1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static int memblock_can_resize __initdata_memblock;
58 static int memblock_memory_in_slab __initdata_memblock = 0;
59 static int memblock_reserved_in_slab __initdata_memblock = 0;
60
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock const char *
memblock_type_name(struct memblock_type * type)63 memblock_type_name(struct memblock_type *type)
64 {
65 if (type == &memblock.memory)
66 return "memory";
67 else if (type == &memblock.reserved)
68 return "reserved";
69 else
70 return "unknown";
71 }
72
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
75 {
76 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 }
78
79 /*
80 * Address comparison utilities
81 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83 phys_addr_t base2, phys_addr_t size2)
84 {
85 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
86 }
87
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
89 phys_addr_t base, phys_addr_t size)
90 {
91 unsigned long i;
92
93 for (i = 0; i < type->cnt; i++) {
94 phys_addr_t rgnbase = type->regions[i].base;
95 phys_addr_t rgnsize = type->regions[i].size;
96 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
97 break;
98 }
99
100 return (i < type->cnt) ? i : -1;
101 }
102
103 /*
104 * __memblock_find_range_bottom_up - find free area utility in bottom-up
105 * @start: start of candidate range
106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107 * @size: size of free area to find
108 * @align: alignment of free area to find
109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110 *
111 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
112 *
113 * RETURNS:
114 * Found address on success, 0 on failure.
115 */
116 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid)117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
118 phys_addr_t size, phys_addr_t align, int nid)
119 {
120 phys_addr_t this_start, this_end, cand;
121 u64 i;
122
123 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
124 this_start = clamp(this_start, start, end);
125 this_end = clamp(this_end, start, end);
126
127 cand = round_up(this_start, align);
128 if (cand < this_end && this_end - cand >= size)
129 return cand;
130 }
131
132 return 0;
133 }
134
135 /**
136 * __memblock_find_range_top_down - find free area utility, in top-down
137 * @start: start of candidate range
138 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
139 * @size: size of free area to find
140 * @align: alignment of free area to find
141 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
142 *
143 * Utility called from memblock_find_in_range_node(), find free area top-down.
144 *
145 * RETURNS:
146 * Found address on success, 0 on failure.
147 */
148 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid)149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
150 phys_addr_t size, phys_addr_t align, int nid)
151 {
152 phys_addr_t this_start, this_end, cand;
153 u64 i;
154
155 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
156 this_start = clamp(this_start, start, end);
157 this_end = clamp(this_end, start, end);
158
159 if (this_end < size)
160 continue;
161
162 cand = round_down(this_end - size, align);
163 if (cand >= this_start)
164 return cand;
165 }
166
167 return 0;
168 }
169
170 /**
171 * memblock_find_in_range_node - find free area in given range and node
172 * @size: size of free area to find
173 * @align: alignment of free area to find
174 * @start: start of candidate range
175 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
177 *
178 * Find @size free area aligned to @align in the specified range and node.
179 *
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
185 *
186 * If bottom-up allocation failed, will try to allocate memory top-down.
187 *
188 * RETURNS:
189 * Found address on success, 0 on failure.
190 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid)191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
193 phys_addr_t end, int nid)
194 {
195 phys_addr_t kernel_end, ret;
196
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
200
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
204 kernel_end = __pa_symbol(_end);
205
206 /*
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
209 */
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
212
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
215
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 size, align, nid);
219 if (ret)
220 return ret;
221
222 /*
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
227 *
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
231 */
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
233 "memory hotunplug may be affected\n");
234 }
235
236 return __memblock_find_range_top_down(start, end, size, align, nid);
237 }
238
239 /**
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 *
246 * Find @size free area aligned to @align in the specified range.
247 *
248 * RETURNS:
249 * Found address on success, 0 on failure.
250 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
254 {
255 return memblock_find_in_range_node(size, align, start, end,
256 NUMA_NO_NODE);
257 }
258
memblock_remove_region(struct memblock_type * type,unsigned long r)259 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
260 {
261 type->total_size -= type->regions[r].size;
262 memmove(&type->regions[r], &type->regions[r + 1],
263 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
264 type->cnt--;
265
266 /* Special case for empty arrays */
267 if (type->cnt == 0) {
268 WARN_ON(type->total_size != 0);
269 type->cnt = 1;
270 type->regions[0].base = 0;
271 type->regions[0].size = 0;
272 type->regions[0].flags = 0;
273 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
274 }
275 }
276
277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
278
get_allocated_memblock_reserved_regions_info(phys_addr_t * addr)279 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
280 phys_addr_t *addr)
281 {
282 if (memblock.reserved.regions == memblock_reserved_init_regions)
283 return 0;
284
285 *addr = __pa(memblock.reserved.regions);
286
287 return PAGE_ALIGN(sizeof(struct memblock_region) *
288 memblock.reserved.max);
289 }
290
get_allocated_memblock_memory_regions_info(phys_addr_t * addr)291 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
292 phys_addr_t *addr)
293 {
294 if (memblock.memory.regions == memblock_memory_init_regions)
295 return 0;
296
297 *addr = __pa(memblock.memory.regions);
298
299 return PAGE_ALIGN(sizeof(struct memblock_region) *
300 memblock.memory.max);
301 }
302
303 #endif
304
305 /**
306 * memblock_double_array - double the size of the memblock regions array
307 * @type: memblock type of the regions array being doubled
308 * @new_area_start: starting address of memory range to avoid overlap with
309 * @new_area_size: size of memory range to avoid overlap with
310 *
311 * Double the size of the @type regions array. If memblock is being used to
312 * allocate memory for a new reserved regions array and there is a previously
313 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
314 * waiting to be reserved, ensure the memory used by the new array does
315 * not overlap.
316 *
317 * RETURNS:
318 * 0 on success, -1 on failure.
319 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)320 static int __init_memblock memblock_double_array(struct memblock_type *type,
321 phys_addr_t new_area_start,
322 phys_addr_t new_area_size)
323 {
324 struct memblock_region *new_array, *old_array;
325 phys_addr_t old_alloc_size, new_alloc_size;
326 phys_addr_t old_size, new_size, addr;
327 int use_slab = slab_is_available();
328 int *in_slab;
329
330 /* We don't allow resizing until we know about the reserved regions
331 * of memory that aren't suitable for allocation
332 */
333 if (!memblock_can_resize)
334 return -1;
335
336 /* Calculate new doubled size */
337 old_size = type->max * sizeof(struct memblock_region);
338 new_size = old_size << 1;
339 /*
340 * We need to allocated new one align to PAGE_SIZE,
341 * so we can free them completely later.
342 */
343 old_alloc_size = PAGE_ALIGN(old_size);
344 new_alloc_size = PAGE_ALIGN(new_size);
345
346 /* Retrieve the slab flag */
347 if (type == &memblock.memory)
348 in_slab = &memblock_memory_in_slab;
349 else
350 in_slab = &memblock_reserved_in_slab;
351
352 /* Try to find some space for it.
353 *
354 * WARNING: We assume that either slab_is_available() and we use it or
355 * we use MEMBLOCK for allocations. That means that this is unsafe to
356 * use when bootmem is currently active (unless bootmem itself is
357 * implemented on top of MEMBLOCK which isn't the case yet)
358 *
359 * This should however not be an issue for now, as we currently only
360 * call into MEMBLOCK while it's still active, or much later when slab
361 * is active for memory hotplug operations
362 */
363 if (use_slab) {
364 new_array = kmalloc(new_size, GFP_KERNEL);
365 addr = new_array ? __pa(new_array) : 0;
366 } else {
367 /* only exclude range when trying to double reserved.regions */
368 if (type != &memblock.reserved)
369 new_area_start = new_area_size = 0;
370
371 addr = memblock_find_in_range(new_area_start + new_area_size,
372 memblock.current_limit,
373 new_alloc_size, PAGE_SIZE);
374 if (!addr && new_area_size)
375 addr = memblock_find_in_range(0,
376 min(new_area_start, memblock.current_limit),
377 new_alloc_size, PAGE_SIZE);
378
379 new_array = addr ? __va(addr) : NULL;
380 }
381 if (!addr) {
382 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
383 memblock_type_name(type), type->max, type->max * 2);
384 return -1;
385 }
386
387 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
388 memblock_type_name(type), type->max * 2, (u64)addr,
389 (u64)addr + new_size - 1);
390
391 /*
392 * Found space, we now need to move the array over before we add the
393 * reserved region since it may be our reserved array itself that is
394 * full.
395 */
396 memcpy(new_array, type->regions, old_size);
397 memset(new_array + type->max, 0, old_size);
398 old_array = type->regions;
399 type->regions = new_array;
400 type->max <<= 1;
401
402 /* Free old array. We needn't free it if the array is the static one */
403 if (*in_slab)
404 kfree(old_array);
405 else if (old_array != memblock_memory_init_regions &&
406 old_array != memblock_reserved_init_regions)
407 memblock_free(__pa(old_array), old_alloc_size);
408
409 /*
410 * Reserve the new array if that comes from the memblock. Otherwise, we
411 * needn't do it
412 */
413 if (!use_slab)
414 BUG_ON(memblock_reserve(addr, new_alloc_size));
415
416 /* Update slab flag */
417 *in_slab = use_slab;
418
419 return 0;
420 }
421
422 /**
423 * memblock_merge_regions - merge neighboring compatible regions
424 * @type: memblock type to scan
425 *
426 * Scan @type and merge neighboring compatible regions.
427 */
memblock_merge_regions(struct memblock_type * type)428 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
429 {
430 int i = 0;
431
432 /* cnt never goes below 1 */
433 while (i < type->cnt - 1) {
434 struct memblock_region *this = &type->regions[i];
435 struct memblock_region *next = &type->regions[i + 1];
436
437 if (this->base + this->size != next->base ||
438 memblock_get_region_node(this) !=
439 memblock_get_region_node(next) ||
440 this->flags != next->flags) {
441 BUG_ON(this->base + this->size > next->base);
442 i++;
443 continue;
444 }
445
446 this->size += next->size;
447 /* move forward from next + 1, index of which is i + 2 */
448 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
449 type->cnt--;
450 }
451 }
452
453 /**
454 * memblock_insert_region - insert new memblock region
455 * @type: memblock type to insert into
456 * @idx: index for the insertion point
457 * @base: base address of the new region
458 * @size: size of the new region
459 * @nid: node id of the new region
460 * @flags: flags of the new region
461 *
462 * Insert new memblock region [@base,@base+@size) into @type at @idx.
463 * @type must already have extra room to accomodate the new region.
464 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)465 static void __init_memblock memblock_insert_region(struct memblock_type *type,
466 int idx, phys_addr_t base,
467 phys_addr_t size,
468 int nid, unsigned long flags)
469 {
470 struct memblock_region *rgn = &type->regions[idx];
471
472 BUG_ON(type->cnt >= type->max);
473 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
474 rgn->base = base;
475 rgn->size = size;
476 rgn->flags = flags;
477 memblock_set_region_node(rgn, nid);
478 type->cnt++;
479 type->total_size += size;
480 }
481
482 /**
483 * memblock_add_range - add new memblock region
484 * @type: memblock type to add new region into
485 * @base: base address of the new region
486 * @size: size of the new region
487 * @nid: nid of the new region
488 * @flags: flags of the new region
489 *
490 * Add new memblock region [@base,@base+@size) into @type. The new region
491 * is allowed to overlap with existing ones - overlaps don't affect already
492 * existing regions. @type is guaranteed to be minimal (all neighbouring
493 * compatible regions are merged) after the addition.
494 *
495 * RETURNS:
496 * 0 on success, -errno on failure.
497 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)498 int __init_memblock memblock_add_range(struct memblock_type *type,
499 phys_addr_t base, phys_addr_t size,
500 int nid, unsigned long flags)
501 {
502 bool insert = false;
503 phys_addr_t obase = base;
504 phys_addr_t end = base + memblock_cap_size(base, &size);
505 int i, nr_new;
506
507 if (!size)
508 return 0;
509
510 /* special case for empty array */
511 if (type->regions[0].size == 0) {
512 WARN_ON(type->cnt != 1 || type->total_size);
513 type->regions[0].base = base;
514 type->regions[0].size = size;
515 type->regions[0].flags = flags;
516 memblock_set_region_node(&type->regions[0], nid);
517 type->total_size = size;
518 return 0;
519 }
520 repeat:
521 /*
522 * The following is executed twice. Once with %false @insert and
523 * then with %true. The first counts the number of regions needed
524 * to accomodate the new area. The second actually inserts them.
525 */
526 base = obase;
527 nr_new = 0;
528
529 for (i = 0; i < type->cnt; i++) {
530 struct memblock_region *rgn = &type->regions[i];
531 phys_addr_t rbase = rgn->base;
532 phys_addr_t rend = rbase + rgn->size;
533
534 if (rbase >= end)
535 break;
536 if (rend <= base)
537 continue;
538 /*
539 * @rgn overlaps. If it separates the lower part of new
540 * area, insert that portion.
541 */
542 if (rbase > base) {
543 nr_new++;
544 if (insert)
545 memblock_insert_region(type, i++, base,
546 rbase - base, nid,
547 flags);
548 }
549 /* area below @rend is dealt with, forget about it */
550 base = min(rend, end);
551 }
552
553 /* insert the remaining portion */
554 if (base < end) {
555 nr_new++;
556 if (insert)
557 memblock_insert_region(type, i, base, end - base,
558 nid, flags);
559 }
560
561 /*
562 * If this was the first round, resize array and repeat for actual
563 * insertions; otherwise, merge and return.
564 */
565 if (!insert) {
566 while (type->cnt + nr_new > type->max)
567 if (memblock_double_array(type, obase, size) < 0)
568 return -ENOMEM;
569 insert = true;
570 goto repeat;
571 } else {
572 memblock_merge_regions(type);
573 return 0;
574 }
575 }
576
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)577 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
578 int nid)
579 {
580 return memblock_add_range(&memblock.memory, base, size, nid, 0);
581 }
582
memblock_add(phys_addr_t base,phys_addr_t size)583 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
584 {
585 return memblock_add_range(&memblock.memory, base, size,
586 MAX_NUMNODES, 0);
587 }
588
589 /**
590 * memblock_isolate_range - isolate given range into disjoint memblocks
591 * @type: memblock type to isolate range for
592 * @base: base of range to isolate
593 * @size: size of range to isolate
594 * @start_rgn: out parameter for the start of isolated region
595 * @end_rgn: out parameter for the end of isolated region
596 *
597 * Walk @type and ensure that regions don't cross the boundaries defined by
598 * [@base,@base+@size). Crossing regions are split at the boundaries,
599 * which may create at most two more regions. The index of the first
600 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
601 *
602 * RETURNS:
603 * 0 on success, -errno on failure.
604 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)605 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
606 phys_addr_t base, phys_addr_t size,
607 int *start_rgn, int *end_rgn)
608 {
609 phys_addr_t end = base + memblock_cap_size(base, &size);
610 int i;
611
612 *start_rgn = *end_rgn = 0;
613
614 if (!size)
615 return 0;
616
617 /* we'll create at most two more regions */
618 while (type->cnt + 2 > type->max)
619 if (memblock_double_array(type, base, size) < 0)
620 return -ENOMEM;
621
622 for (i = 0; i < type->cnt; i++) {
623 struct memblock_region *rgn = &type->regions[i];
624 phys_addr_t rbase = rgn->base;
625 phys_addr_t rend = rbase + rgn->size;
626
627 if (rbase >= end)
628 break;
629 if (rend <= base)
630 continue;
631
632 if (rbase < base) {
633 /*
634 * @rgn intersects from below. Split and continue
635 * to process the next region - the new top half.
636 */
637 rgn->base = base;
638 rgn->size -= base - rbase;
639 type->total_size -= base - rbase;
640 memblock_insert_region(type, i, rbase, base - rbase,
641 memblock_get_region_node(rgn),
642 rgn->flags);
643 } else if (rend > end) {
644 /*
645 * @rgn intersects from above. Split and redo the
646 * current region - the new bottom half.
647 */
648 rgn->base = end;
649 rgn->size -= end - rbase;
650 type->total_size -= end - rbase;
651 memblock_insert_region(type, i--, rbase, end - rbase,
652 memblock_get_region_node(rgn),
653 rgn->flags);
654 } else {
655 /* @rgn is fully contained, record it */
656 if (!*end_rgn)
657 *start_rgn = i;
658 *end_rgn = i + 1;
659 }
660 }
661
662 return 0;
663 }
664
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)665 int __init_memblock memblock_remove_range(struct memblock_type *type,
666 phys_addr_t base, phys_addr_t size)
667 {
668 int start_rgn, end_rgn;
669 int i, ret;
670
671 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
672 if (ret)
673 return ret;
674
675 for (i = end_rgn - 1; i >= start_rgn; i--)
676 memblock_remove_region(type, i);
677 return 0;
678 }
679
memblock_remove(phys_addr_t base,phys_addr_t size)680 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
681 {
682 return memblock_remove_range(&memblock.memory, base, size);
683 }
684
685
memblock_free(phys_addr_t base,phys_addr_t size)686 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
687 {
688 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
689 (unsigned long long)base,
690 (unsigned long long)base + size - 1,
691 (void *)_RET_IP_);
692
693 kmemleak_free_part(__va(base), size);
694 return memblock_remove_range(&memblock.reserved, base, size);
695 }
696
memblock_reserve_region(phys_addr_t base,phys_addr_t size,int nid,unsigned long flags)697 static int __init_memblock memblock_reserve_region(phys_addr_t base,
698 phys_addr_t size,
699 int nid,
700 unsigned long flags)
701 {
702 struct memblock_type *_rgn = &memblock.reserved;
703
704 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
705 (unsigned long long)base,
706 (unsigned long long)base + size - 1,
707 flags, (void *)_RET_IP_);
708
709 return memblock_add_range(_rgn, base, size, nid, flags);
710 }
711
memblock_reserve(phys_addr_t base,phys_addr_t size)712 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
713 {
714 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
715 }
716
717 /**
718 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
719 * @base: the base phys addr of the region
720 * @size: the size of the region
721 *
722 * This function isolates region [@base, @base + @size), and mark it with flag
723 * MEMBLOCK_HOTPLUG.
724 *
725 * Return 0 on succees, -errno on failure.
726 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)727 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
728 {
729 struct memblock_type *type = &memblock.memory;
730 int i, ret, start_rgn, end_rgn;
731
732 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
733 if (ret)
734 return ret;
735
736 for (i = start_rgn; i < end_rgn; i++)
737 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
738
739 memblock_merge_regions(type);
740 return 0;
741 }
742
743 /**
744 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
745 * @base: the base phys addr of the region
746 * @size: the size of the region
747 *
748 * This function isolates region [@base, @base + @size), and clear flag
749 * MEMBLOCK_HOTPLUG for the isolated regions.
750 *
751 * Return 0 on succees, -errno on failure.
752 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)753 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
754 {
755 struct memblock_type *type = &memblock.memory;
756 int i, ret, start_rgn, end_rgn;
757
758 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
759 if (ret)
760 return ret;
761
762 for (i = start_rgn; i < end_rgn; i++)
763 memblock_clear_region_flags(&type->regions[i],
764 MEMBLOCK_HOTPLUG);
765
766 memblock_merge_regions(type);
767 return 0;
768 }
769
770 /**
771 * __next__mem_range - next function for for_each_free_mem_range() etc.
772 * @idx: pointer to u64 loop variable
773 * @nid: node selector, %NUMA_NO_NODE for all nodes
774 * @type_a: pointer to memblock_type from where the range is taken
775 * @type_b: pointer to memblock_type which excludes memory from being taken
776 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
777 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
778 * @out_nid: ptr to int for nid of the range, can be %NULL
779 *
780 * Find the first area from *@idx which matches @nid, fill the out
781 * parameters, and update *@idx for the next iteration. The lower 32bit of
782 * *@idx contains index into type_a and the upper 32bit indexes the
783 * areas before each region in type_b. For example, if type_b regions
784 * look like the following,
785 *
786 * 0:[0-16), 1:[32-48), 2:[128-130)
787 *
788 * The upper 32bit indexes the following regions.
789 *
790 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
791 *
792 * As both region arrays are sorted, the function advances the two indices
793 * in lockstep and returns each intersection.
794 */
__next_mem_range(u64 * idx,int nid,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)795 void __init_memblock __next_mem_range(u64 *idx, int nid,
796 struct memblock_type *type_a,
797 struct memblock_type *type_b,
798 phys_addr_t *out_start,
799 phys_addr_t *out_end, int *out_nid)
800 {
801 int idx_a = *idx & 0xffffffff;
802 int idx_b = *idx >> 32;
803
804 if (WARN_ONCE(nid == MAX_NUMNODES,
805 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
806 nid = NUMA_NO_NODE;
807
808 for (; idx_a < type_a->cnt; idx_a++) {
809 struct memblock_region *m = &type_a->regions[idx_a];
810
811 phys_addr_t m_start = m->base;
812 phys_addr_t m_end = m->base + m->size;
813 int m_nid = memblock_get_region_node(m);
814
815 /* only memory regions are associated with nodes, check it */
816 if (nid != NUMA_NO_NODE && nid != m_nid)
817 continue;
818
819 /* skip hotpluggable memory regions if needed */
820 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
821 continue;
822
823 if (!type_b) {
824 if (out_start)
825 *out_start = m_start;
826 if (out_end)
827 *out_end = m_end;
828 if (out_nid)
829 *out_nid = m_nid;
830 idx_a++;
831 *idx = (u32)idx_a | (u64)idx_b << 32;
832 return;
833 }
834
835 /* scan areas before each reservation */
836 for (; idx_b < type_b->cnt + 1; idx_b++) {
837 struct memblock_region *r;
838 phys_addr_t r_start;
839 phys_addr_t r_end;
840
841 r = &type_b->regions[idx_b];
842 r_start = idx_b ? r[-1].base + r[-1].size : 0;
843 r_end = idx_b < type_b->cnt ?
844 r->base : ULLONG_MAX;
845
846 /*
847 * if idx_b advanced past idx_a,
848 * break out to advance idx_a
849 */
850 if (r_start >= m_end)
851 break;
852 /* if the two regions intersect, we're done */
853 if (m_start < r_end) {
854 if (out_start)
855 *out_start =
856 max(m_start, r_start);
857 if (out_end)
858 *out_end = min(m_end, r_end);
859 if (out_nid)
860 *out_nid = m_nid;
861 /*
862 * The region which ends first is
863 * advanced for the next iteration.
864 */
865 if (m_end <= r_end)
866 idx_a++;
867 else
868 idx_b++;
869 *idx = (u32)idx_a | (u64)idx_b << 32;
870 return;
871 }
872 }
873 }
874
875 /* signal end of iteration */
876 *idx = ULLONG_MAX;
877 }
878
879 /**
880 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
881 *
882 * Finds the next range from type_a which is not marked as unsuitable
883 * in type_b.
884 *
885 * @idx: pointer to u64 loop variable
886 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
887 * @type_a: pointer to memblock_type from where the range is taken
888 * @type_b: pointer to memblock_type which excludes memory from being taken
889 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
890 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
891 * @out_nid: ptr to int for nid of the range, can be %NULL
892 *
893 * Reverse of __next_mem_range().
894 */
__next_mem_range_rev(u64 * idx,int nid,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)895 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
896 struct memblock_type *type_a,
897 struct memblock_type *type_b,
898 phys_addr_t *out_start,
899 phys_addr_t *out_end, int *out_nid)
900 {
901 int idx_a = *idx & 0xffffffff;
902 int idx_b = *idx >> 32;
903
904 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
905 nid = NUMA_NO_NODE;
906
907 if (*idx == (u64)ULLONG_MAX) {
908 idx_a = type_a->cnt - 1;
909 idx_b = type_b->cnt;
910 }
911
912 for (; idx_a >= 0; idx_a--) {
913 struct memblock_region *m = &type_a->regions[idx_a];
914
915 phys_addr_t m_start = m->base;
916 phys_addr_t m_end = m->base + m->size;
917 int m_nid = memblock_get_region_node(m);
918
919 /* only memory regions are associated with nodes, check it */
920 if (nid != NUMA_NO_NODE && nid != m_nid)
921 continue;
922
923 /* skip hotpluggable memory regions if needed */
924 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
925 continue;
926
927 if (!type_b) {
928 if (out_start)
929 *out_start = m_start;
930 if (out_end)
931 *out_end = m_end;
932 if (out_nid)
933 *out_nid = m_nid;
934 idx_a++;
935 *idx = (u32)idx_a | (u64)idx_b << 32;
936 return;
937 }
938
939 /* scan areas before each reservation */
940 for (; idx_b >= 0; idx_b--) {
941 struct memblock_region *r;
942 phys_addr_t r_start;
943 phys_addr_t r_end;
944
945 r = &type_b->regions[idx_b];
946 r_start = idx_b ? r[-1].base + r[-1].size : 0;
947 r_end = idx_b < type_b->cnt ?
948 r->base : ULLONG_MAX;
949 /*
950 * if idx_b advanced past idx_a,
951 * break out to advance idx_a
952 */
953
954 if (r_end <= m_start)
955 break;
956 /* if the two regions intersect, we're done */
957 if (m_end > r_start) {
958 if (out_start)
959 *out_start = max(m_start, r_start);
960 if (out_end)
961 *out_end = min(m_end, r_end);
962 if (out_nid)
963 *out_nid = m_nid;
964 if (m_start >= r_start)
965 idx_a--;
966 else
967 idx_b--;
968 *idx = (u32)idx_a | (u64)idx_b << 32;
969 return;
970 }
971 }
972 }
973 /* signal end of iteration */
974 *idx = ULLONG_MAX;
975 }
976
977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
978 /*
979 * Common iterator interface used to define for_each_mem_range().
980 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)981 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
982 unsigned long *out_start_pfn,
983 unsigned long *out_end_pfn, int *out_nid)
984 {
985 struct memblock_type *type = &memblock.memory;
986 struct memblock_region *r;
987
988 while (++*idx < type->cnt) {
989 r = &type->regions[*idx];
990
991 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
992 continue;
993 if (nid == MAX_NUMNODES || nid == r->nid)
994 break;
995 }
996 if (*idx >= type->cnt) {
997 *idx = -1;
998 return;
999 }
1000
1001 if (out_start_pfn)
1002 *out_start_pfn = PFN_UP(r->base);
1003 if (out_end_pfn)
1004 *out_end_pfn = PFN_DOWN(r->base + r->size);
1005 if (out_nid)
1006 *out_nid = r->nid;
1007 }
1008
1009 /**
1010 * memblock_set_node - set node ID on memblock regions
1011 * @base: base of area to set node ID for
1012 * @size: size of area to set node ID for
1013 * @type: memblock type to set node ID for
1014 * @nid: node ID to set
1015 *
1016 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1017 * Regions which cross the area boundaries are split as necessary.
1018 *
1019 * RETURNS:
1020 * 0 on success, -errno on failure.
1021 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1022 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1023 struct memblock_type *type, int nid)
1024 {
1025 int start_rgn, end_rgn;
1026 int i, ret;
1027
1028 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1029 if (ret)
1030 return ret;
1031
1032 for (i = start_rgn; i < end_rgn; i++)
1033 memblock_set_region_node(&type->regions[i], nid);
1034
1035 memblock_merge_regions(type);
1036 return 0;
1037 }
1038 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1039
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid)1040 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1041 phys_addr_t align, phys_addr_t start,
1042 phys_addr_t end, int nid)
1043 {
1044 phys_addr_t found;
1045
1046 if (!align)
1047 align = SMP_CACHE_BYTES;
1048
1049 found = memblock_find_in_range_node(size, align, start, end, nid);
1050 if (found && !memblock_reserve(found, size)) {
1051 /*
1052 * The min_count is set to 0 so that memblock allocations are
1053 * never reported as leaks.
1054 */
1055 kmemleak_alloc(__va(found), size, 0, 0);
1056 return found;
1057 }
1058 return 0;
1059 }
1060
memblock_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1061 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1062 phys_addr_t start, phys_addr_t end)
1063 {
1064 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1065 }
1066
memblock_alloc_base_nid(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr,int nid)1067 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1068 phys_addr_t align, phys_addr_t max_addr,
1069 int nid)
1070 {
1071 return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1072 }
1073
memblock_alloc_nid(phys_addr_t size,phys_addr_t align,int nid)1074 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1075 {
1076 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1077 }
1078
__memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1079 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1080 {
1081 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1082 }
1083
memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1084 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1085 {
1086 phys_addr_t alloc;
1087
1088 alloc = __memblock_alloc_base(size, align, max_addr);
1089
1090 if (alloc == 0)
1091 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1092 (unsigned long long) size, (unsigned long long) max_addr);
1093
1094 return alloc;
1095 }
1096
memblock_alloc(phys_addr_t size,phys_addr_t align)1097 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1098 {
1099 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1100 }
1101
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1102 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1103 {
1104 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1105
1106 if (res)
1107 return res;
1108 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1109 }
1110
1111 /**
1112 * memblock_virt_alloc_internal - allocate boot memory block
1113 * @size: size of memory block to be allocated in bytes
1114 * @align: alignment of the region and block's size
1115 * @min_addr: the lower bound of the memory region to allocate (phys address)
1116 * @max_addr: the upper bound of the memory region to allocate (phys address)
1117 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1118 *
1119 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1120 * will fall back to memory below @min_addr. Also, allocation may fall back
1121 * to any node in the system if the specified node can not
1122 * hold the requested memory.
1123 *
1124 * The allocation is performed from memory region limited by
1125 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1126 *
1127 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1128 *
1129 * The phys address of allocated boot memory block is converted to virtual and
1130 * allocated memory is reset to 0.
1131 *
1132 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1133 * allocated boot memory block, so that it is never reported as leaks.
1134 *
1135 * RETURNS:
1136 * Virtual address of allocated memory block on success, NULL on failure.
1137 */
memblock_virt_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1138 static void * __init memblock_virt_alloc_internal(
1139 phys_addr_t size, phys_addr_t align,
1140 phys_addr_t min_addr, phys_addr_t max_addr,
1141 int nid)
1142 {
1143 phys_addr_t alloc;
1144 void *ptr;
1145
1146 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1147 nid = NUMA_NO_NODE;
1148
1149 /*
1150 * Detect any accidental use of these APIs after slab is ready, as at
1151 * this moment memblock may be deinitialized already and its
1152 * internal data may be destroyed (after execution of free_all_bootmem)
1153 */
1154 if (WARN_ON_ONCE(slab_is_available()))
1155 return kzalloc_node(size, GFP_NOWAIT, nid);
1156
1157 if (!align)
1158 align = SMP_CACHE_BYTES;
1159
1160 if (max_addr > memblock.current_limit)
1161 max_addr = memblock.current_limit;
1162
1163 again:
1164 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1165 nid);
1166 if (alloc)
1167 goto done;
1168
1169 if (nid != NUMA_NO_NODE) {
1170 alloc = memblock_find_in_range_node(size, align, min_addr,
1171 max_addr, NUMA_NO_NODE);
1172 if (alloc)
1173 goto done;
1174 }
1175
1176 if (min_addr) {
1177 min_addr = 0;
1178 goto again;
1179 } else {
1180 goto error;
1181 }
1182
1183 done:
1184 memblock_reserve(alloc, size);
1185 ptr = phys_to_virt(alloc);
1186 memset(ptr, 0, size);
1187
1188 /*
1189 * The min_count is set to 0 so that bootmem allocated blocks
1190 * are never reported as leaks. This is because many of these blocks
1191 * are only referred via the physical address which is not
1192 * looked up by kmemleak.
1193 */
1194 kmemleak_alloc(ptr, size, 0, 0);
1195
1196 return ptr;
1197
1198 error:
1199 return NULL;
1200 }
1201
1202 /**
1203 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1204 * @size: size of memory block to be allocated in bytes
1205 * @align: alignment of the region and block's size
1206 * @min_addr: the lower bound of the memory region from where the allocation
1207 * is preferred (phys address)
1208 * @max_addr: the upper bound of the memory region from where the allocation
1209 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1210 * allocate only from memory limited by memblock.current_limit value
1211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1212 *
1213 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1214 * additional debug information (including caller info), if enabled.
1215 *
1216 * RETURNS:
1217 * Virtual address of allocated memory block on success, NULL on failure.
1218 */
memblock_virt_alloc_try_nid_nopanic(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1219 void * __init memblock_virt_alloc_try_nid_nopanic(
1220 phys_addr_t size, phys_addr_t align,
1221 phys_addr_t min_addr, phys_addr_t max_addr,
1222 int nid)
1223 {
1224 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1225 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1226 (u64)max_addr, (void *)_RET_IP_);
1227 return memblock_virt_alloc_internal(size, align, min_addr,
1228 max_addr, nid);
1229 }
1230
1231 /**
1232 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1233 * @size: size of memory block to be allocated in bytes
1234 * @align: alignment of the region and block's size
1235 * @min_addr: the lower bound of the memory region from where the allocation
1236 * is preferred (phys address)
1237 * @max_addr: the upper bound of the memory region from where the allocation
1238 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1239 * allocate only from memory limited by memblock.current_limit value
1240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1241 *
1242 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1243 * which provides debug information (including caller info), if enabled,
1244 * and panics if the request can not be satisfied.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
memblock_virt_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1249 void * __init memblock_virt_alloc_try_nid(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253 {
1254 void *ptr;
1255
1256 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1257 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1258 (u64)max_addr, (void *)_RET_IP_);
1259 ptr = memblock_virt_alloc_internal(size, align,
1260 min_addr, max_addr, nid);
1261 if (ptr)
1262 return ptr;
1263
1264 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1265 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1266 (u64)max_addr);
1267 return NULL;
1268 }
1269
1270 /**
1271 * __memblock_free_early - free boot memory block
1272 * @base: phys starting address of the boot memory block
1273 * @size: size of the boot memory block in bytes
1274 *
1275 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1276 * The freeing memory will not be released to the buddy allocator.
1277 */
__memblock_free_early(phys_addr_t base,phys_addr_t size)1278 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1279 {
1280 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1281 __func__, (u64)base, (u64)base + size - 1,
1282 (void *)_RET_IP_);
1283 kmemleak_free_part(__va(base), size);
1284 memblock_remove_range(&memblock.reserved, base, size);
1285 }
1286
1287 /*
1288 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1289 * @addr: phys starting address of the boot memory block
1290 * @size: size of the boot memory block in bytes
1291 *
1292 * This is only useful when the bootmem allocator has already been torn
1293 * down, but we are still initializing the system. Pages are released directly
1294 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1295 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1296 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1297 {
1298 u64 cursor, end;
1299
1300 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1301 __func__, (u64)base, (u64)base + size - 1,
1302 (void *)_RET_IP_);
1303 kmemleak_free_part(__va(base), size);
1304 cursor = PFN_UP(base);
1305 end = PFN_DOWN(base + size);
1306
1307 for (; cursor < end; cursor++) {
1308 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1309 totalram_pages++;
1310 }
1311 }
1312
1313 /*
1314 * Remaining API functions
1315 */
1316
memblock_phys_mem_size(void)1317 phys_addr_t __init memblock_phys_mem_size(void)
1318 {
1319 return memblock.memory.total_size;
1320 }
1321
memblock_mem_size(unsigned long limit_pfn)1322 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1323 {
1324 unsigned long pages = 0;
1325 struct memblock_region *r;
1326 unsigned long start_pfn, end_pfn;
1327
1328 for_each_memblock(memory, r) {
1329 start_pfn = memblock_region_memory_base_pfn(r);
1330 end_pfn = memblock_region_memory_end_pfn(r);
1331 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1332 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1333 pages += end_pfn - start_pfn;
1334 }
1335
1336 return PFN_PHYS(pages);
1337 }
1338
1339 /* lowest address */
memblock_start_of_DRAM(void)1340 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1341 {
1342 return memblock.memory.regions[0].base;
1343 }
1344
memblock_end_of_DRAM(void)1345 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1346 {
1347 int idx = memblock.memory.cnt - 1;
1348
1349 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1350 }
1351
memblock_enforce_memory_limit(phys_addr_t limit)1352 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1353 {
1354 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1355 struct memblock_region *r;
1356
1357 if (!limit)
1358 return;
1359
1360 /* find out max address */
1361 for_each_memblock(memory, r) {
1362 if (limit <= r->size) {
1363 max_addr = r->base + limit;
1364 break;
1365 }
1366 limit -= r->size;
1367 }
1368
1369 /* truncate both memory and reserved regions */
1370 memblock_remove_range(&memblock.memory, max_addr,
1371 (phys_addr_t)ULLONG_MAX);
1372 memblock_remove_range(&memblock.reserved, max_addr,
1373 (phys_addr_t)ULLONG_MAX);
1374 }
1375
memblock_search(struct memblock_type * type,phys_addr_t addr)1376 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1377 {
1378 unsigned int left = 0, right = type->cnt;
1379
1380 do {
1381 unsigned int mid = (right + left) / 2;
1382
1383 if (addr < type->regions[mid].base)
1384 right = mid;
1385 else if (addr >= (type->regions[mid].base +
1386 type->regions[mid].size))
1387 left = mid + 1;
1388 else
1389 return mid;
1390 } while (left < right);
1391 return -1;
1392 }
1393
memblock_is_reserved(phys_addr_t addr)1394 int __init memblock_is_reserved(phys_addr_t addr)
1395 {
1396 return memblock_search(&memblock.reserved, addr) != -1;
1397 }
1398
memblock_is_memory(phys_addr_t addr)1399 int __init_memblock memblock_is_memory(phys_addr_t addr)
1400 {
1401 return memblock_search(&memblock.memory, addr) != -1;
1402 }
1403
1404 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1405 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1406 unsigned long *start_pfn, unsigned long *end_pfn)
1407 {
1408 struct memblock_type *type = &memblock.memory;
1409 int mid = memblock_search(type, PFN_PHYS(pfn));
1410
1411 if (mid == -1)
1412 return -1;
1413
1414 *start_pfn = PFN_DOWN(type->regions[mid].base);
1415 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1416
1417 return type->regions[mid].nid;
1418 }
1419 #endif
1420
1421 /**
1422 * memblock_is_region_memory - check if a region is a subset of memory
1423 * @base: base of region to check
1424 * @size: size of region to check
1425 *
1426 * Check if the region [@base, @base+@size) is a subset of a memory block.
1427 *
1428 * RETURNS:
1429 * 0 if false, non-zero if true
1430 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1431 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1432 {
1433 int idx = memblock_search(&memblock.memory, base);
1434 phys_addr_t end = base + memblock_cap_size(base, &size);
1435
1436 if (idx == -1)
1437 return 0;
1438 return memblock.memory.regions[idx].base <= base &&
1439 (memblock.memory.regions[idx].base +
1440 memblock.memory.regions[idx].size) >= end;
1441 }
1442
1443 /**
1444 * memblock_is_region_reserved - check if a region intersects reserved memory
1445 * @base: base of region to check
1446 * @size: size of region to check
1447 *
1448 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1449 *
1450 * RETURNS:
1451 * 0 if false, non-zero if true
1452 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1453 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1454 {
1455 memblock_cap_size(base, &size);
1456 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1457 }
1458
memblock_trim_memory(phys_addr_t align)1459 void __init_memblock memblock_trim_memory(phys_addr_t align)
1460 {
1461 phys_addr_t start, end, orig_start, orig_end;
1462 struct memblock_region *r;
1463
1464 for_each_memblock(memory, r) {
1465 orig_start = r->base;
1466 orig_end = r->base + r->size;
1467 start = round_up(orig_start, align);
1468 end = round_down(orig_end, align);
1469
1470 if (start == orig_start && end == orig_end)
1471 continue;
1472
1473 if (start < end) {
1474 r->base = start;
1475 r->size = end - start;
1476 } else {
1477 memblock_remove_region(&memblock.memory,
1478 r - memblock.memory.regions);
1479 r--;
1480 }
1481 }
1482 }
1483
memblock_set_current_limit(phys_addr_t limit)1484 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1485 {
1486 memblock.current_limit = limit;
1487 }
1488
memblock_get_current_limit(void)1489 phys_addr_t __init_memblock memblock_get_current_limit(void)
1490 {
1491 return memblock.current_limit;
1492 }
1493
memblock_dump(struct memblock_type * type,char * name)1494 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1495 {
1496 unsigned long long base, size;
1497 unsigned long flags;
1498 int i;
1499
1500 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1501
1502 for (i = 0; i < type->cnt; i++) {
1503 struct memblock_region *rgn = &type->regions[i];
1504 char nid_buf[32] = "";
1505
1506 base = rgn->base;
1507 size = rgn->size;
1508 flags = rgn->flags;
1509 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1510 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1511 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1512 memblock_get_region_node(rgn));
1513 #endif
1514 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1515 name, i, base, base + size - 1, size, nid_buf, flags);
1516 }
1517 }
1518
__memblock_dump_all(void)1519 void __init_memblock __memblock_dump_all(void)
1520 {
1521 pr_info("MEMBLOCK configuration:\n");
1522 pr_info(" memory size = %#llx reserved size = %#llx\n",
1523 (unsigned long long)memblock.memory.total_size,
1524 (unsigned long long)memblock.reserved.total_size);
1525
1526 memblock_dump(&memblock.memory, "memory");
1527 memblock_dump(&memblock.reserved, "reserved");
1528 }
1529
memblock_allow_resize(void)1530 void __init memblock_allow_resize(void)
1531 {
1532 memblock_can_resize = 1;
1533 }
1534
early_memblock(char * p)1535 static int __init early_memblock(char *p)
1536 {
1537 if (p && strstr(p, "debug"))
1538 memblock_debug = 1;
1539 return 0;
1540 }
1541 early_param("memblock", early_memblock);
1542
1543 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1544
memblock_debug_show(struct seq_file * m,void * private)1545 static int memblock_debug_show(struct seq_file *m, void *private)
1546 {
1547 struct memblock_type *type = m->private;
1548 struct memblock_region *reg;
1549 int i;
1550
1551 for (i = 0; i < type->cnt; i++) {
1552 reg = &type->regions[i];
1553 seq_printf(m, "%4d: ", i);
1554 if (sizeof(phys_addr_t) == 4)
1555 seq_printf(m, "0x%08lx..0x%08lx\n",
1556 (unsigned long)reg->base,
1557 (unsigned long)(reg->base + reg->size - 1));
1558 else
1559 seq_printf(m, "0x%016llx..0x%016llx\n",
1560 (unsigned long long)reg->base,
1561 (unsigned long long)(reg->base + reg->size - 1));
1562
1563 }
1564 return 0;
1565 }
1566
memblock_debug_open(struct inode * inode,struct file * file)1567 static int memblock_debug_open(struct inode *inode, struct file *file)
1568 {
1569 return single_open(file, memblock_debug_show, inode->i_private);
1570 }
1571
1572 static const struct file_operations memblock_debug_fops = {
1573 .open = memblock_debug_open,
1574 .read = seq_read,
1575 .llseek = seq_lseek,
1576 .release = single_release,
1577 };
1578
memblock_init_debugfs(void)1579 static int __init memblock_init_debugfs(void)
1580 {
1581 struct dentry *root = debugfs_create_dir("memblock", NULL);
1582 if (!root)
1583 return -ENXIO;
1584 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1585 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1586 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1587 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1588 #endif
1589
1590 return 0;
1591 }
1592 __initcall(memblock_init_debugfs);
1593
1594 #endif /* CONFIG_DEBUG_FS */
1595