the 'stolen' pages to totalram_pages in order to
1525 * fix confusing memory reports from free(1) and another
1526 * side-effects, like CommitLimit going negative.
1527 */
1528 if (hstate_is_gigantic(h))
1529 adjust_managed_page_count(page, 1 << h->order);
1530 }
1531 }
1532
hugetlb_hstate_alloc_pages(struct hstate * h)1533 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1534 {
1535 unsigned long i;
1536
1537 for (i = 0; i < h->max_huge_pages; ++i) {
1538 if (hstate_is_gigantic(h)) {
1539 if (!alloc_bootmem_huge_page(h))
1540 break;
1541 } else if (!alloc_fresh_huge_page(h,
1542 &node_states[N_MEMORY]))
1543 break;
1544 }
1545 h->max_huge_pages = i;
1546 }
1547
hugetlb_init_hstates(void)1548 static void __init hugetlb_init_hstates(void)
1549 {
1550 struct hstate *h;
1551
1552 for_each_hstate(h) {
1553 /* oversize hugepages were init'ed in early boot */
1554 if (!hstate_is_gigantic(h))
1555 hugetlb_hstate_alloc_pages(h);
1556 }
1557 }
1558
memfmt(char * buf,unsigned long n)1559 static char * __init memfmt(char *buf, unsigned long n)
1560 {
1561 if (n >= (1UL << 30))
1562 sprintf(buf, "%lu GB", n >> 30);
1563 else if (n >= (1UL << 20))
1564 sprintf(buf, "%lu MB", n >> 20);
1565 else
1566 sprintf(buf, "%lu KB", n >> 10);
1567 return buf;
1568 }
1569
report_hugepages(void)1570 static void __init report_hugepages(void)
1571 {
1572 struct hstate *h;
1573
1574 for_each_hstate(h) {
1575 char buf[32];
1576 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1577 memfmt(buf, huge_page_size(h)),
1578 h->free_huge_pages);
1579 }
1580 }
1581
1582 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1583 static void try_to_free_low(struct hstate *h, unsigned long count,
1584 nodemask_t *nodes_allowed)
1585 {
1586 int i;
1587
1588 if (hstate_is_gigantic(h))
1589 return;
1590
1591 for_each_node_mask(i, *nodes_allowed) {
1592 struct page *page, *next;
1593 struct list_head *freel = &h->hugepage_freelists[i];
1594 list_for_each_entry_safe(page, next, freel, lru) {
1595 if (count >= h->nr_huge_pages)
1596 return;
1597 if (PageHighMem(page))
1598 continue;
1599 list_del(&page->lru);
1600 update_and_free_page(h, page);
1601 h->free_huge_pages--;
1602 h->free_huge_pages_node[page_to_nid(page)]--;
1603 }
1604 }
1605 }
1606 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1607 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1608 nodemask_t *nodes_allowed)
1609 {
1610 }
1611 #endif
1612
1613 /*
1614 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1615 * balanced by operating on them in a round-robin fashion.
1616 * Returns 1 if an adjustment was made.
1617 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)1618 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1619 int delta)
1620 {
1621 int nr_nodes, node;
1622
1623 VM_BUG_ON(delta != -1 && delta != 1);
1624
1625 if (delta < 0) {
1626 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1627 if (h->surplus_huge_pages_node[node])
1628 goto found;
1629 }
1630 } else {
1631 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1632 if (h->surplus_huge_pages_node[node] <
1633 h->nr_huge_pages_node[node])
1634 goto found;
1635 }
1636 }
1637 return 0;
1638
1639 found:
1640 h->surplus_huge_pages += delta;
1641 h->surplus_huge_pages_node[node] += delta;
1642 return 1;
1643 }
1644
1645 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1646 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1647 nodemask_t *nodes_allowed)
1648 {
1649 unsigned long min_count, ret;
1650
1651 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1652 return h->max_huge_pages;
1653
1654 /*
1655 * Increase the pool size
1656 * First take pages out of surplus state. Then make up the
1657 * remaining difference by allocating fresh huge pages.
1658 *
1659 * We might race with alloc_buddy_huge_page() here and be unable
1660 * to convert a surplus huge page to a normal huge page. That is
1661 * not critical, though, it just means the overall size of the
1662 * pool might be one hugepage larger than it needs to be, but
1663 * within all the constraints specified by the sysctls.
1664 */
1665 spin_lock(&hugetlb_lock);
1666 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1667 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1668 break;
1669 }
1670
1671 while (count > persistent_huge_pages(h)) {
1672 /*
1673 * If this allocation races such that we no longer need the
1674 * page, free_huge_page will handle it by freeing the page
1675 * and reducing the surplus.
1676 */
1677 spin_unlock(&hugetlb_lock);
1678
1679 /* yield cpu to avoid soft lockup */
1680 cond_resched();
1681
1682 if (hstate_is_gigantic(h))
1683 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1684 else
1685 ret = alloc_fresh_huge_page(h, nodes_allowed);
1686 spin_lock(&hugetlb_lock);
1687 if (!ret)
1688 goto out;
1689
1690 /* Bail for signals. Probably ctrl-c from user */
1691 if (signal_pending(current))
1692 goto out;
1693 }
1694
1695 /*
1696 * Decrease the pool size
1697 * First return free pages to the buddy allocator (being careful
1698 * to keep enough around to satisfy reservations). Then place
1699 * pages into surplus state as needed so the pool will shrink
1700 * to the desired size as pages become free.
1701 *
1702 * By placing pages into the surplus state independent of the
1703 * overcommit value, we are allowing the surplus pool size to
1704 * exceed overcommit. There are few sane options here. Since
1705 * alloc_buddy_huge_page() is checking the global counter,
1706 * though, we'll note that we're not allowed to exceed surplus
1707 * and won't grow the pool anywhere else. Not until one of the
1708 * sysctls are changed, or the surplus pages go out of use.
1709 */
1710 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1711 min_count = max(count, min_count);
1712 try_to_free_low(h, min_count, nodes_allowed);
1713 while (min_count < persistent_huge_pages(h)) {
1714 if (!free_pool_huge_page(h, nodes_allowed, 0))
1715 break;
1716 cond_resched_lock(&hugetlb_lock);
1717 }
1718 while (count < persistent_huge_pages(h)) {
1719 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1720 break;
1721 }
1722 out:
1723 ret = persistent_huge_pages(h);
1724 spin_unlock(&hugetlb_lock);
1725 return ret;
1726 }
1727
1728 #define HSTATE_ATTR_RO(_name) \
1729 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1730
1731 #define HSTATE_ATTR(_name) \
1732 static struct kobj_attribute _name##_attr = \
1733 __ATTR(_name, 0644, _name##_show, _name##_store)
1734
1735 static struct kobject *hugepages_kobj;
1736 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1737
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1739
kobj_to_hstate(struct kobject * kobj,int * nidp)1740 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1741 {
1742 int i;
1743
1744 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1745 if (hstate_kobjs[i] == kobj) {
1746 if (nidp)
1747 *nidp = NUMA_NO_NODE;
1748 return &hstates[i];
1749 }
1750
1751 return kobj_to_node_hstate(kobj, nidp);
1752 }
1753
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1754 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1755 struct kobj_attribute *attr, char *buf)
1756 {
1757 struct hstate *h;
1758 unsigned long nr_huge_pages;
1759 int nid;
1760
1761 h = kobj_to_hstate(kobj, &nid);
1762 if (nid == NUMA_NO_NODE)
1763 nr_huge_pages = h->nr_huge_pages;
1764 else
1765 nr_huge_pages = h->nr_huge_pages_node[nid];
1766
1767 return sprintf(buf, "%lu\n", nr_huge_pages);
1768 }
1769
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)1770 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1771 struct hstate *h, int nid,
1772 unsigned long count, size_t len)
1773 {
1774 int err;
1775 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1776
1777 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1778 err = -EINVAL;
1779 goto out;
1780 }
1781
1782 if (nid == NUMA_NO_NODE) {
1783 /*
1784 * global hstate attribute
1785 */
1786 if (!(obey_mempolicy &&
1787 init_nodemask_of_mempolicy(nodes_allowed))) {
1788 NODEMASK_FREE(nodes_allowed);
1789 nodes_allowed = &node_states[N_MEMORY];
1790 }
1791 } else if (nodes_allowed) {
1792 /*
1793 * per node hstate attribute: adjust count to global,
1794 * but restrict alloc/free to the specified node.
1795 */
1796 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1797 init_nodemask_of_node(nodes_allowed, nid);
1798 } else
1799 nodes_allowed = &node_states[N_MEMORY];
1800
1801 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1802
1803 if (nodes_allowed != &node_states[N_MEMORY])
1804 NODEMASK_FREE(nodes_allowed);
1805
1806 return len;
1807 out:
1808 NODEMASK_FREE(nodes_allowed);
1809 return err;
1810 }
1811
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)1812 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1813 struct kobject *kobj, const char *buf,
1814 size_t len)
1815 {
1816 struct hstate *h;
1817 unsigned long count;
1818 int nid;
1819 int err;
1820
1821 err = kstrtoul(buf, 10, &count);
1822 if (err)
1823 return err;
1824
1825 h = kobj_to_hstate(kobj, &nid);
1826 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1827 }
1828
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1829 static ssize_t nr_hugepages_show(struct kobject *kobj,
1830 struct kobj_attribute *attr, char *buf)
1831 {
1832 return nr_hugepages_show_common(kobj, attr, buf);
1833 }
1834
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1835 static ssize_t nr_hugepages_store(struct kobject *kobj,
1836 struct kobj_attribute *attr, const char *buf, size_t len)
1837 {
1838 return nr_hugepages_store_common(false, kobj, buf, len);
1839 }
1840 HSTATE_ATTR(nr_hugepages);
1841
1842 #ifdef CONFIG_NUMA
1843
1844 /*
1845 * hstate attribute for optionally mempolicy-based constraint on persistent
1846 * huge page alloc/free.
1847 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1848 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1849 struct kobj_attribute *attr, char *buf)
1850 {
1851 return nr_hugepages_show_common(kobj, attr, buf);
1852 }
1853
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1854 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1855 struct kobj_attribute *attr, const char *buf, size_t len)
1856 {
1857 return nr_hugepages_store_common(true, kobj, buf, len);
1858 }
1859 HSTATE_ATTR(nr_hugepages_mempolicy);
1860 #endif
1861
1862
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1863 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1864 struct kobj_attribute *attr, char *buf)
1865 {
1866 struct hstate *h = kobj_to_hstate(kobj, NULL);
1867 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1868 }
1869
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1870 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1871 struct kobj_attribute *attr, const char *buf, size_t count)
1872 {
1873 int err;
1874 unsigned long input;
1875 struct hstate *h = kobj_to_hstate(kobj, NULL);
1876
1877 if (hstate_is_gigantic(h))
1878 return -EINVAL;
1879
1880 err = kstrtoul(buf, 10, &input);
1881 if (err)
1882 return err;
1883
1884 spin_lock(&hugetlb_lock);
1885 h->nr_overcommit_huge_pages = input;
1886 spin_unlock(&hugetlb_lock);
1887
1888 return count;
1889 }
1890 HSTATE_ATTR(nr_overcommit_hugepages);
1891
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1892 static ssize_t free_hugepages_show(struct kobject *kobj,
1893 struct kobj_attribute *attr, char *buf)
1894 {
1895 struct hstate *h;
1896 unsigned long free_huge_pages;
1897 int nid;
1898
1899 h = kobj_to_hstate(kobj, &nid);
1900 if (nid == NUMA_NO_NODE)
1901 free_huge_pages = h->free_huge_pages;
1902 else
1903 free_huge_pages = h->free_huge_pages_node[nid];
1904
1905 return sprintf(buf, "%lu\n", free_huge_pages);
1906 }
1907 HSTATE_ATTR_RO(free_hugepages);
1908
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1909 static ssize_t resv_hugepages_show(struct kobject *kobj,
1910 struct kobj_attribute *attr, char *buf)
1911 {
1912 struct hstate *h = kobj_to_hstate(kobj, NULL);
1913 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1914 }
1915 HSTATE_ATTR_RO(resv_hugepages);
1916
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1917 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1918 struct kobj_attribute *attr, char *buf)
1919 {
1920 struct hstate *h;
1921 unsigned long surplus_huge_pages;
1922 int nid;
1923
1924 h = kobj_to_hstate(kobj, &nid);
1925 if (nid == NUMA_NO_NODE)
1926 surplus_huge_pages = h->surplus_huge_pages;
1927 else
1928 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1929
1930 return sprintf(buf, "%lu\n", surplus_huge_pages);
1931 }
1932 HSTATE_ATTR_RO(surplus_hugepages);
1933
1934 static struct attribute *hstate_attrs[] = {
1935 &nr_hugepages_attr.attr,
1936 &nr_overcommit_hugepages_attr.attr,
1937 &free_hugepages_attr.attr,
1938 &resv_hugepages_attr.attr,
1939 &surplus_hugepages_attr.attr,
1940 #ifdef CONFIG_NUMA
1941 &nr_hugepages_mempolicy_attr.attr,
1942 #endif
1943 NULL,
1944 };
1945
1946 static struct attribute_group hstate_attr_group = {
1947 .attrs = hstate_attrs,
1948 };
1949
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,struct attribute_group * hstate_attr_group)1950 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1951 struct kobject **hstate_kobjs,
1952 struct attribute_group *hstate_attr_group)
1953 {
1954 int retval;
1955 int hi = hstate_index(h);
1956
1957 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1958 if (!hstate_kobjs[hi])
1959 return -ENOMEM;
1960
1961 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1962 if (retval)
1963 kobject_put(hstate_kobjs[hi]);
1964
1965 return retval;
1966 }
1967
hugetlb_sysfs_init(void)1968 static void __init hugetlb_sysfs_init(void)
1969 {
1970 struct hstate *h;
1971 int err;
1972
1973 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1974 if (!hugepages_kobj)
1975 return;
1976
1977 for_each_hstate(h) {
1978 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1979 hstate_kobjs, &hstate_attr_group);
1980 if (err)
1981 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1982 }
1983 }
1984
1985 #ifdef CONFIG_NUMA
1986
1987 /*
1988 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1989 * with node devices in node_devices[] using a parallel array. The array
1990 * index of a node device or _hstate == node id.
1991 * This is here to avoid any static dependency of the node device driver, in
1992 * the base kernel, on the hugetlb module.
1993 */
1994 struct node_hstate {
1995 struct kobject *hugepages_kobj;
1996 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1997 };
1998 struct node_hstate node_hstates[MAX_NUMNODES];
1999
2000 /*
2001 * A subset of global hstate attributes for node devices
2002 */
2003 static struct attribute *per_node_hstate_attrs[] = {
2004 &nr_hugepages_attr.attr,
2005 &free_hugepages_attr.attr,
2006 &surplus_hugepages_attr.attr,
2007 NULL,
2008 };
2009
2010 static struct attribute_group per_node_hstate_attr_group = {
2011 .attrs = per_node_hstate_attrs,
2012 };
2013
2014 /*
2015 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2016 * Returns node id via non-NULL nidp.
2017 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2018 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2019 {
2020 int nid;
2021
2022 for (nid = 0; nid < nr_node_ids; nid++) {
2023 struct node_hstate *nhs = &node_hstates[nid];
2024 int i;
2025 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2026 if (nhs->hstate_kobjs[i] == kobj) {
2027 if (nidp)
2028 *nidp = nid;
2029 return &hstates[i];
2030 }
2031 }
2032
2033 BUG();
2034 return NULL;
2035 }
2036
2037 /*
2038 * Unregister hstate attributes from a single node device.
2039 * No-op if no hstate attributes attached.
2040 */
hugetlb_unregister_node(struct node * node)2041 static void hugetlb_unregister_node(struct node *node)
2042 {
2043 struct hstate *h;
2044 struct node_hstate *nhs = &node_hstates[node->dev.id];
2045
2046 if (!nhs->hugepages_kobj)
2047 return; /* no hstate attributes */
2048
2049 for_each_hstate(h) {
2050 int idx = hstate_index(h);
2051 if (nhs->hstate_kobjs[idx]) {
2052 kobject_put(nhs->hstate_kobjs[idx]);
2053 nhs->hstate_kobjs[idx] = NULL;
2054 }
2055 }
2056
2057 kobject_put(nhs->hugepages_kobj);
2058 nhs->hugepages_kobj = NULL;
2059 }
2060
2061 /*
2062 * hugetlb module exit: unregister hstate attributes from node devices
2063 * that have them.
2064 */
hugetlb_unregister_all_nodes(void)2065 static void hugetlb_unregister_all_nodes(void)
2066 {
2067 int nid;
2068
2069 /*
2070 * disable node device registrations.
2071 */
2072 register_hugetlbfs_with_node(NULL, NULL);
2073
2074 /*
2075 * remove hstate attributes from any nodes that have them.
2076 */
2077 for (nid = 0; nid < nr_node_ids; nid++)
2078 hugetlb_unregister_node(node_devices[nid]);
2079 }
2080
2081 /*
2082 * Register hstate attributes for a single node device.
2083 * No-op if attributes already registered.
2084 */
hugetlb_register_node(struct node * node)2085 static void hugetlb_register_node(struct node *node)
2086 {
2087 struct hstate *h;
2088 struct node_hstate *nhs = &node_hstates[node->dev.id];
2089 int err;
2090
2091 if (nhs->hugepages_kobj)
2092 return; /* already allocated */
2093
2094 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2095 &node->dev.kobj);
2096 if (!nhs->hugepages_kobj)
2097 return;
2098
2099 for_each_hstate(h) {
2100 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2101 nhs->hstate_kobjs,
2102 &per_node_hstate_attr_group);
2103 if (err) {
2104 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2105 h->name, node->dev.id);
2106 hugetlb_unregister_node(node);
2107 break;
2108 }
2109 }
2110 }
2111
2112 /*
2113 * hugetlb init time: register hstate attributes for all registered node
2114 * devices of nodes that have memory. All on-line nodes should have
2115 * registered their associated device by this time.
2116 */
hugetlb_register_all_nodes(void)2117 static void hugetlb_register_all_nodes(void)
2118 {
2119 int nid;
2120
2121 for_each_node_state(nid, N_MEMORY) {
2122 struct node *node = node_devices[nid];
2123 if (node->dev.id == nid)
2124 hugetlb_register_node(node);
2125 }
2126
2127 /*
2128 * Let the node device driver know we're here so it can
2129 * [un]register hstate attributes on node hotplug.
2130 */
2131 register_hugetlbfs_with_node(hugetlb_register_node,
2132 hugetlb_unregister_node);
2133 }
2134 #else /* !CONFIG_NUMA */
2135
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2136 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2137 {
2138 BUG();
2139 if (nidp)
2140 *nidp = -1;
2141 return NULL;
2142 }
2143
hugetlb_unregister_all_nodes(void)2144 static void hugetlb_unregister_all_nodes(void) { }
2145
hugetlb_register_all_nodes(void)2146 static void hugetlb_register_all_nodes(void) { }
2147
2148 #endif
2149
hugetlb_exit(void)2150 static void __exit hugetlb_exit(void)
2151 {
2152 struct hstate *h;
2153
2154 hugetlb_unregister_all_nodes();
2155
2156 for_each_hstate(h) {
2157 kobject_put(hstate_kobjs[hstate_index(h)]);
2158 }
2159
2160 kobject_put(hugepages_kobj);
2161 kfree(htlb_fault_mutex_table);
2162 }
2163 module_exit(hugetlb_exit);
2164
hugetlb_init(void)2165 static int __init hugetlb_init(void)
2166 {
2167 int i;
2168
2169 if (!hugepages_supported())
2170 return 0;
2171
2172 if (!size_to_hstate(default_hstate_size)) {
2173 default_hstate_size = HPAGE_SIZE;
2174 if (!size_to_hstate(default_hstate_size))
2175 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2176 }
2177 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2178 if (default_hstate_max_huge_pages)
2179 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2180
2181 hugetlb_init_hstates();
2182 gather_bootmem_prealloc();
2183 report_hugepages();
2184
2185 hugetlb_sysfs_init();
2186 hugetlb_register_all_nodes();
2187 hugetlb_cgroup_file_init();
2188
2189 #ifdef CONFIG_SMP
2190 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2191 #else
2192 num_fault_mutexes = 1;
2193 #endif
2194 htlb_fault_mutex_table =
2195 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2196 BUG_ON(!htlb_fault_mutex_table);
2197
2198 for (i = 0; i < num_fault_mutexes; i++)
2199 mutex_init(&htlb_fault_mutex_table[i]);
2200 return 0;
2201 }
2202 module_init(hugetlb_init);
2203
2204 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned int order)2205 void __init hugetlb_add_hstate(unsigned int order)
2206 {
2207 struct hstate *h;
2208 unsigned long i;
2209
2210 if (size_to_hstate(PAGE_SIZE << order)) {
2211 pr_warning("hugepagesz= specified twice, ignoring\n");
2212 return;
2213 }
2214 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2215 BUG_ON(order == 0);
2216 h = &hstates[hugetlb_max_hstate++];
2217 h->order = order;
2218 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2219 h->nr_huge_pages = 0;
2220 h->free_huge_pages = 0;
2221 for (i = 0; i < MAX_NUMNODES; ++i)
2222 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2223 INIT_LIST_HEAD(&h->hugepage_activelist);
2224 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2225 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2226 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2227 huge_page_size(h)/1024);
2228
2229 parsed_hstate = h;
2230 }
2231
hugetlb_nrpages_setup(char * s)2232 static int __init hugetlb_nrpages_setup(char *s)
2233 {
2234 unsigned long *mhp;
2235 static unsigned long *last_mhp;
2236
2237 /*
2238 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2239 * so this hugepages= parameter goes to the "default hstate".
2240 */
2241 if (!hugetlb_max_hstate)
2242 mhp = &default_hstate_max_huge_pages;
2243 else
2244 mhp = &parsed_hstate->max_huge_pages;
2245
2246 if (mhp == last_mhp) {
2247 pr_warning("hugepages= specified twice without "
2248 "interleaving hugepagesz=, ignoring\n");
2249 return 1;
2250 }
2251
2252 if (sscanf(s, "%lu", mhp) <= 0)
2253 *mhp = 0;
2254
2255 /*
2256 * Global state is always initialized later in hugetlb_init.
2257 * But we need to allocate >= MAX_ORDER hstates here early to still
2258 * use the bootmem allocator.
2259 */
2260 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2261 hugetlb_hstate_alloc_pages(parsed_hstate);
2262
2263 last_mhp = mhp;
2264
2265 return 1;
2266 }
2267 __setup("hugepages=", hugetlb_nrpages_setup);
2268
hugetlb_default_setup(char * s)2269 static int __init hugetlb_default_setup(char *s)
2270 {
2271 default_hstate_size = memparse(s, &s);
2272 return 1;
2273 }
2274 __setup("default_hugepagesz=", hugetlb_default_setup);
2275
cpuset_mems_nr(unsigned int * array)2276 static unsigned int cpuset_mems_nr(unsigned int *array)
2277 {
2278 int node;
2279 unsigned int nr = 0;
2280
2281 for_each_node_mask(node, cpuset_current_mems_allowed)
2282 nr += array[node];
2283
2284 return nr;
2285 }
2286
2287 #ifdef CONFIG_SYSCTL
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2288 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2289 struct ctl_table *table, int write,
2290 void __user *buffer, size_t *length, loff_t *ppos)
2291 {
2292 struct hstate *h = &default_hstate;
2293 unsigned long tmp = h->max_huge_pages;
2294 int ret;
2295
2296 if (!hugepages_supported())
2297 return -ENOTSUPP;
2298
2299 table->data = &tmp;
2300 table->maxlen = sizeof(unsigned long);
2301 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2302 if (ret)
2303 goto out;
2304
2305 if (write)
2306 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2307 NUMA_NO_NODE, tmp, *length);
2308 out:
2309 return ret;
2310 }
2311
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2312 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2313 void __user *buffer, size_t *length, loff_t *ppos)
2314 {
2315
2316 return hugetlb_sysctl_handler_common(false, table, write,
2317 buffer, length, ppos);
2318 }
2319
2320 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2321 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2322 void __user *buffer, size_t *length, loff_t *ppos)
2323 {
2324 return hugetlb_sysctl_handler_common(true, table, write,
2325 buffer, length, ppos);
2326 }
2327 #endif /* CONFIG_NUMA */
2328
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2329 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2330 void __user *buffer,
2331 size_t *length, loff_t *ppos)
2332 {
2333 struct hstate *h = &default_hstate;
2334 unsigned long tmp;
2335 int ret;
2336
2337 if (!hugepages_supported())
2338 return -ENOTSUPP;
2339
2340 tmp = h->nr_overcommit_huge_pages;
2341
2342 if (write && hstate_is_gigantic(h))
2343 return -EINVAL;
2344
2345 table->data = &tmp;
2346 table->maxlen = sizeof(unsigned long);
2347 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2348 if (ret)
2349 goto out;
2350
2351 if (write) {
2352 spin_lock(&hugetlb_lock);
2353 h->nr_overcommit_huge_pages = tmp;
2354 spin_unlock(&hugetlb_lock);
2355 }
2356 out:
2357 return ret;
2358 }
2359
2360 #endif /* CONFIG_SYSCTL */
2361
hugetlb_report_meminfo(struct seq_file * m)2362 void hugetlb_report_meminfo(struct seq_file *m)
2363 {
2364 struct hstate *h = &default_hstate;
2365 if (!hugepages_supported())
2366 return;
2367 seq_printf(m,
2368 "HugePages_Total: %5lu\n"
2369 "HugePages_Free: %5lu\n"
2370 "HugePages_Rsvd: %5lu\n"
2371 "HugePages_Surp: %5lu\n"
2372 "Hugepagesize: %8lu kB\n",
2373 h->nr_huge_pages,
2374 h->free_huge_pages,
2375 h->resv_huge_pages,
2376 h->surplus_huge_pages,
2377 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2378 }
2379
hugetlb_report_node_meminfo(int nid,char * buf)2380 int hugetlb_report_node_meminfo(int nid, char *buf)
2381 {
2382 struct hstate *h = &default_hstate;
2383 if (!hugepages_supported())
2384 return 0;
2385 return sprintf(buf,
2386 "Node %d HugePages_Total: %5u\n"
2387 "Node %d HugePages_Free: %5u\n"
2388 "Node %d HugePages_Surp: %5u\n",
2389 nid, h->nr_huge_pages_node[nid],
2390 nid, h->free_huge_pages_node[nid],
2391 nid, h->surplus_huge_pages_node[nid]);
2392 }
2393
hugetlb_show_meminfo(void)2394 void hugetlb_show_meminfo(void)
2395 {
2396 struct hstate *h;
2397 int nid;
2398
2399 if (!hugepages_supported())
2400 return;
2401
2402 for_each_node_state(nid, N_MEMORY)
2403 for_each_hstate(h)
2404 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2405 nid,
2406 h->nr_huge_pages_node[nid],
2407 h->free_huge_pages_node[nid],
2408 h->surplus_huge_pages_node[nid],
2409 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2410 }
2411
2412 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)2413 unsigned long hugetlb_total_pages(void)
2414 {
2415 struct hstate *h;
2416 unsigned long nr_total_pages = 0;
2417
2418 for_each_hstate(h)
2419 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2420 return nr_total_pages;
2421 }
2422
hugetlb_acct_memory(struct hstate * h,long delta)2423 static int hugetlb_acct_memory(struct hstate *h, long delta)
2424 {
2425 int ret = -ENOMEM;
2426
2427 spin_lock(&hugetlb_lock);
2428 /*
2429 * When cpuset is configured, it breaks the strict hugetlb page
2430 * reservation as the accounting is done on a global variable. Such
2431 * reservation is completely rubbish in the presence of cpuset because
2432 * the reservation is not checked against page availability for the
2433 * current cpuset. Application can still potentially OOM'ed by kernel
2434 * with lack of free htlb page in cpuset that the task is in.
2435 * Attempt to enforce strict accounting with cpuset is almost
2436 * impossible (or too ugly) because cpuset is too fluid that
2437 * task or memory node can be dynamically moved between cpusets.
2438 *
2439 * The change of semantics for shared hugetlb mapping with cpuset is
2440 * undesirable. However, in order to preserve some of the semantics,
2441 * we fall back to check against current free page availability as
2442 * a best attempt and hopefully to minimize the impact of changing
2443 * semantics that cpuset has.
2444 */
2445 if (delta > 0) {
2446 if (gather_surplus_pages(h, delta) < 0)
2447 goto out;
2448
2449 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2450 return_unused_surplus_pages(h, delta);
2451 goto out;
2452 }
2453 }
2454
2455 ret = 0;
2456 if (delta < 0)
2457 return_unused_surplus_pages(h, (unsigned long) -delta);
2458
2459 out:
2460 spin_unlock(&hugetlb_lock);
2461 return ret;
2462 }
2463
hugetlb_vm_op_open(struct vm_area_struct * vma)2464 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2465 {
2466 struct resv_map *resv = vma_resv_map(vma);
2467
2468 /*
2469 * This new VMA should share its siblings reservation map if present.
2470 * The VMA will only ever have a valid reservation map pointer where
2471 * it is being copied for another still existing VMA. As that VMA
2472 * has a reference to the reservation map it cannot disappear until
2473 * after this open call completes. It is therefore safe to take a
2474 * new reference here without additional locking.
2475 */
2476 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2477 kref_get(&resv->refs);
2478 }
2479
hugetlb_vm_op_close(struct vm_area_struct * vma)2480 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2481 {
2482 struct hstate *h = hstate_vma(vma);
2483 struct resv_map *resv = vma_resv_map(vma);
2484 struct hugepage_subpool *spool = subpool_vma(vma);
2485 unsigned long reserve, start, end;
2486
2487 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2488 return;
2489
2490 start = vma_hugecache_offset(h, vma, vma->vm_start);
2491 end = vma_hugecache_offset(h, vma, vma->vm_end);
2492
2493 reserve = (end - start) - region_count(resv, start, end);
2494
2495 kref_put(&resv->refs, resv_map_release);
2496
2497 if (reserve) {
2498 hugetlb_acct_memory(h, -reserve);
2499 hugepage_subpool_put_pages(spool, reserve);
2500 }
2501 }
2502
2503 /*
2504 * We cannot handle pagefaults against hugetlb pages at all. They cause
2505 * handle_mm_fault() to try to instantiate regular-sized pages in the
2506 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2507 * this far.
2508 */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2509 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2510 {
2511 BUG();
2512 return 0;
2513 }
2514
2515 const struct vm_operations_struct hugetlb_vm_ops = {
2516 .fault = hugetlb_vm_op_fault,
2517 .open = hugetlb_vm_op_open,
2518 .close = hugetlb_vm_op_close,
2519 };
2520
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)2521 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2522 int writable)
2523 {
2524 pte_t entry;
2525
2526 if (writable) {
2527 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2528 vma->vm_page_prot)));
2529 } else {
2530 entry = huge_pte_wrprotect(mk_huge_pte(page,
2531 vma->vm_page_prot));
2532 }
2533 entry = pte_mkyoung(entry);
2534 entry = pte_mkhuge(entry);
2535 entry = arch_make_huge_pte(entry, vma, page, writable);
2536
2537 return entry;
2538 }
2539
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)2540 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2541 unsigned long address, pte_t *ptep)
2542 {
2543 pte_t entry;
2544
2545 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2546 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2547 update_mmu_cache(vma, address, ptep);
2548 }
2549
is_hugetlb_entry_migration(pte_t pte)2550 static int is_hugetlb_entry_migration(pte_t pte)
2551 {
2552 swp_entry_t swp;
2553
2554 if (huge_pte_none(pte) || pte_present(pte))
2555 return 0;
2556 swp = pte_to_swp_entry(pte);
2557 if (non_swap_entry(swp) && is_migration_entry(swp))
2558 return 1;
2559 else
2560 return 0;
2561 }
2562
is_hugetlb_entry_hwpoisoned(pte_t pte)2563 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2564 {
2565 swp_entry_t swp;
2566
2567 if (huge_pte_none(pte) || pte_present(pte))
2568 return 0;
2569 swp = pte_to_swp_entry(pte);
2570 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2571 return 1;
2572 else
2573 return 0;
2574 }
2575
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)2576 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2577 struct vm_area_struct *vma)
2578 {
2579 pte_t *src_pte, *dst_pte, entry;
2580 struct page *ptepage;
2581 unsigned long addr;
2582 int cow;
2583 struct hstate *h = hstate_vma(vma);
2584 unsigned long sz = huge_page_size(h);
2585 unsigned long mmun_start; /* For mmu_notifiers */
2586 unsigned long mmun_end; /* For mmu_notifiers */
2587 int ret = 0;
2588
2589 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2590
2591 mmun_start = vma->vm_start;
2592 mmun_end = vma->vm_end;
2593 if (cow)
2594 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2595
2596 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2597 spinlock_t *src_ptl, *dst_ptl;
2598 src_pte = huge_pte_offset(src, addr);
2599 if (!src_pte)
2600 continue;
2601 dst_pte = huge_pte_alloc(dst, addr, sz);
2602 if (!dst_pte) {
2603 ret = -ENOMEM;
2604 break;
2605 }
2606
2607 /* If the pagetables are shared don't copy or take references */
2608 if (dst_pte == src_pte)
2609 continue;
2610
2611 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2612 src_ptl = huge_pte_lockptr(h, src, src_pte);
2613 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2614 entry = huge_ptep_get(src_pte);
2615 if (huge_pte_none(entry)) { /* skip none entry */
2616 ;
2617 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2618 is_hugetlb_entry_hwpoisoned(entry))) {
2619 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2620
2621 if (is_write_migration_entry(swp_entry) && cow) {
2622 /*
2623 * COW mappings require pages in both
2624 * parent and child to be set to read.
2625 */
2626 make_migration_entry_read(&swp_entry);
2627 entry = swp_entry_to_pte(swp_entry);
2628 set_huge_pte_at(src, addr, src_pte, entry);
2629 }
2630 set_huge_pte_at(dst, addr, dst_pte, entry);
2631 } else {
2632 if (cow)
2633 huge_ptep_set_wrprotect(src, addr, src_pte);
2634 entry = huge_ptep_get(src_pte);
2635 ptepage = pte_page(entry);
2636 get_page(ptepage);
2637 page_dup_rmap(ptepage);
2638 set_huge_pte_at(dst, addr, dst_pte, entry);
2639 }
2640 spin_unlock(src_ptl);
2641 spin_unlock(dst_ptl);
2642 }
2643
2644 if (cow)
2645 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2646
2647 return ret;
2648 }
2649
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2650 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2651 unsigned long start, unsigned long end,
2652 struct page *ref_page)
2653 {
2654 int force_flush = 0;
2655 struct mm_struct *mm = vma->vm_mm;
2656 unsigned long address;
2657 pte_t *ptep;
2658 pte_t pte;
2659 spinlock_t *ptl;
2660 struct page *page;
2661 struct hstate *h = hstate_vma(vma);
2662 unsigned long sz = huge_page_size(h);
2663 const unsigned long mmun_start = start; /* For mmu_notifiers */
2664 const unsigned long mmun_end = end; /* For mmu_notifiers */
2665
2666 WARN_ON(!is_vm_hugetlb_page(vma));
2667 BUG_ON(start & ~huge_page_mask(h));
2668 BUG_ON(end & ~huge_page_mask(h));
2669
2670 tlb_start_vma(tlb, vma);
2671 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2672 again:
2673 for (address = start; address < end; address += sz) {
2674 ptep = huge_pte_offset(mm, address);
2675 if (!ptep)
2676 continue;
2677
2678 ptl = huge_pte_lock(h, mm, ptep);
2679 if (huge_pmd_unshare(mm, &address, ptep))
2680 goto unlock;
2681
2682 pte = huge_ptep_get(ptep);
2683 if (huge_pte_none(pte))
2684 goto unlock;
2685
2686 /*
2687 * Migrating hugepage or HWPoisoned hugepage is already
2688 * unmapped and its refcount is dropped, so just clear pte here.
2689 */
2690 if (unlikely(!pte_present(pte))) {
2691 huge_pte_clear(mm, address, ptep);
2692 goto unlock;
2693 }
2694
2695 page = pte_page(pte);
2696 /*
2697 * If a reference page is supplied, it is because a specific
2698 * page is being unmapped, not a range. Ensure the page we
2699 * are about to unmap is the actual page of interest.
2700 */
2701 if (ref_page) {
2702 if (page != ref_page)
2703 goto unlock;
2704
2705 /*
2706 * Mark the VMA as having unmapped its page so that
2707 * future faults in this VMA will fail rather than
2708 * looking like data was lost
2709 */
2710 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2711 }
2712
2713 pte = huge_ptep_get_and_clear(mm, address, ptep);
2714 tlb_remove_tlb_entry(tlb, ptep, address);
2715 if (huge_pte_dirty(pte))
2716 set_page_dirty(page);
2717
2718 page_remove_rmap(page);
2719 force_flush = !__tlb_remove_page(tlb, page);
2720 if (force_flush) {
2721 spin_unlock(ptl);
2722 break;
2723 }
2724 /* Bail out after unmapping reference page if supplied */
2725 if (ref_page) {
2726 spin_unlock(ptl);
2727 break;
2728 }
2729 unlock:
2730 spin_unlock(ptl);
2731 }
2732 /*
2733 * mmu_gather ran out of room to batch pages, we break out of
2734 * the PTE lock to avoid doing the potential expensive TLB invalidate
2735 * and page-free while holding it.
2736 */
2737 if (force_flush) {
2738 force_flush = 0;
2739 tlb_flush_mmu(tlb);
2740 if (address < end && !ref_page)
2741 goto again;
2742 }
2743 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2744 tlb_end_vma(tlb, vma);
2745 }
2746
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2747 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2748 struct vm_area_struct *vma, unsigned long start,
2749 unsigned long end, struct page *ref_page)
2750 {
2751 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2752
2753 /*
2754 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2755 * test will fail on a vma being torn down, and not grab a page table
2756 * on its way out. We're lucky that the flag has such an appropriate
2757 * name, and can in fact be safely cleared here. We could clear it
2758 * before the __unmap_hugepage_range above, but all that's necessary
2759 * is to clear it before releasing the i_mmap_mutex. This works
2760 * because in the context this is called, the VMA is about to be
2761 * destroyed and the i_mmap_mutex is held.
2762 */
2763 vma->vm_flags &= ~VM_MAYSHARE;
2764 }
2765
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2766 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2767 unsigned long end, struct page *ref_page)
2768 {
2769 struct mm_struct *mm;
2770 struct mmu_gather tlb;
2771
2772 mm = vma->vm_mm;
2773
2774 tlb_gather_mmu(&tlb, mm, start, end);
2775 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2776 tlb_finish_mmu(&tlb, start, end);
2777 }
2778
2779 /*
2780 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2781 * mappping it owns the reserve page for. The intention is to unmap the page
2782 * from other VMAs and let the children be SIGKILLed if they are faulting the
2783 * same region.
2784 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)2785 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2786 struct page *page, unsigned long address)
2787 {
2788 struct hstate *h = hstate_vma(vma);
2789 struct vm_area_struct *iter_vma;
2790 struct address_space *mapping;
2791 pgoff_t pgoff;
2792
2793 /*
2794 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2795 * from page cache lookup which is in HPAGE_SIZE units.
2796 */
2797 address = address & huge_page_mask(h);
2798 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2799 vma->vm_pgoff;
2800 mapping = file_inode(vma->vm_file)->i_mapping;
2801
2802 /*
2803 * Take the mapping lock for the duration of the table walk. As
2804 * this mapping should be shared between all the VMAs,
2805 * __unmap_hugepage_range() is called as the lock is already held
2806 */
2807 mutex_lock(&mapping->i_mmap_mutex);
2808 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2809 /* Do not unmap the current VMA */
2810 if (iter_vma == vma)
2811 continue;
2812
2813 /*
2814 * Shared VMAs have their own reserves and do not affect
2815 * MAP_PRIVATE accounting but it is possible that a shared
2816 * VMA is using the same page so check and skip such VMAs.
2817 */
2818 if (iter_vma->vm_flags & VM_MAYSHARE)
2819 continue;
2820
2821 /*
2822 * Unmap the page from other VMAs without their own reserves.
2823 * They get marked to be SIGKILLed if they fault in these
2824 * areas. This is because a future no-page fault on this VMA
2825 * could insert a zeroed page instead of the data existing
2826 * from the time of fork. This would look like data corruption
2827 */
2828 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2829 unmap_hugepage_range(iter_vma, address,
2830 address + huge_page_size(h), page);
2831 }
2832 mutex_unlock(&mapping->i_mmap_mutex);
2833 }
2834
2835 /*
2836 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2837 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2838 * cannot race with other handlers or page migration.
2839 * Keep the pte_same checks anyway to make transition from the mutex easier.
2840 */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page,spinlock_t * ptl)2841 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2842 unsigned long address, pte_t *ptep, pte_t pte,
2843 struct page *pagecache_page, spinlock_t *ptl)
2844 {
2845 struct hstate *h = hstate_vma(vma);
2846 struct page *old_page, *new_page;
2847 int ret = 0, outside_reserve = 0;
2848 unsigned long mmun_start; /* For mmu_notifiers */
2849 unsigned long mmun_end; /* For mmu_notifiers */
2850
2851 old_page = pte_page(pte);
2852
2853 retry_avoidcopy:
2854 /* If no-one else is actually using this page, avoid the copy
2855 * and just make the page writable */
2856 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2857 page_move_anon_rmap(old_page, vma, address);
2858 set_huge_ptep_writable(vma, address, ptep);
2859 return 0;
2860 }
2861
2862 /*
2863 * If the process that created a MAP_PRIVATE mapping is about to
2864 * perform a COW due to a shared page count, attempt to satisfy
2865 * the allocation without using the existing reserves. The pagecache
2866 * page is used to determine if the reserve at this address was
2867 * consumed or not. If reserves were used, a partial faulted mapping
2868 * at the time of fork() could consume its reserves on COW instead
2869 * of the full address range.
2870 */
2871 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2872 old_page != pagecache_page)
2873 outside_reserve = 1;
2874
2875 page_cache_get(old_page);
2876
2877 /*
2878 * Drop page table lock as buddy allocator may be called. It will
2879 * be acquired again before returning to the caller, as expected.
2880 */
2881 spin_unlock(ptl);
2882 new_page = alloc_huge_page(vma, address, outside_reserve);
2883
2884 if (IS_ERR(new_page)) {
2885 /*
2886 * If a process owning a MAP_PRIVATE mapping fails to COW,
2887 * it is due to references held by a child and an insufficient
2888 * huge page pool. To guarantee the original mappers
2889 * reliability, unmap the page from child processes. The child
2890 * may get SIGKILLed if it later faults.
2891 */
2892 if (outside_reserve) {
2893 page_cache_release(old_page);
2894 BUG_ON(huge_pte_none(pte));
2895 unmap_ref_private(mm, vma, old_page, address);
2896 BUG_ON(huge_pte_none(pte));
2897 spin_lock(ptl);
2898 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2899 if (likely(ptep &&
2900 pte_same(huge_ptep_get(ptep), pte)))
2901 goto retry_avoidcopy;
2902 /*
2903 * race occurs while re-acquiring page table
2904 * lock, and our job is done.
2905 */
2906 return 0;
2907 }
2908
2909 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2910 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2911 goto out_release_old;
2912 }
2913
2914 /*
2915 * When the original hugepage is shared one, it does not have
2916 * anon_vma prepared.
2917 */
2918 if (unlikely(anon_vma_prepare(vma))) {
2919 ret = VM_FAULT_OOM;
2920 goto out_release_all;
2921 }
2922
2923 copy_user_huge_page(new_page, old_page, address, vma,
2924 pages_per_huge_page(h));
2925 __SetPageUptodate(new_page);
2926 set_page_huge_active(new_page);
2927
2928 mmun_start = address & huge_page_mask(h);
2929 mmun_end = mmun_start + huge_page_size(h);
2930 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2931
2932 /*
2933 * Retake the page table lock to check for racing updates
2934 * before the page tables are altered
2935 */
2936 spin_lock(ptl);
2937 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2938 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2939 ClearPagePrivate(new_page);
2940
2941 /* Break COW */
2942 huge_ptep_clear_flush(vma, address, ptep);
2943 set_huge_pte_at(mm, address, ptep,
2944 make_huge_pte(vma, new_page, 1));
2945 page_remove_rmap(old_page);
2946 hugepage_add_new_anon_rmap(new_page, vma, address);
2947 /* Make the old page be freed below */
2948 new_page = old_page;
2949 }
2950 spin_unlock(ptl);
2951 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2952 out_release_all:
2953 page_cache_release(new_page);
2954 out_release_old:
2955 page_cache_release(old_page);
2956
2957 spin_lock(ptl); /* Caller expects lock to be held */
2958 return ret;
2959 }
2960
2961 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2962 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2963 struct vm_area_struct *vma, unsigned long address)
2964 {
2965 struct address_space *mapping;
2966 pgoff_t idx;
2967
2968 mapping = vma->vm_file->f_mapping;
2969 idx = vma_hugecache_offset(h, vma, address);
2970
2971 return find_lock_page(mapping, idx);
2972 }
2973
2974 /*
2975 * Return whether there is a pagecache page to back given address within VMA.
2976 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2977 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2978 static bool hugetlbfs_pagecache_present(struct hstate *h,
2979 struct vm_area_struct *vma, unsigned long address)
2980 {
2981 struct address_space *mapping;
2982 pgoff_t idx;
2983 struct page *page;
2984
2985 mapping = vma->vm_file->f_mapping;
2986 idx = vma_hugecache_offset(h, vma, address);
2987
2988 page = find_get_page(mapping, idx);
2989 if (page)
2990 put_page(page);
2991 return page != NULL;
2992 }
2993
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)2994 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2995 struct address_space *mapping, pgoff_t idx,
2996 unsigned long address, pte_t *ptep, unsigned int flags)
2997 {
2998 struct hstate *h = hstate_vma(vma);
2999 int ret = VM_FAULT_SIGBUS;
3000 int anon_rmap = 0;
3001 unsigned long size;
3002 struct page *page;
3003 pte_t new_pte;
3004 spinlock_t *ptl;
3005
3006 /*
3007 * Currently, we are forced to kill the process in the event the
3008 * original mapper has unmapped pages from the child due to a failed
3009 * COW. Warn that such a situation has occurred as it may not be obvious
3010 */
3011 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3012 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3013 current->pid);
3014 return ret;
3015 }
3016
3017 /*
3018 * Use page lock to guard against racing truncation
3019 * before we get page_table_lock.
3020 */
3021 retry:
3022 page = find_lock_page(mapping, idx);
3023 if (!page) {
3024 size = i_size_read(mapping->host) >> huge_page_shift(h);
3025 if (idx >= size)
3026 goto out;
3027 page = alloc_huge_page(vma, address, 0);
3028 if (IS_ERR(page)) {
3029 ret = PTR_ERR(page);
3030 if (ret == -ENOMEM)
3031 ret = VM_FAULT_OOM;
3032 else
3033 ret = VM_FAULT_SIGBUS;
3034 goto out;
3035 }
3036 clear_huge_page(page, address, pages_per_huge_page(h));
3037 __SetPageUptodate(page);
3038 set_page_huge_active(page);
3039
3040 if (vma->vm_flags & VM_MAYSHARE) {
3041 int err;
3042 struct inode *inode = mapping->host;
3043
3044 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3045 if (err) {
3046 put_page(page);
3047 if (err == -EEXIST)
3048 goto retry;
3049 goto out;
3050 }
3051 ClearPagePrivate(page);
3052
3053 spin_lock(&inode->i_lock);
3054 inode->i_blocks += blocks_per_huge_page(h);
3055 spin_unlock(&inode->i_lock);
3056 } else {
3057 lock_page(page);
3058 if (unlikely(anon_vma_prepare(vma))) {
3059 ret = VM_FAULT_OOM;
3060 goto backout_unlocked;
3061 }
3062 anon_rmap = 1;
3063 }
3064 } else {
3065 /*
3066 * If memory error occurs between mmap() and fault, some process
3067 * don't have hwpoisoned swap entry for errored virtual address.
3068 * So we need to block hugepage fault by PG_hwpoison bit check.
3069 */
3070 if (unlikely(PageHWPoison(page))) {
3071 ret = VM_FAULT_HWPOISON |
3072 VM_FAULT_SET_HINDEX(hstate_index(h));
3073 goto backout_unlocked;
3074 }
3075 }
3076
3077 /*
3078 * If we are going to COW a private mapping later, we examine the
3079 * pending reservations for this page now. This will ensure that
3080 * any allocations necessary to record that reservation occur outside
3081 * the spinlock.
3082 */
3083 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3084 if (vma_needs_reservation(h, vma, address) < 0) {
3085 ret = VM_FAULT_OOM;
3086 goto backout_unlocked;
3087 }
3088
3089 ptl = huge_pte_lockptr(h, mm, ptep);
3090 spin_lock(ptl);
3091 size = i_size_read(mapping->host) >> huge_page_shift(h);
3092 if (idx >= size)
3093 goto backout;
3094
3095 ret = 0;
3096 if (!huge_pte_none(huge_ptep_get(ptep)))
3097 goto backout;
3098
3099 if (anon_rmap) {
3100 ClearPagePrivate(page);
3101 hugepage_add_new_anon_rmap(page, vma, address);
3102 } else
3103 page_dup_rmap(page);
3104 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3105 && (vma->vm_flags & VM_SHARED)));
3106 set_huge_pte_at(mm, address, ptep, new_pte);
3107
3108 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3109 /* Optimization, do the COW without a second fault */
3110 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3111 }
3112
3113 spin_unlock(ptl);
3114 unlock_page(page);
3115 out:
3116 return ret;
3117
3118 backout:
3119 spin_unlock(ptl);
3120 backout_unlocked:
3121 unlock_page(page);
3122 put_page(page);
3123 goto out;
3124 }
3125
3126 #ifdef CONFIG_SMP
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3127 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3128 struct vm_area_struct *vma,
3129 struct address_space *mapping,
3130 pgoff_t idx, unsigned long address)
3131 {
3132 unsigned long key[2];
3133 u32 hash;
3134
3135 if (vma->vm_flags & VM_SHARED) {
3136 key[0] = (unsigned long) mapping;
3137 key[1] = idx;
3138 } else {
3139 key[0] = (unsigned long) mm;
3140 key[1] = address >> huge_page_shift(h);
3141 }
3142
3143 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3144
3145 return hash & (num_fault_mutexes - 1);
3146 }
3147 #else
3148 /*
3149 * For uniprocesor systems we always use a single mutex, so just
3150 * return 0 and avoid the hashing overhead.
3151 */
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3152 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3153 struct vm_area_struct *vma,
3154 struct address_space *mapping,
3155 pgoff_t idx, unsigned long address)
3156 {
3157 return 0;
3158 }
3159 #endif
3160
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3161 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3162 unsigned long address, unsigned int flags)
3163 {
3164 pte_t *ptep, entry;
3165 spinlock_t *ptl;
3166 int ret;
3167 u32 hash;
3168 pgoff_t idx;
3169 struct page *page = NULL;
3170 struct page *pagecache_page = NULL;
3171 struct hstate *h = hstate_vma(vma);
3172 struct address_space *mapping;
3173 int need_wait_lock = 0;
3174
3175 address &= huge_page_mask(h);
3176
3177 ptep = huge_pte_offset(mm, address);
3178 if (ptep) {
3179 entry = huge_ptep_get(ptep);
3180 if (unlikely(is_hugetlb_entry_migration(entry))) {
3181 migration_entry_wait_huge(vma, mm, ptep);
3182 return 0;
3183 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3184 return VM_FAULT_HWPOISON_LARGE |
3185 VM_FAULT_SET_HINDEX(hstate_index(h));
3186 }
3187
3188 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3189 if (!ptep)
3190 return VM_FAULT_OOM;
3191
3192 mapping = vma->vm_file->f_mapping;
3193 idx = vma_hugecache_offset(h, vma, address);
3194
3195 /*
3196 * Serialize hugepage allocation and instantiation, so that we don't
3197 * get spurious allocation failures if two CPUs race to instantiate
3198 * the same page in the page cache.
3199 */
3200 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3201 mutex_lock(&htlb_fault_mutex_table[hash]);
3202
3203 entry = huge_ptep_get(ptep);
3204 if (huge_pte_none(entry)) {
3205 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3206 goto out_mutex;
3207 }
3208
3209 ret = 0;
3210
3211 /*
3212 * entry could be a migration/hwpoison entry at this point, so this
3213 * check prevents the kernel from going below assuming that we have
3214 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3215 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3216 * handle it.
3217 */
3218 if (!pte_present(entry))
3219 goto out_mutex;
3220
3221 /*
3222 * If we are going to COW the mapping later, we examine the pending
3223 * reservations for this page now. This will ensure that any
3224 * allocations necessary to record that reservation occur outside the
3225 * spinlock. For private mappings, we also lookup the pagecache
3226 * page now as it is used to determine if a reservation has been
3227 * consumed.
3228 */
3229 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3230 if (vma_needs_reservation(h, vma, address) < 0) {
3231 ret = VM_FAULT_OOM;
3232 goto out_mutex;
3233 }
3234
3235 if (!(vma->vm_flags & VM_MAYSHARE))
3236 pagecache_page = hugetlbfs_pagecache_page(h,
3237 vma, address);
3238 }
3239
3240 ptl = huge_pte_lock(h, mm, ptep);
3241
3242 /* Check for a racing update before calling hugetlb_cow */
3243 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3244 goto out_ptl;
3245
3246 /*
3247 * hugetlb_cow() requires page locks of pte_page(entry) and
3248 * pagecache_page, so here we need take the former one
3249 * when page != pagecache_page or !pagecache_page.
3250 */
3251 page = pte_page(entry);
3252 if (page != pagecache_page)
3253 if (!trylock_page(page)) {
3254 need_wait_lock = 1;
3255 goto out_ptl;
3256 }
3257
3258 get_page(page);
3259
3260 if (flags & FAULT_FLAG_WRITE) {
3261 if (!huge_pte_write(entry)) {
3262 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3263 pagecache_page, ptl);
3264 goto out_put_page;
3265 }
3266 entry = huge_pte_mkdirty(entry);
3267 }
3268 entry = pte_mkyoung(entry);
3269 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3270 flags & FAULT_FLAG_WRITE))
3271 update_mmu_cache(vma, address, ptep);
3272 out_put_page:
3273 if (page != pagecache_page)
3274 unlock_page(page);
3275 put_page(page);
3276 out_ptl:
3277 spin_unlock(ptl);
3278
3279 if (pagecache_page) {
3280 unlock_page(pagecache_page);
3281 put_page(pagecache_page);
3282 }
3283 out_mutex:
3284 mutex_unlock(&htlb_fault_mutex_table[hash]);
3285 /*
3286 * Generally it's safe to hold refcount during waiting page lock. But
3287 * here we just wait to defer the next page fault to avoid busy loop and
3288 * the page is not used after unlocked before returning from the current
3289 * page fault. So we are safe from accessing freed page, even if we wait
3290 * here without taking refcount.
3291 */
3292 if (need_wait_lock)
3293 wait_on_page_locked(page);
3294 return ret;
3295 }
3296
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags)3297 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3298 struct page **pages, struct vm_area_struct **vmas,
3299 unsigned long *position, unsigned long *nr_pages,
3300 long i, unsigned int flags)
3301 {
3302 unsigned long pfn_offset;
3303 unsigned long vaddr = *position;
3304 unsigned long remainder = *nr_pages;
3305 struct hstate *h = hstate_vma(vma);
3306
3307 while (vaddr < vma->vm_end && remainder) {
3308 pte_t *pte;
3309 spinlock_t *ptl = NULL;
3310 int absent;
3311 struct page *page;
3312
3313 /*
3314 * Some archs (sparc64, sh*) have multiple pte_ts to
3315 * each hugepage. We have to make sure we get the
3316 * first, for the page indexing below to work.
3317 *
3318 * Note that page table lock is not held when pte is null.
3319 */
3320 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3321 if (pte)
3322 ptl = huge_pte_lock(h, mm, pte);
3323 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3324
3325 /*
3326 * When coredumping, it suits get_dump_page if we just return
3327 * an error where there's an empty slot with no huge pagecache
3328 * to back it. This way, we avoid allocating a hugepage, and
3329 * the sparse dumpfile avoids allocating disk blocks, but its
3330 * huge holes still show up with zeroes where they need to be.
3331 */
3332 if (absent && (flags & FOLL_DUMP) &&
3333 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3334 if (pte)
3335 spin_unlock(ptl);
3336 remainder = 0;
3337 break;
3338 }
3339
3340 /*
3341 * We need call hugetlb_fault for both hugepages under migration
3342 * (in which case hugetlb_fault waits for the migration,) and
3343 * hwpoisoned hugepages (in which case we need to prevent the
3344 * caller from accessing to them.) In order to do this, we use
3345 * here is_swap_pte instead of is_hugetlb_entry_migration and
3346 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3347 * both cases, and because we can't follow correct pages
3348 * directly from any kind of swap entries.
3349 */
3350 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3351 ((flags & FOLL_WRITE) &&
3352 !huge_pte_write(huge_ptep_get(pte)))) {
3353 int ret;
3354
3355 if (pte)
3356 spin_unlock(ptl);
3357 ret = hugetlb_fault(mm, vma, vaddr,
3358 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3359 if (!(ret & VM_FAULT_ERROR))
3360 continue;
3361
3362 remainder = 0;
3363 break;
3364 }
3365
3366 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3367 page = pte_page(huge_ptep_get(pte));
3368 same_page:
3369 if (pages) {
3370 pages[i] = mem_map_offset(page, pfn_offset);
3371 get_page_foll(pages[i]);
3372 }
3373
3374 if (vmas)
3375 vmas[i] = vma;
3376
3377 vaddr += PAGE_SIZE;
3378 ++pfn_offset;
3379 --remainder;
3380 ++i;
3381 if (vaddr < vma->vm_end && remainder &&
3382 pfn_offset < pages_per_huge_page(h)) {
3383 /*
3384 * We use pfn_offset to avoid touching the pageframes
3385 * of this compound page.
3386 */
3387 goto same_page;
3388 }
3389 spin_unlock(ptl);
3390 }
3391 *nr_pages = remainder;
3392 *position = vaddr;
3393
3394 return i ? i : -EFAULT;
3395 }
3396
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)3397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3398 unsigned long address, unsigned long end, pgprot_t newprot)
3399 {
3400 struct mm_struct *mm = vma->vm_mm;
3401 unsigned long start = address;
3402 pte_t *ptep;
3403 pte_t pte;
3404 struct hstate *h = hstate_vma(vma);
3405 unsigned long pages = 0;
3406
3407 BUG_ON(address >= end);
3408 flush_cache_range(vma, address, end);
3409
3410 mmu_notifier_invalidate_range_start(mm, start, end);
3411 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3412 for (; address < end; address += huge_page_size(h)) {
3413 spinlock_t *ptl;
3414 ptep = huge_pte_offset(mm, address);
3415 if (!ptep)
3416 continue;
3417 ptl = huge_pte_lock(h, mm, ptep);
3418 if (huge_pmd_unshare(mm, &address, ptep)) {
3419 pages++;
3420 spin_unlock(ptl);
3421 continue;
3422 }
3423 pte = huge_ptep_get(ptep);
3424 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3425 spin_unlock(ptl);
3426 continue;
3427 }
3428 if (unlikely(is_hugetlb_entry_migration(pte))) {
3429 swp_entry_t entry = pte_to_swp_entry(pte);
3430
3431 if (is_write_migration_entry(entry)) {
3432 pte_t newpte;
3433
3434 make_migration_entry_read(&entry);
3435 newpte = swp_entry_to_pte(entry);
3436 set_huge_pte_at(mm, address, ptep, newpte);
3437 pages++;
3438 }
3439 spin_unlock(ptl);
3440 continue;
3441 }
3442 if (!huge_pte_none(pte)) {
3443 pte = huge_ptep_get_and_clear(mm, address, ptep);
3444 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3445 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3446 set_huge_pte_at(mm, address, ptep, pte);
3447 pages++;
3448 }
3449 spin_unlock(ptl);
3450 }
3451 /*
3452 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3453 * may have cleared our pud entry and done put_page on the page table:
3454 * once we release i_mmap_mutex, another task can do the final put_page
3455 * and that page table be reused and filled with junk.
3456 */
3457 flush_tlb_range(vma, start, end);
3458 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3459 mmu_notifier_invalidate_range_end(mm, start, end);
3460
3461 return pages << h->order;
3462 }
3463
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)3464 int hugetlb_reserve_pages(struct inode *inode,
3465 long from, long to,
3466 struct vm_area_struct *vma,
3467 vm_flags_t vm_flags)
3468 {
3469 long ret, chg;
3470 struct hstate *h = hstate_inode(inode);
3471 struct hugepage_subpool *spool = subpool_inode(inode);
3472 struct resv_map *resv_map;
3473
3474 /*
3475 * Only apply hugepage reservation if asked. At fault time, an
3476 * attempt will be made for VM_NORESERVE to allocate a page
3477 * without using reserves
3478 */
3479 if (vm_flags & VM_NORESERVE)
3480 return 0;
3481
3482 /*
3483 * Shared mappings base their reservation on the number of pages that
3484 * are already allocated on behalf of the file. Private mappings need
3485 * to reserve the full area even if read-only as mprotect() may be
3486 * called to make the mapping read-write. Assume !vma is a shm mapping
3487 */
3488 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3489 resv_map = inode_resv_map(inode);
3490
3491 chg = region_chg(resv_map, from, to);
3492
3493 } else {
3494 resv_map = resv_map_alloc();
3495 if (!resv_map)
3496 return -ENOMEM;
3497
3498 chg = to - from;
3499
3500 set_vma_resv_map(vma, resv_map);
3501 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3502 }
3503
3504 if (chg < 0) {
3505 ret = chg;
3506 goto out_err;
3507 }
3508
3509 /* There must be enough pages in the subpool for the mapping */
3510 if (hugepage_subpool_get_pages(spool, chg)) {
3511 ret = -ENOSPC;
3512 goto out_err;
3513 }
3514
3515 /*
3516 * Check enough hugepages are available for the reservation.
3517 * Hand the pages back to the subpool if there are not
3518 */
3519 ret = hugetlb_acct_memory(h, chg);
3520 if (ret < 0) {
3521 hugepage_subpool_put_pages(spool, chg);
3522 goto out_err;
3523 }
3524
3525 /*
3526 * Account for the reservations made. Shared mappings record regions
3527 * that have reservations as they are shared by multiple VMAs.
3528 * When the last VMA disappears, the region map says how much
3529 * the reservation was and the page cache tells how much of
3530 * the reservation was consumed. Private mappings are per-VMA and
3531 * only the consumed reservations are tracked. When the VMA
3532 * disappears, the original reservation is the VMA size and the
3533 * consumed reservations are stored in the map. Hence, nothing
3534 * else has to be done for private mappings here
3535 */
3536 if (!vma || vma->vm_flags & VM_MAYSHARE)
3537 region_add(resv_map, from, to);
3538 return 0;
3539 out_err:
3540 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3541 kref_put(&resv_map->refs, resv_map_release);
3542 return ret;
3543 }
3544
hugetlb_unreserve_pages(struct inode * inode,long offset,long freed)3545 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3546 {
3547 struct hstate *h = hstate_inode(inode);
3548 struct resv_map *resv_map = inode_resv_map(inode);
3549 long chg = 0;
3550 struct hugepage_subpool *spool = subpool_inode(inode);
3551
3552 if (resv_map)
3553 chg = region_truncate(resv_map, offset);
3554 spin_lock(&inode->i_lock);
3555 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3556 spin_unlock(&inode->i_lock);
3557
3558 hugepage_subpool_put_pages(spool, (chg - freed));
3559 hugetlb_acct_memory(h, -(chg - freed));
3560 }
3561
3562 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)3563 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3564 struct vm_area_struct *vma,
3565 unsigned long addr, pgoff_t idx)
3566 {
3567 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3568 svma->vm_start;
3569 unsigned long sbase = saddr & PUD_MASK;
3570 unsigned long s_end = sbase + PUD_SIZE;
3571
3572 /* Allow segments to share if only one is marked locked */
3573 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3574 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3575
3576 /*
3577 * match the virtual addresses, permission and the alignment of the
3578 * page table page.
3579 */
3580 if (pmd_index(addr) != pmd_index(saddr) ||
3581 vm_flags != svm_flags ||
3582 sbase < svma->vm_start || svma->vm_end < s_end)
3583 return 0;
3584
3585 return saddr;
3586 }
3587
vma_shareable(struct vm_area_struct * vma,unsigned long addr)3588 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3589 {
3590 unsigned long base = addr & PUD_MASK;
3591 unsigned long end = base + PUD_SIZE;
3592
3593 /*
3594 * check on proper vm_flags and page table alignment
3595 */
3596 if (vma->vm_flags & VM_MAYSHARE &&
3597 vma->vm_start <= base && end <= vma->vm_end)
3598 return 1;
3599 return 0;
3600 }
3601
3602 /*
3603 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3604 * and returns the corresponding pte. While this is not necessary for the
3605 * !shared pmd case because we can allocate the pmd later as well, it makes the
3606 * code much cleaner. pmd allocation is essential for the shared case because
3607 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3608 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3609 * bad pmd for sharing.
3610 */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3611 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3612 {
3613 struct vm_area_struct *vma = find_vma(mm, addr);
3614 struct address_space *mapping = vma->vm_file->f_mapping;
3615 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3616 vma->vm_pgoff;
3617 struct vm_area_struct *svma;
3618 unsigned long saddr;
3619 pte_t *spte = NULL;
3620 pte_t *pte;
3621 spinlock_t *ptl;
3622
3623 if (!vma_shareable(vma, addr))
3624 return (pte_t *)pmd_alloc(mm, pud, addr);
3625
3626 mutex_lock(&mapping->i_mmap_mutex);
3627 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3628 if (svma == vma)
3629 continue;
3630
3631 saddr = page_table_shareable(svma, vma, addr, idx);
3632 if (saddr) {
3633 spte = huge_pte_offset(svma->vm_mm, saddr);
3634 if (spte) {
3635 get_page(virt_to_page(spte));
3636 break;
3637 }
3638 }
3639 }
3640
3641 if (!spte)
3642 goto out;
3643
3644 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3645 spin_lock(ptl);
3646 if (pud_none(*pud))
3647 pud_populate(mm, pud,
3648 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3649 else
3650 put_page(virt_to_page(spte));
3651 spin_unlock(ptl);
3652 out:
3653 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3654 mutex_unlock(&mapping->i_mmap_mutex);
3655 return pte;
3656 }
3657
3658 /*
3659 * unmap huge page backed by shared pte.
3660 *
3661 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3662 * indicated by page_count > 1, unmap is achieved by clearing pud and
3663 * decrementing the ref count. If count == 1, the pte page is not shared.
3664 *
3665 * called with page table lock held.
3666 *
3667 * returns: 1 successfully unmapped a shared pte page
3668 * 0 the underlying pte page is not shared, or it is the last user
3669 */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)3670 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3671 {
3672 pgd_t *pgd = pgd_offset(mm, *addr);
3673 pud_t *pud = pud_offset(pgd, *addr);
3674
3675 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3676 if (page_count(virt_to_page(ptep)) == 1)
3677 return 0;
3678
3679 pud_clear(pud);
3680 put_page(virt_to_page(ptep));
3681 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3682 return 1;
3683 }
3684 #define want_pmd_share() (1)
3685 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3686 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3687 {
3688 return NULL;
3689 }
3690 #define want_pmd_share() (0)
3691 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3692
3693 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)3694 pte_t *huge_pte_alloc(struct mm_struct *mm,
3695 unsigned long addr, unsigned long sz)
3696 {
3697 pgd_t *pgd;
3698 pud_t *pud;
3699 pte_t *pte = NULL;
3700
3701 pgd = pgd_offset(mm, addr);
3702 pud = pud_alloc(mm, pgd, addr);
3703 if (pud) {
3704 if (sz == PUD_SIZE) {
3705 pte = (pte_t *)pud;
3706 } else {
3707 BUG_ON(sz != PMD_SIZE);
3708 if (want_pmd_share() && pud_none(*pud))
3709 pte = huge_pmd_share(mm, addr, pud);
3710 else
3711 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3712 }
3713 }
3714 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3715
3716 return pte;
3717 }
3718
huge_pte_offset(struct mm_struct * mm,unsigned long addr)3719 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3720 {
3721 pgd_t *pgd;
3722 pud_t *pud;
3723 pmd_t *pmd = NULL;
3724
3725 pgd = pgd_offset(mm, addr);
3726 if (pgd_present(*pgd)) {
3727 pud = pud_offset(pgd, addr);
3728 if (pud_present(*pud)) {
3729 if (pud_huge(*pud))
3730 return (pte_t *)pud;
3731 pmd = pmd_offset(pud, addr);
3732 }
3733 }
3734 return (pte_t *) pmd;
3735 }
3736
3737 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3738
3739 /*
3740 * These functions are overwritable if your architecture needs its own
3741 * behavior.
3742 */
3743 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)3744 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3745 int write)
3746 {
3747 return ERR_PTR(-EINVAL);
3748 }
3749
3750 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)3751 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3752 pmd_t *pmd, int flags)
3753 {
3754 struct page *page = NULL;
3755 spinlock_t *ptl;
3756 pte_t pte;
3757 retry:
3758 ptl = pmd_lockptr(mm, pmd);
3759 spin_lock(ptl);
3760 /*
3761 * make sure that the address range covered by this pmd is not
3762 * unmapped from other threads.
3763 */
3764 if (!pmd_huge(*pmd))
3765 goto out;
3766 pte = huge_ptep_get((pte_t *)pmd);
3767 if (pte_present(pte)) {
3768 page = pte_page(*(pte_t *)pmd) +
3769 ((address & ~PMD_MASK) >> PAGE_SHIFT);
3770 if (flags & FOLL_GET)
3771 get_page(page);
3772 } else {
3773 if (is_hugetlb_entry_migration(pte)) {
3774 spin_unlock(ptl);
3775 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3776 goto retry;
3777 }
3778 /*
3779 * hwpoisoned entry is treated as no_page_table in
3780 * follow_page_mask().
3781 */
3782 }
3783 out:
3784 spin_unlock(ptl);
3785 return page;
3786 }
3787
3788 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)3789 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3790 pud_t *pud, int flags)
3791 {
3792 if (flags & FOLL_GET)
3793 return NULL;
3794
3795 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3796 }
3797
3798 #ifdef CONFIG_MEMORY_FAILURE
3799
3800 /* Should be called in hugetlb_lock */
is_hugepage_on_freelist(struct page * hpage)3801 static int is_hugepage_on_freelist(struct page *hpage)
3802 {
3803 struct page *page;
3804 struct page *tmp;
3805 struct hstate *h = page_hstate(hpage);
3806 int nid = page_to_nid(hpage);
3807
3808 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3809 if (page == hpage)
3810 return 1;
3811 return 0;
3812 }
3813
3814 /*
3815 * This function is called from memory failure code.
3816 * Assume the caller holds page lock of the head page.
3817 */
dequeue_hwpoisoned_huge_page(struct page * hpage)3818 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3819 {
3820 struct hstate *h = page_hstate(hpage);
3821 int nid = page_to_nid(hpage);
3822 int ret = -EBUSY;
3823
3824 spin_lock(&hugetlb_lock);
3825 if (is_hugepage_on_freelist(hpage)) {
3826 /*
3827 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3828 * but dangling hpage->lru can trigger list-debug warnings
3829 * (this happens when we call unpoison_memory() on it),
3830 * so let it point to itself with list_del_init().
3831 */
3832 list_del_init(&hpage->lru);
3833 set_page_refcounted(hpage);
3834 h->free_huge_pages--;
3835 h->free_huge_pages_node[nid]--;
3836 ret = 0;
3837 }
3838 spin_unlock(&hugetlb_lock);
3839 return ret;
3840 }
3841 #endif
3842
isolate_huge_page(struct page * page,struct list_head * list)3843 bool isolate_huge_page(struct page *page, struct list_head *list)
3844 {
3845 bool ret = true;
3846
3847 VM_BUG_ON_PAGE(!PageHead(page), page);
3848 spin_lock(&hugetlb_lock);
3849 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3850 ret = false;
3851 goto unlock;
3852 }
3853 clear_page_huge_active(page);
3854 list_move_tail(&page->lru, list);
3855 unlock:
3856 spin_unlock(&hugetlb_lock);
3857 return ret;
3858 }
3859
putback_active_hugepage(struct page * page)3860 void putback_active_hugepage(struct page *page)
3861 {
3862 VM_BUG_ON_PAGE(!PageHead(page), page);
3863 spin_lock(&hugetlb_lock);
3864 set_page_huge_active(page);
3865 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3866 spin_unlock(&hugetlb_lock);
3867 put_page(page);
3868 }
3869
is_hugepage_active(struct page * page)3870 bool is_hugepage_active(struct page *page)
3871 {
3872 VM_BUG_ON_PAGE(!PageHuge(page), page);
3873 /*
3874 * This function can be called for a tail page because the caller,
3875 * scan_movable_pages, scans through a given pfn-range which typically
3876 * covers one memory block. In systems using gigantic hugepage (1GB
3877 * for x86_64,) a hugepage is larger than a memory block, and we don't
3878 * support migrating such large hugepages for now, so return false
3879 * when called for tail pages.
3880 */
3881 if (PageTail(page))
3882 return false;
3883 /*
3884 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3885 * so we should return false for them.
3886 */
3887 if (unlikely(PageHWPoison(page)))
3888 return false;
3889 return page_count(page) > 0;
3890 }
3891