1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104
105 /*
106 * Kmemleak configuration and common defines.
107 */
108 #define MAX_TRACE 16 /* stack trace length */
109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113
114 #define BYTES_PER_POINTER sizeof(void *)
115
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 __GFP_NOWARN)
120
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 struct hlist_node node;
124 unsigned long start;
125 size_t size;
126 };
127
128 #define KMEMLEAK_GREY 0
129 #define KMEMLEAK_BLACK -1
130
131 /*
132 * Structure holding the metadata for each allocated memory block.
133 * Modifications to such objects should be made while holding the
134 * object->lock. Insertions or deletions from object_list, gray_list or
135 * rb_node are already protected by the corresponding locks or mutex (see
136 * the notes on locking above). These objects are reference-counted
137 * (use_count) and freed using the RCU mechanism.
138 */
139 struct kmemleak_object {
140 spinlock_t lock;
141 unsigned long flags; /* object status flags */
142 struct list_head object_list;
143 struct list_head gray_list;
144 struct rb_node rb_node;
145 struct rcu_head rcu; /* object_list lockless traversal */
146 /* object usage count; object freed when use_count == 0 */
147 atomic_t use_count;
148 unsigned long pointer;
149 size_t size;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE 16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE 1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII 1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES 2
180
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193
194 /* set if tracing memory operations is enabled */
195 static int kmemleak_enabled;
196 /* same as above but only for the kmemleak_free() callback */
197 static int kmemleak_free_enabled;
198 /* set in the late_initcall if there were no errors */
199 static int kmemleak_initialized;
200 /* enables or disables early logging of the memory operations */
201 static int kmemleak_early_log = 1;
202 /* set if a kmemleak warning was issued */
203 static int kmemleak_warning;
204 /* set if a fatal kmemleak error has occurred */
205 static int kmemleak_error;
206
207 /* minimum and maximum address that may be valid pointers */
208 static unsigned long min_addr = ULONG_MAX;
209 static unsigned long max_addr;
210
211 static struct task_struct *scan_thread;
212 /* used to avoid reporting of recently allocated objects */
213 static unsigned long jiffies_min_age;
214 static unsigned long jiffies_last_scan;
215 /* delay between automatic memory scannings */
216 static signed long jiffies_scan_wait;
217 /* enables or disables the task stacks scanning */
218 static int kmemleak_stack_scan = 1;
219 /* protects the memory scanning, parameters and debug/kmemleak file access */
220 static DEFINE_MUTEX(scan_mutex);
221 /* setting kmemleak=on, will set this var, skipping the disable */
222 static int kmemleak_skip_disable;
223 /* If there are leaks that can be reported */
224 static bool kmemleak_found_leaks;
225
226 /*
227 * Early object allocation/freeing logging. Kmemleak is initialized after the
228 * kernel allocator. However, both the kernel allocator and kmemleak may
229 * allocate memory blocks which need to be tracked. Kmemleak defines an
230 * arbitrary buffer to hold the allocation/freeing information before it is
231 * fully initialized.
232 */
233
234 /* kmemleak operation type for early logging */
235 enum {
236 KMEMLEAK_ALLOC,
237 KMEMLEAK_ALLOC_PERCPU,
238 KMEMLEAK_FREE,
239 KMEMLEAK_FREE_PART,
240 KMEMLEAK_FREE_PERCPU,
241 KMEMLEAK_NOT_LEAK,
242 KMEMLEAK_IGNORE,
243 KMEMLEAK_SCAN_AREA,
244 KMEMLEAK_NO_SCAN
245 };
246
247 /*
248 * Structure holding the information passed to kmemleak callbacks during the
249 * early logging.
250 */
251 struct early_log {
252 int op_type; /* kmemleak operation type */
253 const void *ptr; /* allocated/freed memory block */
254 size_t size; /* memory block size */
255 int min_count; /* minimum reference count */
256 unsigned long trace[MAX_TRACE]; /* stack trace */
257 unsigned int trace_len; /* stack trace length */
258 };
259
260 /* early logging buffer and current position */
261 static struct early_log
262 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
263 static int crt_early_log __initdata;
264
265 static void kmemleak_disable(void);
266
267 /*
268 * Print a warning and dump the stack trace.
269 */
270 #define kmemleak_warn(x...) do { \
271 pr_warning(x); \
272 dump_stack(); \
273 kmemleak_warning = 1; \
274 } while (0)
275
276 /*
277 * Macro invoked when a serious kmemleak condition occurred and cannot be
278 * recovered from. Kmemleak will be disabled and further allocation/freeing
279 * tracing no longer available.
280 */
281 #define kmemleak_stop(x...) do { \
282 kmemleak_warn(x); \
283 kmemleak_disable(); \
284 } while (0)
285
286 /*
287 * Printing of the objects hex dump to the seq file. The number of lines to be
288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290 * with the object->lock held.
291 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)292 static void hex_dump_object(struct seq_file *seq,
293 struct kmemleak_object *object)
294 {
295 const u8 *ptr = (const u8 *)object->pointer;
296 int i, len, remaining;
297 unsigned char linebuf[HEX_ROW_SIZE * 5];
298
299 /* limit the number of lines to HEX_MAX_LINES */
300 remaining = len =
301 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
302
303 seq_printf(seq, " hex dump (first %d bytes):\n", len);
304 for (i = 0; i < len; i += HEX_ROW_SIZE) {
305 int linelen = min(remaining, HEX_ROW_SIZE);
306
307 remaining -= HEX_ROW_SIZE;
308 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
309 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
310 HEX_ASCII);
311 seq_printf(seq, " %s\n", linebuf);
312 }
313 }
314
315 /*
316 * Object colors, encoded with count and min_count:
317 * - white - orphan object, not enough references to it (count < min_count)
318 * - gray - not orphan, not marked as false positive (min_count == 0) or
319 * sufficient references to it (count >= min_count)
320 * - black - ignore, it doesn't contain references (e.g. text section)
321 * (min_count == -1). No function defined for this color.
322 * Newly created objects don't have any color assigned (object->count == -1)
323 * before the next memory scan when they become white.
324 */
color_white(const struct kmemleak_object * object)325 static bool color_white(const struct kmemleak_object *object)
326 {
327 return object->count != KMEMLEAK_BLACK &&
328 object->count < object->min_count;
329 }
330
color_gray(const struct kmemleak_object * object)331 static bool color_gray(const struct kmemleak_object *object)
332 {
333 return object->min_count != KMEMLEAK_BLACK &&
334 object->count >= object->min_count;
335 }
336
337 /*
338 * Objects are considered unreferenced only if their color is white, they have
339 * not be deleted and have a minimum age to avoid false positives caused by
340 * pointers temporarily stored in CPU registers.
341 */
unreferenced_object(struct kmemleak_object * object)342 static bool unreferenced_object(struct kmemleak_object *object)
343 {
344 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
345 time_before_eq(object->jiffies + jiffies_min_age,
346 jiffies_last_scan);
347 }
348
349 /*
350 * Printing of the unreferenced objects information to the seq file. The
351 * print_unreferenced function must be called with the object->lock held.
352 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)353 static void print_unreferenced(struct seq_file *seq,
354 struct kmemleak_object *object)
355 {
356 int i;
357 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
358
359 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360 object->pointer, object->size);
361 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 object->comm, object->pid, object->jiffies,
363 msecs_age / 1000, msecs_age % 1000);
364 hex_dump_object(seq, object);
365 seq_printf(seq, " backtrace:\n");
366
367 for (i = 0; i < object->trace_len; i++) {
368 void *ptr = (void *)object->trace[i];
369 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
370 }
371 }
372
373 /*
374 * Print the kmemleak_object information. This function is used mainly for
375 * debugging special cases when kmemleak operations. It must be called with
376 * the object->lock held.
377 */
dump_object_info(struct kmemleak_object * object)378 static void dump_object_info(struct kmemleak_object *object)
379 {
380 struct stack_trace trace;
381
382 trace.nr_entries = object->trace_len;
383 trace.entries = object->trace;
384
385 pr_notice("Object 0x%08lx (size %zu):\n",
386 object->pointer, object->size);
387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
388 object->comm, object->pid, object->jiffies);
389 pr_notice(" min_count = %d\n", object->min_count);
390 pr_notice(" count = %d\n", object->count);
391 pr_notice(" flags = 0x%lx\n", object->flags);
392 pr_notice(" checksum = %u\n", object->checksum);
393 pr_notice(" backtrace:\n");
394 print_stack_trace(&trace, 4);
395 }
396
397 /*
398 * Look-up a memory block metadata (kmemleak_object) in the object search
399 * tree based on a pointer value. If alias is 0, only values pointing to the
400 * beginning of the memory block are allowed. The kmemleak_lock must be held
401 * when calling this function.
402 */
lookup_object(unsigned long ptr,int alias)403 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404 {
405 struct rb_node *rb = object_tree_root.rb_node;
406
407 while (rb) {
408 struct kmemleak_object *object =
409 rb_entry(rb, struct kmemleak_object, rb_node);
410 if (ptr < object->pointer)
411 rb = object->rb_node.rb_left;
412 else if (object->pointer + object->size <= ptr)
413 rb = object->rb_node.rb_right;
414 else if (object->pointer == ptr || alias)
415 return object;
416 else {
417 kmemleak_warn("Found object by alias at 0x%08lx\n",
418 ptr);
419 dump_object_info(object);
420 break;
421 }
422 }
423 return NULL;
424 }
425
426 /*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
get_object(struct kmemleak_object * object)432 static int get_object(struct kmemleak_object *object)
433 {
434 return atomic_inc_not_zero(&object->use_count);
435 }
436
437 /*
438 * RCU callback to free a kmemleak_object.
439 */
free_object_rcu(struct rcu_head * rcu)440 static void free_object_rcu(struct rcu_head *rcu)
441 {
442 struct hlist_node *tmp;
443 struct kmemleak_scan_area *area;
444 struct kmemleak_object *object =
445 container_of(rcu, struct kmemleak_object, rcu);
446
447 /*
448 * Once use_count is 0 (guaranteed by put_object), there is no other
449 * code accessing this object, hence no need for locking.
450 */
451 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452 hlist_del(&area->node);
453 kmem_cache_free(scan_area_cache, area);
454 }
455 kmem_cache_free(object_cache, object);
456 }
457
458 /*
459 * Decrement the object use_count. Once the count is 0, free the object using
460 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461 * delete_object() path, the delayed RCU freeing ensures that there is no
462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463 * is also possible.
464 */
put_object(struct kmemleak_object * object)465 static void put_object(struct kmemleak_object *object)
466 {
467 if (!atomic_dec_and_test(&object->use_count))
468 return;
469
470 /* should only get here after delete_object was called */
471 WARN_ON(object->flags & OBJECT_ALLOCATED);
472
473 call_rcu(&object->rcu, free_object_rcu);
474 }
475
476 /*
477 * Look up an object in the object search tree and increase its use_count.
478 */
find_and_get_object(unsigned long ptr,int alias)479 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480 {
481 unsigned long flags;
482 struct kmemleak_object *object = NULL;
483
484 rcu_read_lock();
485 read_lock_irqsave(&kmemleak_lock, flags);
486 if (ptr >= min_addr && ptr < max_addr)
487 object = lookup_object(ptr, alias);
488 read_unlock_irqrestore(&kmemleak_lock, flags);
489
490 /* check whether the object is still available */
491 if (object && !get_object(object))
492 object = NULL;
493 rcu_read_unlock();
494
495 return object;
496 }
497
498 /*
499 * Save stack trace to the given array of MAX_TRACE size.
500 */
__save_stack_trace(unsigned long * trace)501 static int __save_stack_trace(unsigned long *trace)
502 {
503 struct stack_trace stack_trace;
504
505 stack_trace.max_entries = MAX_TRACE;
506 stack_trace.nr_entries = 0;
507 stack_trace.entries = trace;
508 stack_trace.skip = 2;
509 save_stack_trace(&stack_trace);
510
511 return stack_trace.nr_entries;
512 }
513
514 /*
515 * Create the metadata (struct kmemleak_object) corresponding to an allocated
516 * memory block and add it to the object_list and object_tree_root.
517 */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)518 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
519 int min_count, gfp_t gfp)
520 {
521 unsigned long flags;
522 struct kmemleak_object *object, *parent;
523 struct rb_node **link, *rb_parent;
524
525 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
526 if (!object) {
527 pr_warning("Cannot allocate a kmemleak_object structure\n");
528 kmemleak_disable();
529 return NULL;
530 }
531
532 INIT_LIST_HEAD(&object->object_list);
533 INIT_LIST_HEAD(&object->gray_list);
534 INIT_HLIST_HEAD(&object->area_list);
535 spin_lock_init(&object->lock);
536 atomic_set(&object->use_count, 1);
537 object->flags = OBJECT_ALLOCATED;
538 object->pointer = ptr;
539 object->size = size;
540 object->min_count = min_count;
541 object->count = 0; /* white color initially */
542 object->jiffies = jiffies;
543 object->checksum = 0;
544
545 /* task information */
546 if (in_irq()) {
547 object->pid = 0;
548 strncpy(object->comm, "hardirq", sizeof(object->comm));
549 } else if (in_softirq()) {
550 object->pid = 0;
551 strncpy(object->comm, "softirq", sizeof(object->comm));
552 } else {
553 object->pid = current->pid;
554 /*
555 * There is a small chance of a race with set_task_comm(),
556 * however using get_task_comm() here may cause locking
557 * dependency issues with current->alloc_lock. In the worst
558 * case, the command line is not correct.
559 */
560 strncpy(object->comm, current->comm, sizeof(object->comm));
561 }
562
563 /* kernel backtrace */
564 object->trace_len = __save_stack_trace(object->trace);
565
566 write_lock_irqsave(&kmemleak_lock, flags);
567
568 min_addr = min(min_addr, ptr);
569 max_addr = max(max_addr, ptr + size);
570 link = &object_tree_root.rb_node;
571 rb_parent = NULL;
572 while (*link) {
573 rb_parent = *link;
574 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
575 if (ptr + size <= parent->pointer)
576 link = &parent->rb_node.rb_left;
577 else if (parent->pointer + parent->size <= ptr)
578 link = &parent->rb_node.rb_right;
579 else {
580 kmemleak_stop("Cannot insert 0x%lx into the object "
581 "search tree (overlaps existing)\n",
582 ptr);
583 kmem_cache_free(object_cache, object);
584 object = parent;
585 spin_lock(&object->lock);
586 dump_object_info(object);
587 spin_unlock(&object->lock);
588 goto out;
589 }
590 }
591 rb_link_node(&object->rb_node, rb_parent, link);
592 rb_insert_color(&object->rb_node, &object_tree_root);
593
594 list_add_tail_rcu(&object->object_list, &object_list);
595 out:
596 write_unlock_irqrestore(&kmemleak_lock, flags);
597 return object;
598 }
599
600 /*
601 * Remove the metadata (struct kmemleak_object) for a memory block from the
602 * object_list and object_tree_root and decrement its use_count.
603 */
__delete_object(struct kmemleak_object * object)604 static void __delete_object(struct kmemleak_object *object)
605 {
606 unsigned long flags;
607
608 write_lock_irqsave(&kmemleak_lock, flags);
609 rb_erase(&object->rb_node, &object_tree_root);
610 list_del_rcu(&object->object_list);
611 write_unlock_irqrestore(&kmemleak_lock, flags);
612
613 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
614 WARN_ON(atomic_read(&object->use_count) < 2);
615
616 /*
617 * Locking here also ensures that the corresponding memory block
618 * cannot be freed when it is being scanned.
619 */
620 spin_lock_irqsave(&object->lock, flags);
621 object->flags &= ~OBJECT_ALLOCATED;
622 spin_unlock_irqrestore(&object->lock, flags);
623 put_object(object);
624 }
625
626 /*
627 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628 * delete it.
629 */
delete_object_full(unsigned long ptr)630 static void delete_object_full(unsigned long ptr)
631 {
632 struct kmemleak_object *object;
633
634 object = find_and_get_object(ptr, 0);
635 if (!object) {
636 #ifdef DEBUG
637 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
638 ptr);
639 #endif
640 return;
641 }
642 __delete_object(object);
643 put_object(object);
644 }
645
646 /*
647 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648 * delete it. If the memory block is partially freed, the function may create
649 * additional metadata for the remaining parts of the block.
650 */
delete_object_part(unsigned long ptr,size_t size)651 static void delete_object_part(unsigned long ptr, size_t size)
652 {
653 struct kmemleak_object *object;
654 unsigned long start, end;
655
656 object = find_and_get_object(ptr, 1);
657 if (!object) {
658 #ifdef DEBUG
659 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
660 "(size %zu)\n", ptr, size);
661 #endif
662 return;
663 }
664 __delete_object(object);
665
666 /*
667 * Create one or two objects that may result from the memory block
668 * split. Note that partial freeing is only done by free_bootmem() and
669 * this happens before kmemleak_init() is called. The path below is
670 * only executed during early log recording in kmemleak_init(), so
671 * GFP_KERNEL is enough.
672 */
673 start = object->pointer;
674 end = object->pointer + object->size;
675 if (ptr > start)
676 create_object(start, ptr - start, object->min_count,
677 GFP_KERNEL);
678 if (ptr + size < end)
679 create_object(ptr + size, end - ptr - size, object->min_count,
680 GFP_KERNEL);
681
682 put_object(object);
683 }
684
__paint_it(struct kmemleak_object * object,int color)685 static void __paint_it(struct kmemleak_object *object, int color)
686 {
687 object->min_count = color;
688 if (color == KMEMLEAK_BLACK)
689 object->flags |= OBJECT_NO_SCAN;
690 }
691
paint_it(struct kmemleak_object * object,int color)692 static void paint_it(struct kmemleak_object *object, int color)
693 {
694 unsigned long flags;
695
696 spin_lock_irqsave(&object->lock, flags);
697 __paint_it(object, color);
698 spin_unlock_irqrestore(&object->lock, flags);
699 }
700
paint_ptr(unsigned long ptr,int color)701 static void paint_ptr(unsigned long ptr, int color)
702 {
703 struct kmemleak_object *object;
704
705 object = find_and_get_object(ptr, 0);
706 if (!object) {
707 kmemleak_warn("Trying to color unknown object "
708 "at 0x%08lx as %s\n", ptr,
709 (color == KMEMLEAK_GREY) ? "Grey" :
710 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
711 return;
712 }
713 paint_it(object, color);
714 put_object(object);
715 }
716
717 /*
718 * Mark an object permanently as gray-colored so that it can no longer be
719 * reported as a leak. This is used in general to mark a false positive.
720 */
make_gray_object(unsigned long ptr)721 static void make_gray_object(unsigned long ptr)
722 {
723 paint_ptr(ptr, KMEMLEAK_GREY);
724 }
725
726 /*
727 * Mark the object as black-colored so that it is ignored from scans and
728 * reporting.
729 */
make_black_object(unsigned long ptr)730 static void make_black_object(unsigned long ptr)
731 {
732 paint_ptr(ptr, KMEMLEAK_BLACK);
733 }
734
735 /*
736 * Add a scanning area to the object. If at least one such area is added,
737 * kmemleak will only scan these ranges rather than the whole memory block.
738 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)739 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
740 {
741 unsigned long flags;
742 struct kmemleak_object *object;
743 struct kmemleak_scan_area *area;
744
745 object = find_and_get_object(ptr, 1);
746 if (!object) {
747 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
748 ptr);
749 return;
750 }
751
752 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
753 if (!area) {
754 pr_warning("Cannot allocate a scan area\n");
755 goto out;
756 }
757
758 spin_lock_irqsave(&object->lock, flags);
759 if (size == SIZE_MAX) {
760 size = object->pointer + object->size - ptr;
761 } else if (ptr + size > object->pointer + object->size) {
762 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
763 dump_object_info(object);
764 kmem_cache_free(scan_area_cache, area);
765 goto out_unlock;
766 }
767
768 INIT_HLIST_NODE(&area->node);
769 area->start = ptr;
770 area->size = size;
771
772 hlist_add_head(&area->node, &object->area_list);
773 out_unlock:
774 spin_unlock_irqrestore(&object->lock, flags);
775 out:
776 put_object(object);
777 }
778
779 /*
780 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
781 * pointer. Such object will not be scanned by kmemleak but references to it
782 * are searched.
783 */
object_no_scan(unsigned long ptr)784 static void object_no_scan(unsigned long ptr)
785 {
786 unsigned long flags;
787 struct kmemleak_object *object;
788
789 object = find_and_get_object(ptr, 0);
790 if (!object) {
791 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
792 return;
793 }
794
795 spin_lock_irqsave(&object->lock, flags);
796 object->flags |= OBJECT_NO_SCAN;
797 spin_unlock_irqrestore(&object->lock, flags);
798 put_object(object);
799 }
800
801 /*
802 * Log an early kmemleak_* call to the early_log buffer. These calls will be
803 * processed later once kmemleak is fully initialized.
804 */
log_early(int op_type,const void * ptr,size_t size,int min_count)805 static void __init log_early(int op_type, const void *ptr, size_t size,
806 int min_count)
807 {
808 unsigned long flags;
809 struct early_log *log;
810
811 if (kmemleak_error) {
812 /* kmemleak stopped recording, just count the requests */
813 crt_early_log++;
814 return;
815 }
816
817 if (crt_early_log >= ARRAY_SIZE(early_log)) {
818 kmemleak_disable();
819 return;
820 }
821
822 /*
823 * There is no need for locking since the kernel is still in UP mode
824 * at this stage. Disabling the IRQs is enough.
825 */
826 local_irq_save(flags);
827 log = &early_log[crt_early_log];
828 log->op_type = op_type;
829 log->ptr = ptr;
830 log->size = size;
831 log->min_count = min_count;
832 log->trace_len = __save_stack_trace(log->trace);
833 crt_early_log++;
834 local_irq_restore(flags);
835 }
836
837 /*
838 * Log an early allocated block and populate the stack trace.
839 */
early_alloc(struct early_log * log)840 static void early_alloc(struct early_log *log)
841 {
842 struct kmemleak_object *object;
843 unsigned long flags;
844 int i;
845
846 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
847 return;
848
849 /*
850 * RCU locking needed to ensure object is not freed via put_object().
851 */
852 rcu_read_lock();
853 object = create_object((unsigned long)log->ptr, log->size,
854 log->min_count, GFP_ATOMIC);
855 if (!object)
856 goto out;
857 spin_lock_irqsave(&object->lock, flags);
858 for (i = 0; i < log->trace_len; i++)
859 object->trace[i] = log->trace[i];
860 object->trace_len = log->trace_len;
861 spin_unlock_irqrestore(&object->lock, flags);
862 out:
863 rcu_read_unlock();
864 }
865
866 /*
867 * Log an early allocated block and populate the stack trace.
868 */
early_alloc_percpu(struct early_log * log)869 static void early_alloc_percpu(struct early_log *log)
870 {
871 unsigned int cpu;
872 const void __percpu *ptr = log->ptr;
873
874 for_each_possible_cpu(cpu) {
875 log->ptr = per_cpu_ptr(ptr, cpu);
876 early_alloc(log);
877 }
878 }
879
880 /**
881 * kmemleak_alloc - register a newly allocated object
882 * @ptr: pointer to beginning of the object
883 * @size: size of the object
884 * @min_count: minimum number of references to this object. If during memory
885 * scanning a number of references less than @min_count is found,
886 * the object is reported as a memory leak. If @min_count is 0,
887 * the object is never reported as a leak. If @min_count is -1,
888 * the object is ignored (not scanned and not reported as a leak)
889 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
890 *
891 * This function is called from the kernel allocators when a new object
892 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
893 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)894 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
895 gfp_t gfp)
896 {
897 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
898
899 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
900 create_object((unsigned long)ptr, size, min_count, gfp);
901 else if (kmemleak_early_log)
902 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
903 }
904 EXPORT_SYMBOL_GPL(kmemleak_alloc);
905
906 /**
907 * kmemleak_alloc_percpu - register a newly allocated __percpu object
908 * @ptr: __percpu pointer to beginning of the object
909 * @size: size of the object
910 * @gfp: flags used for kmemleak internal memory allocations
911 *
912 * This function is called from the kernel percpu allocator when a new object
913 * (memory block) is allocated (alloc_percpu).
914 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
916 gfp_t gfp)
917 {
918 unsigned int cpu;
919
920 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
921
922 /*
923 * Percpu allocations are only scanned and not reported as leaks
924 * (min_count is set to 0).
925 */
926 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
927 for_each_possible_cpu(cpu)
928 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
929 size, 0, gfp);
930 else if (kmemleak_early_log)
931 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
932 }
933 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
934
935 /**
936 * kmemleak_free - unregister a previously registered object
937 * @ptr: pointer to beginning of the object
938 *
939 * This function is called from the kernel allocators when an object (memory
940 * block) is freed (kmem_cache_free, kfree, vfree etc.).
941 */
kmemleak_free(const void * ptr)942 void __ref kmemleak_free(const void *ptr)
943 {
944 pr_debug("%s(0x%p)\n", __func__, ptr);
945
946 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
947 delete_object_full((unsigned long)ptr);
948 else if (kmemleak_early_log)
949 log_early(KMEMLEAK_FREE, ptr, 0, 0);
950 }
951 EXPORT_SYMBOL_GPL(kmemleak_free);
952
953 /**
954 * kmemleak_free_part - partially unregister a previously registered object
955 * @ptr: pointer to the beginning or inside the object. This also
956 * represents the start of the range to be freed
957 * @size: size to be unregistered
958 *
959 * This function is called when only a part of a memory block is freed
960 * (usually from the bootmem allocator).
961 */
kmemleak_free_part(const void * ptr,size_t size)962 void __ref kmemleak_free_part(const void *ptr, size_t size)
963 {
964 pr_debug("%s(0x%p)\n", __func__, ptr);
965
966 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
967 delete_object_part((unsigned long)ptr, size);
968 else if (kmemleak_early_log)
969 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
970 }
971 EXPORT_SYMBOL_GPL(kmemleak_free_part);
972
973 /**
974 * kmemleak_free_percpu - unregister a previously registered __percpu object
975 * @ptr: __percpu pointer to beginning of the object
976 *
977 * This function is called from the kernel percpu allocator when an object
978 * (memory block) is freed (free_percpu).
979 */
kmemleak_free_percpu(const void __percpu * ptr)980 void __ref kmemleak_free_percpu(const void __percpu *ptr)
981 {
982 unsigned int cpu;
983
984 pr_debug("%s(0x%p)\n", __func__, ptr);
985
986 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
987 for_each_possible_cpu(cpu)
988 delete_object_full((unsigned long)per_cpu_ptr(ptr,
989 cpu));
990 else if (kmemleak_early_log)
991 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
992 }
993 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
994
995 /**
996 * kmemleak_update_trace - update object allocation stack trace
997 * @ptr: pointer to beginning of the object
998 *
999 * Override the object allocation stack trace for cases where the actual
1000 * allocation place is not always useful.
1001 */
kmemleak_update_trace(const void * ptr)1002 void __ref kmemleak_update_trace(const void *ptr)
1003 {
1004 struct kmemleak_object *object;
1005 unsigned long flags;
1006
1007 pr_debug("%s(0x%p)\n", __func__, ptr);
1008
1009 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1010 return;
1011
1012 object = find_and_get_object((unsigned long)ptr, 1);
1013 if (!object) {
1014 #ifdef DEBUG
1015 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1016 ptr);
1017 #endif
1018 return;
1019 }
1020
1021 spin_lock_irqsave(&object->lock, flags);
1022 object->trace_len = __save_stack_trace(object->trace);
1023 spin_unlock_irqrestore(&object->lock, flags);
1024
1025 put_object(object);
1026 }
1027 EXPORT_SYMBOL(kmemleak_update_trace);
1028
1029 /**
1030 * kmemleak_not_leak - mark an allocated object as false positive
1031 * @ptr: pointer to beginning of the object
1032 *
1033 * Calling this function on an object will cause the memory block to no longer
1034 * be reported as leak and always be scanned.
1035 */
kmemleak_not_leak(const void * ptr)1036 void __ref kmemleak_not_leak(const void *ptr)
1037 {
1038 pr_debug("%s(0x%p)\n", __func__, ptr);
1039
1040 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1041 make_gray_object((unsigned long)ptr);
1042 else if (kmemleak_early_log)
1043 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1044 }
1045 EXPORT_SYMBOL(kmemleak_not_leak);
1046
1047 /**
1048 * kmemleak_ignore - ignore an allocated object
1049 * @ptr: pointer to beginning of the object
1050 *
1051 * Calling this function on an object will cause the memory block to be
1052 * ignored (not scanned and not reported as a leak). This is usually done when
1053 * it is known that the corresponding block is not a leak and does not contain
1054 * any references to other allocated memory blocks.
1055 */
kmemleak_ignore(const void * ptr)1056 void __ref kmemleak_ignore(const void *ptr)
1057 {
1058 pr_debug("%s(0x%p)\n", __func__, ptr);
1059
1060 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1061 make_black_object((unsigned long)ptr);
1062 else if (kmemleak_early_log)
1063 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1064 }
1065 EXPORT_SYMBOL(kmemleak_ignore);
1066
1067 /**
1068 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1069 * @ptr: pointer to beginning or inside the object. This also
1070 * represents the start of the scan area
1071 * @size: size of the scan area
1072 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1073 *
1074 * This function is used when it is known that only certain parts of an object
1075 * contain references to other objects. Kmemleak will only scan these areas
1076 * reducing the number false negatives.
1077 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1078 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1079 {
1080 pr_debug("%s(0x%p)\n", __func__, ptr);
1081
1082 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1083 add_scan_area((unsigned long)ptr, size, gfp);
1084 else if (kmemleak_early_log)
1085 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1086 }
1087 EXPORT_SYMBOL(kmemleak_scan_area);
1088
1089 /**
1090 * kmemleak_no_scan - do not scan an allocated object
1091 * @ptr: pointer to beginning of the object
1092 *
1093 * This function notifies kmemleak not to scan the given memory block. Useful
1094 * in situations where it is known that the given object does not contain any
1095 * references to other objects. Kmemleak will not scan such objects reducing
1096 * the number of false negatives.
1097 */
kmemleak_no_scan(const void * ptr)1098 void __ref kmemleak_no_scan(const void *ptr)
1099 {
1100 pr_debug("%s(0x%p)\n", __func__, ptr);
1101
1102 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1103 object_no_scan((unsigned long)ptr);
1104 else if (kmemleak_early_log)
1105 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1106 }
1107 EXPORT_SYMBOL(kmemleak_no_scan);
1108
1109 /*
1110 * Update an object's checksum and return true if it was modified.
1111 */
update_checksum(struct kmemleak_object * object)1112 static bool update_checksum(struct kmemleak_object *object)
1113 {
1114 u32 old_csum = object->checksum;
1115
1116 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1117 return false;
1118
1119 object->checksum = crc32(0, (void *)object->pointer, object->size);
1120 return object->checksum != old_csum;
1121 }
1122
1123 /*
1124 * Memory scanning is a long process and it needs to be interruptable. This
1125 * function checks whether such interrupt condition occurred.
1126 */
scan_should_stop(void)1127 static int scan_should_stop(void)
1128 {
1129 if (!kmemleak_enabled)
1130 return 1;
1131
1132 /*
1133 * This function may be called from either process or kthread context,
1134 * hence the need to check for both stop conditions.
1135 */
1136 if (current->mm)
1137 return signal_pending(current);
1138 else
1139 return kthread_should_stop();
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * Scan a memory block (exclusive range) for valid pointers and add those
1146 * found to the gray list.
1147 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned,int allow_resched)1148 static void scan_block(void *_start, void *_end,
1149 struct kmemleak_object *scanned, int allow_resched)
1150 {
1151 unsigned long *ptr;
1152 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1153 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1154
1155 for (ptr = start; ptr < end; ptr++) {
1156 struct kmemleak_object *object;
1157 unsigned long flags;
1158 unsigned long pointer;
1159
1160 if (allow_resched)
1161 cond_resched();
1162 if (scan_should_stop())
1163 break;
1164
1165 /* don't scan uninitialized memory */
1166 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1167 BYTES_PER_POINTER))
1168 continue;
1169
1170 pointer = *ptr;
1171
1172 object = find_and_get_object(pointer, 1);
1173 if (!object)
1174 continue;
1175 if (object == scanned) {
1176 /* self referenced, ignore */
1177 put_object(object);
1178 continue;
1179 }
1180
1181 /*
1182 * Avoid the lockdep recursive warning on object->lock being
1183 * previously acquired in scan_object(). These locks are
1184 * enclosed by scan_mutex.
1185 */
1186 spin_lock_irqsave_nested(&object->lock, flags,
1187 SINGLE_DEPTH_NESTING);
1188 if (!color_white(object)) {
1189 /* non-orphan, ignored or new */
1190 spin_unlock_irqrestore(&object->lock, flags);
1191 put_object(object);
1192 continue;
1193 }
1194
1195 /*
1196 * Increase the object's reference count (number of pointers
1197 * to the memory block). If this count reaches the required
1198 * minimum, the object's color will become gray and it will be
1199 * added to the gray_list.
1200 */
1201 object->count++;
1202 if (color_gray(object)) {
1203 list_add_tail(&object->gray_list, &gray_list);
1204 spin_unlock_irqrestore(&object->lock, flags);
1205 continue;
1206 }
1207
1208 spin_unlock_irqrestore(&object->lock, flags);
1209 put_object(object);
1210 }
1211 }
1212
1213 /*
1214 * Scan a memory block corresponding to a kmemleak_object. A condition is
1215 * that object->use_count >= 1.
1216 */
scan_object(struct kmemleak_object * object)1217 static void scan_object(struct kmemleak_object *object)
1218 {
1219 struct kmemleak_scan_area *area;
1220 unsigned long flags;
1221
1222 /*
1223 * Once the object->lock is acquired, the corresponding memory block
1224 * cannot be freed (the same lock is acquired in delete_object).
1225 */
1226 spin_lock_irqsave(&object->lock, flags);
1227 if (object->flags & OBJECT_NO_SCAN)
1228 goto out;
1229 if (!(object->flags & OBJECT_ALLOCATED))
1230 /* already freed object */
1231 goto out;
1232 if (hlist_empty(&object->area_list)) {
1233 void *start = (void *)object->pointer;
1234 void *end = (void *)(object->pointer + object->size);
1235
1236 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1237 !(object->flags & OBJECT_NO_SCAN)) {
1238 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1239 object, 0);
1240 start += MAX_SCAN_SIZE;
1241
1242 spin_unlock_irqrestore(&object->lock, flags);
1243 cond_resched();
1244 spin_lock_irqsave(&object->lock, flags);
1245 }
1246 } else
1247 hlist_for_each_entry(area, &object->area_list, node)
1248 scan_block((void *)area->start,
1249 (void *)(area->start + area->size),
1250 object, 0);
1251 out:
1252 spin_unlock_irqrestore(&object->lock, flags);
1253 }
1254
1255 /*
1256 * Scan the objects already referenced (gray objects). More objects will be
1257 * referenced and, if there are no memory leaks, all the objects are scanned.
1258 */
scan_gray_list(void)1259 static void scan_gray_list(void)
1260 {
1261 struct kmemleak_object *object, *tmp;
1262
1263 /*
1264 * The list traversal is safe for both tail additions and removals
1265 * from inside the loop. The kmemleak objects cannot be freed from
1266 * outside the loop because their use_count was incremented.
1267 */
1268 object = list_entry(gray_list.next, typeof(*object), gray_list);
1269 while (&object->gray_list != &gray_list) {
1270 cond_resched();
1271
1272 /* may add new objects to the list */
1273 if (!scan_should_stop())
1274 scan_object(object);
1275
1276 tmp = list_entry(object->gray_list.next, typeof(*object),
1277 gray_list);
1278
1279 /* remove the object from the list and release it */
1280 list_del(&object->gray_list);
1281 put_object(object);
1282
1283 object = tmp;
1284 }
1285 WARN_ON(!list_empty(&gray_list));
1286 }
1287
1288 /*
1289 * Scan data sections and all the referenced memory blocks allocated via the
1290 * kernel's standard allocators. This function must be called with the
1291 * scan_mutex held.
1292 */
kmemleak_scan(void)1293 static void kmemleak_scan(void)
1294 {
1295 unsigned long flags;
1296 struct kmemleak_object *object;
1297 int i;
1298 int new_leaks = 0;
1299
1300 jiffies_last_scan = jiffies;
1301
1302 /* prepare the kmemleak_object's */
1303 rcu_read_lock();
1304 list_for_each_entry_rcu(object, &object_list, object_list) {
1305 spin_lock_irqsave(&object->lock, flags);
1306 #ifdef DEBUG
1307 /*
1308 * With a few exceptions there should be a maximum of
1309 * 1 reference to any object at this point.
1310 */
1311 if (atomic_read(&object->use_count) > 1) {
1312 pr_debug("object->use_count = %d\n",
1313 atomic_read(&object->use_count));
1314 dump_object_info(object);
1315 }
1316 #endif
1317 /* reset the reference count (whiten the object) */
1318 object->count = 0;
1319 if (color_gray(object) && get_object(object))
1320 list_add_tail(&object->gray_list, &gray_list);
1321
1322 spin_unlock_irqrestore(&object->lock, flags);
1323 }
1324 rcu_read_unlock();
1325
1326 /* data/bss scanning */
1327 scan_block(_sdata, _edata, NULL, 1);
1328 scan_block(__bss_start, __bss_stop, NULL, 1);
1329
1330 #ifdef CONFIG_SMP
1331 /* per-cpu sections scanning */
1332 for_each_possible_cpu(i)
1333 scan_block(__per_cpu_start + per_cpu_offset(i),
1334 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1335 #endif
1336
1337 /*
1338 * Struct page scanning for each node.
1339 */
1340 get_online_mems();
1341 for_each_online_node(i) {
1342 unsigned long start_pfn = node_start_pfn(i);
1343 unsigned long end_pfn = node_end_pfn(i);
1344 unsigned long pfn;
1345
1346 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1347 struct page *page;
1348
1349 if (!pfn_valid(pfn))
1350 continue;
1351 page = pfn_to_page(pfn);
1352 /* only scan if page is in use */
1353 if (page_count(page) == 0)
1354 continue;
1355 scan_block(page, page + 1, NULL, 1);
1356 }
1357 }
1358 put_online_mems();
1359
1360 /*
1361 * Scanning the task stacks (may introduce false negatives).
1362 */
1363 if (kmemleak_stack_scan) {
1364 struct task_struct *p, *g;
1365
1366 read_lock(&tasklist_lock);
1367 do_each_thread(g, p) {
1368 scan_block(task_stack_page(p), task_stack_page(p) +
1369 THREAD_SIZE, NULL, 0);
1370 } while_each_thread(g, p);
1371 read_unlock(&tasklist_lock);
1372 }
1373
1374 /*
1375 * Scan the objects already referenced from the sections scanned
1376 * above.
1377 */
1378 scan_gray_list();
1379
1380 /*
1381 * Check for new or unreferenced objects modified since the previous
1382 * scan and color them gray until the next scan.
1383 */
1384 rcu_read_lock();
1385 list_for_each_entry_rcu(object, &object_list, object_list) {
1386 spin_lock_irqsave(&object->lock, flags);
1387 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1388 && update_checksum(object) && get_object(object)) {
1389 /* color it gray temporarily */
1390 object->count = object->min_count;
1391 list_add_tail(&object->gray_list, &gray_list);
1392 }
1393 spin_unlock_irqrestore(&object->lock, flags);
1394 }
1395 rcu_read_unlock();
1396
1397 /*
1398 * Re-scan the gray list for modified unreferenced objects.
1399 */
1400 scan_gray_list();
1401
1402 /*
1403 * If scanning was stopped do not report any new unreferenced objects.
1404 */
1405 if (scan_should_stop())
1406 return;
1407
1408 /*
1409 * Scanning result reporting.
1410 */
1411 rcu_read_lock();
1412 list_for_each_entry_rcu(object, &object_list, object_list) {
1413 spin_lock_irqsave(&object->lock, flags);
1414 if (unreferenced_object(object) &&
1415 !(object->flags & OBJECT_REPORTED)) {
1416 object->flags |= OBJECT_REPORTED;
1417 new_leaks++;
1418 }
1419 spin_unlock_irqrestore(&object->lock, flags);
1420 }
1421 rcu_read_unlock();
1422
1423 if (new_leaks) {
1424 kmemleak_found_leaks = true;
1425
1426 pr_info("%d new suspected memory leaks (see "
1427 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1428 }
1429
1430 }
1431
1432 /*
1433 * Thread function performing automatic memory scanning. Unreferenced objects
1434 * at the end of a memory scan are reported but only the first time.
1435 */
kmemleak_scan_thread(void * arg)1436 static int kmemleak_scan_thread(void *arg)
1437 {
1438 static int first_run = 1;
1439
1440 pr_info("Automatic memory scanning thread started\n");
1441 set_user_nice(current, 10);
1442
1443 /*
1444 * Wait before the first scan to allow the system to fully initialize.
1445 */
1446 if (first_run) {
1447 first_run = 0;
1448 ssleep(SECS_FIRST_SCAN);
1449 }
1450
1451 while (!kthread_should_stop()) {
1452 signed long timeout = jiffies_scan_wait;
1453
1454 mutex_lock(&scan_mutex);
1455 kmemleak_scan();
1456 mutex_unlock(&scan_mutex);
1457
1458 /* wait before the next scan */
1459 while (timeout && !kthread_should_stop())
1460 timeout = schedule_timeout_interruptible(timeout);
1461 }
1462
1463 pr_info("Automatic memory scanning thread ended\n");
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Start the automatic memory scanning thread. This function must be called
1470 * with the scan_mutex held.
1471 */
start_scan_thread(void)1472 static void start_scan_thread(void)
1473 {
1474 if (scan_thread)
1475 return;
1476 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1477 if (IS_ERR(scan_thread)) {
1478 pr_warning("Failed to create the scan thread\n");
1479 scan_thread = NULL;
1480 }
1481 }
1482
1483 /*
1484 * Stop the automatic memory scanning thread. This function must be called
1485 * with the scan_mutex held.
1486 */
stop_scan_thread(void)1487 static void stop_scan_thread(void)
1488 {
1489 if (scan_thread) {
1490 kthread_stop(scan_thread);
1491 scan_thread = NULL;
1492 }
1493 }
1494
1495 /*
1496 * Iterate over the object_list and return the first valid object at or after
1497 * the required position with its use_count incremented. The function triggers
1498 * a memory scanning when the pos argument points to the first position.
1499 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1500 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1501 {
1502 struct kmemleak_object *object;
1503 loff_t n = *pos;
1504 int err;
1505
1506 err = mutex_lock_interruptible(&scan_mutex);
1507 if (err < 0)
1508 return ERR_PTR(err);
1509
1510 rcu_read_lock();
1511 list_for_each_entry_rcu(object, &object_list, object_list) {
1512 if (n-- > 0)
1513 continue;
1514 if (get_object(object))
1515 goto out;
1516 }
1517 object = NULL;
1518 out:
1519 return object;
1520 }
1521
1522 /*
1523 * Return the next object in the object_list. The function decrements the
1524 * use_count of the previous object and increases that of the next one.
1525 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1526 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1527 {
1528 struct kmemleak_object *prev_obj = v;
1529 struct kmemleak_object *next_obj = NULL;
1530 struct kmemleak_object *obj = prev_obj;
1531
1532 ++(*pos);
1533
1534 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1535 if (get_object(obj)) {
1536 next_obj = obj;
1537 break;
1538 }
1539 }
1540
1541 put_object(prev_obj);
1542 return next_obj;
1543 }
1544
1545 /*
1546 * Decrement the use_count of the last object required, if any.
1547 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1548 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1549 {
1550 if (!IS_ERR(v)) {
1551 /*
1552 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1553 * waiting was interrupted, so only release it if !IS_ERR.
1554 */
1555 rcu_read_unlock();
1556 mutex_unlock(&scan_mutex);
1557 if (v)
1558 put_object(v);
1559 }
1560 }
1561
1562 /*
1563 * Print the information for an unreferenced object to the seq file.
1564 */
kmemleak_seq_show(struct seq_file * seq,void * v)1565 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1566 {
1567 struct kmemleak_object *object = v;
1568 unsigned long flags;
1569
1570 spin_lock_irqsave(&object->lock, flags);
1571 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1572 print_unreferenced(seq, object);
1573 spin_unlock_irqrestore(&object->lock, flags);
1574 return 0;
1575 }
1576
1577 static const struct seq_operations kmemleak_seq_ops = {
1578 .start = kmemleak_seq_start,
1579 .next = kmemleak_seq_next,
1580 .stop = kmemleak_seq_stop,
1581 .show = kmemleak_seq_show,
1582 };
1583
kmemleak_open(struct inode * inode,struct file * file)1584 static int kmemleak_open(struct inode *inode, struct file *file)
1585 {
1586 return seq_open(file, &kmemleak_seq_ops);
1587 }
1588
dump_str_object_info(const char * str)1589 static int dump_str_object_info(const char *str)
1590 {
1591 unsigned long flags;
1592 struct kmemleak_object *object;
1593 unsigned long addr;
1594
1595 if (kstrtoul(str, 0, &addr))
1596 return -EINVAL;
1597 object = find_and_get_object(addr, 0);
1598 if (!object) {
1599 pr_info("Unknown object at 0x%08lx\n", addr);
1600 return -EINVAL;
1601 }
1602
1603 spin_lock_irqsave(&object->lock, flags);
1604 dump_object_info(object);
1605 spin_unlock_irqrestore(&object->lock, flags);
1606
1607 put_object(object);
1608 return 0;
1609 }
1610
1611 /*
1612 * We use grey instead of black to ensure we can do future scans on the same
1613 * objects. If we did not do future scans these black objects could
1614 * potentially contain references to newly allocated objects in the future and
1615 * we'd end up with false positives.
1616 */
kmemleak_clear(void)1617 static void kmemleak_clear(void)
1618 {
1619 struct kmemleak_object *object;
1620 unsigned long flags;
1621
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(object, &object_list, object_list) {
1624 spin_lock_irqsave(&object->lock, flags);
1625 if ((object->flags & OBJECT_REPORTED) &&
1626 unreferenced_object(object))
1627 __paint_it(object, KMEMLEAK_GREY);
1628 spin_unlock_irqrestore(&object->lock, flags);
1629 }
1630 rcu_read_unlock();
1631
1632 kmemleak_found_leaks = false;
1633 }
1634
1635 static void __kmemleak_do_cleanup(void);
1636
1637 /*
1638 * File write operation to configure kmemleak at run-time. The following
1639 * commands can be written to the /sys/kernel/debug/kmemleak file:
1640 * off - disable kmemleak (irreversible)
1641 * stack=on - enable the task stacks scanning
1642 * stack=off - disable the tasks stacks scanning
1643 * scan=on - start the automatic memory scanning thread
1644 * scan=off - stop the automatic memory scanning thread
1645 * scan=... - set the automatic memory scanning period in seconds (0 to
1646 * disable it)
1647 * scan - trigger a memory scan
1648 * clear - mark all current reported unreferenced kmemleak objects as
1649 * grey to ignore printing them, or free all kmemleak objects
1650 * if kmemleak has been disabled.
1651 * dump=... - dump information about the object found at the given address
1652 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1653 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1654 size_t size, loff_t *ppos)
1655 {
1656 char buf[64];
1657 int buf_size;
1658 int ret;
1659
1660 buf_size = min(size, (sizeof(buf) - 1));
1661 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1662 return -EFAULT;
1663 buf[buf_size] = 0;
1664
1665 ret = mutex_lock_interruptible(&scan_mutex);
1666 if (ret < 0)
1667 return ret;
1668
1669 if (strncmp(buf, "clear", 5) == 0) {
1670 if (kmemleak_enabled)
1671 kmemleak_clear();
1672 else
1673 __kmemleak_do_cleanup();
1674 goto out;
1675 }
1676
1677 if (!kmemleak_enabled) {
1678 ret = -EBUSY;
1679 goto out;
1680 }
1681
1682 if (strncmp(buf, "off", 3) == 0)
1683 kmemleak_disable();
1684 else if (strncmp(buf, "stack=on", 8) == 0)
1685 kmemleak_stack_scan = 1;
1686 else if (strncmp(buf, "stack=off", 9) == 0)
1687 kmemleak_stack_scan = 0;
1688 else if (strncmp(buf, "scan=on", 7) == 0)
1689 start_scan_thread();
1690 else if (strncmp(buf, "scan=off", 8) == 0)
1691 stop_scan_thread();
1692 else if (strncmp(buf, "scan=", 5) == 0) {
1693 unsigned long secs;
1694
1695 ret = kstrtoul(buf + 5, 0, &secs);
1696 if (ret < 0)
1697 goto out;
1698 stop_scan_thread();
1699 if (secs) {
1700 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1701 start_scan_thread();
1702 }
1703 } else if (strncmp(buf, "scan", 4) == 0)
1704 kmemleak_scan();
1705 else if (strncmp(buf, "dump=", 5) == 0)
1706 ret = dump_str_object_info(buf + 5);
1707 else
1708 ret = -EINVAL;
1709
1710 out:
1711 mutex_unlock(&scan_mutex);
1712 if (ret < 0)
1713 return ret;
1714
1715 /* ignore the rest of the buffer, only one command at a time */
1716 *ppos += size;
1717 return size;
1718 }
1719
1720 static const struct file_operations kmemleak_fops = {
1721 .owner = THIS_MODULE,
1722 .open = kmemleak_open,
1723 .read = seq_read,
1724 .write = kmemleak_write,
1725 .llseek = seq_lseek,
1726 .release = seq_release,
1727 };
1728
__kmemleak_do_cleanup(void)1729 static void __kmemleak_do_cleanup(void)
1730 {
1731 struct kmemleak_object *object;
1732
1733 rcu_read_lock();
1734 list_for_each_entry_rcu(object, &object_list, object_list)
1735 delete_object_full(object->pointer);
1736 rcu_read_unlock();
1737 }
1738
1739 /*
1740 * Stop the memory scanning thread and free the kmemleak internal objects if
1741 * no previous scan thread (otherwise, kmemleak may still have some useful
1742 * information on memory leaks).
1743 */
kmemleak_do_cleanup(struct work_struct * work)1744 static void kmemleak_do_cleanup(struct work_struct *work)
1745 {
1746 mutex_lock(&scan_mutex);
1747 stop_scan_thread();
1748
1749 /*
1750 * Once the scan thread has stopped, it is safe to no longer track
1751 * object freeing. Ordering of the scan thread stopping and the memory
1752 * accesses below is guaranteed by the kthread_stop() function.
1753 */
1754 kmemleak_free_enabled = 0;
1755
1756 if (!kmemleak_found_leaks)
1757 __kmemleak_do_cleanup();
1758 else
1759 pr_info("Kmemleak disabled without freeing internal data. "
1760 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1761 mutex_unlock(&scan_mutex);
1762 }
1763
1764 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1765
1766 /*
1767 * Disable kmemleak. No memory allocation/freeing will be traced once this
1768 * function is called. Disabling kmemleak is an irreversible operation.
1769 */
kmemleak_disable(void)1770 static void kmemleak_disable(void)
1771 {
1772 /* atomically check whether it was already invoked */
1773 if (cmpxchg(&kmemleak_error, 0, 1))
1774 return;
1775
1776 /* stop any memory operation tracing */
1777 kmemleak_enabled = 0;
1778
1779 /* check whether it is too early for a kernel thread */
1780 if (kmemleak_initialized)
1781 schedule_work(&cleanup_work);
1782 else
1783 kmemleak_free_enabled = 0;
1784
1785 pr_info("Kernel memory leak detector disabled\n");
1786 }
1787
1788 /*
1789 * Allow boot-time kmemleak disabling (enabled by default).
1790 */
kmemleak_boot_config(char * str)1791 static int kmemleak_boot_config(char *str)
1792 {
1793 if (!str)
1794 return -EINVAL;
1795 if (strcmp(str, "off") == 0)
1796 kmemleak_disable();
1797 else if (strcmp(str, "on") == 0)
1798 kmemleak_skip_disable = 1;
1799 else
1800 return -EINVAL;
1801 return 0;
1802 }
1803 early_param("kmemleak", kmemleak_boot_config);
1804
print_log_trace(struct early_log * log)1805 static void __init print_log_trace(struct early_log *log)
1806 {
1807 struct stack_trace trace;
1808
1809 trace.nr_entries = log->trace_len;
1810 trace.entries = log->trace;
1811
1812 pr_notice("Early log backtrace:\n");
1813 print_stack_trace(&trace, 2);
1814 }
1815
1816 /*
1817 * Kmemleak initialization.
1818 */
kmemleak_init(void)1819 void __init kmemleak_init(void)
1820 {
1821 int i;
1822 unsigned long flags;
1823
1824 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1825 if (!kmemleak_skip_disable) {
1826 kmemleak_early_log = 0;
1827 kmemleak_disable();
1828 return;
1829 }
1830 #endif
1831
1832 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1833 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1834
1835 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1836 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1837
1838 if (crt_early_log >= ARRAY_SIZE(early_log))
1839 pr_warning("Early log buffer exceeded (%d), please increase "
1840 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1841
1842 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1843 local_irq_save(flags);
1844 kmemleak_early_log = 0;
1845 if (kmemleak_error) {
1846 local_irq_restore(flags);
1847 return;
1848 } else {
1849 kmemleak_enabled = 1;
1850 kmemleak_free_enabled = 1;
1851 }
1852 local_irq_restore(flags);
1853
1854 /*
1855 * This is the point where tracking allocations is safe. Automatic
1856 * scanning is started during the late initcall. Add the early logged
1857 * callbacks to the kmemleak infrastructure.
1858 */
1859 for (i = 0; i < crt_early_log; i++) {
1860 struct early_log *log = &early_log[i];
1861
1862 switch (log->op_type) {
1863 case KMEMLEAK_ALLOC:
1864 early_alloc(log);
1865 break;
1866 case KMEMLEAK_ALLOC_PERCPU:
1867 early_alloc_percpu(log);
1868 break;
1869 case KMEMLEAK_FREE:
1870 kmemleak_free(log->ptr);
1871 break;
1872 case KMEMLEAK_FREE_PART:
1873 kmemleak_free_part(log->ptr, log->size);
1874 break;
1875 case KMEMLEAK_FREE_PERCPU:
1876 kmemleak_free_percpu(log->ptr);
1877 break;
1878 case KMEMLEAK_NOT_LEAK:
1879 kmemleak_not_leak(log->ptr);
1880 break;
1881 case KMEMLEAK_IGNORE:
1882 kmemleak_ignore(log->ptr);
1883 break;
1884 case KMEMLEAK_SCAN_AREA:
1885 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1886 break;
1887 case KMEMLEAK_NO_SCAN:
1888 kmemleak_no_scan(log->ptr);
1889 break;
1890 default:
1891 kmemleak_warn("Unknown early log operation: %d\n",
1892 log->op_type);
1893 }
1894
1895 if (kmemleak_warning) {
1896 print_log_trace(log);
1897 kmemleak_warning = 0;
1898 }
1899 }
1900 }
1901
1902 /*
1903 * Late initialization function.
1904 */
kmemleak_late_init(void)1905 static int __init kmemleak_late_init(void)
1906 {
1907 struct dentry *dentry;
1908
1909 kmemleak_initialized = 1;
1910
1911 if (kmemleak_error) {
1912 /*
1913 * Some error occurred and kmemleak was disabled. There is a
1914 * small chance that kmemleak_disable() was called immediately
1915 * after setting kmemleak_initialized and we may end up with
1916 * two clean-up threads but serialized by scan_mutex.
1917 */
1918 schedule_work(&cleanup_work);
1919 return -ENOMEM;
1920 }
1921
1922 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1923 &kmemleak_fops);
1924 if (!dentry)
1925 pr_warning("Failed to create the debugfs kmemleak file\n");
1926 mutex_lock(&scan_mutex);
1927 start_scan_thread();
1928 mutex_unlock(&scan_mutex);
1929
1930 pr_info("Kernel memory leak detector initialized\n");
1931
1932 return 0;
1933 }
1934 late_initcall(kmemleak_late_init);
1935