• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
hwpoison_filter_dev(struct page * p)79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
hwpoison_filter_flags(struct page * p)109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
hwpoison_filter_task(struct page * p)157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
hwpoison_filter(struct page * p)160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
hwpoison_filter(struct page * p)177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, current);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
shake_page(struct page * p,int access)230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages();
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_slab here (which would also shrink other caches) if
243 	 * access is not potentially fatal.
244 	 */
245 	if (access) {
246 		int nr;
247 		int nid = page_to_nid(p);
248 		do {
249 			struct shrink_control shrink = {
250 				.gfp_mask = GFP_KERNEL,
251 			};
252 			node_set(nid, shrink.nodes_to_scan);
253 
254 			nr = shrink_slab(&shrink, 1000, 1000);
255 			if (page_count(p) == 1)
256 				break;
257 		} while (nr > 10);
258 	}
259 }
260 EXPORT_SYMBOL_GPL(shake_page);
261 
262 /*
263  * Kill all processes that have a poisoned page mapped and then isolate
264  * the page.
265  *
266  * General strategy:
267  * Find all processes having the page mapped and kill them.
268  * But we keep a page reference around so that the page is not
269  * actually freed yet.
270  * Then stash the page away
271  *
272  * There's no convenient way to get back to mapped processes
273  * from the VMAs. So do a brute-force search over all
274  * running processes.
275  *
276  * Remember that machine checks are not common (or rather
277  * if they are common you have other problems), so this shouldn't
278  * be a performance issue.
279  *
280  * Also there are some races possible while we get from the
281  * error detection to actually handle it.
282  */
283 
284 struct to_kill {
285 	struct list_head nd;
286 	struct task_struct *tsk;
287 	unsigned long addr;
288 	char addr_valid;
289 };
290 
291 /*
292  * Failure handling: if we can't find or can't kill a process there's
293  * not much we can do.	We just print a message and ignore otherwise.
294  */
295 
296 /*
297  * Schedule a process for later kill.
298  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299  * TBD would GFP_NOIO be enough?
300  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 		       struct vm_area_struct *vma,
303 		       struct list_head *to_kill,
304 		       struct to_kill **tkc)
305 {
306 	struct to_kill *tk;
307 
308 	if (*tkc) {
309 		tk = *tkc;
310 		*tkc = NULL;
311 	} else {
312 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 		if (!tk) {
314 			printk(KERN_ERR
315 		"MCE: Out of memory while machine check handling\n");
316 			return;
317 		}
318 	}
319 	tk->addr = page_address_in_vma(p, vma);
320 	tk->addr_valid = 1;
321 
322 	/*
323 	 * In theory we don't have to kill when the page was
324 	 * munmaped. But it could be also a mremap. Since that's
325 	 * likely very rare kill anyways just out of paranoia, but use
326 	 * a SIGKILL because the error is not contained anymore.
327 	 */
328 	if (tk->addr == -EFAULT) {
329 		pr_info("MCE: Unable to find user space address %lx in %s\n",
330 			page_to_pfn(p), tsk->comm);
331 		tk->addr_valid = 0;
332 	}
333 	get_task_struct(tsk);
334 	tk->tsk = tsk;
335 	list_add_tail(&tk->nd, to_kill);
336 }
337 
338 /*
339  * Kill the processes that have been collected earlier.
340  *
341  * Only do anything when DOIT is set, otherwise just free the list
342  * (this is used for clean pages which do not need killing)
343  * Also when FAIL is set do a force kill because something went
344  * wrong earlier.
345  */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,int fail,struct page * page,unsigned long pfn,int flags)346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 			  int fail, struct page *page, unsigned long pfn,
348 			  int flags)
349 {
350 	struct to_kill *tk, *next;
351 
352 	list_for_each_entry_safe (tk, next, to_kill, nd) {
353 		if (forcekill) {
354 			/*
355 			 * In case something went wrong with munmapping
356 			 * make sure the process doesn't catch the
357 			 * signal and then access the memory. Just kill it.
358 			 */
359 			if (fail || tk->addr_valid == 0) {
360 				printk(KERN_ERR
361 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 					pfn, tk->tsk->comm, tk->tsk->pid);
363 				force_sig(SIGKILL, tk->tsk);
364 			}
365 
366 			/*
367 			 * In theory the process could have mapped
368 			 * something else on the address in-between. We could
369 			 * check for that, but we need to tell the
370 			 * process anyways.
371 			 */
372 			else if (kill_proc(tk->tsk, tk->addr, trapno,
373 					      pfn, page, flags) < 0)
374 				printk(KERN_ERR
375 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 					pfn, tk->tsk->comm, tk->tsk->pid);
377 		}
378 		put_task_struct(tk->tsk);
379 		kfree(tk);
380 	}
381 }
382 
383 /*
384  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
385  * on behalf of the thread group. Return task_struct of the (first found)
386  * dedicated thread if found, and return NULL otherwise.
387  *
388  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
389  * have to call rcu_read_lock/unlock() in this function.
390  */
find_early_kill_thread(struct task_struct * tsk)391 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
392 {
393 	struct task_struct *t;
394 
395 	for_each_thread(tsk, t)
396 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
397 			return t;
398 	return NULL;
399 }
400 
401 /*
402  * Determine whether a given process is "early kill" process which expects
403  * to be signaled when some page under the process is hwpoisoned.
404  * Return task_struct of the dedicated thread (main thread unless explicitly
405  * specified) if the process is "early kill," and otherwise returns NULL.
406  */
task_early_kill(struct task_struct * tsk,int force_early)407 static struct task_struct *task_early_kill(struct task_struct *tsk,
408 					   int force_early)
409 {
410 	struct task_struct *t;
411 	if (!tsk->mm)
412 		return NULL;
413 	if (force_early)
414 		return tsk;
415 	t = find_early_kill_thread(tsk);
416 	if (t)
417 		return t;
418 	if (sysctl_memory_failure_early_kill)
419 		return tsk;
420 	return NULL;
421 }
422 
423 /*
424  * Collect processes when the error hit an anonymous page.
425  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)426 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
427 			      struct to_kill **tkc, int force_early)
428 {
429 	struct vm_area_struct *vma;
430 	struct task_struct *tsk;
431 	struct anon_vma *av;
432 	pgoff_t pgoff;
433 
434 	av = page_lock_anon_vma_read(page);
435 	if (av == NULL)	/* Not actually mapped anymore */
436 		return;
437 
438 	pgoff = page_to_pgoff(page);
439 	read_lock(&tasklist_lock);
440 	for_each_process (tsk) {
441 		struct anon_vma_chain *vmac;
442 		struct task_struct *t = task_early_kill(tsk, force_early);
443 
444 		if (!t)
445 			continue;
446 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
447 					       pgoff, pgoff) {
448 			vma = vmac->vma;
449 			if (!page_mapped_in_vma(page, vma))
450 				continue;
451 			if (vma->vm_mm == t->mm)
452 				add_to_kill(t, page, vma, to_kill, tkc);
453 		}
454 	}
455 	read_unlock(&tasklist_lock);
456 	page_unlock_anon_vma_read(av);
457 }
458 
459 /*
460  * Collect processes when the error hit a file mapped page.
461  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)462 static void collect_procs_file(struct page *page, struct list_head *to_kill,
463 			      struct to_kill **tkc, int force_early)
464 {
465 	struct vm_area_struct *vma;
466 	struct task_struct *tsk;
467 	struct address_space *mapping = page->mapping;
468 
469 	mutex_lock(&mapping->i_mmap_mutex);
470 	read_lock(&tasklist_lock);
471 	for_each_process(tsk) {
472 		pgoff_t pgoff = page_to_pgoff(page);
473 		struct task_struct *t = task_early_kill(tsk, force_early);
474 
475 		if (!t)
476 			continue;
477 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
478 				      pgoff) {
479 			/*
480 			 * Send early kill signal to tasks where a vma covers
481 			 * the page but the corrupted page is not necessarily
482 			 * mapped it in its pte.
483 			 * Assume applications who requested early kill want
484 			 * to be informed of all such data corruptions.
485 			 */
486 			if (vma->vm_mm == t->mm)
487 				add_to_kill(t, page, vma, to_kill, tkc);
488 		}
489 	}
490 	read_unlock(&tasklist_lock);
491 	mutex_unlock(&mapping->i_mmap_mutex);
492 }
493 
494 /*
495  * Collect the processes who have the corrupted page mapped to kill.
496  * This is done in two steps for locking reasons.
497  * First preallocate one tokill structure outside the spin locks,
498  * so that we can kill at least one process reasonably reliable.
499  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)500 static void collect_procs(struct page *page, struct list_head *tokill,
501 				int force_early)
502 {
503 	struct to_kill *tk;
504 
505 	if (!page->mapping)
506 		return;
507 
508 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
509 	if (!tk)
510 		return;
511 	if (PageAnon(page))
512 		collect_procs_anon(page, tokill, &tk, force_early);
513 	else
514 		collect_procs_file(page, tokill, &tk, force_early);
515 	kfree(tk);
516 }
517 
518 /*
519  * Error handlers for various types of pages.
520  */
521 
522 enum outcome {
523 	IGNORED,	/* Error: cannot be handled */
524 	FAILED,		/* Error: handling failed */
525 	DELAYED,	/* Will be handled later */
526 	RECOVERED,	/* Successfully recovered */
527 };
528 
529 static const char *action_name[] = {
530 	[IGNORED] = "Ignored",
531 	[FAILED] = "Failed",
532 	[DELAYED] = "Delayed",
533 	[RECOVERED] = "Recovered",
534 };
535 
536 /*
537  * XXX: It is possible that a page is isolated from LRU cache,
538  * and then kept in swap cache or failed to remove from page cache.
539  * The page count will stop it from being freed by unpoison.
540  * Stress tests should be aware of this memory leak problem.
541  */
delete_from_lru_cache(struct page * p)542 static int delete_from_lru_cache(struct page *p)
543 {
544 	if (!isolate_lru_page(p)) {
545 		/*
546 		 * Clear sensible page flags, so that the buddy system won't
547 		 * complain when the page is unpoison-and-freed.
548 		 */
549 		ClearPageActive(p);
550 		ClearPageUnevictable(p);
551 
552 		/*
553 		 * Poisoned page might never drop its ref count to 0 so we have
554 		 * to uncharge it manually from its memcg.
555 		 */
556 		mem_cgroup_uncharge(p);
557 
558 		/*
559 		 * drop the page count elevated by isolate_lru_page()
560 		 */
561 		page_cache_release(p);
562 		return 0;
563 	}
564 	return -EIO;
565 }
566 
567 /*
568  * Error hit kernel page.
569  * Do nothing, try to be lucky and not touch this instead. For a few cases we
570  * could be more sophisticated.
571  */
me_kernel(struct page * p,unsigned long pfn)572 static int me_kernel(struct page *p, unsigned long pfn)
573 {
574 	return IGNORED;
575 }
576 
577 /*
578  * Page in unknown state. Do nothing.
579  */
me_unknown(struct page * p,unsigned long pfn)580 static int me_unknown(struct page *p, unsigned long pfn)
581 {
582 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
583 	return FAILED;
584 }
585 
586 /*
587  * Clean (or cleaned) page cache page.
588  */
me_pagecache_clean(struct page * p,unsigned long pfn)589 static int me_pagecache_clean(struct page *p, unsigned long pfn)
590 {
591 	int err;
592 	int ret = FAILED;
593 	struct address_space *mapping;
594 
595 	delete_from_lru_cache(p);
596 
597 	/*
598 	 * For anonymous pages we're done the only reference left
599 	 * should be the one m_f() holds.
600 	 */
601 	if (PageAnon(p))
602 		return RECOVERED;
603 
604 	/*
605 	 * Now truncate the page in the page cache. This is really
606 	 * more like a "temporary hole punch"
607 	 * Don't do this for block devices when someone else
608 	 * has a reference, because it could be file system metadata
609 	 * and that's not safe to truncate.
610 	 */
611 	mapping = page_mapping(p);
612 	if (!mapping) {
613 		/*
614 		 * Page has been teared down in the meanwhile
615 		 */
616 		return FAILED;
617 	}
618 
619 	/*
620 	 * Truncation is a bit tricky. Enable it per file system for now.
621 	 *
622 	 * Open: to take i_mutex or not for this? Right now we don't.
623 	 */
624 	if (mapping->a_ops->error_remove_page) {
625 		err = mapping->a_ops->error_remove_page(mapping, p);
626 		if (err != 0) {
627 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
628 					pfn, err);
629 		} else if (page_has_private(p) &&
630 				!try_to_release_page(p, GFP_NOIO)) {
631 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
632 		} else {
633 			ret = RECOVERED;
634 		}
635 	} else {
636 		/*
637 		 * If the file system doesn't support it just invalidate
638 		 * This fails on dirty or anything with private pages
639 		 */
640 		if (invalidate_inode_page(p))
641 			ret = RECOVERED;
642 		else
643 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
644 				pfn);
645 	}
646 	return ret;
647 }
648 
649 /*
650  * Dirty pagecache page
651  * Issues: when the error hit a hole page the error is not properly
652  * propagated.
653  */
me_pagecache_dirty(struct page * p,unsigned long pfn)654 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
655 {
656 	struct address_space *mapping = page_mapping(p);
657 
658 	SetPageError(p);
659 	/* TBD: print more information about the file. */
660 	if (mapping) {
661 		/*
662 		 * IO error will be reported by write(), fsync(), etc.
663 		 * who check the mapping.
664 		 * This way the application knows that something went
665 		 * wrong with its dirty file data.
666 		 *
667 		 * There's one open issue:
668 		 *
669 		 * The EIO will be only reported on the next IO
670 		 * operation and then cleared through the IO map.
671 		 * Normally Linux has two mechanisms to pass IO error
672 		 * first through the AS_EIO flag in the address space
673 		 * and then through the PageError flag in the page.
674 		 * Since we drop pages on memory failure handling the
675 		 * only mechanism open to use is through AS_AIO.
676 		 *
677 		 * This has the disadvantage that it gets cleared on
678 		 * the first operation that returns an error, while
679 		 * the PageError bit is more sticky and only cleared
680 		 * when the page is reread or dropped.  If an
681 		 * application assumes it will always get error on
682 		 * fsync, but does other operations on the fd before
683 		 * and the page is dropped between then the error
684 		 * will not be properly reported.
685 		 *
686 		 * This can already happen even without hwpoisoned
687 		 * pages: first on metadata IO errors (which only
688 		 * report through AS_EIO) or when the page is dropped
689 		 * at the wrong time.
690 		 *
691 		 * So right now we assume that the application DTRT on
692 		 * the first EIO, but we're not worse than other parts
693 		 * of the kernel.
694 		 */
695 		mapping_set_error(mapping, EIO);
696 	}
697 
698 	return me_pagecache_clean(p, pfn);
699 }
700 
701 /*
702  * Clean and dirty swap cache.
703  *
704  * Dirty swap cache page is tricky to handle. The page could live both in page
705  * cache and swap cache(ie. page is freshly swapped in). So it could be
706  * referenced concurrently by 2 types of PTEs:
707  * normal PTEs and swap PTEs. We try to handle them consistently by calling
708  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
709  * and then
710  *      - clear dirty bit to prevent IO
711  *      - remove from LRU
712  *      - but keep in the swap cache, so that when we return to it on
713  *        a later page fault, we know the application is accessing
714  *        corrupted data and shall be killed (we installed simple
715  *        interception code in do_swap_page to catch it).
716  *
717  * Clean swap cache pages can be directly isolated. A later page fault will
718  * bring in the known good data from disk.
719  */
me_swapcache_dirty(struct page * p,unsigned long pfn)720 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
721 {
722 	ClearPageDirty(p);
723 	/* Trigger EIO in shmem: */
724 	ClearPageUptodate(p);
725 
726 	if (!delete_from_lru_cache(p))
727 		return DELAYED;
728 	else
729 		return FAILED;
730 }
731 
me_swapcache_clean(struct page * p,unsigned long pfn)732 static int me_swapcache_clean(struct page *p, unsigned long pfn)
733 {
734 	delete_from_swap_cache(p);
735 
736 	if (!delete_from_lru_cache(p))
737 		return RECOVERED;
738 	else
739 		return FAILED;
740 }
741 
742 /*
743  * Huge pages. Needs work.
744  * Issues:
745  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
746  *   To narrow down kill region to one page, we need to break up pmd.
747  */
me_huge_page(struct page * p,unsigned long pfn)748 static int me_huge_page(struct page *p, unsigned long pfn)
749 {
750 	int res = 0;
751 	struct page *hpage = compound_head(p);
752 	/*
753 	 * We can safely recover from error on free or reserved (i.e.
754 	 * not in-use) hugepage by dequeuing it from freelist.
755 	 * To check whether a hugepage is in-use or not, we can't use
756 	 * page->lru because it can be used in other hugepage operations,
757 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
758 	 * So instead we use page_mapping() and PageAnon().
759 	 * We assume that this function is called with page lock held,
760 	 * so there is no race between isolation and mapping/unmapping.
761 	 */
762 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
763 		res = dequeue_hwpoisoned_huge_page(hpage);
764 		if (!res)
765 			return RECOVERED;
766 	}
767 	return DELAYED;
768 }
769 
770 /*
771  * Various page states we can handle.
772  *
773  * A page state is defined by its current page->flags bits.
774  * The table matches them in order and calls the right handler.
775  *
776  * This is quite tricky because we can access page at any time
777  * in its live cycle, so all accesses have to be extremely careful.
778  *
779  * This is not complete. More states could be added.
780  * For any missing state don't attempt recovery.
781  */
782 
783 #define dirty		(1UL << PG_dirty)
784 #define sc		(1UL << PG_swapcache)
785 #define unevict		(1UL << PG_unevictable)
786 #define mlock		(1UL << PG_mlocked)
787 #define writeback	(1UL << PG_writeback)
788 #define lru		(1UL << PG_lru)
789 #define swapbacked	(1UL << PG_swapbacked)
790 #define head		(1UL << PG_head)
791 #define tail		(1UL << PG_tail)
792 #define compound	(1UL << PG_compound)
793 #define slab		(1UL << PG_slab)
794 #define reserved	(1UL << PG_reserved)
795 
796 static struct page_state {
797 	unsigned long mask;
798 	unsigned long res;
799 	char *msg;
800 	int (*action)(struct page *p, unsigned long pfn);
801 } error_states[] = {
802 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
803 	/*
804 	 * free pages are specially detected outside this table:
805 	 * PG_buddy pages only make a small fraction of all free pages.
806 	 */
807 
808 	/*
809 	 * Could in theory check if slab page is free or if we can drop
810 	 * currently unused objects without touching them. But just
811 	 * treat it as standard kernel for now.
812 	 */
813 	{ slab,		slab,		"kernel slab",	me_kernel },
814 
815 #ifdef CONFIG_PAGEFLAGS_EXTENDED
816 	{ head,		head,		"huge",		me_huge_page },
817 	{ tail,		tail,		"huge",		me_huge_page },
818 #else
819 	{ compound,	compound,	"huge",		me_huge_page },
820 #endif
821 
822 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
823 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
824 
825 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
826 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
827 
828 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
829 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
830 
831 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
832 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
833 
834 	/*
835 	 * Catchall entry: must be at end.
836 	 */
837 	{ 0,		0,		"unknown page state",	me_unknown },
838 };
839 
840 #undef dirty
841 #undef sc
842 #undef unevict
843 #undef mlock
844 #undef writeback
845 #undef lru
846 #undef swapbacked
847 #undef head
848 #undef tail
849 #undef compound
850 #undef slab
851 #undef reserved
852 
853 /*
854  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
855  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
856  */
action_result(unsigned long pfn,char * msg,int result)857 static void action_result(unsigned long pfn, char *msg, int result)
858 {
859 	pr_err("MCE %#lx: %s page recovery: %s\n",
860 		pfn, msg, action_name[result]);
861 }
862 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)863 static int page_action(struct page_state *ps, struct page *p,
864 			unsigned long pfn)
865 {
866 	int result;
867 	int count;
868 
869 	result = ps->action(p, pfn);
870 	action_result(pfn, ps->msg, result);
871 
872 	count = page_count(p) - 1;
873 	if (ps->action == me_swapcache_dirty && result == DELAYED)
874 		count--;
875 	if (count != 0) {
876 		printk(KERN_ERR
877 		       "MCE %#lx: %s page still referenced by %d users\n",
878 		       pfn, ps->msg, count);
879 		result = FAILED;
880 	}
881 
882 	/* Could do more checks here if page looks ok */
883 	/*
884 	 * Could adjust zone counters here to correct for the missing page.
885 	 */
886 
887 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
888 }
889 
890 /*
891  * Do all that is necessary to remove user space mappings. Unmap
892  * the pages and send SIGBUS to the processes if the data was dirty.
893  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags,struct page ** hpagep)894 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
895 				  int trapno, int flags, struct page **hpagep)
896 {
897 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
898 	struct address_space *mapping;
899 	LIST_HEAD(tokill);
900 	int ret;
901 	int kill = 1, forcekill;
902 	struct page *hpage = *hpagep;
903 	struct page *ppage;
904 
905 	/*
906 	 * Here we are interested only in user-mapped pages, so skip any
907 	 * other types of pages.
908 	 */
909 	if (PageReserved(p) || PageSlab(p))
910 		return SWAP_SUCCESS;
911 	if (!(PageLRU(hpage) || PageHuge(p)))
912 		return SWAP_SUCCESS;
913 
914 	/*
915 	 * This check implies we don't kill processes if their pages
916 	 * are in the swap cache early. Those are always late kills.
917 	 */
918 	if (!page_mapped(hpage))
919 		return SWAP_SUCCESS;
920 
921 	if (PageKsm(p)) {
922 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
923 		return SWAP_FAIL;
924 	}
925 
926 	if (PageSwapCache(p)) {
927 		printk(KERN_ERR
928 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
929 		ttu |= TTU_IGNORE_HWPOISON;
930 	}
931 
932 	/*
933 	 * Propagate the dirty bit from PTEs to struct page first, because we
934 	 * need this to decide if we should kill or just drop the page.
935 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
936 	 * be called inside page lock (it's recommended but not enforced).
937 	 */
938 	mapping = page_mapping(hpage);
939 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
940 	    mapping_cap_writeback_dirty(mapping)) {
941 		if (page_mkclean(hpage)) {
942 			SetPageDirty(hpage);
943 		} else {
944 			kill = 0;
945 			ttu |= TTU_IGNORE_HWPOISON;
946 			printk(KERN_INFO
947 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
948 				pfn);
949 		}
950 	}
951 
952 	/*
953 	 * ppage: poisoned page
954 	 *   if p is regular page(4k page)
955 	 *        ppage == real poisoned page;
956 	 *   else p is hugetlb or THP, ppage == head page.
957 	 */
958 	ppage = hpage;
959 
960 	if (PageTransHuge(hpage)) {
961 		/*
962 		 * Verify that this isn't a hugetlbfs head page, the check for
963 		 * PageAnon is just for avoid tripping a split_huge_page
964 		 * internal debug check, as split_huge_page refuses to deal with
965 		 * anything that isn't an anon page. PageAnon can't go away fro
966 		 * under us because we hold a refcount on the hpage, without a
967 		 * refcount on the hpage. split_huge_page can't be safely called
968 		 * in the first place, having a refcount on the tail isn't
969 		 * enough * to be safe.
970 		 */
971 		if (!PageHuge(hpage) && PageAnon(hpage)) {
972 			if (unlikely(split_huge_page(hpage))) {
973 				/*
974 				 * FIXME: if splitting THP is failed, it is
975 				 * better to stop the following operation rather
976 				 * than causing panic by unmapping. System might
977 				 * survive if the page is freed later.
978 				 */
979 				printk(KERN_INFO
980 					"MCE %#lx: failed to split THP\n", pfn);
981 
982 				BUG_ON(!PageHWPoison(p));
983 				return SWAP_FAIL;
984 			}
985 			/*
986 			 * We pinned the head page for hwpoison handling,
987 			 * now we split the thp and we are interested in
988 			 * the hwpoisoned raw page, so move the refcount
989 			 * to it. Similarly, page lock is shifted.
990 			 */
991 			if (hpage != p) {
992 				if (!(flags & MF_COUNT_INCREASED)) {
993 					put_page(hpage);
994 					get_page(p);
995 				}
996 				lock_page(p);
997 				unlock_page(hpage);
998 				*hpagep = p;
999 			}
1000 			/* THP is split, so ppage should be the real poisoned page. */
1001 			ppage = p;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * First collect all the processes that have the page
1007 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1008 	 * because ttu takes the rmap data structures down.
1009 	 *
1010 	 * Error handling: We ignore errors here because
1011 	 * there's nothing that can be done.
1012 	 */
1013 	if (kill)
1014 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1015 
1016 	ret = try_to_unmap(ppage, ttu);
1017 	if (ret != SWAP_SUCCESS)
1018 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1019 				pfn, page_mapcount(ppage));
1020 
1021 	/*
1022 	 * Now that the dirty bit has been propagated to the
1023 	 * struct page and all unmaps done we can decide if
1024 	 * killing is needed or not.  Only kill when the page
1025 	 * was dirty or the process is not restartable,
1026 	 * otherwise the tokill list is merely
1027 	 * freed.  When there was a problem unmapping earlier
1028 	 * use a more force-full uncatchable kill to prevent
1029 	 * any accesses to the poisoned memory.
1030 	 */
1031 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1032 	kill_procs(&tokill, forcekill, trapno,
1033 		      ret != SWAP_SUCCESS, p, pfn, flags);
1034 
1035 	return ret;
1036 }
1037 
set_page_hwpoison_huge_page(struct page * hpage)1038 static void set_page_hwpoison_huge_page(struct page *hpage)
1039 {
1040 	int i;
1041 	int nr_pages = 1 << compound_order(hpage);
1042 	for (i = 0; i < nr_pages; i++)
1043 		SetPageHWPoison(hpage + i);
1044 }
1045 
clear_page_hwpoison_huge_page(struct page * hpage)1046 static void clear_page_hwpoison_huge_page(struct page *hpage)
1047 {
1048 	int i;
1049 	int nr_pages = 1 << compound_order(hpage);
1050 	for (i = 0; i < nr_pages; i++)
1051 		ClearPageHWPoison(hpage + i);
1052 }
1053 
1054 /**
1055  * memory_failure - Handle memory failure of a page.
1056  * @pfn: Page Number of the corrupted page
1057  * @trapno: Trap number reported in the signal to user space.
1058  * @flags: fine tune action taken
1059  *
1060  * This function is called by the low level machine check code
1061  * of an architecture when it detects hardware memory corruption
1062  * of a page. It tries its best to recover, which includes
1063  * dropping pages, killing processes etc.
1064  *
1065  * The function is primarily of use for corruptions that
1066  * happen outside the current execution context (e.g. when
1067  * detected by a background scrubber)
1068  *
1069  * Must run in process context (e.g. a work queue) with interrupts
1070  * enabled and no spinlocks hold.
1071  */
memory_failure(unsigned long pfn,int trapno,int flags)1072 int memory_failure(unsigned long pfn, int trapno, int flags)
1073 {
1074 	struct page_state *ps;
1075 	struct page *p;
1076 	struct page *hpage;
1077 	int res;
1078 	unsigned int nr_pages;
1079 	unsigned long page_flags;
1080 
1081 	if (!sysctl_memory_failure_recovery)
1082 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1083 
1084 	if (!pfn_valid(pfn)) {
1085 		printk(KERN_ERR
1086 		       "MCE %#lx: memory outside kernel control\n",
1087 		       pfn);
1088 		return -ENXIO;
1089 	}
1090 
1091 	p = pfn_to_page(pfn);
1092 	hpage = compound_head(p);
1093 	if (TestSetPageHWPoison(p)) {
1094 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1095 		return 0;
1096 	}
1097 
1098 	/*
1099 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1100 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1101 	 * transparent hugepages, they are supposed to be split and error
1102 	 * measurement is done in normal page units.  So nr_pages should be one
1103 	 * in this case.
1104 	 */
1105 	if (PageHuge(p))
1106 		nr_pages = 1 << compound_order(hpage);
1107 	else /* normal page or thp */
1108 		nr_pages = 1;
1109 	atomic_long_add(nr_pages, &num_poisoned_pages);
1110 
1111 	/*
1112 	 * We need/can do nothing about count=0 pages.
1113 	 * 1) it's a free page, and therefore in safe hand:
1114 	 *    prep_new_page() will be the gate keeper.
1115 	 * 2) it's a free hugepage, which is also safe:
1116 	 *    an affected hugepage will be dequeued from hugepage freelist,
1117 	 *    so there's no concern about reusing it ever after.
1118 	 * 3) it's part of a non-compound high order page.
1119 	 *    Implies some kernel user: cannot stop them from
1120 	 *    R/W the page; let's pray that the page has been
1121 	 *    used and will be freed some time later.
1122 	 * In fact it's dangerous to directly bump up page count from 0,
1123 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1124 	 */
1125 	if (!(flags & MF_COUNT_INCREASED) &&
1126 		!get_page_unless_zero(hpage)) {
1127 		if (is_free_buddy_page(p)) {
1128 			action_result(pfn, "free buddy", DELAYED);
1129 			return 0;
1130 		} else if (PageHuge(hpage)) {
1131 			/*
1132 			 * Check "filter hit" and "race with other subpage."
1133 			 */
1134 			lock_page(hpage);
1135 			if (PageHWPoison(hpage)) {
1136 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1137 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1138 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1139 					unlock_page(hpage);
1140 					return 0;
1141 				}
1142 			}
1143 			set_page_hwpoison_huge_page(hpage);
1144 			res = dequeue_hwpoisoned_huge_page(hpage);
1145 			action_result(pfn, "free huge",
1146 				      res ? IGNORED : DELAYED);
1147 			unlock_page(hpage);
1148 			return res;
1149 		} else {
1150 			action_result(pfn, "high order kernel", IGNORED);
1151 			return -EBUSY;
1152 		}
1153 	}
1154 
1155 	/*
1156 	 * We ignore non-LRU pages for good reasons.
1157 	 * - PG_locked is only well defined for LRU pages and a few others
1158 	 * - to avoid races with __set_page_locked()
1159 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1160 	 * The check (unnecessarily) ignores LRU pages being isolated and
1161 	 * walked by the page reclaim code, however that's not a big loss.
1162 	 */
1163 	if (!PageHuge(p)) {
1164 		if (!PageLRU(hpage))
1165 			shake_page(hpage, 0);
1166 		if (!PageLRU(hpage)) {
1167 			/*
1168 			 * shake_page could have turned it free.
1169 			 */
1170 			if (is_free_buddy_page(p)) {
1171 				if (flags & MF_COUNT_INCREASED)
1172 					action_result(pfn, "free buddy", DELAYED);
1173 				else
1174 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1175 				return 0;
1176 			}
1177 		}
1178 	}
1179 
1180 	lock_page(hpage);
1181 
1182 	/*
1183 	 * The page could have changed compound pages during the locking.
1184 	 * If this happens just bail out.
1185 	 */
1186 	if (compound_head(p) != hpage) {
1187 		action_result(pfn, "different compound page after locking", IGNORED);
1188 		res = -EBUSY;
1189 		goto out;
1190 	}
1191 
1192 	/*
1193 	 * We use page flags to determine what action should be taken, but
1194 	 * the flags can be modified by the error containment action.  One
1195 	 * example is an mlocked page, where PG_mlocked is cleared by
1196 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1197 	 * correctly, we save a copy of the page flags at this time.
1198 	 */
1199 	if (PageHuge(p))
1200 		page_flags = hpage->flags;
1201 	else
1202 		page_flags = p->flags;
1203 
1204 	/*
1205 	 * unpoison always clear PG_hwpoison inside page lock
1206 	 */
1207 	if (!PageHWPoison(p)) {
1208 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1209 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1210 		put_page(hpage);
1211 		res = 0;
1212 		goto out;
1213 	}
1214 	if (hwpoison_filter(p)) {
1215 		if (TestClearPageHWPoison(p))
1216 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1217 		unlock_page(hpage);
1218 		put_page(hpage);
1219 		return 0;
1220 	}
1221 
1222 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1223 		goto identify_page_state;
1224 
1225 	/*
1226 	 * For error on the tail page, we should set PG_hwpoison
1227 	 * on the head page to show that the hugepage is hwpoisoned
1228 	 */
1229 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1230 		action_result(pfn, "hugepage already hardware poisoned",
1231 				IGNORED);
1232 		unlock_page(hpage);
1233 		put_page(hpage);
1234 		return 0;
1235 	}
1236 	/*
1237 	 * Set PG_hwpoison on all pages in an error hugepage,
1238 	 * because containment is done in hugepage unit for now.
1239 	 * Since we have done TestSetPageHWPoison() for the head page with
1240 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1241 	 */
1242 	if (PageHuge(p))
1243 		set_page_hwpoison_huge_page(hpage);
1244 
1245 	/*
1246 	 * It's very difficult to mess with pages currently under IO
1247 	 * and in many cases impossible, so we just avoid it here.
1248 	 */
1249 	wait_on_page_writeback(p);
1250 
1251 	/*
1252 	 * Now take care of user space mappings.
1253 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1254 	 *
1255 	 * When the raw error page is thp tail page, hpage points to the raw
1256 	 * page after thp split.
1257 	 */
1258 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1259 	    != SWAP_SUCCESS) {
1260 		action_result(pfn, "unmapping failed", IGNORED);
1261 		res = -EBUSY;
1262 		goto out;
1263 	}
1264 
1265 	/*
1266 	 * Torn down by someone else?
1267 	 */
1268 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1269 		action_result(pfn, "already truncated LRU", IGNORED);
1270 		res = -EBUSY;
1271 		goto out;
1272 	}
1273 
1274 identify_page_state:
1275 	res = -EBUSY;
1276 	/*
1277 	 * The first check uses the current page flags which may not have any
1278 	 * relevant information. The second check with the saved page flagss is
1279 	 * carried out only if the first check can't determine the page status.
1280 	 */
1281 	for (ps = error_states;; ps++)
1282 		if ((p->flags & ps->mask) == ps->res)
1283 			break;
1284 
1285 	page_flags |= (p->flags & (1UL << PG_dirty));
1286 
1287 	if (!ps->mask)
1288 		for (ps = error_states;; ps++)
1289 			if ((page_flags & ps->mask) == ps->res)
1290 				break;
1291 	res = page_action(ps, p, pfn);
1292 out:
1293 	unlock_page(hpage);
1294 	return res;
1295 }
1296 EXPORT_SYMBOL_GPL(memory_failure);
1297 
1298 #define MEMORY_FAILURE_FIFO_ORDER	4
1299 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1300 
1301 struct memory_failure_entry {
1302 	unsigned long pfn;
1303 	int trapno;
1304 	int flags;
1305 };
1306 
1307 struct memory_failure_cpu {
1308 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1309 		      MEMORY_FAILURE_FIFO_SIZE);
1310 	spinlock_t lock;
1311 	struct work_struct work;
1312 };
1313 
1314 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1315 
1316 /**
1317  * memory_failure_queue - Schedule handling memory failure of a page.
1318  * @pfn: Page Number of the corrupted page
1319  * @trapno: Trap number reported in the signal to user space.
1320  * @flags: Flags for memory failure handling
1321  *
1322  * This function is called by the low level hardware error handler
1323  * when it detects hardware memory corruption of a page. It schedules
1324  * the recovering of error page, including dropping pages, killing
1325  * processes etc.
1326  *
1327  * The function is primarily of use for corruptions that
1328  * happen outside the current execution context (e.g. when
1329  * detected by a background scrubber)
1330  *
1331  * Can run in IRQ context.
1332  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1333 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1334 {
1335 	struct memory_failure_cpu *mf_cpu;
1336 	unsigned long proc_flags;
1337 	struct memory_failure_entry entry = {
1338 		.pfn =		pfn,
1339 		.trapno =	trapno,
1340 		.flags =	flags,
1341 	};
1342 
1343 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1344 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 	if (kfifo_put(&mf_cpu->fifo, entry))
1346 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347 	else
1348 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349 		       pfn);
1350 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 	put_cpu_var(memory_failure_cpu);
1352 }
1353 EXPORT_SYMBOL_GPL(memory_failure_queue);
1354 
memory_failure_work_func(struct work_struct * work)1355 static void memory_failure_work_func(struct work_struct *work)
1356 {
1357 	struct memory_failure_cpu *mf_cpu;
1358 	struct memory_failure_entry entry = { 0, };
1359 	unsigned long proc_flags;
1360 	int gotten;
1361 
1362 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363 	for (;;) {
1364 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367 		if (!gotten)
1368 			break;
1369 		if (entry.flags & MF_SOFT_OFFLINE)
1370 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371 		else
1372 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1373 	}
1374 }
1375 
memory_failure_init(void)1376 static int __init memory_failure_init(void)
1377 {
1378 	struct memory_failure_cpu *mf_cpu;
1379 	int cpu;
1380 
1381 	for_each_possible_cpu(cpu) {
1382 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383 		spin_lock_init(&mf_cpu->lock);
1384 		INIT_KFIFO(mf_cpu->fifo);
1385 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386 	}
1387 
1388 	return 0;
1389 }
1390 core_initcall(memory_failure_init);
1391 
1392 /**
1393  * unpoison_memory - Unpoison a previously poisoned page
1394  * @pfn: Page number of the to be unpoisoned page
1395  *
1396  * Software-unpoison a page that has been poisoned by
1397  * memory_failure() earlier.
1398  *
1399  * This is only done on the software-level, so it only works
1400  * for linux injected failures, not real hardware failures
1401  *
1402  * Returns 0 for success, otherwise -errno.
1403  */
unpoison_memory(unsigned long pfn)1404 int unpoison_memory(unsigned long pfn)
1405 {
1406 	struct page *page;
1407 	struct page *p;
1408 	int freeit = 0;
1409 	unsigned int nr_pages;
1410 
1411 	if (!pfn_valid(pfn))
1412 		return -ENXIO;
1413 
1414 	p = pfn_to_page(pfn);
1415 	page = compound_head(p);
1416 
1417 	if (!PageHWPoison(p)) {
1418 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1419 		return 0;
1420 	}
1421 
1422 	/*
1423 	 * unpoison_memory() can encounter thp only when the thp is being
1424 	 * worked by memory_failure() and the page lock is not held yet.
1425 	 * In such case, we yield to memory_failure() and make unpoison fail.
1426 	 */
1427 	if (!PageHuge(page) && PageTransHuge(page)) {
1428 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1429 			return 0;
1430 	}
1431 
1432 	nr_pages = 1 << compound_order(page);
1433 
1434 	if (!get_page_unless_zero(page)) {
1435 		/*
1436 		 * Since HWPoisoned hugepage should have non-zero refcount,
1437 		 * race between memory failure and unpoison seems to happen.
1438 		 * In such case unpoison fails and memory failure runs
1439 		 * to the end.
1440 		 */
1441 		if (PageHuge(page)) {
1442 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1443 			return 0;
1444 		}
1445 		if (TestClearPageHWPoison(p))
1446 			atomic_long_dec(&num_poisoned_pages);
1447 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1448 		return 0;
1449 	}
1450 
1451 	lock_page(page);
1452 	/*
1453 	 * This test is racy because PG_hwpoison is set outside of page lock.
1454 	 * That's acceptable because that won't trigger kernel panic. Instead,
1455 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1456 	 * the free buddy page pool.
1457 	 */
1458 	if (TestClearPageHWPoison(page)) {
1459 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1460 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1461 		freeit = 1;
1462 		if (PageHuge(page))
1463 			clear_page_hwpoison_huge_page(page);
1464 	}
1465 	unlock_page(page);
1466 
1467 	put_page(page);
1468 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1469 		put_page(page);
1470 
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL(unpoison_memory);
1474 
new_page(struct page * p,unsigned long private,int ** x)1475 static struct page *new_page(struct page *p, unsigned long private, int **x)
1476 {
1477 	int nid = page_to_nid(p);
1478 	if (PageHuge(p))
1479 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1480 						   nid);
1481 	else
1482 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1483 }
1484 
1485 /*
1486  * Safely get reference count of an arbitrary page.
1487  * Returns 0 for a free page, -EIO for a zero refcount page
1488  * that is not free, and 1 for any other page type.
1489  * For 1 the page is returned with increased page count, otherwise not.
1490  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1491 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1492 {
1493 	int ret;
1494 
1495 	if (flags & MF_COUNT_INCREASED)
1496 		return 1;
1497 
1498 	/*
1499 	 * When the target page is a free hugepage, just remove it
1500 	 * from free hugepage list.
1501 	 */
1502 	if (!get_page_unless_zero(compound_head(p))) {
1503 		if (PageHuge(p)) {
1504 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1505 			ret = 0;
1506 		} else if (is_free_buddy_page(p)) {
1507 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1508 			ret = 0;
1509 		} else {
1510 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1511 				__func__, pfn, p->flags);
1512 			ret = -EIO;
1513 		}
1514 	} else {
1515 		/* Not a free page */
1516 		ret = 1;
1517 	}
1518 	return ret;
1519 }
1520 
get_any_page(struct page * page,unsigned long pfn,int flags)1521 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1522 {
1523 	int ret = __get_any_page(page, pfn, flags);
1524 
1525 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1526 		/*
1527 		 * Try to free it.
1528 		 */
1529 		put_page(page);
1530 		shake_page(page, 1);
1531 
1532 		/*
1533 		 * Did it turn free?
1534 		 */
1535 		ret = __get_any_page(page, pfn, 0);
1536 		if (ret == 1 && !PageLRU(page)) {
1537 			/* Drop page reference which is from __get_any_page() */
1538 			put_page(page);
1539 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1540 				pfn, page->flags);
1541 			return -EIO;
1542 		}
1543 	}
1544 	return ret;
1545 }
1546 
soft_offline_huge_page(struct page * page,int flags)1547 static int soft_offline_huge_page(struct page *page, int flags)
1548 {
1549 	int ret;
1550 	unsigned long pfn = page_to_pfn(page);
1551 	struct page *hpage = compound_head(page);
1552 	LIST_HEAD(pagelist);
1553 
1554 	/*
1555 	 * This double-check of PageHWPoison is to avoid the race with
1556 	 * memory_failure(). See also comment in __soft_offline_page().
1557 	 */
1558 	lock_page(hpage);
1559 	if (PageHWPoison(hpage)) {
1560 		unlock_page(hpage);
1561 		put_page(hpage);
1562 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1563 		return -EBUSY;
1564 	}
1565 	unlock_page(hpage);
1566 
1567 	ret = isolate_huge_page(hpage, &pagelist);
1568 	/*
1569 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1570 	 * so need to drop one here.
1571 	 */
1572 	put_page(hpage);
1573 	if (!ret) {
1574 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1575 		return -EBUSY;
1576 	}
1577 
1578 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1579 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1580 	if (ret) {
1581 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1582 			pfn, ret, page->flags);
1583 		if (!list_empty(&pagelist))
1584 			putback_movable_pages(&pagelist);
1585 		if (ret > 0)
1586 			ret = -EIO;
1587 	} else {
1588 		/* overcommit hugetlb page will be freed to buddy */
1589 		if (PageHuge(page)) {
1590 			set_page_hwpoison_huge_page(hpage);
1591 			dequeue_hwpoisoned_huge_page(hpage);
1592 			atomic_long_add(1 << compound_order(hpage),
1593 					&num_poisoned_pages);
1594 		} else {
1595 			SetPageHWPoison(page);
1596 			atomic_long_inc(&num_poisoned_pages);
1597 		}
1598 	}
1599 	return ret;
1600 }
1601 
__soft_offline_page(struct page * page,int flags)1602 static int __soft_offline_page(struct page *page, int flags)
1603 {
1604 	int ret;
1605 	unsigned long pfn = page_to_pfn(page);
1606 
1607 	/*
1608 	 * Check PageHWPoison again inside page lock because PageHWPoison
1609 	 * is set by memory_failure() outside page lock. Note that
1610 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1611 	 * so there's no race between soft_offline_page() and memory_failure().
1612 	 */
1613 	lock_page(page);
1614 	wait_on_page_writeback(page);
1615 	if (PageHWPoison(page)) {
1616 		unlock_page(page);
1617 		put_page(page);
1618 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1619 		return -EBUSY;
1620 	}
1621 	/*
1622 	 * Try to invalidate first. This should work for
1623 	 * non dirty unmapped page cache pages.
1624 	 */
1625 	ret = invalidate_inode_page(page);
1626 	unlock_page(page);
1627 	/*
1628 	 * RED-PEN would be better to keep it isolated here, but we
1629 	 * would need to fix isolation locking first.
1630 	 */
1631 	if (ret == 1) {
1632 		put_page(page);
1633 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1634 		SetPageHWPoison(page);
1635 		atomic_long_inc(&num_poisoned_pages);
1636 		return 0;
1637 	}
1638 
1639 	/*
1640 	 * Simple invalidation didn't work.
1641 	 * Try to migrate to a new page instead. migrate.c
1642 	 * handles a large number of cases for us.
1643 	 */
1644 	ret = isolate_lru_page(page);
1645 	/*
1646 	 * Drop page reference which is came from get_any_page()
1647 	 * successful isolate_lru_page() already took another one.
1648 	 */
1649 	put_page(page);
1650 	if (!ret) {
1651 		LIST_HEAD(pagelist);
1652 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1653 					page_is_file_cache(page));
1654 		list_add(&page->lru, &pagelist);
1655 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1656 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1657 		if (ret) {
1658 			if (!list_empty(&pagelist)) {
1659 				list_del(&page->lru);
1660 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1661 						page_is_file_cache(page));
1662 				putback_lru_page(page);
1663 			}
1664 
1665 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1666 				pfn, ret, page->flags);
1667 			if (ret > 0)
1668 				ret = -EIO;
1669 		} else {
1670 			/*
1671 			 * After page migration succeeds, the source page can
1672 			 * be trapped in pagevec and actual freeing is delayed.
1673 			 * Freeing code works differently based on PG_hwpoison,
1674 			 * so there's a race. We need to make sure that the
1675 			 * source page should be freed back to buddy before
1676 			 * setting PG_hwpoison.
1677 			 */
1678 			if (!is_free_buddy_page(page))
1679 				drain_all_pages();
1680 			SetPageHWPoison(page);
1681 			if (!is_free_buddy_page(page))
1682 				pr_info("soft offline: %#lx: page leaked\n",
1683 					pfn);
1684 			atomic_long_inc(&num_poisoned_pages);
1685 		}
1686 	} else {
1687 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1688 			pfn, ret, page_count(page), page->flags);
1689 	}
1690 	return ret;
1691 }
1692 
1693 /**
1694  * soft_offline_page - Soft offline a page.
1695  * @page: page to offline
1696  * @flags: flags. Same as memory_failure().
1697  *
1698  * Returns 0 on success, otherwise negated errno.
1699  *
1700  * Soft offline a page, by migration or invalidation,
1701  * without killing anything. This is for the case when
1702  * a page is not corrupted yet (so it's still valid to access),
1703  * but has had a number of corrected errors and is better taken
1704  * out.
1705  *
1706  * The actual policy on when to do that is maintained by
1707  * user space.
1708  *
1709  * This should never impact any application or cause data loss,
1710  * however it might take some time.
1711  *
1712  * This is not a 100% solution for all memory, but tries to be
1713  * ``good enough'' for the majority of memory.
1714  */
soft_offline_page(struct page * page,int flags)1715 int soft_offline_page(struct page *page, int flags)
1716 {
1717 	int ret;
1718 	unsigned long pfn = page_to_pfn(page);
1719 	struct page *hpage = compound_head(page);
1720 
1721 	if (PageHWPoison(page)) {
1722 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1723 		return -EBUSY;
1724 	}
1725 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1726 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1727 			pr_info("soft offline: %#lx: failed to split THP\n",
1728 				pfn);
1729 			return -EBUSY;
1730 		}
1731 	}
1732 
1733 	get_online_mems();
1734 
1735 	/*
1736 	 * Isolate the page, so that it doesn't get reallocated if it
1737 	 * was free. This flag should be kept set until the source page
1738 	 * is freed and PG_hwpoison on it is set.
1739 	 */
1740 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1741 		set_migratetype_isolate(page, true);
1742 
1743 	ret = get_any_page(page, pfn, flags);
1744 	put_online_mems();
1745 	if (ret > 0) { /* for in-use pages */
1746 		if (PageHuge(page))
1747 			ret = soft_offline_huge_page(page, flags);
1748 		else
1749 			ret = __soft_offline_page(page, flags);
1750 	} else if (ret == 0) { /* for free pages */
1751 		if (PageHuge(page)) {
1752 			set_page_hwpoison_huge_page(hpage);
1753 			if (!dequeue_hwpoisoned_huge_page(hpage))
1754 				atomic_long_add(1 << compound_order(hpage),
1755 					&num_poisoned_pages);
1756 		} else {
1757 			if (!TestSetPageHWPoison(page))
1758 				atomic_long_inc(&num_poisoned_pages);
1759 		}
1760 	}
1761 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1762 	return ret;
1763 }
1764