• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104 
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE		16	/* stack trace length */
109 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
110 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
111 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER	sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	spinlock_t lock;
141 	unsigned long flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE		16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE		1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII		1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES		2
180 
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189 
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193 
194 /* set if tracing memory operations is enabled */
195 static int kmemleak_enabled;
196 /* same as above but only for the kmemleak_free() callback */
197 static int kmemleak_free_enabled;
198 /* set in the late_initcall if there were no errors */
199 static int kmemleak_initialized;
200 /* enables or disables early logging of the memory operations */
201 static int kmemleak_early_log = 1;
202 /* set if a kmemleak warning was issued */
203 static int kmemleak_warning;
204 /* set if a fatal kmemleak error has occurred */
205 static int kmemleak_error;
206 
207 /* minimum and maximum address that may be valid pointers */
208 static unsigned long min_addr = ULONG_MAX;
209 static unsigned long max_addr;
210 
211 static struct task_struct *scan_thread;
212 /* used to avoid reporting of recently allocated objects */
213 static unsigned long jiffies_min_age;
214 static unsigned long jiffies_last_scan;
215 /* delay between automatic memory scannings */
216 static signed long jiffies_scan_wait;
217 /* enables or disables the task stacks scanning */
218 static int kmemleak_stack_scan = 1;
219 /* protects the memory scanning, parameters and debug/kmemleak file access */
220 static DEFINE_MUTEX(scan_mutex);
221 /* setting kmemleak=on, will set this var, skipping the disable */
222 static int kmemleak_skip_disable;
223 /* If there are leaks that can be reported */
224 static bool kmemleak_found_leaks;
225 
226 /*
227  * Early object allocation/freeing logging. Kmemleak is initialized after the
228  * kernel allocator. However, both the kernel allocator and kmemleak may
229  * allocate memory blocks which need to be tracked. Kmemleak defines an
230  * arbitrary buffer to hold the allocation/freeing information before it is
231  * fully initialized.
232  */
233 
234 /* kmemleak operation type for early logging */
235 enum {
236 	KMEMLEAK_ALLOC,
237 	KMEMLEAK_ALLOC_PERCPU,
238 	KMEMLEAK_FREE,
239 	KMEMLEAK_FREE_PART,
240 	KMEMLEAK_FREE_PERCPU,
241 	KMEMLEAK_NOT_LEAK,
242 	KMEMLEAK_IGNORE,
243 	KMEMLEAK_SCAN_AREA,
244 	KMEMLEAK_NO_SCAN
245 };
246 
247 /*
248  * Structure holding the information passed to kmemleak callbacks during the
249  * early logging.
250  */
251 struct early_log {
252 	int op_type;			/* kmemleak operation type */
253 	const void *ptr;		/* allocated/freed memory block */
254 	size_t size;			/* memory block size */
255 	int min_count;			/* minimum reference count */
256 	unsigned long trace[MAX_TRACE];	/* stack trace */
257 	unsigned int trace_len;		/* stack trace length */
258 };
259 
260 /* early logging buffer and current position */
261 static struct early_log
262 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
263 static int crt_early_log __initdata;
264 
265 static void kmemleak_disable(void);
266 
267 /*
268  * Print a warning and dump the stack trace.
269  */
270 #define kmemleak_warn(x...)	do {		\
271 	pr_warning(x);				\
272 	dump_stack();				\
273 	kmemleak_warning = 1;			\
274 } while (0)
275 
276 /*
277  * Macro invoked when a serious kmemleak condition occurred and cannot be
278  * recovered from. Kmemleak will be disabled and further allocation/freeing
279  * tracing no longer available.
280  */
281 #define kmemleak_stop(x...)	do {	\
282 	kmemleak_warn(x);		\
283 	kmemleak_disable();		\
284 } while (0)
285 
286 /*
287  * Printing of the objects hex dump to the seq file. The number of lines to be
288  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290  * with the object->lock held.
291  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)292 static void hex_dump_object(struct seq_file *seq,
293 			    struct kmemleak_object *object)
294 {
295 	const u8 *ptr = (const u8 *)object->pointer;
296 	int i, len, remaining;
297 	unsigned char linebuf[HEX_ROW_SIZE * 5];
298 
299 	/* limit the number of lines to HEX_MAX_LINES */
300 	remaining = len =
301 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
302 
303 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
304 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
305 		int linelen = min(remaining, HEX_ROW_SIZE);
306 
307 		remaining -= HEX_ROW_SIZE;
308 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
309 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
310 				   HEX_ASCII);
311 		seq_printf(seq, "    %s\n", linebuf);
312 	}
313 }
314 
315 /*
316  * Object colors, encoded with count and min_count:
317  * - white - orphan object, not enough references to it (count < min_count)
318  * - gray  - not orphan, not marked as false positive (min_count == 0) or
319  *		sufficient references to it (count >= min_count)
320  * - black - ignore, it doesn't contain references (e.g. text section)
321  *		(min_count == -1). No function defined for this color.
322  * Newly created objects don't have any color assigned (object->count == -1)
323  * before the next memory scan when they become white.
324  */
color_white(const struct kmemleak_object * object)325 static bool color_white(const struct kmemleak_object *object)
326 {
327 	return object->count != KMEMLEAK_BLACK &&
328 		object->count < object->min_count;
329 }
330 
color_gray(const struct kmemleak_object * object)331 static bool color_gray(const struct kmemleak_object *object)
332 {
333 	return object->min_count != KMEMLEAK_BLACK &&
334 		object->count >= object->min_count;
335 }
336 
337 /*
338  * Objects are considered unreferenced only if their color is white, they have
339  * not be deleted and have a minimum age to avoid false positives caused by
340  * pointers temporarily stored in CPU registers.
341  */
unreferenced_object(struct kmemleak_object * object)342 static bool unreferenced_object(struct kmemleak_object *object)
343 {
344 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
345 		time_before_eq(object->jiffies + jiffies_min_age,
346 			       jiffies_last_scan);
347 }
348 
349 /*
350  * Printing of the unreferenced objects information to the seq file. The
351  * print_unreferenced function must be called with the object->lock held.
352  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)353 static void print_unreferenced(struct seq_file *seq,
354 			       struct kmemleak_object *object)
355 {
356 	int i;
357 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
358 
359 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360 		   object->pointer, object->size);
361 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 		   object->comm, object->pid, object->jiffies,
363 		   msecs_age / 1000, msecs_age % 1000);
364 	hex_dump_object(seq, object);
365 	seq_printf(seq, "  backtrace:\n");
366 
367 	for (i = 0; i < object->trace_len; i++) {
368 		void *ptr = (void *)object->trace[i];
369 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
370 	}
371 }
372 
373 /*
374  * Print the kmemleak_object information. This function is used mainly for
375  * debugging special cases when kmemleak operations. It must be called with
376  * the object->lock held.
377  */
dump_object_info(struct kmemleak_object * object)378 static void dump_object_info(struct kmemleak_object *object)
379 {
380 	struct stack_trace trace;
381 
382 	trace.nr_entries = object->trace_len;
383 	trace.entries = object->trace;
384 
385 	pr_notice("Object 0x%08lx (size %zu):\n",
386 		  object->pointer, object->size);
387 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
388 		  object->comm, object->pid, object->jiffies);
389 	pr_notice("  min_count = %d\n", object->min_count);
390 	pr_notice("  count = %d\n", object->count);
391 	pr_notice("  flags = 0x%lx\n", object->flags);
392 	pr_notice("  checksum = %u\n", object->checksum);
393 	pr_notice("  backtrace:\n");
394 	print_stack_trace(&trace, 4);
395 }
396 
397 /*
398  * Look-up a memory block metadata (kmemleak_object) in the object search
399  * tree based on a pointer value. If alias is 0, only values pointing to the
400  * beginning of the memory block are allowed. The kmemleak_lock must be held
401  * when calling this function.
402  */
lookup_object(unsigned long ptr,int alias)403 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404 {
405 	struct rb_node *rb = object_tree_root.rb_node;
406 
407 	while (rb) {
408 		struct kmemleak_object *object =
409 			rb_entry(rb, struct kmemleak_object, rb_node);
410 		if (ptr < object->pointer)
411 			rb = object->rb_node.rb_left;
412 		else if (object->pointer + object->size <= ptr)
413 			rb = object->rb_node.rb_right;
414 		else if (object->pointer == ptr || alias)
415 			return object;
416 		else {
417 			kmemleak_warn("Found object by alias at 0x%08lx\n",
418 				      ptr);
419 			dump_object_info(object);
420 			break;
421 		}
422 	}
423 	return NULL;
424 }
425 
426 /*
427  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428  * that once an object's use_count reached 0, the RCU freeing was already
429  * registered and the object should no longer be used. This function must be
430  * called under the protection of rcu_read_lock().
431  */
get_object(struct kmemleak_object * object)432 static int get_object(struct kmemleak_object *object)
433 {
434 	return atomic_inc_not_zero(&object->use_count);
435 }
436 
437 /*
438  * RCU callback to free a kmemleak_object.
439  */
free_object_rcu(struct rcu_head * rcu)440 static void free_object_rcu(struct rcu_head *rcu)
441 {
442 	struct hlist_node *tmp;
443 	struct kmemleak_scan_area *area;
444 	struct kmemleak_object *object =
445 		container_of(rcu, struct kmemleak_object, rcu);
446 
447 	/*
448 	 * Once use_count is 0 (guaranteed by put_object), there is no other
449 	 * code accessing this object, hence no need for locking.
450 	 */
451 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452 		hlist_del(&area->node);
453 		kmem_cache_free(scan_area_cache, area);
454 	}
455 	kmem_cache_free(object_cache, object);
456 }
457 
458 /*
459  * Decrement the object use_count. Once the count is 0, free the object using
460  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461  * delete_object() path, the delayed RCU freeing ensures that there is no
462  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463  * is also possible.
464  */
put_object(struct kmemleak_object * object)465 static void put_object(struct kmemleak_object *object)
466 {
467 	if (!atomic_dec_and_test(&object->use_count))
468 		return;
469 
470 	/* should only get here after delete_object was called */
471 	WARN_ON(object->flags & OBJECT_ALLOCATED);
472 
473 	call_rcu(&object->rcu, free_object_rcu);
474 }
475 
476 /*
477  * Look up an object in the object search tree and increase its use_count.
478  */
find_and_get_object(unsigned long ptr,int alias)479 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480 {
481 	unsigned long flags;
482 	struct kmemleak_object *object = NULL;
483 
484 	rcu_read_lock();
485 	read_lock_irqsave(&kmemleak_lock, flags);
486 	if (ptr >= min_addr && ptr < max_addr)
487 		object = lookup_object(ptr, alias);
488 	read_unlock_irqrestore(&kmemleak_lock, flags);
489 
490 	/* check whether the object is still available */
491 	if (object && !get_object(object))
492 		object = NULL;
493 	rcu_read_unlock();
494 
495 	return object;
496 }
497 
498 /*
499  * Save stack trace to the given array of MAX_TRACE size.
500  */
__save_stack_trace(unsigned long * trace)501 static int __save_stack_trace(unsigned long *trace)
502 {
503 	struct stack_trace stack_trace;
504 
505 	stack_trace.max_entries = MAX_TRACE;
506 	stack_trace.nr_entries = 0;
507 	stack_trace.entries = trace;
508 	stack_trace.skip = 2;
509 	save_stack_trace(&stack_trace);
510 
511 	return stack_trace.nr_entries;
512 }
513 
514 /*
515  * Create the metadata (struct kmemleak_object) corresponding to an allocated
516  * memory block and add it to the object_list and object_tree_root.
517  */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)518 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
519 					     int min_count, gfp_t gfp)
520 {
521 	unsigned long flags;
522 	struct kmemleak_object *object, *parent;
523 	struct rb_node **link, *rb_parent;
524 
525 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
526 	if (!object) {
527 		pr_warning("Cannot allocate a kmemleak_object structure\n");
528 		kmemleak_disable();
529 		return NULL;
530 	}
531 
532 	INIT_LIST_HEAD(&object->object_list);
533 	INIT_LIST_HEAD(&object->gray_list);
534 	INIT_HLIST_HEAD(&object->area_list);
535 	spin_lock_init(&object->lock);
536 	atomic_set(&object->use_count, 1);
537 	object->flags = OBJECT_ALLOCATED;
538 	object->pointer = ptr;
539 	object->size = size;
540 	object->min_count = min_count;
541 	object->count = 0;			/* white color initially */
542 	object->jiffies = jiffies;
543 	object->checksum = 0;
544 
545 	/* task information */
546 	if (in_irq()) {
547 		object->pid = 0;
548 		strncpy(object->comm, "hardirq", sizeof(object->comm));
549 	} else if (in_softirq()) {
550 		object->pid = 0;
551 		strncpy(object->comm, "softirq", sizeof(object->comm));
552 	} else {
553 		object->pid = current->pid;
554 		/*
555 		 * There is a small chance of a race with set_task_comm(),
556 		 * however using get_task_comm() here may cause locking
557 		 * dependency issues with current->alloc_lock. In the worst
558 		 * case, the command line is not correct.
559 		 */
560 		strncpy(object->comm, current->comm, sizeof(object->comm));
561 	}
562 
563 	/* kernel backtrace */
564 	object->trace_len = __save_stack_trace(object->trace);
565 
566 	write_lock_irqsave(&kmemleak_lock, flags);
567 
568 	min_addr = min(min_addr, ptr);
569 	max_addr = max(max_addr, ptr + size);
570 	link = &object_tree_root.rb_node;
571 	rb_parent = NULL;
572 	while (*link) {
573 		rb_parent = *link;
574 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
575 		if (ptr + size <= parent->pointer)
576 			link = &parent->rb_node.rb_left;
577 		else if (parent->pointer + parent->size <= ptr)
578 			link = &parent->rb_node.rb_right;
579 		else {
580 			kmemleak_stop("Cannot insert 0x%lx into the object "
581 				      "search tree (overlaps existing)\n",
582 				      ptr);
583 			kmem_cache_free(object_cache, object);
584 			object = parent;
585 			spin_lock(&object->lock);
586 			dump_object_info(object);
587 			spin_unlock(&object->lock);
588 			goto out;
589 		}
590 	}
591 	rb_link_node(&object->rb_node, rb_parent, link);
592 	rb_insert_color(&object->rb_node, &object_tree_root);
593 
594 	list_add_tail_rcu(&object->object_list, &object_list);
595 out:
596 	write_unlock_irqrestore(&kmemleak_lock, flags);
597 	return object;
598 }
599 
600 /*
601  * Remove the metadata (struct kmemleak_object) for a memory block from the
602  * object_list and object_tree_root and decrement its use_count.
603  */
__delete_object(struct kmemleak_object * object)604 static void __delete_object(struct kmemleak_object *object)
605 {
606 	unsigned long flags;
607 
608 	write_lock_irqsave(&kmemleak_lock, flags);
609 	rb_erase(&object->rb_node, &object_tree_root);
610 	list_del_rcu(&object->object_list);
611 	write_unlock_irqrestore(&kmemleak_lock, flags);
612 
613 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
614 	WARN_ON(atomic_read(&object->use_count) < 2);
615 
616 	/*
617 	 * Locking here also ensures that the corresponding memory block
618 	 * cannot be freed when it is being scanned.
619 	 */
620 	spin_lock_irqsave(&object->lock, flags);
621 	object->flags &= ~OBJECT_ALLOCATED;
622 	spin_unlock_irqrestore(&object->lock, flags);
623 	put_object(object);
624 }
625 
626 /*
627  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628  * delete it.
629  */
delete_object_full(unsigned long ptr)630 static void delete_object_full(unsigned long ptr)
631 {
632 	struct kmemleak_object *object;
633 
634 	object = find_and_get_object(ptr, 0);
635 	if (!object) {
636 #ifdef DEBUG
637 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
638 			      ptr);
639 #endif
640 		return;
641 	}
642 	__delete_object(object);
643 	put_object(object);
644 }
645 
646 /*
647  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648  * delete it. If the memory block is partially freed, the function may create
649  * additional metadata for the remaining parts of the block.
650  */
delete_object_part(unsigned long ptr,size_t size)651 static void delete_object_part(unsigned long ptr, size_t size)
652 {
653 	struct kmemleak_object *object;
654 	unsigned long start, end;
655 
656 	object = find_and_get_object(ptr, 1);
657 	if (!object) {
658 #ifdef DEBUG
659 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
660 			      "(size %zu)\n", ptr, size);
661 #endif
662 		return;
663 	}
664 	__delete_object(object);
665 
666 	/*
667 	 * Create one or two objects that may result from the memory block
668 	 * split. Note that partial freeing is only done by free_bootmem() and
669 	 * this happens before kmemleak_init() is called. The path below is
670 	 * only executed during early log recording in kmemleak_init(), so
671 	 * GFP_KERNEL is enough.
672 	 */
673 	start = object->pointer;
674 	end = object->pointer + object->size;
675 	if (ptr > start)
676 		create_object(start, ptr - start, object->min_count,
677 			      GFP_KERNEL);
678 	if (ptr + size < end)
679 		create_object(ptr + size, end - ptr - size, object->min_count,
680 			      GFP_KERNEL);
681 
682 	put_object(object);
683 }
684 
__paint_it(struct kmemleak_object * object,int color)685 static void __paint_it(struct kmemleak_object *object, int color)
686 {
687 	object->min_count = color;
688 	if (color == KMEMLEAK_BLACK)
689 		object->flags |= OBJECT_NO_SCAN;
690 }
691 
paint_it(struct kmemleak_object * object,int color)692 static void paint_it(struct kmemleak_object *object, int color)
693 {
694 	unsigned long flags;
695 
696 	spin_lock_irqsave(&object->lock, flags);
697 	__paint_it(object, color);
698 	spin_unlock_irqrestore(&object->lock, flags);
699 }
700 
paint_ptr(unsigned long ptr,int color)701 static void paint_ptr(unsigned long ptr, int color)
702 {
703 	struct kmemleak_object *object;
704 
705 	object = find_and_get_object(ptr, 0);
706 	if (!object) {
707 		kmemleak_warn("Trying to color unknown object "
708 			      "at 0x%08lx as %s\n", ptr,
709 			      (color == KMEMLEAK_GREY) ? "Grey" :
710 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
711 		return;
712 	}
713 	paint_it(object, color);
714 	put_object(object);
715 }
716 
717 /*
718  * Mark an object permanently as gray-colored so that it can no longer be
719  * reported as a leak. This is used in general to mark a false positive.
720  */
make_gray_object(unsigned long ptr)721 static void make_gray_object(unsigned long ptr)
722 {
723 	paint_ptr(ptr, KMEMLEAK_GREY);
724 }
725 
726 /*
727  * Mark the object as black-colored so that it is ignored from scans and
728  * reporting.
729  */
make_black_object(unsigned long ptr)730 static void make_black_object(unsigned long ptr)
731 {
732 	paint_ptr(ptr, KMEMLEAK_BLACK);
733 }
734 
735 /*
736  * Add a scanning area to the object. If at least one such area is added,
737  * kmemleak will only scan these ranges rather than the whole memory block.
738  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)739 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
740 {
741 	unsigned long flags;
742 	struct kmemleak_object *object;
743 	struct kmemleak_scan_area *area;
744 
745 	object = find_and_get_object(ptr, 1);
746 	if (!object) {
747 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
748 			      ptr);
749 		return;
750 	}
751 
752 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
753 	if (!area) {
754 		pr_warning("Cannot allocate a scan area\n");
755 		goto out;
756 	}
757 
758 	spin_lock_irqsave(&object->lock, flags);
759 	if (size == SIZE_MAX) {
760 		size = object->pointer + object->size - ptr;
761 	} else if (ptr + size > object->pointer + object->size) {
762 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
763 		dump_object_info(object);
764 		kmem_cache_free(scan_area_cache, area);
765 		goto out_unlock;
766 	}
767 
768 	INIT_HLIST_NODE(&area->node);
769 	area->start = ptr;
770 	area->size = size;
771 
772 	hlist_add_head(&area->node, &object->area_list);
773 out_unlock:
774 	spin_unlock_irqrestore(&object->lock, flags);
775 out:
776 	put_object(object);
777 }
778 
779 /*
780  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
781  * pointer. Such object will not be scanned by kmemleak but references to it
782  * are searched.
783  */
object_no_scan(unsigned long ptr)784 static void object_no_scan(unsigned long ptr)
785 {
786 	unsigned long flags;
787 	struct kmemleak_object *object;
788 
789 	object = find_and_get_object(ptr, 0);
790 	if (!object) {
791 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
792 		return;
793 	}
794 
795 	spin_lock_irqsave(&object->lock, flags);
796 	object->flags |= OBJECT_NO_SCAN;
797 	spin_unlock_irqrestore(&object->lock, flags);
798 	put_object(object);
799 }
800 
801 /*
802  * Log an early kmemleak_* call to the early_log buffer. These calls will be
803  * processed later once kmemleak is fully initialized.
804  */
log_early(int op_type,const void * ptr,size_t size,int min_count)805 static void __init log_early(int op_type, const void *ptr, size_t size,
806 			     int min_count)
807 {
808 	unsigned long flags;
809 	struct early_log *log;
810 
811 	if (kmemleak_error) {
812 		/* kmemleak stopped recording, just count the requests */
813 		crt_early_log++;
814 		return;
815 	}
816 
817 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
818 		kmemleak_disable();
819 		return;
820 	}
821 
822 	/*
823 	 * There is no need for locking since the kernel is still in UP mode
824 	 * at this stage. Disabling the IRQs is enough.
825 	 */
826 	local_irq_save(flags);
827 	log = &early_log[crt_early_log];
828 	log->op_type = op_type;
829 	log->ptr = ptr;
830 	log->size = size;
831 	log->min_count = min_count;
832 	log->trace_len = __save_stack_trace(log->trace);
833 	crt_early_log++;
834 	local_irq_restore(flags);
835 }
836 
837 /*
838  * Log an early allocated block and populate the stack trace.
839  */
early_alloc(struct early_log * log)840 static void early_alloc(struct early_log *log)
841 {
842 	struct kmemleak_object *object;
843 	unsigned long flags;
844 	int i;
845 
846 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
847 		return;
848 
849 	/*
850 	 * RCU locking needed to ensure object is not freed via put_object().
851 	 */
852 	rcu_read_lock();
853 	object = create_object((unsigned long)log->ptr, log->size,
854 			       log->min_count, GFP_ATOMIC);
855 	if (!object)
856 		goto out;
857 	spin_lock_irqsave(&object->lock, flags);
858 	for (i = 0; i < log->trace_len; i++)
859 		object->trace[i] = log->trace[i];
860 	object->trace_len = log->trace_len;
861 	spin_unlock_irqrestore(&object->lock, flags);
862 out:
863 	rcu_read_unlock();
864 }
865 
866 /*
867  * Log an early allocated block and populate the stack trace.
868  */
early_alloc_percpu(struct early_log * log)869 static void early_alloc_percpu(struct early_log *log)
870 {
871 	unsigned int cpu;
872 	const void __percpu *ptr = log->ptr;
873 
874 	for_each_possible_cpu(cpu) {
875 		log->ptr = per_cpu_ptr(ptr, cpu);
876 		early_alloc(log);
877 	}
878 }
879 
880 /**
881  * kmemleak_alloc - register a newly allocated object
882  * @ptr:	pointer to beginning of the object
883  * @size:	size of the object
884  * @min_count:	minimum number of references to this object. If during memory
885  *		scanning a number of references less than @min_count is found,
886  *		the object is reported as a memory leak. If @min_count is 0,
887  *		the object is never reported as a leak. If @min_count is -1,
888  *		the object is ignored (not scanned and not reported as a leak)
889  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
890  *
891  * This function is called from the kernel allocators when a new object
892  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
893  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)894 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
895 			  gfp_t gfp)
896 {
897 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
898 
899 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
900 		create_object((unsigned long)ptr, size, min_count, gfp);
901 	else if (kmemleak_early_log)
902 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
903 }
904 EXPORT_SYMBOL_GPL(kmemleak_alloc);
905 
906 /**
907  * kmemleak_alloc_percpu - register a newly allocated __percpu object
908  * @ptr:	__percpu pointer to beginning of the object
909  * @size:	size of the object
910  * @gfp:	flags used for kmemleak internal memory allocations
911  *
912  * This function is called from the kernel percpu allocator when a new object
913  * (memory block) is allocated (alloc_percpu).
914  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
916 				 gfp_t gfp)
917 {
918 	unsigned int cpu;
919 
920 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
921 
922 	/*
923 	 * Percpu allocations are only scanned and not reported as leaks
924 	 * (min_count is set to 0).
925 	 */
926 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
927 		for_each_possible_cpu(cpu)
928 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
929 				      size, 0, gfp);
930 	else if (kmemleak_early_log)
931 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
932 }
933 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
934 
935 /**
936  * kmemleak_free - unregister a previously registered object
937  * @ptr:	pointer to beginning of the object
938  *
939  * This function is called from the kernel allocators when an object (memory
940  * block) is freed (kmem_cache_free, kfree, vfree etc.).
941  */
kmemleak_free(const void * ptr)942 void __ref kmemleak_free(const void *ptr)
943 {
944 	pr_debug("%s(0x%p)\n", __func__, ptr);
945 
946 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
947 		delete_object_full((unsigned long)ptr);
948 	else if (kmemleak_early_log)
949 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
950 }
951 EXPORT_SYMBOL_GPL(kmemleak_free);
952 
953 /**
954  * kmemleak_free_part - partially unregister a previously registered object
955  * @ptr:	pointer to the beginning or inside the object. This also
956  *		represents the start of the range to be freed
957  * @size:	size to be unregistered
958  *
959  * This function is called when only a part of a memory block is freed
960  * (usually from the bootmem allocator).
961  */
kmemleak_free_part(const void * ptr,size_t size)962 void __ref kmemleak_free_part(const void *ptr, size_t size)
963 {
964 	pr_debug("%s(0x%p)\n", __func__, ptr);
965 
966 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
967 		delete_object_part((unsigned long)ptr, size);
968 	else if (kmemleak_early_log)
969 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
970 }
971 EXPORT_SYMBOL_GPL(kmemleak_free_part);
972 
973 /**
974  * kmemleak_free_percpu - unregister a previously registered __percpu object
975  * @ptr:	__percpu pointer to beginning of the object
976  *
977  * This function is called from the kernel percpu allocator when an object
978  * (memory block) is freed (free_percpu).
979  */
kmemleak_free_percpu(const void __percpu * ptr)980 void __ref kmemleak_free_percpu(const void __percpu *ptr)
981 {
982 	unsigned int cpu;
983 
984 	pr_debug("%s(0x%p)\n", __func__, ptr);
985 
986 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
987 		for_each_possible_cpu(cpu)
988 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
989 								      cpu));
990 	else if (kmemleak_early_log)
991 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
992 }
993 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
994 
995 /**
996  * kmemleak_update_trace - update object allocation stack trace
997  * @ptr:	pointer to beginning of the object
998  *
999  * Override the object allocation stack trace for cases where the actual
1000  * allocation place is not always useful.
1001  */
kmemleak_update_trace(const void * ptr)1002 void __ref kmemleak_update_trace(const void *ptr)
1003 {
1004 	struct kmemleak_object *object;
1005 	unsigned long flags;
1006 
1007 	pr_debug("%s(0x%p)\n", __func__, ptr);
1008 
1009 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1010 		return;
1011 
1012 	object = find_and_get_object((unsigned long)ptr, 1);
1013 	if (!object) {
1014 #ifdef DEBUG
1015 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1016 			      ptr);
1017 #endif
1018 		return;
1019 	}
1020 
1021 	spin_lock_irqsave(&object->lock, flags);
1022 	object->trace_len = __save_stack_trace(object->trace);
1023 	spin_unlock_irqrestore(&object->lock, flags);
1024 
1025 	put_object(object);
1026 }
1027 EXPORT_SYMBOL(kmemleak_update_trace);
1028 
1029 /**
1030  * kmemleak_not_leak - mark an allocated object as false positive
1031  * @ptr:	pointer to beginning of the object
1032  *
1033  * Calling this function on an object will cause the memory block to no longer
1034  * be reported as leak and always be scanned.
1035  */
kmemleak_not_leak(const void * ptr)1036 void __ref kmemleak_not_leak(const void *ptr)
1037 {
1038 	pr_debug("%s(0x%p)\n", __func__, ptr);
1039 
1040 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1041 		make_gray_object((unsigned long)ptr);
1042 	else if (kmemleak_early_log)
1043 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1044 }
1045 EXPORT_SYMBOL(kmemleak_not_leak);
1046 
1047 /**
1048  * kmemleak_ignore - ignore an allocated object
1049  * @ptr:	pointer to beginning of the object
1050  *
1051  * Calling this function on an object will cause the memory block to be
1052  * ignored (not scanned and not reported as a leak). This is usually done when
1053  * it is known that the corresponding block is not a leak and does not contain
1054  * any references to other allocated memory blocks.
1055  */
kmemleak_ignore(const void * ptr)1056 void __ref kmemleak_ignore(const void *ptr)
1057 {
1058 	pr_debug("%s(0x%p)\n", __func__, ptr);
1059 
1060 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1061 		make_black_object((unsigned long)ptr);
1062 	else if (kmemleak_early_log)
1063 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1064 }
1065 EXPORT_SYMBOL(kmemleak_ignore);
1066 
1067 /**
1068  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1069  * @ptr:	pointer to beginning or inside the object. This also
1070  *		represents the start of the scan area
1071  * @size:	size of the scan area
1072  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1073  *
1074  * This function is used when it is known that only certain parts of an object
1075  * contain references to other objects. Kmemleak will only scan these areas
1076  * reducing the number false negatives.
1077  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1078 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1079 {
1080 	pr_debug("%s(0x%p)\n", __func__, ptr);
1081 
1082 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1083 		add_scan_area((unsigned long)ptr, size, gfp);
1084 	else if (kmemleak_early_log)
1085 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1086 }
1087 EXPORT_SYMBOL(kmemleak_scan_area);
1088 
1089 /**
1090  * kmemleak_no_scan - do not scan an allocated object
1091  * @ptr:	pointer to beginning of the object
1092  *
1093  * This function notifies kmemleak not to scan the given memory block. Useful
1094  * in situations where it is known that the given object does not contain any
1095  * references to other objects. Kmemleak will not scan such objects reducing
1096  * the number of false negatives.
1097  */
kmemleak_no_scan(const void * ptr)1098 void __ref kmemleak_no_scan(const void *ptr)
1099 {
1100 	pr_debug("%s(0x%p)\n", __func__, ptr);
1101 
1102 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1103 		object_no_scan((unsigned long)ptr);
1104 	else if (kmemleak_early_log)
1105 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1106 }
1107 EXPORT_SYMBOL(kmemleak_no_scan);
1108 
1109 /*
1110  * Update an object's checksum and return true if it was modified.
1111  */
update_checksum(struct kmemleak_object * object)1112 static bool update_checksum(struct kmemleak_object *object)
1113 {
1114 	u32 old_csum = object->checksum;
1115 
1116 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1117 		return false;
1118 
1119 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1120 	return object->checksum != old_csum;
1121 }
1122 
1123 /*
1124  * Memory scanning is a long process and it needs to be interruptable. This
1125  * function checks whether such interrupt condition occurred.
1126  */
scan_should_stop(void)1127 static int scan_should_stop(void)
1128 {
1129 	if (!kmemleak_enabled)
1130 		return 1;
1131 
1132 	/*
1133 	 * This function may be called from either process or kthread context,
1134 	 * hence the need to check for both stop conditions.
1135 	 */
1136 	if (current->mm)
1137 		return signal_pending(current);
1138 	else
1139 		return kthread_should_stop();
1140 
1141 	return 0;
1142 }
1143 
1144 /*
1145  * Scan a memory block (exclusive range) for valid pointers and add those
1146  * found to the gray list.
1147  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned,int allow_resched)1148 static void scan_block(void *_start, void *_end,
1149 		       struct kmemleak_object *scanned, int allow_resched)
1150 {
1151 	unsigned long *ptr;
1152 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1153 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1154 
1155 	for (ptr = start; ptr < end; ptr++) {
1156 		struct kmemleak_object *object;
1157 		unsigned long flags;
1158 		unsigned long pointer;
1159 
1160 		if (allow_resched)
1161 			cond_resched();
1162 		if (scan_should_stop())
1163 			break;
1164 
1165 		/* don't scan uninitialized memory */
1166 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1167 						  BYTES_PER_POINTER))
1168 			continue;
1169 
1170 		pointer = *ptr;
1171 
1172 		object = find_and_get_object(pointer, 1);
1173 		if (!object)
1174 			continue;
1175 		if (object == scanned) {
1176 			/* self referenced, ignore */
1177 			put_object(object);
1178 			continue;
1179 		}
1180 
1181 		/*
1182 		 * Avoid the lockdep recursive warning on object->lock being
1183 		 * previously acquired in scan_object(). These locks are
1184 		 * enclosed by scan_mutex.
1185 		 */
1186 		spin_lock_irqsave_nested(&object->lock, flags,
1187 					 SINGLE_DEPTH_NESTING);
1188 		if (!color_white(object)) {
1189 			/* non-orphan, ignored or new */
1190 			spin_unlock_irqrestore(&object->lock, flags);
1191 			put_object(object);
1192 			continue;
1193 		}
1194 
1195 		/*
1196 		 * Increase the object's reference count (number of pointers
1197 		 * to the memory block). If this count reaches the required
1198 		 * minimum, the object's color will become gray and it will be
1199 		 * added to the gray_list.
1200 		 */
1201 		object->count++;
1202 		if (color_gray(object)) {
1203 			list_add_tail(&object->gray_list, &gray_list);
1204 			spin_unlock_irqrestore(&object->lock, flags);
1205 			continue;
1206 		}
1207 
1208 		spin_unlock_irqrestore(&object->lock, flags);
1209 		put_object(object);
1210 	}
1211 }
1212 
1213 /*
1214  * Scan a memory block corresponding to a kmemleak_object. A condition is
1215  * that object->use_count >= 1.
1216  */
scan_object(struct kmemleak_object * object)1217 static void scan_object(struct kmemleak_object *object)
1218 {
1219 	struct kmemleak_scan_area *area;
1220 	unsigned long flags;
1221 
1222 	/*
1223 	 * Once the object->lock is acquired, the corresponding memory block
1224 	 * cannot be freed (the same lock is acquired in delete_object).
1225 	 */
1226 	spin_lock_irqsave(&object->lock, flags);
1227 	if (object->flags & OBJECT_NO_SCAN)
1228 		goto out;
1229 	if (!(object->flags & OBJECT_ALLOCATED))
1230 		/* already freed object */
1231 		goto out;
1232 	if (hlist_empty(&object->area_list)) {
1233 		void *start = (void *)object->pointer;
1234 		void *end = (void *)(object->pointer + object->size);
1235 
1236 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1237 		       !(object->flags & OBJECT_NO_SCAN)) {
1238 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1239 				   object, 0);
1240 			start += MAX_SCAN_SIZE;
1241 
1242 			spin_unlock_irqrestore(&object->lock, flags);
1243 			cond_resched();
1244 			spin_lock_irqsave(&object->lock, flags);
1245 		}
1246 	} else
1247 		hlist_for_each_entry(area, &object->area_list, node)
1248 			scan_block((void *)area->start,
1249 				   (void *)(area->start + area->size),
1250 				   object, 0);
1251 out:
1252 	spin_unlock_irqrestore(&object->lock, flags);
1253 }
1254 
1255 /*
1256  * Scan the objects already referenced (gray objects). More objects will be
1257  * referenced and, if there are no memory leaks, all the objects are scanned.
1258  */
scan_gray_list(void)1259 static void scan_gray_list(void)
1260 {
1261 	struct kmemleak_object *object, *tmp;
1262 
1263 	/*
1264 	 * The list traversal is safe for both tail additions and removals
1265 	 * from inside the loop. The kmemleak objects cannot be freed from
1266 	 * outside the loop because their use_count was incremented.
1267 	 */
1268 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1269 	while (&object->gray_list != &gray_list) {
1270 		cond_resched();
1271 
1272 		/* may add new objects to the list */
1273 		if (!scan_should_stop())
1274 			scan_object(object);
1275 
1276 		tmp = list_entry(object->gray_list.next, typeof(*object),
1277 				 gray_list);
1278 
1279 		/* remove the object from the list and release it */
1280 		list_del(&object->gray_list);
1281 		put_object(object);
1282 
1283 		object = tmp;
1284 	}
1285 	WARN_ON(!list_empty(&gray_list));
1286 }
1287 
1288 /*
1289  * Scan data sections and all the referenced memory blocks allocated via the
1290  * kernel's standard allocators. This function must be called with the
1291  * scan_mutex held.
1292  */
kmemleak_scan(void)1293 static void kmemleak_scan(void)
1294 {
1295 	unsigned long flags;
1296 	struct kmemleak_object *object;
1297 	int i;
1298 	int new_leaks = 0;
1299 
1300 	jiffies_last_scan = jiffies;
1301 
1302 	/* prepare the kmemleak_object's */
1303 	rcu_read_lock();
1304 	list_for_each_entry_rcu(object, &object_list, object_list) {
1305 		spin_lock_irqsave(&object->lock, flags);
1306 #ifdef DEBUG
1307 		/*
1308 		 * With a few exceptions there should be a maximum of
1309 		 * 1 reference to any object at this point.
1310 		 */
1311 		if (atomic_read(&object->use_count) > 1) {
1312 			pr_debug("object->use_count = %d\n",
1313 				 atomic_read(&object->use_count));
1314 			dump_object_info(object);
1315 		}
1316 #endif
1317 		/* reset the reference count (whiten the object) */
1318 		object->count = 0;
1319 		if (color_gray(object) && get_object(object))
1320 			list_add_tail(&object->gray_list, &gray_list);
1321 
1322 		spin_unlock_irqrestore(&object->lock, flags);
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	/* data/bss scanning */
1327 	scan_block(_sdata, _edata, NULL, 1);
1328 	scan_block(__bss_start, __bss_stop, NULL, 1);
1329 
1330 #ifdef CONFIG_SMP
1331 	/* per-cpu sections scanning */
1332 	for_each_possible_cpu(i)
1333 		scan_block(__per_cpu_start + per_cpu_offset(i),
1334 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1335 #endif
1336 
1337 	/*
1338 	 * Struct page scanning for each node.
1339 	 */
1340 	get_online_mems();
1341 	for_each_online_node(i) {
1342 		unsigned long start_pfn = node_start_pfn(i);
1343 		unsigned long end_pfn = node_end_pfn(i);
1344 		unsigned long pfn;
1345 
1346 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1347 			struct page *page;
1348 
1349 			if (!pfn_valid(pfn))
1350 				continue;
1351 			page = pfn_to_page(pfn);
1352 			/* only scan if page is in use */
1353 			if (page_count(page) == 0)
1354 				continue;
1355 			scan_block(page, page + 1, NULL, 1);
1356 		}
1357 	}
1358 	put_online_mems();
1359 
1360 	/*
1361 	 * Scanning the task stacks (may introduce false negatives).
1362 	 */
1363 	if (kmemleak_stack_scan) {
1364 		struct task_struct *p, *g;
1365 
1366 		read_lock(&tasklist_lock);
1367 		do_each_thread(g, p) {
1368 			scan_block(task_stack_page(p), task_stack_page(p) +
1369 				   THREAD_SIZE, NULL, 0);
1370 		} while_each_thread(g, p);
1371 		read_unlock(&tasklist_lock);
1372 	}
1373 
1374 	/*
1375 	 * Scan the objects already referenced from the sections scanned
1376 	 * above.
1377 	 */
1378 	scan_gray_list();
1379 
1380 	/*
1381 	 * Check for new or unreferenced objects modified since the previous
1382 	 * scan and color them gray until the next scan.
1383 	 */
1384 	rcu_read_lock();
1385 	list_for_each_entry_rcu(object, &object_list, object_list) {
1386 		spin_lock_irqsave(&object->lock, flags);
1387 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1388 		    && update_checksum(object) && get_object(object)) {
1389 			/* color it gray temporarily */
1390 			object->count = object->min_count;
1391 			list_add_tail(&object->gray_list, &gray_list);
1392 		}
1393 		spin_unlock_irqrestore(&object->lock, flags);
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	/*
1398 	 * Re-scan the gray list for modified unreferenced objects.
1399 	 */
1400 	scan_gray_list();
1401 
1402 	/*
1403 	 * If scanning was stopped do not report any new unreferenced objects.
1404 	 */
1405 	if (scan_should_stop())
1406 		return;
1407 
1408 	/*
1409 	 * Scanning result reporting.
1410 	 */
1411 	rcu_read_lock();
1412 	list_for_each_entry_rcu(object, &object_list, object_list) {
1413 		spin_lock_irqsave(&object->lock, flags);
1414 		if (unreferenced_object(object) &&
1415 		    !(object->flags & OBJECT_REPORTED)) {
1416 			object->flags |= OBJECT_REPORTED;
1417 			new_leaks++;
1418 		}
1419 		spin_unlock_irqrestore(&object->lock, flags);
1420 	}
1421 	rcu_read_unlock();
1422 
1423 	if (new_leaks) {
1424 		kmemleak_found_leaks = true;
1425 
1426 		pr_info("%d new suspected memory leaks (see "
1427 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1428 	}
1429 
1430 }
1431 
1432 /*
1433  * Thread function performing automatic memory scanning. Unreferenced objects
1434  * at the end of a memory scan are reported but only the first time.
1435  */
kmemleak_scan_thread(void * arg)1436 static int kmemleak_scan_thread(void *arg)
1437 {
1438 	static int first_run = 1;
1439 
1440 	pr_info("Automatic memory scanning thread started\n");
1441 	set_user_nice(current, 10);
1442 
1443 	/*
1444 	 * Wait before the first scan to allow the system to fully initialize.
1445 	 */
1446 	if (first_run) {
1447 		first_run = 0;
1448 		ssleep(SECS_FIRST_SCAN);
1449 	}
1450 
1451 	while (!kthread_should_stop()) {
1452 		signed long timeout = jiffies_scan_wait;
1453 
1454 		mutex_lock(&scan_mutex);
1455 		kmemleak_scan();
1456 		mutex_unlock(&scan_mutex);
1457 
1458 		/* wait before the next scan */
1459 		while (timeout && !kthread_should_stop())
1460 			timeout = schedule_timeout_interruptible(timeout);
1461 	}
1462 
1463 	pr_info("Automatic memory scanning thread ended\n");
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Start the automatic memory scanning thread. This function must be called
1470  * with the scan_mutex held.
1471  */
start_scan_thread(void)1472 static void start_scan_thread(void)
1473 {
1474 	if (scan_thread)
1475 		return;
1476 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1477 	if (IS_ERR(scan_thread)) {
1478 		pr_warning("Failed to create the scan thread\n");
1479 		scan_thread = NULL;
1480 	}
1481 }
1482 
1483 /*
1484  * Stop the automatic memory scanning thread. This function must be called
1485  * with the scan_mutex held.
1486  */
stop_scan_thread(void)1487 static void stop_scan_thread(void)
1488 {
1489 	if (scan_thread) {
1490 		kthread_stop(scan_thread);
1491 		scan_thread = NULL;
1492 	}
1493 }
1494 
1495 /*
1496  * Iterate over the object_list and return the first valid object at or after
1497  * the required position with its use_count incremented. The function triggers
1498  * a memory scanning when the pos argument points to the first position.
1499  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1500 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1501 {
1502 	struct kmemleak_object *object;
1503 	loff_t n = *pos;
1504 	int err;
1505 
1506 	err = mutex_lock_interruptible(&scan_mutex);
1507 	if (err < 0)
1508 		return ERR_PTR(err);
1509 
1510 	rcu_read_lock();
1511 	list_for_each_entry_rcu(object, &object_list, object_list) {
1512 		if (n-- > 0)
1513 			continue;
1514 		if (get_object(object))
1515 			goto out;
1516 	}
1517 	object = NULL;
1518 out:
1519 	return object;
1520 }
1521 
1522 /*
1523  * Return the next object in the object_list. The function decrements the
1524  * use_count of the previous object and increases that of the next one.
1525  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1526 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1527 {
1528 	struct kmemleak_object *prev_obj = v;
1529 	struct kmemleak_object *next_obj = NULL;
1530 	struct kmemleak_object *obj = prev_obj;
1531 
1532 	++(*pos);
1533 
1534 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1535 		if (get_object(obj)) {
1536 			next_obj = obj;
1537 			break;
1538 		}
1539 	}
1540 
1541 	put_object(prev_obj);
1542 	return next_obj;
1543 }
1544 
1545 /*
1546  * Decrement the use_count of the last object required, if any.
1547  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1548 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1549 {
1550 	if (!IS_ERR(v)) {
1551 		/*
1552 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1553 		 * waiting was interrupted, so only release it if !IS_ERR.
1554 		 */
1555 		rcu_read_unlock();
1556 		mutex_unlock(&scan_mutex);
1557 		if (v)
1558 			put_object(v);
1559 	}
1560 }
1561 
1562 /*
1563  * Print the information for an unreferenced object to the seq file.
1564  */
kmemleak_seq_show(struct seq_file * seq,void * v)1565 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1566 {
1567 	struct kmemleak_object *object = v;
1568 	unsigned long flags;
1569 
1570 	spin_lock_irqsave(&object->lock, flags);
1571 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1572 		print_unreferenced(seq, object);
1573 	spin_unlock_irqrestore(&object->lock, flags);
1574 	return 0;
1575 }
1576 
1577 static const struct seq_operations kmemleak_seq_ops = {
1578 	.start = kmemleak_seq_start,
1579 	.next  = kmemleak_seq_next,
1580 	.stop  = kmemleak_seq_stop,
1581 	.show  = kmemleak_seq_show,
1582 };
1583 
kmemleak_open(struct inode * inode,struct file * file)1584 static int kmemleak_open(struct inode *inode, struct file *file)
1585 {
1586 	return seq_open(file, &kmemleak_seq_ops);
1587 }
1588 
dump_str_object_info(const char * str)1589 static int dump_str_object_info(const char *str)
1590 {
1591 	unsigned long flags;
1592 	struct kmemleak_object *object;
1593 	unsigned long addr;
1594 
1595 	if (kstrtoul(str, 0, &addr))
1596 		return -EINVAL;
1597 	object = find_and_get_object(addr, 0);
1598 	if (!object) {
1599 		pr_info("Unknown object at 0x%08lx\n", addr);
1600 		return -EINVAL;
1601 	}
1602 
1603 	spin_lock_irqsave(&object->lock, flags);
1604 	dump_object_info(object);
1605 	spin_unlock_irqrestore(&object->lock, flags);
1606 
1607 	put_object(object);
1608 	return 0;
1609 }
1610 
1611 /*
1612  * We use grey instead of black to ensure we can do future scans on the same
1613  * objects. If we did not do future scans these black objects could
1614  * potentially contain references to newly allocated objects in the future and
1615  * we'd end up with false positives.
1616  */
kmemleak_clear(void)1617 static void kmemleak_clear(void)
1618 {
1619 	struct kmemleak_object *object;
1620 	unsigned long flags;
1621 
1622 	rcu_read_lock();
1623 	list_for_each_entry_rcu(object, &object_list, object_list) {
1624 		spin_lock_irqsave(&object->lock, flags);
1625 		if ((object->flags & OBJECT_REPORTED) &&
1626 		    unreferenced_object(object))
1627 			__paint_it(object, KMEMLEAK_GREY);
1628 		spin_unlock_irqrestore(&object->lock, flags);
1629 	}
1630 	rcu_read_unlock();
1631 
1632 	kmemleak_found_leaks = false;
1633 }
1634 
1635 static void __kmemleak_do_cleanup(void);
1636 
1637 /*
1638  * File write operation to configure kmemleak at run-time. The following
1639  * commands can be written to the /sys/kernel/debug/kmemleak file:
1640  *   off	- disable kmemleak (irreversible)
1641  *   stack=on	- enable the task stacks scanning
1642  *   stack=off	- disable the tasks stacks scanning
1643  *   scan=on	- start the automatic memory scanning thread
1644  *   scan=off	- stop the automatic memory scanning thread
1645  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1646  *		  disable it)
1647  *   scan	- trigger a memory scan
1648  *   clear	- mark all current reported unreferenced kmemleak objects as
1649  *		  grey to ignore printing them, or free all kmemleak objects
1650  *		  if kmemleak has been disabled.
1651  *   dump=...	- dump information about the object found at the given address
1652  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1653 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1654 			      size_t size, loff_t *ppos)
1655 {
1656 	char buf[64];
1657 	int buf_size;
1658 	int ret;
1659 
1660 	buf_size = min(size, (sizeof(buf) - 1));
1661 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1662 		return -EFAULT;
1663 	buf[buf_size] = 0;
1664 
1665 	ret = mutex_lock_interruptible(&scan_mutex);
1666 	if (ret < 0)
1667 		return ret;
1668 
1669 	if (strncmp(buf, "clear", 5) == 0) {
1670 		if (kmemleak_enabled)
1671 			kmemleak_clear();
1672 		else
1673 			__kmemleak_do_cleanup();
1674 		goto out;
1675 	}
1676 
1677 	if (!kmemleak_enabled) {
1678 		ret = -EBUSY;
1679 		goto out;
1680 	}
1681 
1682 	if (strncmp(buf, "off", 3) == 0)
1683 		kmemleak_disable();
1684 	else if (strncmp(buf, "stack=on", 8) == 0)
1685 		kmemleak_stack_scan = 1;
1686 	else if (strncmp(buf, "stack=off", 9) == 0)
1687 		kmemleak_stack_scan = 0;
1688 	else if (strncmp(buf, "scan=on", 7) == 0)
1689 		start_scan_thread();
1690 	else if (strncmp(buf, "scan=off", 8) == 0)
1691 		stop_scan_thread();
1692 	else if (strncmp(buf, "scan=", 5) == 0) {
1693 		unsigned long secs;
1694 
1695 		ret = kstrtoul(buf + 5, 0, &secs);
1696 		if (ret < 0)
1697 			goto out;
1698 		stop_scan_thread();
1699 		if (secs) {
1700 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1701 			start_scan_thread();
1702 		}
1703 	} else if (strncmp(buf, "scan", 4) == 0)
1704 		kmemleak_scan();
1705 	else if (strncmp(buf, "dump=", 5) == 0)
1706 		ret = dump_str_object_info(buf + 5);
1707 	else
1708 		ret = -EINVAL;
1709 
1710 out:
1711 	mutex_unlock(&scan_mutex);
1712 	if (ret < 0)
1713 		return ret;
1714 
1715 	/* ignore the rest of the buffer, only one command at a time */
1716 	*ppos += size;
1717 	return size;
1718 }
1719 
1720 static const struct file_operations kmemleak_fops = {
1721 	.owner		= THIS_MODULE,
1722 	.open		= kmemleak_open,
1723 	.read		= seq_read,
1724 	.write		= kmemleak_write,
1725 	.llseek		= seq_lseek,
1726 	.release	= seq_release,
1727 };
1728 
__kmemleak_do_cleanup(void)1729 static void __kmemleak_do_cleanup(void)
1730 {
1731 	struct kmemleak_object *object;
1732 
1733 	rcu_read_lock();
1734 	list_for_each_entry_rcu(object, &object_list, object_list)
1735 		delete_object_full(object->pointer);
1736 	rcu_read_unlock();
1737 }
1738 
1739 /*
1740  * Stop the memory scanning thread and free the kmemleak internal objects if
1741  * no previous scan thread (otherwise, kmemleak may still have some useful
1742  * information on memory leaks).
1743  */
kmemleak_do_cleanup(struct work_struct * work)1744 static void kmemleak_do_cleanup(struct work_struct *work)
1745 {
1746 	mutex_lock(&scan_mutex);
1747 	stop_scan_thread();
1748 
1749 	/*
1750 	 * Once the scan thread has stopped, it is safe to no longer track
1751 	 * object freeing. Ordering of the scan thread stopping and the memory
1752 	 * accesses below is guaranteed by the kthread_stop() function.
1753 	 */
1754 	kmemleak_free_enabled = 0;
1755 
1756 	if (!kmemleak_found_leaks)
1757 		__kmemleak_do_cleanup();
1758 	else
1759 		pr_info("Kmemleak disabled without freeing internal data. "
1760 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1761 	mutex_unlock(&scan_mutex);
1762 }
1763 
1764 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1765 
1766 /*
1767  * Disable kmemleak. No memory allocation/freeing will be traced once this
1768  * function is called. Disabling kmemleak is an irreversible operation.
1769  */
kmemleak_disable(void)1770 static void kmemleak_disable(void)
1771 {
1772 	/* atomically check whether it was already invoked */
1773 	if (cmpxchg(&kmemleak_error, 0, 1))
1774 		return;
1775 
1776 	/* stop any memory operation tracing */
1777 	kmemleak_enabled = 0;
1778 
1779 	/* check whether it is too early for a kernel thread */
1780 	if (kmemleak_initialized)
1781 		schedule_work(&cleanup_work);
1782 	else
1783 		kmemleak_free_enabled = 0;
1784 
1785 	pr_info("Kernel memory leak detector disabled\n");
1786 }
1787 
1788 /*
1789  * Allow boot-time kmemleak disabling (enabled by default).
1790  */
kmemleak_boot_config(char * str)1791 static int kmemleak_boot_config(char *str)
1792 {
1793 	if (!str)
1794 		return -EINVAL;
1795 	if (strcmp(str, "off") == 0)
1796 		kmemleak_disable();
1797 	else if (strcmp(str, "on") == 0)
1798 		kmemleak_skip_disable = 1;
1799 	else
1800 		return -EINVAL;
1801 	return 0;
1802 }
1803 early_param("kmemleak", kmemleak_boot_config);
1804 
print_log_trace(struct early_log * log)1805 static void __init print_log_trace(struct early_log *log)
1806 {
1807 	struct stack_trace trace;
1808 
1809 	trace.nr_entries = log->trace_len;
1810 	trace.entries = log->trace;
1811 
1812 	pr_notice("Early log backtrace:\n");
1813 	print_stack_trace(&trace, 2);
1814 }
1815 
1816 /*
1817  * Kmemleak initialization.
1818  */
kmemleak_init(void)1819 void __init kmemleak_init(void)
1820 {
1821 	int i;
1822 	unsigned long flags;
1823 
1824 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1825 	if (!kmemleak_skip_disable) {
1826 		kmemleak_early_log = 0;
1827 		kmemleak_disable();
1828 		return;
1829 	}
1830 #endif
1831 
1832 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1833 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1834 
1835 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1836 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1837 
1838 	if (crt_early_log >= ARRAY_SIZE(early_log))
1839 		pr_warning("Early log buffer exceeded (%d), please increase "
1840 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1841 
1842 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1843 	local_irq_save(flags);
1844 	kmemleak_early_log = 0;
1845 	if (kmemleak_error) {
1846 		local_irq_restore(flags);
1847 		return;
1848 	} else {
1849 		kmemleak_enabled = 1;
1850 		kmemleak_free_enabled = 1;
1851 	}
1852 	local_irq_restore(flags);
1853 
1854 	/*
1855 	 * This is the point where tracking allocations is safe. Automatic
1856 	 * scanning is started during the late initcall. Add the early logged
1857 	 * callbacks to the kmemleak infrastructure.
1858 	 */
1859 	for (i = 0; i < crt_early_log; i++) {
1860 		struct early_log *log = &early_log[i];
1861 
1862 		switch (log->op_type) {
1863 		case KMEMLEAK_ALLOC:
1864 			early_alloc(log);
1865 			break;
1866 		case KMEMLEAK_ALLOC_PERCPU:
1867 			early_alloc_percpu(log);
1868 			break;
1869 		case KMEMLEAK_FREE:
1870 			kmemleak_free(log->ptr);
1871 			break;
1872 		case KMEMLEAK_FREE_PART:
1873 			kmemleak_free_part(log->ptr, log->size);
1874 			break;
1875 		case KMEMLEAK_FREE_PERCPU:
1876 			kmemleak_free_percpu(log->ptr);
1877 			break;
1878 		case KMEMLEAK_NOT_LEAK:
1879 			kmemleak_not_leak(log->ptr);
1880 			break;
1881 		case KMEMLEAK_IGNORE:
1882 			kmemleak_ignore(log->ptr);
1883 			break;
1884 		case KMEMLEAK_SCAN_AREA:
1885 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1886 			break;
1887 		case KMEMLEAK_NO_SCAN:
1888 			kmemleak_no_scan(log->ptr);
1889 			break;
1890 		default:
1891 			kmemleak_warn("Unknown early log operation: %d\n",
1892 				      log->op_type);
1893 		}
1894 
1895 		if (kmemleak_warning) {
1896 			print_log_trace(log);
1897 			kmemleak_warning = 0;
1898 		}
1899 	}
1900 }
1901 
1902 /*
1903  * Late initialization function.
1904  */
kmemleak_late_init(void)1905 static int __init kmemleak_late_init(void)
1906 {
1907 	struct dentry *dentry;
1908 
1909 	kmemleak_initialized = 1;
1910 
1911 	if (kmemleak_error) {
1912 		/*
1913 		 * Some error occurred and kmemleak was disabled. There is a
1914 		 * small chance that kmemleak_disable() was called immediately
1915 		 * after setting kmemleak_initialized and we may end up with
1916 		 * two clean-up threads but serialized by scan_mutex.
1917 		 */
1918 		schedule_work(&cleanup_work);
1919 		return -ENOMEM;
1920 	}
1921 
1922 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1923 				     &kmemleak_fops);
1924 	if (!dentry)
1925 		pr_warning("Failed to create the debugfs kmemleak file\n");
1926 	mutex_lock(&scan_mutex);
1927 	start_scan_thread();
1928 	mutex_unlock(&scan_mutex);
1929 
1930 	pr_info("Kernel memory leak detector initialized\n");
1931 
1932 	return 0;
1933 }
1934 late_initcall(kmemleak_late_init);
1935