• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 unsigned long hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 
44 __initdata LIST_HEAD(huge_boot_pages);
45 
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50 
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56 
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63 
unlock_or_release_subpool(struct hugepage_subpool * spool)64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
67 
68 	spin_unlock(&spool->lock);
69 
70 	/* If no pages are used, and no other handles to the subpool
71 	 * remain, free the subpool the subpool remain */
72 	if (free)
73 		kfree(spool);
74 }
75 
hugepage_new_subpool(long nr_blocks)76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78 	struct hugepage_subpool *spool;
79 
80 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 	if (!spool)
82 		return NULL;
83 
84 	spin_lock_init(&spool->lock);
85 	spool->count = 1;
86 	spool->max_hpages = nr_blocks;
87 	spool->used_hpages = 0;
88 
89 	return spool;
90 }
91 
hugepage_put_subpool(struct hugepage_subpool * spool)92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94 	spin_lock(&spool->lock);
95 	BUG_ON(!spool->count);
96 	spool->count--;
97 	unlock_or_release_subpool(spool);
98 }
99 
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 				      long delta)
102 {
103 	int ret = 0;
104 
105 	if (!spool)
106 		return 0;
107 
108 	spin_lock(&spool->lock);
109 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 		spool->used_hpages += delta;
111 	} else {
112 		ret = -ENOMEM;
113 	}
114 	spin_unlock(&spool->lock);
115 
116 	return ret;
117 }
118 
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 				       long delta)
121 {
122 	if (!spool)
123 		return;
124 
125 	spin_lock(&spool->lock);
126 	spool->used_hpages -= delta;
127 	/* If hugetlbfs_put_super couldn't free spool due to
128 	* an outstanding quota reference, free it now. */
129 	unlock_or_release_subpool(spool);
130 }
131 
subpool_inode(struct inode * inode)132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134 	return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136 
subpool_vma(struct vm_area_struct * vma)137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139 	return subpool_inode(file_inode(vma->vm_file));
140 }
141 
142 /*
143  * Region tracking -- allows tracking of reservations and instantiated pages
144  *                    across the pages in a mapping.
145  *
146  * The region data structures are embedded into a resv_map and
147  * protected by a resv_map's lock
148  */
149 struct file_region {
150 	struct list_head link;
151 	long from;
152 	long to;
153 };
154 
region_add(struct resv_map * resv,long f,long t)155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157 	struct list_head *head = &resv->regions;
158 	struct file_region *rg, *nrg, *trg;
159 
160 	spin_lock(&resv->lock);
161 	/* Locate the region we are either in or before. */
162 	list_for_each_entry(rg, head, link)
163 		if (f <= rg->to)
164 			break;
165 
166 	/* Round our left edge to the current segment if it encloses us. */
167 	if (f > rg->from)
168 		f = rg->from;
169 
170 	/* Check for and consume any regions we now overlap with. */
171 	nrg = rg;
172 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 		if (&rg->link == head)
174 			break;
175 		if (rg->from > t)
176 			break;
177 
178 		/* If this area reaches higher then extend our area to
179 		 * include it completely.  If this is not the first area
180 		 * which we intend to reuse, free it. */
181 		if (rg->to > t)
182 			t = rg->to;
183 		if (rg != nrg) {
184 			list_del(&rg->link);
185 			kfree(rg);
186 		}
187 	}
188 	nrg->from = f;
189 	nrg->to = t;
190 	spin_unlock(&resv->lock);
191 	return 0;
192 }
193 
region_chg(struct resv_map * resv,long f,long t)194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196 	struct list_head *head = &resv->regions;
197 	struct file_region *rg, *nrg = NULL;
198 	long chg = 0;
199 
200 retry:
201 	spin_lock(&resv->lock);
202 	/* Locate the region we are before or in. */
203 	list_for_each_entry(rg, head, link)
204 		if (f <= rg->to)
205 			break;
206 
207 	/* If we are below the current region then a new region is required.
208 	 * Subtle, allocate a new region at the position but make it zero
209 	 * size such that we can guarantee to record the reservation. */
210 	if (&rg->link == head || t < rg->from) {
211 		if (!nrg) {
212 			spin_unlock(&resv->lock);
213 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 			if (!nrg)
215 				return -ENOMEM;
216 
217 			nrg->from = f;
218 			nrg->to   = f;
219 			INIT_LIST_HEAD(&nrg->link);
220 			goto retry;
221 		}
222 
223 		list_add(&nrg->link, rg->link.prev);
224 		chg = t - f;
225 		goto out_nrg;
226 	}
227 
228 	/* Round our left edge to the current segment if it encloses us. */
229 	if (f > rg->from)
230 		f = rg->from;
231 	chg = t - f;
232 
233 	/* Check for and consume any regions we now overlap with. */
234 	list_for_each_entry(rg, rg->link.prev, link) {
235 		if (&rg->link == head)
236 			break;
237 		if (rg->from > t)
238 			goto out;
239 
240 		/* We overlap with this area, if it extends further than
241 		 * us then we must extend ourselves.  Account for its
242 		 * existing reservation. */
243 		if (rg->to > t) {
244 			chg += rg->to - t;
245 			t = rg->to;
246 		}
247 		chg -= rg->to - rg->from;
248 	}
249 
250 out:
251 	spin_unlock(&resv->lock);
252 	/*  We already know we raced and no longer need the new region */
253 	kfree(nrg);
254 	return chg;
255 out_nrg:
256 	spin_unlock(&resv->lock);
257 	return chg;
258 }
259 
region_truncate(struct resv_map * resv,long end)260 static long region_truncate(struct resv_map *resv, long end)
261 {
262 	struct list_head *head = &resv->regions;
263 	struct file_region *rg, *trg;
264 	long chg = 0;
265 
266 	spin_lock(&resv->lock);
267 	/* Locate the region we are either in or before. */
268 	list_for_each_entry(rg, head, link)
269 		if (end <= rg->to)
270 			break;
271 	if (&rg->link == head)
272 		goto out;
273 
274 	/* If we are in the middle of a region then adjust it. */
275 	if (end > rg->from) {
276 		chg = rg->to - end;
277 		rg->to = end;
278 		rg = list_entry(rg->link.next, typeof(*rg), link);
279 	}
280 
281 	/* Drop any remaining regions. */
282 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 		if (&rg->link == head)
284 			break;
285 		chg += rg->to - rg->from;
286 		list_del(&rg->link);
287 		kfree(rg);
288 	}
289 
290 out:
291 	spin_unlock(&resv->lock);
292 	return chg;
293 }
294 
region_count(struct resv_map * resv,long f,long t)295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297 	struct list_head *head = &resv->regions;
298 	struct file_region *rg;
299 	long chg = 0;
300 
301 	spin_lock(&resv->lock);
302 	/* Locate each segment we overlap with, and count that overlap. */
303 	list_for_each_entry(rg, head, link) {
304 		long seg_from;
305 		long seg_to;
306 
307 		if (rg->to <= f)
308 			continue;
309 		if (rg->from >= t)
310 			break;
311 
312 		seg_from = max(rg->from, f);
313 		seg_to = min(rg->to, t);
314 
315 		chg += seg_to - seg_from;
316 	}
317 	spin_unlock(&resv->lock);
318 
319 	return chg;
320 }
321 
322 /*
323  * Convert the address within this vma to the page offset within
324  * the mapping, in pagecache page units; huge pages here.
325  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 			struct vm_area_struct *vma, unsigned long address)
328 {
329 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 			(vma->vm_pgoff >> huge_page_order(h));
331 }
332 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 				     unsigned long address)
335 {
336 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338 
339 /*
340  * Return the size of the pages allocated when backing a VMA. In the majority
341  * cases this will be same size as used by the page table entries.
342  */
vma_kernel_pagesize(struct vm_area_struct * vma)343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345 	struct hstate *hstate;
346 
347 	if (!is_vm_hugetlb_page(vma))
348 		return PAGE_SIZE;
349 
350 	hstate = hstate_vma(vma);
351 
352 	return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355 
356 /*
357  * Return the page size being used by the MMU to back a VMA. In the majority
358  * of cases, the page size used by the kernel matches the MMU size. On
359  * architectures where it differs, an architecture-specific version of this
360  * function is required.
361  */
362 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365 	return vma_kernel_pagesize(vma);
366 }
367 #endif
368 
369 /*
370  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371  * bits of the reservation map pointer, which are always clear due to
372  * alignment.
373  */
374 #define HPAGE_RESV_OWNER    (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377 
378 /*
379  * These helpers are used to track how many pages are reserved for
380  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381  * is guaranteed to have their future faults succeed.
382  *
383  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384  * the reserve counters are updated with the hugetlb_lock held. It is safe
385  * to reset the VMA at fork() time as it is not in use yet and there is no
386  * chance of the global counters getting corrupted as a result of the values.
387  *
388  * The private mapping reservation is represented in a subtly different
389  * manner to a shared mapping.  A shared mapping has a region map associated
390  * with the underlying file, this region map represents the backing file
391  * pages which have ever had a reservation assigned which this persists even
392  * after the page is instantiated.  A private mapping has a region map
393  * associated with the original mmap which is attached to all VMAs which
394  * reference it, this region map represents those offsets which have consumed
395  * reservation ie. where pages have been instantiated.
396  */
get_vma_private_data(struct vm_area_struct * vma)397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399 	return (unsigned long)vma->vm_private_data;
400 }
401 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)402 static void set_vma_private_data(struct vm_area_struct *vma,
403 							unsigned long value)
404 {
405 	vma->vm_private_data = (void *)value;
406 }
407 
resv_map_alloc(void)408 struct resv_map *resv_map_alloc(void)
409 {
410 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 	if (!resv_map)
412 		return NULL;
413 
414 	kref_init(&resv_map->refs);
415 	spin_lock_init(&resv_map->lock);
416 	INIT_LIST_HEAD(&resv_map->regions);
417 
418 	return resv_map;
419 }
420 
resv_map_release(struct kref * ref)421 void resv_map_release(struct kref *ref)
422 {
423 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424 
425 	/* Clear out any active regions before we release the map. */
426 	region_truncate(resv_map, 0);
427 	kfree(resv_map);
428 }
429 
inode_resv_map(struct inode * inode)430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432 	return inode->i_mapping->private_data;
433 }
434 
vma_resv_map(struct vm_area_struct * vma)435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 	if (vma->vm_flags & VM_MAYSHARE) {
439 		struct address_space *mapping = vma->vm_file->f_mapping;
440 		struct inode *inode = mapping->host;
441 
442 		return inode_resv_map(inode);
443 
444 	} else {
445 		return (struct resv_map *)(get_vma_private_data(vma) &
446 							~HPAGE_RESV_MASK);
447 	}
448 }
449 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
454 
455 	set_vma_private_data(vma, (get_vma_private_data(vma) &
456 				HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
463 
464 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
470 
471 	return (get_vma_private_data(vma) & flag) != 0;
472 }
473 
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478 	if (!(vma->vm_flags & VM_MAYSHARE))
479 		vma->vm_private_data = (void *)0;
480 }
481 
482 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485 	if (vma->vm_flags & VM_NORESERVE) {
486 		/*
487 		 * This address is already reserved by other process(chg == 0),
488 		 * so, we should decrement reserved count. Without decrementing,
489 		 * reserve count remains after releasing inode, because this
490 		 * allocated page will go into page cache and is regarded as
491 		 * coming from reserved pool in releasing step.  Currently, we
492 		 * don't have any other solution to deal with this situation
493 		 * properly, so add work-around here.
494 		 */
495 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 			return 1;
497 		else
498 			return 0;
499 	}
500 
501 	/* Shared mappings always use reserves */
502 	if (vma->vm_flags & VM_MAYSHARE)
503 		return 1;
504 
505 	/*
506 	 * Only the process that called mmap() has reserves for
507 	 * private mappings.
508 	 */
509 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 		return 1;
511 
512 	return 0;
513 }
514 
enqueue_huge_page(struct hstate * h,struct page * page)515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517 	int nid = page_to_nid(page);
518 	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 	h->free_huge_pages++;
520 	h->free_huge_pages_node[nid]++;
521 }
522 
dequeue_huge_page_node(struct hstate * h,int nid)523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525 	struct page *page;
526 
527 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 		if (!is_migrate_isolate_page(page))
529 			break;
530 	/*
531 	 * if 'non-isolated free hugepage' not found on the list,
532 	 * the allocation fails.
533 	 */
534 	if (&h->hugepage_freelists[nid] == &page->lru)
535 		return NULL;
536 	list_move(&page->lru, &h->hugepage_activelist);
537 	set_page_refcounted(page);
538 	h->free_huge_pages--;
539 	h->free_huge_pages_node[nid]--;
540 	return page;
541 }
542 
543 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 		return GFP_HIGHUSER_MOVABLE;
548 	else
549 		return GFP_HIGHUSER;
550 }
551 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 				struct vm_area_struct *vma,
554 				unsigned long address, int avoid_reserve,
555 				long chg)
556 {
557 	struct page *page = NULL;
558 	struct mempolicy *mpol;
559 	nodemask_t *nodemask;
560 	struct zonelist *zonelist;
561 	struct zone *zone;
562 	struct zoneref *z;
563 	unsigned int cpuset_mems_cookie;
564 
565 	/*
566 	 * A child process with MAP_PRIVATE mappings created by their parent
567 	 * have no page reserves. This check ensures that reservations are
568 	 * not "stolen". The child may still get SIGKILLed
569 	 */
570 	if (!vma_has_reserves(vma, chg) &&
571 			h->free_huge_pages - h->resv_huge_pages == 0)
572 		goto err;
573 
574 	/* If reserves cannot be used, ensure enough pages are in the pool */
575 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 		goto err;
577 
578 retry_cpuset:
579 	cpuset_mems_cookie = read_mems_allowed_begin();
580 	zonelist = huge_zonelist(vma, address,
581 					htlb_alloc_mask(h), &mpol, &nodemask);
582 
583 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 						MAX_NR_ZONES - 1, nodemask) {
585 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 			if (page) {
588 				if (avoid_reserve)
589 					break;
590 				if (!vma_has_reserves(vma, chg))
591 					break;
592 
593 				SetPagePrivate(page);
594 				h->resv_huge_pages--;
595 				break;
596 			}
597 		}
598 	}
599 
600 	mpol_cond_put(mpol);
601 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 		goto retry_cpuset;
603 	return page;
604 
605 err:
606 	return NULL;
607 }
608 
609 /*
610  * common helper functions for hstate_next_node_to_{alloc|free}.
611  * We may have allocated or freed a huge page based on a different
612  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613  * be outside of *nodes_allowed.  Ensure that we use an allowed
614  * node for alloc or free.
615  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617 {
618 	nid = next_node(nid, *nodes_allowed);
619 	if (nid == MAX_NUMNODES)
620 		nid = first_node(*nodes_allowed);
621 	VM_BUG_ON(nid >= MAX_NUMNODES);
622 
623 	return nid;
624 }
625 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628 	if (!node_isset(nid, *nodes_allowed))
629 		nid = next_node_allowed(nid, nodes_allowed);
630 	return nid;
631 }
632 
633 /*
634  * returns the previously saved node ["this node"] from which to
635  * allocate a persistent huge page for the pool and advance the
636  * next node from which to allocate, handling wrap at end of node
637  * mask.
638  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)639 static int hstate_next_node_to_alloc(struct hstate *h,
640 					nodemask_t *nodes_allowed)
641 {
642 	int nid;
643 
644 	VM_BUG_ON(!nodes_allowed);
645 
646 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648 
649 	return nid;
650 }
651 
652 /*
653  * helper for free_pool_huge_page() - return the previously saved
654  * node ["this node"] from which to free a huge page.  Advance the
655  * next node id whether or not we find a free huge page to free so
656  * that the next attempt to free addresses the next node.
657  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659 {
660 	int nid;
661 
662 	VM_BUG_ON(!nodes_allowed);
663 
664 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666 
667 	return nid;
668 }
669 
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
671 	for (nr_nodes = nodes_weight(*mask);				\
672 		nr_nodes > 0 &&						\
673 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
674 		nr_nodes--)
675 
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
677 	for (nr_nodes = nodes_weight(*mask);				\
678 		nr_nodes > 0 &&						\
679 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
680 		nr_nodes--)
681 
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
destroy_compound_gigantic_page(struct page * page,unsigned int order)683 static void destroy_compound_gigantic_page(struct page *page,
684 					unsigned int order)
685 {
686 	int i;
687 	int nr_pages = 1 << order;
688 	struct page *p = page + 1;
689 
690 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 		__ClearPageTail(p);
692 		set_page_refcounted(p);
693 		p->first_page = NULL;
694 	}
695 
696 	set_compound_order(page, 0);
697 	__ClearPageHead(page);
698 }
699 
free_gigantic_page(struct page * page,unsigned int order)700 static void free_gigantic_page(struct page *page, unsigned int order)
701 {
702 	free_contig_range(page_to_pfn(page), 1 << order);
703 }
704 
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages)705 static int __alloc_gigantic_page(unsigned long start_pfn,
706 				unsigned long nr_pages)
707 {
708 	unsigned long end_pfn = start_pfn + nr_pages;
709 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710 }
711 
pfn_range_valid_gigantic(unsigned long start_pfn,unsigned long nr_pages)712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 				unsigned long nr_pages)
714 {
715 	unsigned long i, end_pfn = start_pfn + nr_pages;
716 	struct page *page;
717 
718 	for (i = start_pfn; i < end_pfn; i++) {
719 		if (!pfn_valid(i))
720 			return false;
721 
722 		page = pfn_to_page(i);
723 
724 		if (PageReserved(page))
725 			return false;
726 
727 		if (page_count(page) > 0)
728 			return false;
729 
730 		if (PageHuge(page))
731 			return false;
732 	}
733 
734 	return true;
735 }
736 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)737 static bool zone_spans_last_pfn(const struct zone *zone,
738 			unsigned long start_pfn, unsigned long nr_pages)
739 {
740 	unsigned long last_pfn = start_pfn + nr_pages - 1;
741 	return zone_spans_pfn(zone, last_pfn);
742 }
743 
alloc_gigantic_page(int nid,unsigned int order)744 static struct page *alloc_gigantic_page(int nid, unsigned int order)
745 {
746 	unsigned long nr_pages = 1 << order;
747 	unsigned long ret, pfn, flags;
748 	struct zone *z;
749 
750 	z = NODE_DATA(nid)->node_zones;
751 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 		spin_lock_irqsave(&z->lock, flags);
753 
754 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 				/*
758 				 * We release the zone lock here because
759 				 * alloc_contig_range() will also lock the zone
760 				 * at some point. If there's an allocation
761 				 * spinning on this lock, it may win the race
762 				 * and cause alloc_contig_range() to fail...
763 				 */
764 				spin_unlock_irqrestore(&z->lock, flags);
765 				ret = __alloc_gigantic_page(pfn, nr_pages);
766 				if (!ret)
767 					return pfn_to_page(pfn);
768 				spin_lock_irqsave(&z->lock, flags);
769 			}
770 			pfn += nr_pages;
771 		}
772 
773 		spin_unlock_irqrestore(&z->lock, flags);
774 	}
775 
776 	return NULL;
777 }
778 
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
781 
alloc_fresh_gigantic_page_node(struct hstate * h,int nid)782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783 {
784 	struct page *page;
785 
786 	page = alloc_gigantic_page(nid, huge_page_order(h));
787 	if (page) {
788 		prep_compound_gigantic_page(page, huge_page_order(h));
789 		prep_new_huge_page(h, page, nid);
790 	}
791 
792 	return page;
793 }
794 
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)795 static int alloc_fresh_gigantic_page(struct hstate *h,
796 				nodemask_t *nodes_allowed)
797 {
798 	struct page *page = NULL;
799 	int nr_nodes, node;
800 
801 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 		page = alloc_fresh_gigantic_page_node(h, node);
803 		if (page)
804 			return 1;
805 	}
806 
807 	return 0;
808 }
809 
gigantic_page_supported(void)810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
gigantic_page_supported(void)812 static inline bool gigantic_page_supported(void) { return false; }
free_gigantic_page(struct page * page,unsigned int order)813 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)814 static inline void destroy_compound_gigantic_page(struct page *page,
815 						unsigned int order) { }
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 					nodemask_t *nodes_allowed) { return 0; }
818 #endif
819 
update_and_free_page(struct hstate * h,struct page * page)820 static void update_and_free_page(struct hstate *h, struct page *page)
821 {
822 	int i;
823 
824 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 		return;
826 
827 	h->nr_huge_pages--;
828 	h->nr_huge_pages_node[page_to_nid(page)]--;
829 	for (i = 0; i < pages_per_huge_page(h); i++) {
830 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 				1 << PG_referenced | 1 << PG_dirty |
832 				1 << PG_active | 1 << PG_private |
833 				1 << PG_writeback);
834 	}
835 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836 	set_compound_page_dtor(page, NULL);
837 	set_page_refcounted(page);
838 	if (hstate_is_gigantic(h)) {
839 		destroy_compound_gigantic_page(page, huge_page_order(h));
840 		free_gigantic_page(page, huge_page_order(h));
841 	} else {
842 		arch_release_hugepage(page);
843 		__free_pages(page, huge_page_order(h));
844 	}
845 }
846 
size_to_hstate(unsigned long size)847 struct hstate *size_to_hstate(unsigned long size)
848 {
849 	struct hstate *h;
850 
851 	for_each_hstate(h) {
852 		if (huge_page_size(h) == size)
853 			return h;
854 	}
855 	return NULL;
856 }
857 
858 /*
859  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
860  * to hstate->hugepage_activelist.)
861  *
862  * This function can be called for tail pages, but never returns true for them.
863  */
page_huge_active(struct page * page)864 bool page_huge_active(struct page *page)
865 {
866 	VM_BUG_ON_PAGE(!PageHuge(page), page);
867 	return PageHead(page) && PagePrivate(&page[1]);
868 }
869 
870 /* never called for tail page */
set_page_huge_active(struct page * page)871 static void set_page_huge_active(struct page *page)
872 {
873 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
874 	SetPagePrivate(&page[1]);
875 }
876 
clear_page_huge_active(struct page * page)877 static void clear_page_huge_active(struct page *page)
878 {
879 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
880 	ClearPagePrivate(&page[1]);
881 }
882 
free_huge_page(struct page * page)883 void free_huge_page(struct page *page)
884 {
885 	/*
886 	 * Can't pass hstate in here because it is called from the
887 	 * compound page destructor.
888 	 */
889 	struct hstate *h = page_hstate(page);
890 	int nid = page_to_nid(page);
891 	struct hugepage_subpool *spool =
892 		(struct hugepage_subpool *)page_private(page);
893 	bool restore_reserve;
894 
895 	set_page_private(page, 0);
896 	page->mapping = NULL;
897 	BUG_ON(page_count(page));
898 	BUG_ON(page_mapcount(page));
899 	restore_reserve = PagePrivate(page);
900 	ClearPagePrivate(page);
901 
902 	spin_lock(&hugetlb_lock);
903 	clear_page_huge_active(page);
904 	hugetlb_cgroup_uncharge_page(hstate_index(h),
905 				     pages_per_huge_page(h), page);
906 	if (restore_reserve)
907 		h->resv_huge_pages++;
908 
909 	if (h->surplus_huge_pages_node[nid]) {
910 		/* remove the page from active list */
911 		list_del(&page->lru);
912 		update_and_free_page(h, page);
913 		h->surplus_huge_pages--;
914 		h->surplus_huge_pages_node[nid]--;
915 	} else {
916 		arch_clear_hugepage_flags(page);
917 		enqueue_huge_page(h, page);
918 	}
919 	spin_unlock(&hugetlb_lock);
920 	hugepage_subpool_put_pages(spool, 1);
921 }
922 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)923 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
924 {
925 	INIT_LIST_HEAD(&page->lru);
926 	set_compound_page_dtor(page, free_huge_page);
927 	spin_lock(&hugetlb_lock);
928 	set_hugetlb_cgroup(page, NULL);
929 	h->nr_huge_pages++;
930 	h->nr_huge_pages_node[nid]++;
931 	spin_unlock(&hugetlb_lock);
932 	put_page(page); /* free it into the hugepage allocator */
933 }
934 
prep_compound_gigantic_page(struct page * page,unsigned int order)935 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
936 {
937 	int i;
938 	int nr_pages = 1 << order;
939 	struct page *p = page + 1;
940 
941 	/* we rely on prep_new_huge_page to set the destructor */
942 	set_compound_order(page, order);
943 	__SetPageHead(page);
944 	__ClearPageReserved(page);
945 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
946 		__SetPageTail(p);
947 		/*
948 		 * For gigantic hugepages allocated through bootmem at
949 		 * boot, it's safer to be consistent with the not-gigantic
950 		 * hugepages and clear the PG_reserved bit from all tail pages
951 		 * too.  Otherwse drivers using get_user_pages() to access tail
952 		 * pages may get the reference counting wrong if they see
953 		 * PG_reserved set on a tail page (despite the head page not
954 		 * having PG_reserved set).  Enforcing this consistency between
955 		 * head and tail pages allows drivers to optimize away a check
956 		 * on the head page when they need know if put_page() is needed
957 		 * after get_user_pages().
958 		 */
959 		__ClearPageReserved(p);
960 		set_page_count(p, 0);
961 		p->first_page = page;
962 	}
963 }
964 
965 /*
966  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
967  * transparent huge pages.  See the PageTransHuge() documentation for more
968  * details.
969  */
PageHuge(struct page * page)970 int PageHuge(struct page *page)
971 {
972 	if (!PageCompound(page))
973 		return 0;
974 
975 	page = compound_head(page);
976 	return get_compound_page_dtor(page) == free_huge_page;
977 }
978 EXPORT_SYMBOL_GPL(PageHuge);
979 
980 /*
981  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
982  * normal or transparent huge pages.
983  */
PageHeadHuge(struct page * page_head)984 int PageHeadHuge(struct page *page_head)
985 {
986 	if (!PageHead(page_head))
987 		return 0;
988 
989 	return get_compound_page_dtor(page_head) == free_huge_page;
990 }
991 
__basepage_index(struct page * page)992 pgoff_t __basepage_index(struct page *page)
993 {
994 	struct page *page_head = compound_head(page);
995 	pgoff_t index = page_index(page_head);
996 	unsigned long compound_idx;
997 
998 	if (!PageHuge(page_head))
999 		return page_index(page);
1000 
1001 	if (compound_order(page_head) >= MAX_ORDER)
1002 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1003 	else
1004 		compound_idx = page - page_head;
1005 
1006 	return (index << compound_order(page_head)) + compound_idx;
1007 }
1008 
alloc_fresh_huge_page_node(struct hstate * h,int nid)1009 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1010 {
1011 	struct page *page;
1012 
1013 	page = alloc_pages_exact_node(nid,
1014 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1015 						__GFP_REPEAT|__GFP_NOWARN,
1016 		huge_page_order(h));
1017 	if (page) {
1018 		if (arch_prepare_hugepage(page)) {
1019 			__free_pages(page, huge_page_order(h));
1020 			return NULL;
1021 		}
1022 		prep_new_huge_page(h, page, nid);
1023 	}
1024 
1025 	return page;
1026 }
1027 
alloc_fresh_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1028 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1029 {
1030 	struct page *page;
1031 	int nr_nodes, node;
1032 	int ret = 0;
1033 
1034 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1035 		page = alloc_fresh_huge_page_node(h, node);
1036 		if (page) {
1037 			ret = 1;
1038 			break;
1039 		}
1040 	}
1041 
1042 	if (ret)
1043 		count_vm_event(HTLB_BUDDY_PGALLOC);
1044 	else
1045 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1046 
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Free huge page from pool from next node to free.
1052  * Attempt to keep persistent huge pages more or less
1053  * balanced over allowed nodes.
1054  * Called with hugetlb_lock locked.
1055  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1056 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1057 							 bool acct_surplus)
1058 {
1059 	int nr_nodes, node;
1060 	int ret = 0;
1061 
1062 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1063 		/*
1064 		 * If we're returning unused surplus pages, only examine
1065 		 * nodes with surplus pages.
1066 		 */
1067 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1068 		    !list_empty(&h->hugepage_freelists[node])) {
1069 			struct page *page =
1070 				list_entry(h->hugepage_freelists[node].next,
1071 					  struct page, lru);
1072 			list_del(&page->lru);
1073 			h->free_huge_pages--;
1074 			h->free_huge_pages_node[node]--;
1075 			if (acct_surplus) {
1076 				h->surplus_huge_pages--;
1077 				h->surplus_huge_pages_node[node]--;
1078 			}
1079 			update_and_free_page(h, page);
1080 			ret = 1;
1081 			break;
1082 		}
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Dissolve a given free hugepage into free buddy pages. This function does
1090  * nothing for in-use (including surplus) hugepages.
1091  */
dissolve_free_huge_page(struct page * page)1092 static void dissolve_free_huge_page(struct page *page)
1093 {
1094 	spin_lock(&hugetlb_lock);
1095 	if (PageHuge(page) && !page_count(page)) {
1096 		struct hstate *h = page_hstate(page);
1097 		int nid = page_to_nid(page);
1098 		list_del(&page->lru);
1099 		h->free_huge_pages--;
1100 		h->free_huge_pages_node[nid]--;
1101 		update_and_free_page(h, page);
1102 	}
1103 	spin_unlock(&hugetlb_lock);
1104 }
1105 
1106 /*
1107  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1108  * make specified memory blocks removable from the system.
1109  * Note that start_pfn should aligned with (minimum) hugepage size.
1110  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1111 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1112 {
1113 	unsigned int order = 8 * sizeof(void *);
1114 	unsigned long pfn;
1115 	struct hstate *h;
1116 
1117 	if (!hugepages_supported())
1118 		return;
1119 
1120 	/* Set scan step to minimum hugepage size */
1121 	for_each_hstate(h)
1122 		if (order > huge_page_order(h))
1123 			order = huge_page_order(h);
1124 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1125 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1126 		dissolve_free_huge_page(pfn_to_page(pfn));
1127 }
1128 
alloc_buddy_huge_page(struct hstate * h,int nid)1129 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1130 {
1131 	struct page *page;
1132 	unsigned int r_nid;
1133 
1134 	if (hstate_is_gigantic(h))
1135 		return NULL;
1136 
1137 	/*
1138 	 * Assume we will successfully allocate the surplus page to
1139 	 * prevent racing processes from causing the surplus to exceed
1140 	 * overcommit
1141 	 *
1142 	 * This however introduces a different race, where a process B
1143 	 * tries to grow the static hugepage pool while alloc_pages() is
1144 	 * called by process A. B will only examine the per-node
1145 	 * counters in determining if surplus huge pages can be
1146 	 * converted to normal huge pages in adjust_pool_surplus(). A
1147 	 * won't be able to increment the per-node counter, until the
1148 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1149 	 * no more huge pages can be converted from surplus to normal
1150 	 * state (and doesn't try to convert again). Thus, we have a
1151 	 * case where a surplus huge page exists, the pool is grown, and
1152 	 * the surplus huge page still exists after, even though it
1153 	 * should just have been converted to a normal huge page. This
1154 	 * does not leak memory, though, as the hugepage will be freed
1155 	 * once it is out of use. It also does not allow the counters to
1156 	 * go out of whack in adjust_pool_surplus() as we don't modify
1157 	 * the node values until we've gotten the hugepage and only the
1158 	 * per-node value is checked there.
1159 	 */
1160 	spin_lock(&hugetlb_lock);
1161 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1162 		spin_unlock(&hugetlb_lock);
1163 		return NULL;
1164 	} else {
1165 		h->nr_huge_pages++;
1166 		h->surplus_huge_pages++;
1167 	}
1168 	spin_unlock(&hugetlb_lock);
1169 
1170 	if (nid == NUMA_NO_NODE)
1171 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1172 				   __GFP_REPEAT|__GFP_NOWARN,
1173 				   huge_page_order(h));
1174 	else
1175 		page = alloc_pages_exact_node(nid,
1176 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1177 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1178 
1179 	if (page && arch_prepare_hugepage(page)) {
1180 		__free_pages(page, huge_page_order(h));
1181 		page = NULL;
1182 	}
1183 
1184 	spin_lock(&hugetlb_lock);
1185 	if (page) {
1186 		INIT_LIST_HEAD(&page->lru);
1187 		r_nid = page_to_nid(page);
1188 		set_compound_page_dtor(page, free_huge_page);
1189 		set_hugetlb_cgroup(page, NULL);
1190 		/*
1191 		 * We incremented the global counters already
1192 		 */
1193 		h->nr_huge_pages_node[r_nid]++;
1194 		h->surplus_huge_pages_node[r_nid]++;
1195 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1196 	} else {
1197 		h->nr_huge_pages--;
1198 		h->surplus_huge_pages--;
1199 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1200 	}
1201 	spin_unlock(&hugetlb_lock);
1202 
1203 	return page;
1204 }
1205 
1206 /*
1207  * This allocation function is useful in the context where vma is irrelevant.
1208  * E.g. soft-offlining uses this function because it only cares physical
1209  * address of error page.
1210  */
alloc_huge_page_node(struct hstate * h,int nid)1211 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1212 {
1213 	struct page *page = NULL;
1214 
1215 	spin_lock(&hugetlb_lock);
1216 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1217 		page = dequeue_huge_page_node(h, nid);
1218 	spin_unlock(&hugetlb_lock);
1219 
1220 	if (!page)
1221 		page = alloc_buddy_huge_page(h, nid);
1222 
1223 	return page;
1224 }
1225 
1226 /*
1227  * Increase the hugetlb pool such that it can accommodate a reservation
1228  * of size 'delta'.
1229  */
gather_surplus_pages(struct hstate * h,int delta)1230 static int gather_surplus_pages(struct hstate *h, int delta)
1231 {
1232 	struct list_head surplus_list;
1233 	struct page *page, *tmp;
1234 	int ret, i;
1235 	int needed, allocated;
1236 	bool alloc_ok = true;
1237 
1238 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1239 	if (needed <= 0) {
1240 		h->resv_huge_pages += delta;
1241 		return 0;
1242 	}
1243 
1244 	allocated = 0;
1245 	INIT_LIST_HEAD(&surplus_list);
1246 
1247 	ret = -ENOMEM;
1248 retry:
1249 	spin_unlock(&hugetlb_lock);
1250 	for (i = 0; i < needed; i++) {
1251 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1252 		if (!page) {
1253 			alloc_ok = false;
1254 			break;
1255 		}
1256 		list_add(&page->lru, &surplus_list);
1257 	}
1258 	allocated += i;
1259 
1260 	/*
1261 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1262 	 * because either resv_huge_pages or free_huge_pages may have changed.
1263 	 */
1264 	spin_lock(&hugetlb_lock);
1265 	needed = (h->resv_huge_pages + delta) -
1266 			(h->free_huge_pages + allocated);
1267 	if (needed > 0) {
1268 		if (alloc_ok)
1269 			goto retry;
1270 		/*
1271 		 * We were not able to allocate enough pages to
1272 		 * satisfy the entire reservation so we free what
1273 		 * we've allocated so far.
1274 		 */
1275 		goto free;
1276 	}
1277 	/*
1278 	 * The surplus_list now contains _at_least_ the number of extra pages
1279 	 * needed to accommodate the reservation.  Add the appropriate number
1280 	 * of pages to the hugetlb pool and free the extras back to the buddy
1281 	 * allocator.  Commit the entire reservation here to prevent another
1282 	 * process from stealing the pages as they are added to the pool but
1283 	 * before they are reserved.
1284 	 */
1285 	needed += allocated;
1286 	h->resv_huge_pages += delta;
1287 	ret = 0;
1288 
1289 	/* Free the needed pages to the hugetlb pool */
1290 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1291 		if ((--needed) < 0)
1292 			break;
1293 		/*
1294 		 * This page is now managed by the hugetlb allocator and has
1295 		 * no users -- drop the buddy allocator's reference.
1296 		 */
1297 		put_page_testzero(page);
1298 		VM_BUG_ON_PAGE(page_count(page), page);
1299 		enqueue_huge_page(h, page);
1300 	}
1301 free:
1302 	spin_unlock(&hugetlb_lock);
1303 
1304 	/* Free unnecessary surplus pages to the buddy allocator */
1305 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1306 		put_page(page);
1307 	spin_lock(&hugetlb_lock);
1308 
1309 	return ret;
1310 }
1311 
1312 /*
1313  * When releasing a hugetlb pool reservation, any surplus pages that were
1314  * allocated to satisfy the reservation must be explicitly freed if they were
1315  * never used.
1316  * Called with hugetlb_lock held.
1317  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1318 static void return_unused_surplus_pages(struct hstate *h,
1319 					unsigned long unused_resv_pages)
1320 {
1321 	unsigned long nr_pages;
1322 
1323 	/* Uncommit the reservation */
1324 	h->resv_huge_pages -= unused_resv_pages;
1325 
1326 	/* Cannot return gigantic pages currently */
1327 	if (hstate_is_gigantic(h))
1328 		return;
1329 
1330 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1331 
1332 	/*
1333 	 * We want to release as many surplus pages as possible, spread
1334 	 * evenly across all nodes with memory. Iterate across these nodes
1335 	 * until we can no longer free unreserved surplus pages. This occurs
1336 	 * when the nodes with surplus pages have no free pages.
1337 	 * free_pool_huge_page() will balance the the freed pages across the
1338 	 * on-line nodes with memory and will handle the hstate accounting.
1339 	 */
1340 	while (nr_pages--) {
1341 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1342 			break;
1343 		cond_resched_lock(&hugetlb_lock);
1344 	}
1345 }
1346 
1347 /*
1348  * Determine if the huge page at addr within the vma has an associated
1349  * reservation.  Where it does not we will need to logically increase
1350  * reservation and actually increase subpool usage before an allocation
1351  * can occur.  Where any new reservation would be required the
1352  * reservation change is prepared, but not committed.  Once the page
1353  * has been allocated from the subpool and instantiated the change should
1354  * be committed via vma_commit_reservation.  No action is required on
1355  * failure.
1356  */
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1357 static long vma_needs_reservation(struct hstate *h,
1358 			struct vm_area_struct *vma, unsigned long addr)
1359 {
1360 	struct resv_map *resv;
1361 	pgoff_t idx;
1362 	long chg;
1363 
1364 	resv = vma_resv_map(vma);
1365 	if (!resv)
1366 		return 1;
1367 
1368 	idx = vma_hugecache_offset(h, vma, addr);
1369 	chg = region_chg(resv, idx, idx + 1);
1370 
1371 	if (vma->vm_flags & VM_MAYSHARE)
1372 		return chg;
1373 	else
1374 		return chg < 0 ? chg : 0;
1375 }
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1376 static void vma_commit_reservation(struct hstate *h,
1377 			struct vm_area_struct *vma, unsigned long addr)
1378 {
1379 	struct resv_map *resv;
1380 	pgoff_t idx;
1381 
1382 	resv = vma_resv_map(vma);
1383 	if (!resv)
1384 		return;
1385 
1386 	idx = vma_hugecache_offset(h, vma, addr);
1387 	region_add(resv, idx, idx + 1);
1388 }
1389 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1390 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1391 				    unsigned long addr, int avoid_reserve)
1392 {
1393 	struct hugepage_subpool *spool = subpool_vma(vma);
1394 	struct hstate *h = hstate_vma(vma);
1395 	struct page *page;
1396 	long chg;
1397 	int ret, idx;
1398 	struct hugetlb_cgroup *h_cg;
1399 
1400 	idx = hstate_index(h);
1401 	/*
1402 	 * Processes that did not create the mapping will have no
1403 	 * reserves and will not have accounted against subpool
1404 	 * limit. Check that the subpool limit can be made before
1405 	 * satisfying the allocation MAP_NORESERVE mappings may also
1406 	 * need pages and subpool limit allocated allocated if no reserve
1407 	 * mapping overlaps.
1408 	 */
1409 	chg = vma_needs_reservation(h, vma, addr);
1410 	if (chg < 0)
1411 		return ERR_PTR(-ENOMEM);
1412 	if (chg || avoid_reserve)
1413 		if (hugepage_subpool_get_pages(spool, 1))
1414 			return ERR_PTR(-ENOSPC);
1415 
1416 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1417 	if (ret)
1418 		goto out_subpool_put;
1419 
1420 	spin_lock(&hugetlb_lock);
1421 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1422 	if (!page) {
1423 		spin_unlock(&hugetlb_lock);
1424 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1425 		if (!page)
1426 			goto out_uncharge_cgroup;
1427 
1428 		spin_lock(&hugetlb_lock);
1429 		list_move(&page->lru, &h->hugepage_activelist);
1430 		/* Fall through */
1431 	}
1432 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1433 	spin_unlock(&hugetlb_lock);
1434 
1435 	set_page_private(page, (unsigned long)spool);
1436 
1437 	vma_commit_reservation(h, vma, addr);
1438 	return page;
1439 
1440 out_uncharge_cgroup:
1441 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1442 out_subpool_put:
1443 	if (chg || avoid_reserve)
1444 		hugepage_subpool_put_pages(spool, 1);
1445 	return ERR_PTR(-ENOSPC);
1446 }
1447 
1448 /*
1449  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1450  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1451  * where no ERR_VALUE is expected to be returned.
1452  */
alloc_huge_page_noerr(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1453 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1454 				unsigned long addr, int avoid_reserve)
1455 {
1456 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1457 	if (IS_ERR(page))
1458 		page = NULL;
1459 	return page;
1460 }
1461 
alloc_bootmem_huge_page(struct hstate * h)1462 int __weak alloc_bootmem_huge_page(struct hstate *h)
1463 {
1464 	struct huge_bootmem_page *m;
1465 	int nr_nodes, node;
1466 
1467 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1468 		void *addr;
1469 
1470 		addr = memblock_virt_alloc_try_nid_nopanic(
1471 				huge_page_size(h), huge_page_size(h),
1472 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1473 		if (addr) {
1474 			/*
1475 			 * Use the beginning of the huge page to store the
1476 			 * huge_bootmem_page struct (until gather_bootmem
1477 			 * puts them into the mem_map).
1478 			 */
1479 			m = addr;
1480 			goto found;
1481 		}
1482 	}
1483 	return 0;
1484 
1485 found:
1486 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1487 	/* Put them into a private list first because mem_map is not up yet */
1488 	list_add(&m->list, &huge_boot_pages);
1489 	m->hstate = h;
1490 	return 1;
1491 }
1492 
prep_compound_huge_page(struct page * page,unsigned int order)1493 static void __init prep_compound_huge_page(struct page *page,
1494 		unsigned int order)
1495 {
1496 	if (unlikely(order > (MAX_ORDER - 1)))
1497 		prep_compound_gigantic_page(page, order);
1498 	else
1499 		prep_compound_page(page, order);
1500 }
1501 
1502 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)1503 static void __init gather_bootmem_prealloc(void)
1504 {
1505 	struct huge_bootmem_page *m;
1506 
1507 	list_for_each_entry(m, &huge_boot_pages, list) {
1508 		struct hstate *h = m->hstate;
1509 		struct page *page;
1510 
1511 #ifdef CONFIG_HIGHMEM
1512 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1513 		memblock_free_late(__pa(m),
1514 				   sizeof(struct huge_bootmem_page));
1515 #else
1516 		page = virt_to_page(m);
1517 #endif
1518 		WARN_ON(page_count(page) != 1);
1519 		prep_compound_huge_page(page, h->order);
1520 		WARN_ON(PageReserved(page));
1521 		prep_new_huge_page(h, page, page_to_nid(page));
1522 		/*
1523 		 * If we had gigantic hugepages allocated at boot time, we need
1524 		 * to restore the 'stolen' pages to totalram_pages in order to
1525 		 * fix confusing memory reports from free(1) and another
1526 		 * side-effects, like CommitLimit going negative.
1527 		 */
1528 		if (hstate_is_gigantic(h))
1529 			adjust_managed_page_count(page, 1 << h->order);
1530 	}
1531 }
1532 
hugetlb_hstate_alloc_pages(struct hstate * h)1533 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1534 {
1535 	unsigned long i;
1536 
1537 	for (i = 0; i < h->max_huge_pages; ++i) {
1538 		if (hstate_is_gigantic(h)) {
1539 			if (!alloc_bootmem_huge_page(h))
1540 				break;
1541 		} else if (!alloc_fresh_huge_page(h,
1542 					 &node_states[N_MEMORY]))
1543 			break;
1544 	}
1545 	h->max_huge_pages = i;
1546 }
1547 
hugetlb_init_hstates(void)1548 static void __init hugetlb_init_hstates(void)
1549 {
1550 	struct hstate *h;
1551 
1552 	for_each_hstate(h) {
1553 		/* oversize hugepages were init'ed in early boot */
1554 		if (!hstate_is_gigantic(h))
1555 			hugetlb_hstate_alloc_pages(h);
1556 	}
1557 }
1558 
memfmt(char * buf,unsigned long n)1559 static char * __init memfmt(char *buf, unsigned long n)
1560 {
1561 	if (n >= (1UL << 30))
1562 		sprintf(buf, "%lu GB", n >> 30);
1563 	else if (n >= (1UL << 20))
1564 		sprintf(buf, "%lu MB", n >> 20);
1565 	else
1566 		sprintf(buf, "%lu KB", n >> 10);
1567 	return buf;
1568 }
1569 
report_hugepages(void)1570 static void __init report_hugepages(void)
1571 {
1572 	struct hstate *h;
1573 
1574 	for_each_hstate(h) {
1575 		char buf[32];
1576 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1577 			memfmt(buf, huge_page_size(h)),
1578 			h->free_huge_pages);
1579 	}
1580 }
1581 
1582 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1583 static void try_to_free_low(struct hstate *h, unsigned long count,
1584 						nodemask_t *nodes_allowed)
1585 {
1586 	int i;
1587 
1588 	if (hstate_is_gigantic(h))
1589 		return;
1590 
1591 	for_each_node_mask(i, *nodes_allowed) {
1592 		struct page *page, *next;
1593 		struct list_head *freel = &h->hugepage_freelists[i];
1594 		list_for_each_entry_safe(page, next, freel, lru) {
1595 			if (count >= h->nr_huge_pages)
1596 				return;
1597 			if (PageHighMem(page))
1598 				continue;
1599 			list_del(&page->lru);
1600 			update_and_free_page(h, page);
1601 			h->free_huge_pages--;
1602 			h->free_huge_pages_node[page_to_nid(page)]--;
1603 		}
1604 	}
1605 }
1606 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1607 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1608 						nodemask_t *nodes_allowed)
1609 {
1610 }
1611 #endif
1612 
1613 /*
1614  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1615  * balanced by operating on them in a round-robin fashion.
1616  * Returns 1 if an adjustment was made.
1617  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)1618 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1619 				int delta)
1620 {
1621 	int nr_nodes, node;
1622 
1623 	VM_BUG_ON(delta != -1 && delta != 1);
1624 
1625 	if (delta < 0) {
1626 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1627 			if (h->surplus_huge_pages_node[node])
1628 				goto found;
1629 		}
1630 	} else {
1631 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1632 			if (h->surplus_huge_pages_node[node] <
1633 					h->nr_huge_pages_node[node])
1634 				goto found;
1635 		}
1636 	}
1637 	return 0;
1638 
1639 found:
1640 	h->surplus_huge_pages += delta;
1641 	h->surplus_huge_pages_node[node] += delta;
1642 	return 1;
1643 }
1644 
1645 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1646 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1647 						nodemask_t *nodes_allowed)
1648 {
1649 	unsigned long min_count, ret;
1650 
1651 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1652 		return h->max_huge_pages;
1653 
1654 	/*
1655 	 * Increase the pool size
1656 	 * First take pages out of surplus state.  Then make up the
1657 	 * remaining difference by allocating fresh huge pages.
1658 	 *
1659 	 * We might race with alloc_buddy_huge_page() here and be unable
1660 	 * to convert a surplus huge page to a normal huge page. That is
1661 	 * not critical, though, it just means the overall size of the
1662 	 * pool might be one hugepage larger than it needs to be, but
1663 	 * within all the constraints specified by the sysctls.
1664 	 */
1665 	spin_lock(&hugetlb_lock);
1666 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1667 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1668 			break;
1669 	}
1670 
1671 	while (count > persistent_huge_pages(h)) {
1672 		/*
1673 		 * If this allocation races such that we no longer need the
1674 		 * page, free_huge_page will handle it by freeing the page
1675 		 * and reducing the surplus.
1676 		 */
1677 		spin_unlock(&hugetlb_lock);
1678 
1679 		/* yield cpu to avoid soft lockup */
1680 		cond_resched();
1681 
1682 		if (hstate_is_gigantic(h))
1683 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1684 		else
1685 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1686 		spin_lock(&hugetlb_lock);
1687 		if (!ret)
1688 			goto out;
1689 
1690 		/* Bail for signals. Probably ctrl-c from user */
1691 		if (signal_pending(current))
1692 			goto out;
1693 	}
1694 
1695 	/*
1696 	 * Decrease the pool size
1697 	 * First return free pages to the buddy allocator (being careful
1698 	 * to keep enough around to satisfy reservations).  Then place
1699 	 * pages into surplus state as needed so the pool will shrink
1700 	 * to the desired size as pages become free.
1701 	 *
1702 	 * By placing pages into the surplus state independent of the
1703 	 * overcommit value, we are allowing the surplus pool size to
1704 	 * exceed overcommit. There are few sane options here. Since
1705 	 * alloc_buddy_huge_page() is checking the global counter,
1706 	 * though, we'll note that we're not allowed to exceed surplus
1707 	 * and won't grow the pool anywhere else. Not until one of the
1708 	 * sysctls are changed, or the surplus pages go out of use.
1709 	 */
1710 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1711 	min_count = max(count, min_count);
1712 	try_to_free_low(h, min_count, nodes_allowed);
1713 	while (min_count < persistent_huge_pages(h)) {
1714 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1715 			break;
1716 		cond_resched_lock(&hugetlb_lock);
1717 	}
1718 	while (count < persistent_huge_pages(h)) {
1719 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1720 			break;
1721 	}
1722 out:
1723 	ret = persistent_huge_pages(h);
1724 	spin_unlock(&hugetlb_lock);
1725 	return ret;
1726 }
1727 
1728 #define HSTATE_ATTR_RO(_name) \
1729 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1730 
1731 #define HSTATE_ATTR(_name) \
1732 	static struct kobj_attribute _name##_attr = \
1733 		__ATTR(_name, 0644, _name##_show, _name##_store)
1734 
1735 static struct kobject *hugepages_kobj;
1736 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1737 
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1739 
kobj_to_hstate(struct kobject * kobj,int * nidp)1740 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1741 {
1742 	int i;
1743 
1744 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1745 		if (hstate_kobjs[i] == kobj) {
1746 			if (nidp)
1747 				*nidp = NUMA_NO_NODE;
1748 			return &hstates[i];
1749 		}
1750 
1751 	return kobj_to_node_hstate(kobj, nidp);
1752 }
1753 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1754 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1755 					struct kobj_attribute *attr, char *buf)
1756 {
1757 	struct hstate *h;
1758 	unsigned long nr_huge_pages;
1759 	int nid;
1760 
1761 	h = kobj_to_hstate(kobj, &nid);
1762 	if (nid == NUMA_NO_NODE)
1763 		nr_huge_pages = h->nr_huge_pages;
1764 	else
1765 		nr_huge_pages = h->nr_huge_pages_node[nid];
1766 
1767 	return sprintf(buf, "%lu\n", nr_huge_pages);
1768 }
1769 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)1770 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1771 					   struct hstate *h, int nid,
1772 					   unsigned long count, size_t len)
1773 {
1774 	int err;
1775 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1776 
1777 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1778 		err = -EINVAL;
1779 		goto out;
1780 	}
1781 
1782 	if (nid == NUMA_NO_NODE) {
1783 		/*
1784 		 * global hstate attribute
1785 		 */
1786 		if (!(obey_mempolicy &&
1787 				init_nodemask_of_mempolicy(nodes_allowed))) {
1788 			NODEMASK_FREE(nodes_allowed);
1789 			nodes_allowed = &node_states[N_MEMORY];
1790 		}
1791 	} else if (nodes_allowed) {
1792 		/*
1793 		 * per node hstate attribute: adjust count to global,
1794 		 * but restrict alloc/free to the specified node.
1795 		 */
1796 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1797 		init_nodemask_of_node(nodes_allowed, nid);
1798 	} else
1799 		nodes_allowed = &node_states[N_MEMORY];
1800 
1801 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1802 
1803 	if (nodes_allowed != &node_states[N_MEMORY])
1804 		NODEMASK_FREE(nodes_allowed);
1805 
1806 	return len;
1807 out:
1808 	NODEMASK_FREE(nodes_allowed);
1809 	return err;
1810 }
1811 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)1812 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1813 					 struct kobject *kobj, const char *buf,
1814 					 size_t len)
1815 {
1816 	struct hstate *h;
1817 	unsigned long count;
1818 	int nid;
1819 	int err;
1820 
1821 	err = kstrtoul(buf, 10, &count);
1822 	if (err)
1823 		return err;
1824 
1825 	h = kobj_to_hstate(kobj, &nid);
1826 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1827 }
1828 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1829 static ssize_t nr_hugepages_show(struct kobject *kobj,
1830 				       struct kobj_attribute *attr, char *buf)
1831 {
1832 	return nr_hugepages_show_common(kobj, attr, buf);
1833 }
1834 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1835 static ssize_t nr_hugepages_store(struct kobject *kobj,
1836 	       struct kobj_attribute *attr, const char *buf, size_t len)
1837 {
1838 	return nr_hugepages_store_common(false, kobj, buf, len);
1839 }
1840 HSTATE_ATTR(nr_hugepages);
1841 
1842 #ifdef CONFIG_NUMA
1843 
1844 /*
1845  * hstate attribute for optionally mempolicy-based constraint on persistent
1846  * huge page alloc/free.
1847  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1848 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1849 				       struct kobj_attribute *attr, char *buf)
1850 {
1851 	return nr_hugepages_show_common(kobj, attr, buf);
1852 }
1853 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1854 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1855 	       struct kobj_attribute *attr, const char *buf, size_t len)
1856 {
1857 	return nr_hugepages_store_common(true, kobj, buf, len);
1858 }
1859 HSTATE_ATTR(nr_hugepages_mempolicy);
1860 #endif
1861 
1862 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1863 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1864 					struct kobj_attribute *attr, char *buf)
1865 {
1866 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1867 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1868 }
1869 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1870 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1871 		struct kobj_attribute *attr, const char *buf, size_t count)
1872 {
1873 	int err;
1874 	unsigned long input;
1875 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1876 
1877 	if (hstate_is_gigantic(h))
1878 		return -EINVAL;
1879 
1880 	err = kstrtoul(buf, 10, &input);
1881 	if (err)
1882 		return err;
1883 
1884 	spin_lock(&hugetlb_lock);
1885 	h->nr_overcommit_huge_pages = input;
1886 	spin_unlock(&hugetlb_lock);
1887 
1888 	return count;
1889 }
1890 HSTATE_ATTR(nr_overcommit_hugepages);
1891 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1892 static ssize_t free_hugepages_show(struct kobject *kobj,
1893 					struct kobj_attribute *attr, char *buf)
1894 {
1895 	struct hstate *h;
1896 	unsigned long free_huge_pages;
1897 	int nid;
1898 
1899 	h = kobj_to_hstate(kobj, &nid);
1900 	if (nid == NUMA_NO_NODE)
1901 		free_huge_pages = h->free_huge_pages;
1902 	else
1903 		free_huge_pages = h->free_huge_pages_node[nid];
1904 
1905 	return sprintf(buf, "%lu\n", free_huge_pages);
1906 }
1907 HSTATE_ATTR_RO(free_hugepages);
1908 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1909 static ssize_t resv_hugepages_show(struct kobject *kobj,
1910 					struct kobj_attribute *attr, char *buf)
1911 {
1912 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1913 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1914 }
1915 HSTATE_ATTR_RO(resv_hugepages);
1916 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1917 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1918 					struct kobj_attribute *attr, char *buf)
1919 {
1920 	struct hstate *h;
1921 	unsigned long surplus_huge_pages;
1922 	int nid;
1923 
1924 	h = kobj_to_hstate(kobj, &nid);
1925 	if (nid == NUMA_NO_NODE)
1926 		surplus_huge_pages = h->surplus_huge_pages;
1927 	else
1928 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1929 
1930 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1931 }
1932 HSTATE_ATTR_RO(surplus_hugepages);
1933 
1934 static struct attribute *hstate_attrs[] = {
1935 	&nr_hugepages_attr.attr,
1936 	&nr_overcommit_hugepages_attr.attr,
1937 	&free_hugepages_attr.attr,
1938 	&resv_hugepages_attr.attr,
1939 	&surplus_hugepages_attr.attr,
1940 #ifdef CONFIG_NUMA
1941 	&nr_hugepages_mempolicy_attr.attr,
1942 #endif
1943 	NULL,
1944 };
1945 
1946 static struct attribute_group hstate_attr_group = {
1947 	.attrs = hstate_attrs,
1948 };
1949 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,struct attribute_group * hstate_attr_group)1950 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1951 				    struct kobject **hstate_kobjs,
1952 				    struct attribute_group *hstate_attr_group)
1953 {
1954 	int retval;
1955 	int hi = hstate_index(h);
1956 
1957 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1958 	if (!hstate_kobjs[hi])
1959 		return -ENOMEM;
1960 
1961 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1962 	if (retval)
1963 		kobject_put(hstate_kobjs[hi]);
1964 
1965 	return retval;
1966 }
1967 
hugetlb_sysfs_init(void)1968 static void __init hugetlb_sysfs_init(void)
1969 {
1970 	struct hstate *h;
1971 	int err;
1972 
1973 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1974 	if (!hugepages_kobj)
1975 		return;
1976 
1977 	for_each_hstate(h) {
1978 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1979 					 hstate_kobjs, &hstate_attr_group);
1980 		if (err)
1981 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1982 	}
1983 }
1984 
1985 #ifdef CONFIG_NUMA
1986 
1987 /*
1988  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1989  * with node devices in node_devices[] using a parallel array.  The array
1990  * index of a node device or _hstate == node id.
1991  * This is here to avoid any static dependency of the node device driver, in
1992  * the base kernel, on the hugetlb module.
1993  */
1994 struct node_hstate {
1995 	struct kobject		*hugepages_kobj;
1996 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1997 };
1998 struct node_hstate node_hstates[MAX_NUMNODES];
1999 
2000 /*
2001  * A subset of global hstate attributes for node devices
2002  */
2003 static struct attribute *per_node_hstate_attrs[] = {
2004 	&nr_hugepages_attr.attr,
2005 	&free_hugepages_attr.attr,
2006 	&surplus_hugepages_attr.attr,
2007 	NULL,
2008 };
2009 
2010 static struct attribute_group per_node_hstate_attr_group = {
2011 	.attrs = per_node_hstate_attrs,
2012 };
2013 
2014 /*
2015  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2016  * Returns node id via non-NULL nidp.
2017  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2018 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2019 {
2020 	int nid;
2021 
2022 	for (nid = 0; nid < nr_node_ids; nid++) {
2023 		struct node_hstate *nhs = &node_hstates[nid];
2024 		int i;
2025 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2026 			if (nhs->hstate_kobjs[i] == kobj) {
2027 				if (nidp)
2028 					*nidp = nid;
2029 				return &hstates[i];
2030 			}
2031 	}
2032 
2033 	BUG();
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * Unregister hstate attributes from a single node device.
2039  * No-op if no hstate attributes attached.
2040  */
hugetlb_unregister_node(struct node * node)2041 static void hugetlb_unregister_node(struct node *node)
2042 {
2043 	struct hstate *h;
2044 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2045 
2046 	if (!nhs->hugepages_kobj)
2047 		return;		/* no hstate attributes */
2048 
2049 	for_each_hstate(h) {
2050 		int idx = hstate_index(h);
2051 		if (nhs->hstate_kobjs[idx]) {
2052 			kobject_put(nhs->hstate_kobjs[idx]);
2053 			nhs->hstate_kobjs[idx] = NULL;
2054 		}
2055 	}
2056 
2057 	kobject_put(nhs->hugepages_kobj);
2058 	nhs->hugepages_kobj = NULL;
2059 }
2060 
2061 /*
2062  * hugetlb module exit:  unregister hstate attributes from node devices
2063  * that have them.
2064  */
hugetlb_unregister_all_nodes(void)2065 static void hugetlb_unregister_all_nodes(void)
2066 {
2067 	int nid;
2068 
2069 	/*
2070 	 * disable node device registrations.
2071 	 */
2072 	register_hugetlbfs_with_node(NULL, NULL);
2073 
2074 	/*
2075 	 * remove hstate attributes from any nodes that have them.
2076 	 */
2077 	for (nid = 0; nid < nr_node_ids; nid++)
2078 		hugetlb_unregister_node(node_devices[nid]);
2079 }
2080 
2081 /*
2082  * Register hstate attributes for a single node device.
2083  * No-op if attributes already registered.
2084  */
hugetlb_register_node(struct node * node)2085 static void hugetlb_register_node(struct node *node)
2086 {
2087 	struct hstate *h;
2088 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2089 	int err;
2090 
2091 	if (nhs->hugepages_kobj)
2092 		return;		/* already allocated */
2093 
2094 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2095 							&node->dev.kobj);
2096 	if (!nhs->hugepages_kobj)
2097 		return;
2098 
2099 	for_each_hstate(h) {
2100 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2101 						nhs->hstate_kobjs,
2102 						&per_node_hstate_attr_group);
2103 		if (err) {
2104 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2105 				h->name, node->dev.id);
2106 			hugetlb_unregister_node(node);
2107 			break;
2108 		}
2109 	}
2110 }
2111 
2112 /*
2113  * hugetlb init time:  register hstate attributes for all registered node
2114  * devices of nodes that have memory.  All on-line nodes should have
2115  * registered their associated device by this time.
2116  */
hugetlb_register_all_nodes(void)2117 static void hugetlb_register_all_nodes(void)
2118 {
2119 	int nid;
2120 
2121 	for_each_node_state(nid, N_MEMORY) {
2122 		struct node *node = node_devices[nid];
2123 		if (node->dev.id == nid)
2124 			hugetlb_register_node(node);
2125 	}
2126 
2127 	/*
2128 	 * Let the node device driver know we're here so it can
2129 	 * [un]register hstate attributes on node hotplug.
2130 	 */
2131 	register_hugetlbfs_with_node(hugetlb_register_node,
2132 				     hugetlb_unregister_node);
2133 }
2134 #else	/* !CONFIG_NUMA */
2135 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2136 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2137 {
2138 	BUG();
2139 	if (nidp)
2140 		*nidp = -1;
2141 	return NULL;
2142 }
2143 
hugetlb_unregister_all_nodes(void)2144 static void hugetlb_unregister_all_nodes(void) { }
2145 
hugetlb_register_all_nodes(void)2146 static void hugetlb_register_all_nodes(void) { }
2147 
2148 #endif
2149 
hugetlb_exit(void)2150 static void __exit hugetlb_exit(void)
2151 {
2152 	struct hstate *h;
2153 
2154 	hugetlb_unregister_all_nodes();
2155 
2156 	for_each_hstate(h) {
2157 		kobject_put(hstate_kobjs[hstate_index(h)]);
2158 	}
2159 
2160 	kobject_put(hugepages_kobj);
2161 	kfree(htlb_fault_mutex_table);
2162 }
2163 module_exit(hugetlb_exit);
2164 
hugetlb_init(void)2165 static int __init hugetlb_init(void)
2166 {
2167 	int i;
2168 
2169 	if (!hugepages_supported())
2170 		return 0;
2171 
2172 	if (!size_to_hstate(default_hstate_size)) {
2173 		default_hstate_size = HPAGE_SIZE;
2174 		if (!size_to_hstate(default_hstate_size))
2175 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2176 	}
2177 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2178 	if (default_hstate_max_huge_pages)
2179 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2180 
2181 	hugetlb_init_hstates();
2182 	gather_bootmem_prealloc();
2183 	report_hugepages();
2184 
2185 	hugetlb_sysfs_init();
2186 	hugetlb_register_all_nodes();
2187 	hugetlb_cgroup_file_init();
2188 
2189 #ifdef CONFIG_SMP
2190 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2191 #else
2192 	num_fault_mutexes = 1;
2193 #endif
2194 	htlb_fault_mutex_table =
2195 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2196 	BUG_ON(!htlb_fault_mutex_table);
2197 
2198 	for (i = 0; i < num_fault_mutexes; i++)
2199 		mutex_init(&htlb_fault_mutex_table[i]);
2200 	return 0;
2201 }
2202 module_init(hugetlb_init);
2203 
2204 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned int order)2205 void __init hugetlb_add_hstate(unsigned int order)
2206 {
2207 	struct hstate *h;
2208 	unsigned long i;
2209 
2210 	if (size_to_hstate(PAGE_SIZE << order)) {
2211 		pr_warning("hugepagesz= specified twice, ignoring\n");
2212 		return;
2213 	}
2214 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2215 	BUG_ON(order == 0);
2216 	h = &hstates[hugetlb_max_hstate++];
2217 	h->order = order;
2218 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2219 	h->nr_huge_pages = 0;
2220 	h->free_huge_pages = 0;
2221 	for (i = 0; i < MAX_NUMNODES; ++i)
2222 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2223 	INIT_LIST_HEAD(&h->hugepage_activelist);
2224 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2225 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2226 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2227 					huge_page_size(h)/1024);
2228 
2229 	parsed_hstate = h;
2230 }
2231 
hugetlb_nrpages_setup(char * s)2232 static int __init hugetlb_nrpages_setup(char *s)
2233 {
2234 	unsigned long *mhp;
2235 	static unsigned long *last_mhp;
2236 
2237 	/*
2238 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2239 	 * so this hugepages= parameter goes to the "default hstate".
2240 	 */
2241 	if (!hugetlb_max_hstate)
2242 		mhp = &default_hstate_max_huge_pages;
2243 	else
2244 		mhp = &parsed_hstate->max_huge_pages;
2245 
2246 	if (mhp == last_mhp) {
2247 		pr_warning("hugepages= specified twice without "
2248 			   "interleaving hugepagesz=, ignoring\n");
2249 		return 1;
2250 	}
2251 
2252 	if (sscanf(s, "%lu", mhp) <= 0)
2253 		*mhp = 0;
2254 
2255 	/*
2256 	 * Global state is always initialized later in hugetlb_init.
2257 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2258 	 * use the bootmem allocator.
2259 	 */
2260 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2261 		hugetlb_hstate_alloc_pages(parsed_hstate);
2262 
2263 	last_mhp = mhp;
2264 
2265 	return 1;
2266 }
2267 __setup("hugepages=", hugetlb_nrpages_setup);
2268 
hugetlb_default_setup(char * s)2269 static int __init hugetlb_default_setup(char *s)
2270 {
2271 	default_hstate_size = memparse(s, &s);
2272 	return 1;
2273 }
2274 __setup("default_hugepagesz=", hugetlb_default_setup);
2275 
cpuset_mems_nr(unsigned int * array)2276 static unsigned int cpuset_mems_nr(unsigned int *array)
2277 {
2278 	int node;
2279 	unsigned int nr = 0;
2280 
2281 	for_each_node_mask(node, cpuset_current_mems_allowed)
2282 		nr += array[node];
2283 
2284 	return nr;
2285 }
2286 
2287 #ifdef CONFIG_SYSCTL
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2288 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2289 			 struct ctl_table *table, int write,
2290 			 void __user *buffer, size_t *length, loff_t *ppos)
2291 {
2292 	struct hstate *h = &default_hstate;
2293 	unsigned long tmp = h->max_huge_pages;
2294 	int ret;
2295 
2296 	if (!hugepages_supported())
2297 		return -ENOTSUPP;
2298 
2299 	table->data = &tmp;
2300 	table->maxlen = sizeof(unsigned long);
2301 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2302 	if (ret)
2303 		goto out;
2304 
2305 	if (write)
2306 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2307 						  NUMA_NO_NODE, tmp, *length);
2308 out:
2309 	return ret;
2310 }
2311 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2312 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2313 			  void __user *buffer, size_t *length, loff_t *ppos)
2314 {
2315 
2316 	return hugetlb_sysctl_handler_common(false, table, write,
2317 							buffer, length, ppos);
2318 }
2319 
2320 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2321 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2322 			  void __user *buffer, size_t *length, loff_t *ppos)
2323 {
2324 	return hugetlb_sysctl_handler_common(true, table, write,
2325 							buffer, length, ppos);
2326 }
2327 #endif /* CONFIG_NUMA */
2328 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2329 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2330 			void __user *buffer,
2331 			size_t *length, loff_t *ppos)
2332 {
2333 	struct hstate *h = &default_hstate;
2334 	unsigned long tmp;
2335 	int ret;
2336 
2337 	if (!hugepages_supported())
2338 		return -ENOTSUPP;
2339 
2340 	tmp = h->nr_overcommit_huge_pages;
2341 
2342 	if (write && hstate_is_gigantic(h))
2343 		return -EINVAL;
2344 
2345 	table->data = &tmp;
2346 	table->maxlen = sizeof(unsigned long);
2347 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2348 	if (ret)
2349 		goto out;
2350 
2351 	if (write) {
2352 		spin_lock(&hugetlb_lock);
2353 		h->nr_overcommit_huge_pages = tmp;
2354 		spin_unlock(&hugetlb_lock);
2355 	}
2356 out:
2357 	return ret;
2358 }
2359 
2360 #endif /* CONFIG_SYSCTL */
2361 
hugetlb_report_meminfo(struct seq_file * m)2362 void hugetlb_report_meminfo(struct seq_file *m)
2363 {
2364 	struct hstate *h = &default_hstate;
2365 	if (!hugepages_supported())
2366 		return;
2367 	seq_printf(m,
2368 			"HugePages_Total:   %5lu\n"
2369 			"HugePages_Free:    %5lu\n"
2370 			"HugePages_Rsvd:    %5lu\n"
2371 			"HugePages_Surp:    %5lu\n"
2372 			"Hugepagesize:   %8lu kB\n",
2373 			h->nr_huge_pages,
2374 			h->free_huge_pages,
2375 			h->resv_huge_pages,
2376 			h->surplus_huge_pages,
2377 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2378 }
2379 
hugetlb_report_node_meminfo(int nid,char * buf)2380 int hugetlb_report_node_meminfo(int nid, char *buf)
2381 {
2382 	struct hstate *h = &default_hstate;
2383 	if (!hugepages_supported())
2384 		return 0;
2385 	return sprintf(buf,
2386 		"Node %d HugePages_Total: %5u\n"
2387 		"Node %d HugePages_Free:  %5u\n"
2388 		"Node %d HugePages_Surp:  %5u\n",
2389 		nid, h->nr_huge_pages_node[nid],
2390 		nid, h->free_huge_pages_node[nid],
2391 		nid, h->surplus_huge_pages_node[nid]);
2392 }
2393 
hugetlb_show_meminfo(void)2394 void hugetlb_show_meminfo(void)
2395 {
2396 	struct hstate *h;
2397 	int nid;
2398 
2399 	if (!hugepages_supported())
2400 		return;
2401 
2402 	for_each_node_state(nid, N_MEMORY)
2403 		for_each_hstate(h)
2404 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2405 				nid,
2406 				h->nr_huge_pages_node[nid],
2407 				h->free_huge_pages_node[nid],
2408 				h->surplus_huge_pages_node[nid],
2409 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2410 }
2411 
2412 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)2413 unsigned long hugetlb_total_pages(void)
2414 {
2415 	struct hstate *h;
2416 	unsigned long nr_total_pages = 0;
2417 
2418 	for_each_hstate(h)
2419 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2420 	return nr_total_pages;
2421 }
2422 
hugetlb_acct_memory(struct hstate * h,long delta)2423 static int hugetlb_acct_memory(struct hstate *h, long delta)
2424 {
2425 	int ret = -ENOMEM;
2426 
2427 	spin_lock(&hugetlb_lock);
2428 	/*
2429 	 * When cpuset is configured, it breaks the strict hugetlb page
2430 	 * reservation as the accounting is done on a global variable. Such
2431 	 * reservation is completely rubbish in the presence of cpuset because
2432 	 * the reservation is not checked against page availability for the
2433 	 * current cpuset. Application can still potentially OOM'ed by kernel
2434 	 * with lack of free htlb page in cpuset that the task is in.
2435 	 * Attempt to enforce strict accounting with cpuset is almost
2436 	 * impossible (or too ugly) because cpuset is too fluid that
2437 	 * task or memory node can be dynamically moved between cpusets.
2438 	 *
2439 	 * The change of semantics for shared hugetlb mapping with cpuset is
2440 	 * undesirable. However, in order to preserve some of the semantics,
2441 	 * we fall back to check against current free page availability as
2442 	 * a best attempt and hopefully to minimize the impact of changing
2443 	 * semantics that cpuset has.
2444 	 */
2445 	if (delta > 0) {
2446 		if (gather_surplus_pages(h, delta) < 0)
2447 			goto out;
2448 
2449 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2450 			return_unused_surplus_pages(h, delta);
2451 			goto out;
2452 		}
2453 	}
2454 
2455 	ret = 0;
2456 	if (delta < 0)
2457 		return_unused_surplus_pages(h, (unsigned long) -delta);
2458 
2459 out:
2460 	spin_unlock(&hugetlb_lock);
2461 	return ret;
2462 }
2463 
hugetlb_vm_op_open(struct vm_area_struct * vma)2464 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2465 {
2466 	struct resv_map *resv = vma_resv_map(vma);
2467 
2468 	/*
2469 	 * This new VMA should share its siblings reservation map if present.
2470 	 * The VMA will only ever have a valid reservation map pointer where
2471 	 * it is being copied for another still existing VMA.  As that VMA
2472 	 * has a reference to the reservation map it cannot disappear until
2473 	 * after this open call completes.  It is therefore safe to take a
2474 	 * new reference here without additional locking.
2475 	 */
2476 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2477 		kref_get(&resv->refs);
2478 }
2479 
hugetlb_vm_op_close(struct vm_area_struct * vma)2480 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2481 {
2482 	struct hstate *h = hstate_vma(vma);
2483 	struct resv_map *resv = vma_resv_map(vma);
2484 	struct hugepage_subpool *spool = subpool_vma(vma);
2485 	unsigned long reserve, start, end;
2486 
2487 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2488 		return;
2489 
2490 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2491 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2492 
2493 	reserve = (end - start) - region_count(resv, start, end);
2494 
2495 	kref_put(&resv->refs, resv_map_release);
2496 
2497 	if (reserve) {
2498 		hugetlb_acct_memory(h, -reserve);
2499 		hugepage_subpool_put_pages(spool, reserve);
2500 	}
2501 }
2502 
2503 /*
2504  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2505  * handle_mm_fault() to try to instantiate regular-sized pages in the
2506  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2507  * this far.
2508  */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2509 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2510 {
2511 	BUG();
2512 	return 0;
2513 }
2514 
2515 const struct vm_operations_struct hugetlb_vm_ops = {
2516 	.fault = hugetlb_vm_op_fault,
2517 	.open = hugetlb_vm_op_open,
2518 	.close = hugetlb_vm_op_close,
2519 };
2520 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)2521 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2522 				int writable)
2523 {
2524 	pte_t entry;
2525 
2526 	if (writable) {
2527 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2528 					 vma->vm_page_prot)));
2529 	} else {
2530 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2531 					   vma->vm_page_prot));
2532 	}
2533 	entry = pte_mkyoung(entry);
2534 	entry = pte_mkhuge(entry);
2535 	entry = arch_make_huge_pte(entry, vma, page, writable);
2536 
2537 	return entry;
2538 }
2539 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)2540 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2541 				   unsigned long address, pte_t *ptep)
2542 {
2543 	pte_t entry;
2544 
2545 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2546 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2547 		update_mmu_cache(vma, address, ptep);
2548 }
2549 
is_hugetlb_entry_migration(pte_t pte)2550 static int is_hugetlb_entry_migration(pte_t pte)
2551 {
2552 	swp_entry_t swp;
2553 
2554 	if (huge_pte_none(pte) || pte_present(pte))
2555 		return 0;
2556 	swp = pte_to_swp_entry(pte);
2557 	if (non_swap_entry(swp) && is_migration_entry(swp))
2558 		return 1;
2559 	else
2560 		return 0;
2561 }
2562 
is_hugetlb_entry_hwpoisoned(pte_t pte)2563 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2564 {
2565 	swp_entry_t swp;
2566 
2567 	if (huge_pte_none(pte) || pte_present(pte))
2568 		return 0;
2569 	swp = pte_to_swp_entry(pte);
2570 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2571 		return 1;
2572 	else
2573 		return 0;
2574 }
2575 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)2576 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2577 			    struct vm_area_struct *vma)
2578 {
2579 	pte_t *src_pte, *dst_pte, entry;
2580 	struct page *ptepage;
2581 	unsigned long addr;
2582 	int cow;
2583 	struct hstate *h = hstate_vma(vma);
2584 	unsigned long sz = huge_page_size(h);
2585 	unsigned long mmun_start;	/* For mmu_notifiers */
2586 	unsigned long mmun_end;		/* For mmu_notifiers */
2587 	int ret = 0;
2588 
2589 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2590 
2591 	mmun_start = vma->vm_start;
2592 	mmun_end = vma->vm_end;
2593 	if (cow)
2594 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2595 
2596 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2597 		spinlock_t *src_ptl, *dst_ptl;
2598 		src_pte = huge_pte_offset(src, addr);
2599 		if (!src_pte)
2600 			continue;
2601 		dst_pte = huge_pte_alloc(dst, addr, sz);
2602 		if (!dst_pte) {
2603 			ret = -ENOMEM;
2604 			break;
2605 		}
2606 
2607 		/* If the pagetables are shared don't copy or take references */
2608 		if (dst_pte == src_pte)
2609 			continue;
2610 
2611 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2612 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2613 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2614 		entry = huge_ptep_get(src_pte);
2615 		if (huge_pte_none(entry)) { /* skip none entry */
2616 			;
2617 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2618 				    is_hugetlb_entry_hwpoisoned(entry))) {
2619 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2620 
2621 			if (is_write_migration_entry(swp_entry) && cow) {
2622 				/*
2623 				 * COW mappings require pages in both
2624 				 * parent and child to be set to read.
2625 				 */
2626 				make_migration_entry_read(&swp_entry);
2627 				entry = swp_entry_to_pte(swp_entry);
2628 				set_huge_pte_at(src, addr, src_pte, entry);
2629 			}
2630 			set_huge_pte_at(dst, addr, dst_pte, entry);
2631 		} else {
2632 			if (cow)
2633 				huge_ptep_set_wrprotect(src, addr, src_pte);
2634 			entry = huge_ptep_get(src_pte);
2635 			ptepage = pte_page(entry);
2636 			get_page(ptepage);
2637 			page_dup_rmap(ptepage);
2638 			set_huge_pte_at(dst, addr, dst_pte, entry);
2639 		}
2640 		spin_unlock(src_ptl);
2641 		spin_unlock(dst_ptl);
2642 	}
2643 
2644 	if (cow)
2645 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2646 
2647 	return ret;
2648 }
2649 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2650 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2651 			    unsigned long start, unsigned long end,
2652 			    struct page *ref_page)
2653 {
2654 	int force_flush = 0;
2655 	struct mm_struct *mm = vma->vm_mm;
2656 	unsigned long address;
2657 	pte_t *ptep;
2658 	pte_t pte;
2659 	spinlock_t *ptl;
2660 	struct page *page;
2661 	struct hstate *h = hstate_vma(vma);
2662 	unsigned long sz = huge_page_size(h);
2663 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2664 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2665 
2666 	WARN_ON(!is_vm_hugetlb_page(vma));
2667 	BUG_ON(start & ~huge_page_mask(h));
2668 	BUG_ON(end & ~huge_page_mask(h));
2669 
2670 	tlb_start_vma(tlb, vma);
2671 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2672 again:
2673 	for (address = start; address < end; address += sz) {
2674 		ptep = huge_pte_offset(mm, address);
2675 		if (!ptep)
2676 			continue;
2677 
2678 		ptl = huge_pte_lock(h, mm, ptep);
2679 		if (huge_pmd_unshare(mm, &address, ptep))
2680 			goto unlock;
2681 
2682 		pte = huge_ptep_get(ptep);
2683 		if (huge_pte_none(pte))
2684 			goto unlock;
2685 
2686 		/*
2687 		 * Migrating hugepage or HWPoisoned hugepage is already
2688 		 * unmapped and its refcount is dropped, so just clear pte here.
2689 		 */
2690 		if (unlikely(!pte_present(pte))) {
2691 			huge_pte_clear(mm, address, ptep);
2692 			goto unlock;
2693 		}
2694 
2695 		page = pte_page(pte);
2696 		/*
2697 		 * If a reference page is supplied, it is because a specific
2698 		 * page is being unmapped, not a range. Ensure the page we
2699 		 * are about to unmap is the actual page of interest.
2700 		 */
2701 		if (ref_page) {
2702 			if (page != ref_page)
2703 				goto unlock;
2704 
2705 			/*
2706 			 * Mark the VMA as having unmapped its page so that
2707 			 * future faults in this VMA will fail rather than
2708 			 * looking like data was lost
2709 			 */
2710 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2711 		}
2712 
2713 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2714 		tlb_remove_tlb_entry(tlb, ptep, address);
2715 		if (huge_pte_dirty(pte))
2716 			set_page_dirty(page);
2717 
2718 		page_remove_rmap(page);
2719 		force_flush = !__tlb_remove_page(tlb, page);
2720 		if (force_flush) {
2721 			spin_unlock(ptl);
2722 			break;
2723 		}
2724 		/* Bail out after unmapping reference page if supplied */
2725 		if (ref_page) {
2726 			spin_unlock(ptl);
2727 			break;
2728 		}
2729 unlock:
2730 		spin_unlock(ptl);
2731 	}
2732 	/*
2733 	 * mmu_gather ran out of room to batch pages, we break out of
2734 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2735 	 * and page-free while holding it.
2736 	 */
2737 	if (force_flush) {
2738 		force_flush = 0;
2739 		tlb_flush_mmu(tlb);
2740 		if (address < end && !ref_page)
2741 			goto again;
2742 	}
2743 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2744 	tlb_end_vma(tlb, vma);
2745 }
2746 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2747 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2748 			  struct vm_area_struct *vma, unsigned long start,
2749 			  unsigned long end, struct page *ref_page)
2750 {
2751 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2752 
2753 	/*
2754 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2755 	 * test will fail on a vma being torn down, and not grab a page table
2756 	 * on its way out.  We're lucky that the flag has such an appropriate
2757 	 * name, and can in fact be safely cleared here. We could clear it
2758 	 * before the __unmap_hugepage_range above, but all that's necessary
2759 	 * is to clear it before releasing the i_mmap_mutex. This works
2760 	 * because in the context this is called, the VMA is about to be
2761 	 * destroyed and the i_mmap_mutex is held.
2762 	 */
2763 	vma->vm_flags &= ~VM_MAYSHARE;
2764 }
2765 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2766 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2767 			  unsigned long end, struct page *ref_page)
2768 {
2769 	struct mm_struct *mm;
2770 	struct mmu_gather tlb;
2771 
2772 	mm = vma->vm_mm;
2773 
2774 	tlb_gather_mmu(&tlb, mm, start, end);
2775 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2776 	tlb_finish_mmu(&tlb, start, end);
2777 }
2778 
2779 /*
2780  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2781  * mappping it owns the reserve page for. The intention is to unmap the page
2782  * from other VMAs and let the children be SIGKILLed if they are faulting the
2783  * same region.
2784  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)2785 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2786 			      struct page *page, unsigned long address)
2787 {
2788 	struct hstate *h = hstate_vma(vma);
2789 	struct vm_area_struct *iter_vma;
2790 	struct address_space *mapping;
2791 	pgoff_t pgoff;
2792 
2793 	/*
2794 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2795 	 * from page cache lookup which is in HPAGE_SIZE units.
2796 	 */
2797 	address = address & huge_page_mask(h);
2798 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2799 			vma->vm_pgoff;
2800 	mapping = file_inode(vma->vm_file)->i_mapping;
2801 
2802 	/*
2803 	 * Take the mapping lock for the duration of the table walk. As
2804 	 * this mapping should be shared between all the VMAs,
2805 	 * __unmap_hugepage_range() is called as the lock is already held
2806 	 */
2807 	mutex_lock(&mapping->i_mmap_mutex);
2808 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2809 		/* Do not unmap the current VMA */
2810 		if (iter_vma == vma)
2811 			continue;
2812 
2813 		/*
2814 		 * Shared VMAs have their own reserves and do not affect
2815 		 * MAP_PRIVATE accounting but it is possible that a shared
2816 		 * VMA is using the same page so check and skip such VMAs.
2817 		 */
2818 		if (iter_vma->vm_flags & VM_MAYSHARE)
2819 			continue;
2820 
2821 		/*
2822 		 * Unmap the page from other VMAs without their own reserves.
2823 		 * They get marked to be SIGKILLed if they fault in these
2824 		 * areas. This is because a future no-page fault on this VMA
2825 		 * could insert a zeroed page instead of the data existing
2826 		 * from the time of fork. This would look like data corruption
2827 		 */
2828 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2829 			unmap_hugepage_range(iter_vma, address,
2830 					     address + huge_page_size(h), page);
2831 	}
2832 	mutex_unlock(&mapping->i_mmap_mutex);
2833 }
2834 
2835 /*
2836  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2837  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2838  * cannot race with other handlers or page migration.
2839  * Keep the pte_same checks anyway to make transition from the mutex easier.
2840  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page,spinlock_t * ptl)2841 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2842 			unsigned long address, pte_t *ptep, pte_t pte,
2843 			struct page *pagecache_page, spinlock_t *ptl)
2844 {
2845 	struct hstate *h = hstate_vma(vma);
2846 	struct page *old_page, *new_page;
2847 	int ret = 0, outside_reserve = 0;
2848 	unsigned long mmun_start;	/* For mmu_notifiers */
2849 	unsigned long mmun_end;		/* For mmu_notifiers */
2850 
2851 	old_page = pte_page(pte);
2852 
2853 retry_avoidcopy:
2854 	/* If no-one else is actually using this page, avoid the copy
2855 	 * and just make the page writable */
2856 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2857 		page_move_anon_rmap(old_page, vma, address);
2858 		set_huge_ptep_writable(vma, address, ptep);
2859 		return 0;
2860 	}
2861 
2862 	/*
2863 	 * If the process that created a MAP_PRIVATE mapping is about to
2864 	 * perform a COW due to a shared page count, attempt to satisfy
2865 	 * the allocation without using the existing reserves. The pagecache
2866 	 * page is used to determine if the reserve at this address was
2867 	 * consumed or not. If reserves were used, a partial faulted mapping
2868 	 * at the time of fork() could consume its reserves on COW instead
2869 	 * of the full address range.
2870 	 */
2871 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2872 			old_page != pagecache_page)
2873 		outside_reserve = 1;
2874 
2875 	page_cache_get(old_page);
2876 
2877 	/*
2878 	 * Drop page table lock as buddy allocator may be called. It will
2879 	 * be acquired again before returning to the caller, as expected.
2880 	 */
2881 	spin_unlock(ptl);
2882 	new_page = alloc_huge_page(vma, address, outside_reserve);
2883 
2884 	if (IS_ERR(new_page)) {
2885 		/*
2886 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2887 		 * it is due to references held by a child and an insufficient
2888 		 * huge page pool. To guarantee the original mappers
2889 		 * reliability, unmap the page from child processes. The child
2890 		 * may get SIGKILLed if it later faults.
2891 		 */
2892 		if (outside_reserve) {
2893 			page_cache_release(old_page);
2894 			BUG_ON(huge_pte_none(pte));
2895 			unmap_ref_private(mm, vma, old_page, address);
2896 			BUG_ON(huge_pte_none(pte));
2897 			spin_lock(ptl);
2898 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2899 			if (likely(ptep &&
2900 				   pte_same(huge_ptep_get(ptep), pte)))
2901 				goto retry_avoidcopy;
2902 			/*
2903 			 * race occurs while re-acquiring page table
2904 			 * lock, and our job is done.
2905 			 */
2906 			return 0;
2907 		}
2908 
2909 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2910 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2911 		goto out_release_old;
2912 	}
2913 
2914 	/*
2915 	 * When the original hugepage is shared one, it does not have
2916 	 * anon_vma prepared.
2917 	 */
2918 	if (unlikely(anon_vma_prepare(vma))) {
2919 		ret = VM_FAULT_OOM;
2920 		goto out_release_all;
2921 	}
2922 
2923 	copy_user_huge_page(new_page, old_page, address, vma,
2924 			    pages_per_huge_page(h));
2925 	__SetPageUptodate(new_page);
2926 	set_page_huge_active(new_page);
2927 
2928 	mmun_start = address & huge_page_mask(h);
2929 	mmun_end = mmun_start + huge_page_size(h);
2930 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2931 
2932 	/*
2933 	 * Retake the page table lock to check for racing updates
2934 	 * before the page tables are altered
2935 	 */
2936 	spin_lock(ptl);
2937 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2938 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2939 		ClearPagePrivate(new_page);
2940 
2941 		/* Break COW */
2942 		huge_ptep_clear_flush(vma, address, ptep);
2943 		set_huge_pte_at(mm, address, ptep,
2944 				make_huge_pte(vma, new_page, 1));
2945 		page_remove_rmap(old_page);
2946 		hugepage_add_new_anon_rmap(new_page, vma, address);
2947 		/* Make the old page be freed below */
2948 		new_page = old_page;
2949 	}
2950 	spin_unlock(ptl);
2951 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2952 out_release_all:
2953 	page_cache_release(new_page);
2954 out_release_old:
2955 	page_cache_release(old_page);
2956 
2957 	spin_lock(ptl); /* Caller expects lock to be held */
2958 	return ret;
2959 }
2960 
2961 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2962 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2963 			struct vm_area_struct *vma, unsigned long address)
2964 {
2965 	struct address_space *mapping;
2966 	pgoff_t idx;
2967 
2968 	mapping = vma->vm_file->f_mapping;
2969 	idx = vma_hugecache_offset(h, vma, address);
2970 
2971 	return find_lock_page(mapping, idx);
2972 }
2973 
2974 /*
2975  * Return whether there is a pagecache page to back given address within VMA.
2976  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2977  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2978 static bool hugetlbfs_pagecache_present(struct hstate *h,
2979 			struct vm_area_struct *vma, unsigned long address)
2980 {
2981 	struct address_space *mapping;
2982 	pgoff_t idx;
2983 	struct page *page;
2984 
2985 	mapping = vma->vm_file->f_mapping;
2986 	idx = vma_hugecache_offset(h, vma, address);
2987 
2988 	page = find_get_page(mapping, idx);
2989 	if (page)
2990 		put_page(page);
2991 	return page != NULL;
2992 }
2993 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)2994 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2995 			   struct address_space *mapping, pgoff_t idx,
2996 			   unsigned long address, pte_t *ptep, unsigned int flags)
2997 {
2998 	struct hstate *h = hstate_vma(vma);
2999 	int ret = VM_FAULT_SIGBUS;
3000 	int anon_rmap = 0;
3001 	unsigned long size;
3002 	struct page *page;
3003 	pte_t new_pte;
3004 	spinlock_t *ptl;
3005 
3006 	/*
3007 	 * Currently, we are forced to kill the process in the event the
3008 	 * original mapper has unmapped pages from the child due to a failed
3009 	 * COW. Warn that such a situation has occurred as it may not be obvious
3010 	 */
3011 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3012 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3013 			   current->pid);
3014 		return ret;
3015 	}
3016 
3017 	/*
3018 	 * Use page lock to guard against racing truncation
3019 	 * before we get page_table_lock.
3020 	 */
3021 retry:
3022 	page = find_lock_page(mapping, idx);
3023 	if (!page) {
3024 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3025 		if (idx >= size)
3026 			goto out;
3027 		page = alloc_huge_page(vma, address, 0);
3028 		if (IS_ERR(page)) {
3029 			ret = PTR_ERR(page);
3030 			if (ret == -ENOMEM)
3031 				ret = VM_FAULT_OOM;
3032 			else
3033 				ret = VM_FAULT_SIGBUS;
3034 			goto out;
3035 		}
3036 		clear_huge_page(page, address, pages_per_huge_page(h));
3037 		__SetPageUptodate(page);
3038 		set_page_huge_active(page);
3039 
3040 		if (vma->vm_flags & VM_MAYSHARE) {
3041 			int err;
3042 			struct inode *inode = mapping->host;
3043 
3044 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3045 			if (err) {
3046 				put_page(page);
3047 				if (err == -EEXIST)
3048 					goto retry;
3049 				goto out;
3050 			}
3051 			ClearPagePrivate(page);
3052 
3053 			spin_lock(&inode->i_lock);
3054 			inode->i_blocks += blocks_per_huge_page(h);
3055 			spin_unlock(&inode->i_lock);
3056 		} else {
3057 			lock_page(page);
3058 			if (unlikely(anon_vma_prepare(vma))) {
3059 				ret = VM_FAULT_OOM;
3060 				goto backout_unlocked;
3061 			}
3062 			anon_rmap = 1;
3063 		}
3064 	} else {
3065 		/*
3066 		 * If memory error occurs between mmap() and fault, some process
3067 		 * don't have hwpoisoned swap entry for errored virtual address.
3068 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3069 		 */
3070 		if (unlikely(PageHWPoison(page))) {
3071 			ret = VM_FAULT_HWPOISON |
3072 				VM_FAULT_SET_HINDEX(hstate_index(h));
3073 			goto backout_unlocked;
3074 		}
3075 	}
3076 
3077 	/*
3078 	 * If we are going to COW a private mapping later, we examine the
3079 	 * pending reservations for this page now. This will ensure that
3080 	 * any allocations necessary to record that reservation occur outside
3081 	 * the spinlock.
3082 	 */
3083 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3084 		if (vma_needs_reservation(h, vma, address) < 0) {
3085 			ret = VM_FAULT_OOM;
3086 			goto backout_unlocked;
3087 		}
3088 
3089 	ptl = huge_pte_lockptr(h, mm, ptep);
3090 	spin_lock(ptl);
3091 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3092 	if (idx >= size)
3093 		goto backout;
3094 
3095 	ret = 0;
3096 	if (!huge_pte_none(huge_ptep_get(ptep)))
3097 		goto backout;
3098 
3099 	if (anon_rmap) {
3100 		ClearPagePrivate(page);
3101 		hugepage_add_new_anon_rmap(page, vma, address);
3102 	} else
3103 		page_dup_rmap(page);
3104 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3105 				&& (vma->vm_flags & VM_SHARED)));
3106 	set_huge_pte_at(mm, address, ptep, new_pte);
3107 
3108 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3109 		/* Optimization, do the COW without a second fault */
3110 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3111 	}
3112 
3113 	spin_unlock(ptl);
3114 	unlock_page(page);
3115 out:
3116 	return ret;
3117 
3118 backout:
3119 	spin_unlock(ptl);
3120 backout_unlocked:
3121 	unlock_page(page);
3122 	put_page(page);
3123 	goto out;
3124 }
3125 
3126 #ifdef CONFIG_SMP
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3127 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3128 			    struct vm_area_struct *vma,
3129 			    struct address_space *mapping,
3130 			    pgoff_t idx, unsigned long address)
3131 {
3132 	unsigned long key[2];
3133 	u32 hash;
3134 
3135 	if (vma->vm_flags & VM_SHARED) {
3136 		key[0] = (unsigned long) mapping;
3137 		key[1] = idx;
3138 	} else {
3139 		key[0] = (unsigned long) mm;
3140 		key[1] = address >> huge_page_shift(h);
3141 	}
3142 
3143 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3144 
3145 	return hash & (num_fault_mutexes - 1);
3146 }
3147 #else
3148 /*
3149  * For uniprocesor systems we always use a single mutex, so just
3150  * return 0 and avoid the hashing overhead.
3151  */
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3152 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3153 			    struct vm_area_struct *vma,
3154 			    struct address_space *mapping,
3155 			    pgoff_t idx, unsigned long address)
3156 {
3157 	return 0;
3158 }
3159 #endif
3160 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3161 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3162 			unsigned long address, unsigned int flags)
3163 {
3164 	pte_t *ptep, entry;
3165 	spinlock_t *ptl;
3166 	int ret;
3167 	u32 hash;
3168 	pgoff_t idx;
3169 	struct page *page = NULL;
3170 	struct page *pagecache_page = NULL;
3171 	struct hstate *h = hstate_vma(vma);
3172 	struct address_space *mapping;
3173 	int need_wait_lock = 0;
3174 
3175 	address &= huge_page_mask(h);
3176 
3177 	ptep = huge_pte_offset(mm, address);
3178 	if (ptep) {
3179 		entry = huge_ptep_get(ptep);
3180 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3181 			migration_entry_wait_huge(vma, mm, ptep);
3182 			return 0;
3183 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3184 			return VM_FAULT_HWPOISON_LARGE |
3185 				VM_FAULT_SET_HINDEX(hstate_index(h));
3186 	}
3187 
3188 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3189 	if (!ptep)
3190 		return VM_FAULT_OOM;
3191 
3192 	mapping = vma->vm_file->f_mapping;
3193 	idx = vma_hugecache_offset(h, vma, address);
3194 
3195 	/*
3196 	 * Serialize hugepage allocation and instantiation, so that we don't
3197 	 * get spurious allocation failures if two CPUs race to instantiate
3198 	 * the same page in the page cache.
3199 	 */
3200 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3201 	mutex_lock(&htlb_fault_mutex_table[hash]);
3202 
3203 	entry = huge_ptep_get(ptep);
3204 	if (huge_pte_none(entry)) {
3205 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3206 		goto out_mutex;
3207 	}
3208 
3209 	ret = 0;
3210 
3211 	/*
3212 	 * entry could be a migration/hwpoison entry at this point, so this
3213 	 * check prevents the kernel from going below assuming that we have
3214 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3215 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3216 	 * handle it.
3217 	 */
3218 	if (!pte_present(entry))
3219 		goto out_mutex;
3220 
3221 	/*
3222 	 * If we are going to COW the mapping later, we examine the pending
3223 	 * reservations for this page now. This will ensure that any
3224 	 * allocations necessary to record that reservation occur outside the
3225 	 * spinlock. For private mappings, we also lookup the pagecache
3226 	 * page now as it is used to determine if a reservation has been
3227 	 * consumed.
3228 	 */
3229 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3230 		if (vma_needs_reservation(h, vma, address) < 0) {
3231 			ret = VM_FAULT_OOM;
3232 			goto out_mutex;
3233 		}
3234 
3235 		if (!(vma->vm_flags & VM_MAYSHARE))
3236 			pagecache_page = hugetlbfs_pagecache_page(h,
3237 								vma, address);
3238 	}
3239 
3240 	ptl = huge_pte_lock(h, mm, ptep);
3241 
3242 	/* Check for a racing update before calling hugetlb_cow */
3243 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3244 		goto out_ptl;
3245 
3246 	/*
3247 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3248 	 * pagecache_page, so here we need take the former one
3249 	 * when page != pagecache_page or !pagecache_page.
3250 	 */
3251 	page = pte_page(entry);
3252 	if (page != pagecache_page)
3253 		if (!trylock_page(page)) {
3254 			need_wait_lock = 1;
3255 			goto out_ptl;
3256 		}
3257 
3258 	get_page(page);
3259 
3260 	if (flags & FAULT_FLAG_WRITE) {
3261 		if (!huge_pte_write(entry)) {
3262 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3263 					pagecache_page, ptl);
3264 			goto out_put_page;
3265 		}
3266 		entry = huge_pte_mkdirty(entry);
3267 	}
3268 	entry = pte_mkyoung(entry);
3269 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3270 						flags & FAULT_FLAG_WRITE))
3271 		update_mmu_cache(vma, address, ptep);
3272 out_put_page:
3273 	if (page != pagecache_page)
3274 		unlock_page(page);
3275 	put_page(page);
3276 out_ptl:
3277 	spin_unlock(ptl);
3278 
3279 	if (pagecache_page) {
3280 		unlock_page(pagecache_page);
3281 		put_page(pagecache_page);
3282 	}
3283 out_mutex:
3284 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3285 	/*
3286 	 * Generally it's safe to hold refcount during waiting page lock. But
3287 	 * here we just wait to defer the next page fault to avoid busy loop and
3288 	 * the page is not used after unlocked before returning from the current
3289 	 * page fault. So we are safe from accessing freed page, even if we wait
3290 	 * here without taking refcount.
3291 	 */
3292 	if (need_wait_lock)
3293 		wait_on_page_locked(page);
3294 	return ret;
3295 }
3296 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags)3297 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3298 			 struct page **pages, struct vm_area_struct **vmas,
3299 			 unsigned long *position, unsigned long *nr_pages,
3300 			 long i, unsigned int flags)
3301 {
3302 	unsigned long pfn_offset;
3303 	unsigned long vaddr = *position;
3304 	unsigned long remainder = *nr_pages;
3305 	struct hstate *h = hstate_vma(vma);
3306 
3307 	while (vaddr < vma->vm_end && remainder) {
3308 		pte_t *pte;
3309 		spinlock_t *ptl = NULL;
3310 		int absent;
3311 		struct page *page;
3312 
3313 		/*
3314 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3315 		 * each hugepage.  We have to make sure we get the
3316 		 * first, for the page indexing below to work.
3317 		 *
3318 		 * Note that page table lock is not held when pte is null.
3319 		 */
3320 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3321 		if (pte)
3322 			ptl = huge_pte_lock(h, mm, pte);
3323 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3324 
3325 		/*
3326 		 * When coredumping, it suits get_dump_page if we just return
3327 		 * an error where there's an empty slot with no huge pagecache
3328 		 * to back it.  This way, we avoid allocating a hugepage, and
3329 		 * the sparse dumpfile avoids allocating disk blocks, but its
3330 		 * huge holes still show up with zeroes where they need to be.
3331 		 */
3332 		if (absent && (flags & FOLL_DUMP) &&
3333 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3334 			if (pte)
3335 				spin_unlock(ptl);
3336 			remainder = 0;
3337 			break;
3338 		}
3339 
3340 		/*
3341 		 * We need call hugetlb_fault for both hugepages under migration
3342 		 * (in which case hugetlb_fault waits for the migration,) and
3343 		 * hwpoisoned hugepages (in which case we need to prevent the
3344 		 * caller from accessing to them.) In order to do this, we use
3345 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3346 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3347 		 * both cases, and because we can't follow correct pages
3348 		 * directly from any kind of swap entries.
3349 		 */
3350 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3351 		    ((flags & FOLL_WRITE) &&
3352 		      !huge_pte_write(huge_ptep_get(pte)))) {
3353 			int ret;
3354 
3355 			if (pte)
3356 				spin_unlock(ptl);
3357 			ret = hugetlb_fault(mm, vma, vaddr,
3358 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3359 			if (!(ret & VM_FAULT_ERROR))
3360 				continue;
3361 
3362 			remainder = 0;
3363 			break;
3364 		}
3365 
3366 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3367 		page = pte_page(huge_ptep_get(pte));
3368 same_page:
3369 		if (pages) {
3370 			pages[i] = mem_map_offset(page, pfn_offset);
3371 			get_page_foll(pages[i]);
3372 		}
3373 
3374 		if (vmas)
3375 			vmas[i] = vma;
3376 
3377 		vaddr += PAGE_SIZE;
3378 		++pfn_offset;
3379 		--remainder;
3380 		++i;
3381 		if (vaddr < vma->vm_end && remainder &&
3382 				pfn_offset < pages_per_huge_page(h)) {
3383 			/*
3384 			 * We use pfn_offset to avoid touching the pageframes
3385 			 * of this compound page.
3386 			 */
3387 			goto same_page;
3388 		}
3389 		spin_unlock(ptl);
3390 	}
3391 	*nr_pages = remainder;
3392 	*position = vaddr;
3393 
3394 	return i ? i : -EFAULT;
3395 }
3396 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)3397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3398 		unsigned long address, unsigned long end, pgprot_t newprot)
3399 {
3400 	struct mm_struct *mm = vma->vm_mm;
3401 	unsigned long start = address;
3402 	pte_t *ptep;
3403 	pte_t pte;
3404 	struct hstate *h = hstate_vma(vma);
3405 	unsigned long pages = 0;
3406 
3407 	BUG_ON(address >= end);
3408 	flush_cache_range(vma, address, end);
3409 
3410 	mmu_notifier_invalidate_range_start(mm, start, end);
3411 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3412 	for (; address < end; address += huge_page_size(h)) {
3413 		spinlock_t *ptl;
3414 		ptep = huge_pte_offset(mm, address);
3415 		if (!ptep)
3416 			continue;
3417 		ptl = huge_pte_lock(h, mm, ptep);
3418 		if (huge_pmd_unshare(mm, &address, ptep)) {
3419 			pages++;
3420 			spin_unlock(ptl);
3421 			continue;
3422 		}
3423 		pte = huge_ptep_get(ptep);
3424 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3425 			spin_unlock(ptl);
3426 			continue;
3427 		}
3428 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3429 			swp_entry_t entry = pte_to_swp_entry(pte);
3430 
3431 			if (is_write_migration_entry(entry)) {
3432 				pte_t newpte;
3433 
3434 				make_migration_entry_read(&entry);
3435 				newpte = swp_entry_to_pte(entry);
3436 				set_huge_pte_at(mm, address, ptep, newpte);
3437 				pages++;
3438 			}
3439 			spin_unlock(ptl);
3440 			continue;
3441 		}
3442 		if (!huge_pte_none(pte)) {
3443 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3444 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3445 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3446 			set_huge_pte_at(mm, address, ptep, pte);
3447 			pages++;
3448 		}
3449 		spin_unlock(ptl);
3450 	}
3451 	/*
3452 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3453 	 * may have cleared our pud entry and done put_page on the page table:
3454 	 * once we release i_mmap_mutex, another task can do the final put_page
3455 	 * and that page table be reused and filled with junk.
3456 	 */
3457 	flush_tlb_range(vma, start, end);
3458 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3459 	mmu_notifier_invalidate_range_end(mm, start, end);
3460 
3461 	return pages << h->order;
3462 }
3463 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)3464 int hugetlb_reserve_pages(struct inode *inode,
3465 					long from, long to,
3466 					struct vm_area_struct *vma,
3467 					vm_flags_t vm_flags)
3468 {
3469 	long ret, chg;
3470 	struct hstate *h = hstate_inode(inode);
3471 	struct hugepage_subpool *spool = subpool_inode(inode);
3472 	struct resv_map *resv_map;
3473 
3474 	/*
3475 	 * Only apply hugepage reservation if asked. At fault time, an
3476 	 * attempt will be made for VM_NORESERVE to allocate a page
3477 	 * without using reserves
3478 	 */
3479 	if (vm_flags & VM_NORESERVE)
3480 		return 0;
3481 
3482 	/*
3483 	 * Shared mappings base their reservation on the number of pages that
3484 	 * are already allocated on behalf of the file. Private mappings need
3485 	 * to reserve the full area even if read-only as mprotect() may be
3486 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3487 	 */
3488 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3489 		resv_map = inode_resv_map(inode);
3490 
3491 		chg = region_chg(resv_map, from, to);
3492 
3493 	} else {
3494 		resv_map = resv_map_alloc();
3495 		if (!resv_map)
3496 			return -ENOMEM;
3497 
3498 		chg = to - from;
3499 
3500 		set_vma_resv_map(vma, resv_map);
3501 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3502 	}
3503 
3504 	if (chg < 0) {
3505 		ret = chg;
3506 		goto out_err;
3507 	}
3508 
3509 	/* There must be enough pages in the subpool for the mapping */
3510 	if (hugepage_subpool_get_pages(spool, chg)) {
3511 		ret = -ENOSPC;
3512 		goto out_err;
3513 	}
3514 
3515 	/*
3516 	 * Check enough hugepages are available for the reservation.
3517 	 * Hand the pages back to the subpool if there are not
3518 	 */
3519 	ret = hugetlb_acct_memory(h, chg);
3520 	if (ret < 0) {
3521 		hugepage_subpool_put_pages(spool, chg);
3522 		goto out_err;
3523 	}
3524 
3525 	/*
3526 	 * Account for the reservations made. Shared mappings record regions
3527 	 * that have reservations as they are shared by multiple VMAs.
3528 	 * When the last VMA disappears, the region map says how much
3529 	 * the reservation was and the page cache tells how much of
3530 	 * the reservation was consumed. Private mappings are per-VMA and
3531 	 * only the consumed reservations are tracked. When the VMA
3532 	 * disappears, the original reservation is the VMA size and the
3533 	 * consumed reservations are stored in the map. Hence, nothing
3534 	 * else has to be done for private mappings here
3535 	 */
3536 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3537 		region_add(resv_map, from, to);
3538 	return 0;
3539 out_err:
3540 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3541 		kref_put(&resv_map->refs, resv_map_release);
3542 	return ret;
3543 }
3544 
hugetlb_unreserve_pages(struct inode * inode,long offset,long freed)3545 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3546 {
3547 	struct hstate *h = hstate_inode(inode);
3548 	struct resv_map *resv_map = inode_resv_map(inode);
3549 	long chg = 0;
3550 	struct hugepage_subpool *spool = subpool_inode(inode);
3551 
3552 	if (resv_map)
3553 		chg = region_truncate(resv_map, offset);
3554 	spin_lock(&inode->i_lock);
3555 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3556 	spin_unlock(&inode->i_lock);
3557 
3558 	hugepage_subpool_put_pages(spool, (chg - freed));
3559 	hugetlb_acct_memory(h, -(chg - freed));
3560 }
3561 
3562 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)3563 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3564 				struct vm_area_struct *vma,
3565 				unsigned long addr, pgoff_t idx)
3566 {
3567 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3568 				svma->vm_start;
3569 	unsigned long sbase = saddr & PUD_MASK;
3570 	unsigned long s_end = sbase + PUD_SIZE;
3571 
3572 	/* Allow segments to share if only one is marked locked */
3573 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3574 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3575 
3576 	/*
3577 	 * match the virtual addresses, permission and the alignment of the
3578 	 * page table page.
3579 	 */
3580 	if (pmd_index(addr) != pmd_index(saddr) ||
3581 	    vm_flags != svm_flags ||
3582 	    sbase < svma->vm_start || svma->vm_end < s_end)
3583 		return 0;
3584 
3585 	return saddr;
3586 }
3587 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)3588 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3589 {
3590 	unsigned long base = addr & PUD_MASK;
3591 	unsigned long end = base + PUD_SIZE;
3592 
3593 	/*
3594 	 * check on proper vm_flags and page table alignment
3595 	 */
3596 	if (vma->vm_flags & VM_MAYSHARE &&
3597 	    vma->vm_start <= base && end <= vma->vm_end)
3598 		return 1;
3599 	return 0;
3600 }
3601 
3602 /*
3603  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3604  * and returns the corresponding pte. While this is not necessary for the
3605  * !shared pmd case because we can allocate the pmd later as well, it makes the
3606  * code much cleaner. pmd allocation is essential for the shared case because
3607  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3608  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3609  * bad pmd for sharing.
3610  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3611 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3612 {
3613 	struct vm_area_struct *vma = find_vma(mm, addr);
3614 	struct address_space *mapping = vma->vm_file->f_mapping;
3615 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3616 			vma->vm_pgoff;
3617 	struct vm_area_struct *svma;
3618 	unsigned long saddr;
3619 	pte_t *spte = NULL;
3620 	pte_t *pte;
3621 	spinlock_t *ptl;
3622 
3623 	if (!vma_shareable(vma, addr))
3624 		return (pte_t *)pmd_alloc(mm, pud, addr);
3625 
3626 	mutex_lock(&mapping->i_mmap_mutex);
3627 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3628 		if (svma == vma)
3629 			continue;
3630 
3631 		saddr = page_table_shareable(svma, vma, addr, idx);
3632 		if (saddr) {
3633 			spte = huge_pte_offset(svma->vm_mm, saddr);
3634 			if (spte) {
3635 				get_page(virt_to_page(spte));
3636 				break;
3637 			}
3638 		}
3639 	}
3640 
3641 	if (!spte)
3642 		goto out;
3643 
3644 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3645 	spin_lock(ptl);
3646 	if (pud_none(*pud))
3647 		pud_populate(mm, pud,
3648 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3649 	else
3650 		put_page(virt_to_page(spte));
3651 	spin_unlock(ptl);
3652 out:
3653 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3654 	mutex_unlock(&mapping->i_mmap_mutex);
3655 	return pte;
3656 }
3657 
3658 /*
3659  * unmap huge page backed by shared pte.
3660  *
3661  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3662  * indicated by page_count > 1, unmap is achieved by clearing pud and
3663  * decrementing the ref count. If count == 1, the pte page is not shared.
3664  *
3665  * called with page table lock held.
3666  *
3667  * returns: 1 successfully unmapped a shared pte page
3668  *	    0 the underlying pte page is not shared, or it is the last user
3669  */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)3670 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3671 {
3672 	pgd_t *pgd = pgd_offset(mm, *addr);
3673 	pud_t *pud = pud_offset(pgd, *addr);
3674 
3675 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3676 	if (page_count(virt_to_page(ptep)) == 1)
3677 		return 0;
3678 
3679 	pud_clear(pud);
3680 	put_page(virt_to_page(ptep));
3681 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3682 	return 1;
3683 }
3684 #define want_pmd_share()	(1)
3685 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3686 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3687 {
3688 	return NULL;
3689 }
3690 #define want_pmd_share()	(0)
3691 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3692 
3693 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)3694 pte_t *huge_pte_alloc(struct mm_struct *mm,
3695 			unsigned long addr, unsigned long sz)
3696 {
3697 	pgd_t *pgd;
3698 	pud_t *pud;
3699 	pte_t *pte = NULL;
3700 
3701 	pgd = pgd_offset(mm, addr);
3702 	pud = pud_alloc(mm, pgd, addr);
3703 	if (pud) {
3704 		if (sz == PUD_SIZE) {
3705 			pte = (pte_t *)pud;
3706 		} else {
3707 			BUG_ON(sz != PMD_SIZE);
3708 			if (want_pmd_share() && pud_none(*pud))
3709 				pte = huge_pmd_share(mm, addr, pud);
3710 			else
3711 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3712 		}
3713 	}
3714 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3715 
3716 	return pte;
3717 }
3718 
huge_pte_offset(struct mm_struct * mm,unsigned long addr)3719 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3720 {
3721 	pgd_t *pgd;
3722 	pud_t *pud;
3723 	pmd_t *pmd = NULL;
3724 
3725 	pgd = pgd_offset(mm, addr);
3726 	if (pgd_present(*pgd)) {
3727 		pud = pud_offset(pgd, addr);
3728 		if (pud_present(*pud)) {
3729 			if (pud_huge(*pud))
3730 				return (pte_t *)pud;
3731 			pmd = pmd_offset(pud, addr);
3732 		}
3733 	}
3734 	return (pte_t *) pmd;
3735 }
3736 
3737 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3738 
3739 /*
3740  * These functions are overwritable if your architecture needs its own
3741  * behavior.
3742  */
3743 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)3744 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3745 			      int write)
3746 {
3747 	return ERR_PTR(-EINVAL);
3748 }
3749 
3750 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)3751 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3752 		pmd_t *pmd, int flags)
3753 {
3754 	struct page *page = NULL;
3755 	spinlock_t *ptl;
3756 	pte_t pte;
3757 retry:
3758 	ptl = pmd_lockptr(mm, pmd);
3759 	spin_lock(ptl);
3760 	/*
3761 	 * make sure that the address range covered by this pmd is not
3762 	 * unmapped from other threads.
3763 	 */
3764 	if (!pmd_huge(*pmd))
3765 		goto out;
3766 	pte = huge_ptep_get((pte_t *)pmd);
3767 	if (pte_present(pte)) {
3768 		page = pte_page(*(pte_t *)pmd) +
3769 			((address & ~PMD_MASK) >> PAGE_SHIFT);
3770 		if (flags & FOLL_GET)
3771 			get_page(page);
3772 	} else {
3773 		if (is_hugetlb_entry_migration(pte)) {
3774 			spin_unlock(ptl);
3775 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3776 			goto retry;
3777 		}
3778 		/*
3779 		 * hwpoisoned entry is treated as no_page_table in
3780 		 * follow_page_mask().
3781 		 */
3782 	}
3783 out:
3784 	spin_unlock(ptl);
3785 	return page;
3786 }
3787 
3788 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)3789 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3790 		pud_t *pud, int flags)
3791 {
3792 	if (flags & FOLL_GET)
3793 		return NULL;
3794 
3795 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3796 }
3797 
3798 #ifdef CONFIG_MEMORY_FAILURE
3799 
3800 /* Should be called in hugetlb_lock */
is_hugepage_on_freelist(struct page * hpage)3801 static int is_hugepage_on_freelist(struct page *hpage)
3802 {
3803 	struct page *page;
3804 	struct page *tmp;
3805 	struct hstate *h = page_hstate(hpage);
3806 	int nid = page_to_nid(hpage);
3807 
3808 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3809 		if (page == hpage)
3810 			return 1;
3811 	return 0;
3812 }
3813 
3814 /*
3815  * This function is called from memory failure code.
3816  * Assume the caller holds page lock of the head page.
3817  */
dequeue_hwpoisoned_huge_page(struct page * hpage)3818 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3819 {
3820 	struct hstate *h = page_hstate(hpage);
3821 	int nid = page_to_nid(hpage);
3822 	int ret = -EBUSY;
3823 
3824 	spin_lock(&hugetlb_lock);
3825 	if (is_hugepage_on_freelist(hpage)) {
3826 		/*
3827 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3828 		 * but dangling hpage->lru can trigger list-debug warnings
3829 		 * (this happens when we call unpoison_memory() on it),
3830 		 * so let it point to itself with list_del_init().
3831 		 */
3832 		list_del_init(&hpage->lru);
3833 		set_page_refcounted(hpage);
3834 		h->free_huge_pages--;
3835 		h->free_huge_pages_node[nid]--;
3836 		ret = 0;
3837 	}
3838 	spin_unlock(&hugetlb_lock);
3839 	return ret;
3840 }
3841 #endif
3842 
isolate_huge_page(struct page * page,struct list_head * list)3843 bool isolate_huge_page(struct page *page, struct list_head *list)
3844 {
3845 	bool ret = true;
3846 
3847 	VM_BUG_ON_PAGE(!PageHead(page), page);
3848 	spin_lock(&hugetlb_lock);
3849 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3850 		ret = false;
3851 		goto unlock;
3852 	}
3853 	clear_page_huge_active(page);
3854 	list_move_tail(&page->lru, list);
3855 unlock:
3856 	spin_unlock(&hugetlb_lock);
3857 	return ret;
3858 }
3859 
putback_active_hugepage(struct page * page)3860 void putback_active_hugepage(struct page *page)
3861 {
3862 	VM_BUG_ON_PAGE(!PageHead(page), page);
3863 	spin_lock(&hugetlb_lock);
3864 	set_page_huge_active(page);
3865 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3866 	spin_unlock(&hugetlb_lock);
3867 	put_page(page);
3868 }
3869 
is_hugepage_active(struct page * page)3870 bool is_hugepage_active(struct page *page)
3871 {
3872 	VM_BUG_ON_PAGE(!PageHuge(page), page);
3873 	/*
3874 	 * This function can be called for a tail page because the caller,
3875 	 * scan_movable_pages, scans through a given pfn-range which typically
3876 	 * covers one memory block. In systems using gigantic hugepage (1GB
3877 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3878 	 * support migrating such large hugepages for now, so return false
3879 	 * when called for tail pages.
3880 	 */
3881 	if (PageTail(page))
3882 		return false;
3883 	/*
3884 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3885 	 * so we should return false for them.
3886 	 */
3887 	if (unlikely(PageHWPoison(page)))
3888 		return false;
3889 	return page_count(page) > 0;
3890 }
3891