• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
get_task_policy(struct task_struct * p)126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 /* Check that the nodemask contains at least one populated zone */
is_valid_nodemask(const nodemask_t * nodemask)166 static int is_valid_nodemask(const nodemask_t *nodemask)
167 {
168 	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169 }
170 
mpol_store_user_nodemask(const struct mempolicy * pol)171 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 {
173 	return pol->flags & MPOL_MODE_FLAGS;
174 }
175 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)176 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 				   const nodemask_t *rel)
178 {
179 	nodemask_t tmp;
180 	nodes_fold(tmp, *orig, nodes_weight(*rel));
181 	nodes_onto(*ret, tmp, *rel);
182 }
183 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)184 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 	if (nodes_empty(*nodes))
187 		return -EINVAL;
188 	pol->v.nodes = *nodes;
189 	return 0;
190 }
191 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)192 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 	if (!nodes)
195 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
196 	else if (nodes_empty(*nodes))
197 		return -EINVAL;			/*  no allowed nodes */
198 	else
199 		pol->v.preferred_node = first_node(*nodes);
200 	return 0;
201 }
202 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)203 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 	if (!is_valid_nodemask(nodes))
206 		return -EINVAL;
207 	pol->v.nodes = *nodes;
208 	return 0;
209 }
210 
211 /*
212  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213  * any, for the new policy.  mpol_new() has already validated the nodes
214  * parameter with respect to the policy mode and flags.  But, we need to
215  * handle an empty nodemask with MPOL_PREFERRED here.
216  *
217  * Must be called holding task's alloc_lock to protect task's mems_allowed
218  * and mempolicy.  May also be called holding the mmap_semaphore for write.
219  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)220 static int mpol_set_nodemask(struct mempolicy *pol,
221 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 {
223 	int ret;
224 
225 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 	if (pol == NULL)
227 		return 0;
228 	/* Check N_MEMORY */
229 	nodes_and(nsc->mask1,
230 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
231 
232 	VM_BUG_ON(!nodes);
233 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 		nodes = NULL;	/* explicit local allocation */
235 	else {
236 		if (pol->flags & MPOL_F_RELATIVE_NODES)
237 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 		else
239 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
240 
241 		if (mpol_store_user_nodemask(pol))
242 			pol->w.user_nodemask = *nodes;
243 		else
244 			pol->w.cpuset_mems_allowed =
245 						cpuset_current_mems_allowed;
246 	}
247 
248 	if (nodes)
249 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 	else
251 		ret = mpol_ops[pol->mode].create(pol, NULL);
252 	return ret;
253 }
254 
255 /*
256  * This function just creates a new policy, does some check and simple
257  * initialization. You must invoke mpol_set_nodemask() to set nodes.
258  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)259 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 				  nodemask_t *nodes)
261 {
262 	struct mempolicy *policy;
263 
264 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266 
267 	if (mode == MPOL_DEFAULT) {
268 		if (nodes && !nodes_empty(*nodes))
269 			return ERR_PTR(-EINVAL);
270 		return NULL;
271 	}
272 	VM_BUG_ON(!nodes);
273 
274 	/*
275 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 	 * All other modes require a valid pointer to a non-empty nodemask.
278 	 */
279 	if (mode == MPOL_PREFERRED) {
280 		if (nodes_empty(*nodes)) {
281 			if (((flags & MPOL_F_STATIC_NODES) ||
282 			     (flags & MPOL_F_RELATIVE_NODES)))
283 				return ERR_PTR(-EINVAL);
284 		}
285 	} else if (mode == MPOL_LOCAL) {
286 		if (!nodes_empty(*nodes))
287 			return ERR_PTR(-EINVAL);
288 		mode = MPOL_PREFERRED;
289 	} else if (nodes_empty(*nodes))
290 		return ERR_PTR(-EINVAL);
291 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 	if (!policy)
293 		return ERR_PTR(-ENOMEM);
294 	atomic_set(&policy->refcnt, 1);
295 	policy->mode = mode;
296 	policy->flags = flags;
297 
298 	return policy;
299 }
300 
301 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)302 void __mpol_put(struct mempolicy *p)
303 {
304 	if (!atomic_dec_and_test(&p->refcnt))
305 		return;
306 	kmem_cache_free(policy_cache, p);
307 }
308 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)309 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 				enum mpol_rebind_step step)
311 {
312 }
313 
314 /*
315  * step:
316  * 	MPOL_REBIND_ONCE  - do rebind work at once
317  * 	MPOL_REBIND_STEP1 - set all the newly nodes
318  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
319  */
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 				 enum mpol_rebind_step step)
322 {
323 	nodemask_t tmp;
324 
325 	if (pol->flags & MPOL_F_STATIC_NODES)
326 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 	else {
330 		/*
331 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 		 * result
333 		 */
334 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 			nodes_remap(tmp, pol->v.nodes,
336 					pol->w.cpuset_mems_allowed, *nodes);
337 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 		} else if (step == MPOL_REBIND_STEP2) {
339 			tmp = pol->w.cpuset_mems_allowed;
340 			pol->w.cpuset_mems_allowed = *nodes;
341 		} else
342 			BUG();
343 	}
344 
345 	if (nodes_empty(tmp))
346 		tmp = *nodes;
347 
348 	if (step == MPOL_REBIND_STEP1)
349 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 		pol->v.nodes = tmp;
352 	else
353 		BUG();
354 
355 	if (!node_isset(current->il_next, tmp)) {
356 		current->il_next = next_node(current->il_next, tmp);
357 		if (current->il_next >= MAX_NUMNODES)
358 			current->il_next = first_node(tmp);
359 		if (current->il_next >= MAX_NUMNODES)
360 			current->il_next = numa_node_id();
361 	}
362 }
363 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)364 static void mpol_rebind_preferred(struct mempolicy *pol,
365 				  const nodemask_t *nodes,
366 				  enum mpol_rebind_step step)
367 {
368 	nodemask_t tmp;
369 
370 	if (pol->flags & MPOL_F_STATIC_NODES) {
371 		int node = first_node(pol->w.user_nodemask);
372 
373 		if (node_isset(node, *nodes)) {
374 			pol->v.preferred_node = node;
375 			pol->flags &= ~MPOL_F_LOCAL;
376 		} else
377 			pol->flags |= MPOL_F_LOCAL;
378 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 		pol->v.preferred_node = first_node(tmp);
381 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
382 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 						   pol->w.cpuset_mems_allowed,
384 						   *nodes);
385 		pol->w.cpuset_mems_allowed = *nodes;
386 	}
387 }
388 
389 /*
390  * mpol_rebind_policy - Migrate a policy to a different set of nodes
391  *
392  * If read-side task has no lock to protect task->mempolicy, write-side
393  * task will rebind the task->mempolicy by two step. The first step is
394  * setting all the newly nodes, and the second step is cleaning all the
395  * disallowed nodes. In this way, we can avoid finding no node to alloc
396  * page.
397  * If we have a lock to protect task->mempolicy in read-side, we do
398  * rebind directly.
399  *
400  * step:
401  * 	MPOL_REBIND_ONCE  - do rebind work at once
402  * 	MPOL_REBIND_STEP1 - set all the newly nodes
403  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
404  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask,enum mpol_rebind_step step)405 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 				enum mpol_rebind_step step)
407 {
408 	if (!pol)
409 		return;
410 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 		return;
413 
414 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 		return;
416 
417 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 		BUG();
419 
420 	if (step == MPOL_REBIND_STEP1)
421 		pol->flags |= MPOL_F_REBINDING;
422 	else if (step == MPOL_REBIND_STEP2)
423 		pol->flags &= ~MPOL_F_REBINDING;
424 	else if (step >= MPOL_REBIND_NSTEP)
425 		BUG();
426 
427 	mpol_ops[pol->mode].rebind(pol, newmask, step);
428 }
429 
430 /*
431  * Wrapper for mpol_rebind_policy() that just requires task
432  * pointer, and updates task mempolicy.
433  *
434  * Called with task's alloc_lock held.
435  */
436 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new,enum mpol_rebind_step step)437 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 			enum mpol_rebind_step step)
439 {
440 	mpol_rebind_policy(tsk->mempolicy, new, step);
441 }
442 
443 /*
444  * Rebind each vma in mm to new nodemask.
445  *
446  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
447  */
448 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)449 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 {
451 	struct vm_area_struct *vma;
452 
453 	down_write(&mm->mmap_sem);
454 	for (vma = mm->mmap; vma; vma = vma->vm_next)
455 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 	up_write(&mm->mmap_sem);
457 }
458 
459 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 	[MPOL_DEFAULT] = {
461 		.rebind = mpol_rebind_default,
462 	},
463 	[MPOL_INTERLEAVE] = {
464 		.create = mpol_new_interleave,
465 		.rebind = mpol_rebind_nodemask,
466 	},
467 	[MPOL_PREFERRED] = {
468 		.create = mpol_new_preferred,
469 		.rebind = mpol_rebind_preferred,
470 	},
471 	[MPOL_BIND] = {
472 		.create = mpol_new_bind,
473 		.rebind = mpol_rebind_nodemask,
474 	},
475 };
476 
477 static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 				unsigned long flags);
479 
480 /*
481  * Scan through pages checking if pages follow certain conditions,
482  * and move them to the pagelist if they do.
483  */
queue_pages_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)484 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 		unsigned long addr, unsigned long end,
486 		const nodemask_t *nodes, unsigned long flags,
487 		void *private)
488 {
489 	pte_t *orig_pte;
490 	pte_t *pte;
491 	spinlock_t *ptl;
492 
493 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 	do {
495 		struct page *page;
496 		int nid;
497 
498 		if (!pte_present(*pte))
499 			continue;
500 		page = vm_normal_page(vma, addr, *pte);
501 		if (!page)
502 			continue;
503 		/*
504 		 * vm_normal_page() filters out zero pages, but there might
505 		 * still be PageReserved pages to skip, perhaps in a VDSO.
506 		 */
507 		if (PageReserved(page))
508 			continue;
509 		nid = page_to_nid(page);
510 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 			continue;
512 
513 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 			migrate_page_add(page, private, flags);
515 		else
516 			break;
517 	} while (pte++, addr += PAGE_SIZE, addr != end);
518 	pte_unmap_unlock(orig_pte, ptl);
519 	return addr != end;
520 }
521 
queue_pages_hugetlb_pmd_range(struct vm_area_struct * vma,pmd_t * pmd,const nodemask_t * nodes,unsigned long flags,void * private)522 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 				    void *private)
525 {
526 #ifdef CONFIG_HUGETLB_PAGE
527 	int nid;
528 	struct page *page;
529 	spinlock_t *ptl;
530 	pte_t entry;
531 
532 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 	entry = huge_ptep_get((pte_t *)pmd);
534 	if (!pte_present(entry))
535 		goto unlock;
536 	page = pte_page(entry);
537 	nid = page_to_nid(page);
538 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 		goto unlock;
540 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 	if (flags & (MPOL_MF_MOVE_ALL) ||
542 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 		isolate_huge_page(page, private);
544 unlock:
545 	spin_unlock(ptl);
546 #else
547 	BUG();
548 #endif
549 }
550 
queue_pages_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)551 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 		unsigned long addr, unsigned long end,
553 		const nodemask_t *nodes, unsigned long flags,
554 		void *private)
555 {
556 	pmd_t *pmd;
557 	unsigned long next;
558 
559 	pmd = pmd_offset(pud, addr);
560 	do {
561 		next = pmd_addr_end(addr, end);
562 		if (!pmd_present(*pmd))
563 			continue;
564 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 						flags, private);
567 			continue;
568 		}
569 		split_huge_page_pmd(vma, addr, pmd);
570 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 			continue;
572 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 				    flags, private))
574 			return -EIO;
575 	} while (pmd++, addr = next, addr != end);
576 	return 0;
577 }
578 
queue_pages_pud_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)579 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 		unsigned long addr, unsigned long end,
581 		const nodemask_t *nodes, unsigned long flags,
582 		void *private)
583 {
584 	pud_t *pud;
585 	unsigned long next;
586 
587 	pud = pud_offset(pgd, addr);
588 	do {
589 		next = pud_addr_end(addr, end);
590 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 			continue;
592 		if (pud_none_or_clear_bad(pud))
593 			continue;
594 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 				    flags, private))
596 			return -EIO;
597 	} while (pud++, addr = next, addr != end);
598 	return 0;
599 }
600 
queue_pages_pgd_range(struct vm_area_struct * vma,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)601 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 		unsigned long addr, unsigned long end,
603 		const nodemask_t *nodes, unsigned long flags,
604 		void *private)
605 {
606 	pgd_t *pgd;
607 	unsigned long next;
608 
609 	pgd = pgd_offset(vma->vm_mm, addr);
610 	do {
611 		next = pgd_addr_end(addr, end);
612 		if (pgd_none_or_clear_bad(pgd))
613 			continue;
614 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 				    flags, private))
616 			return -EIO;
617 	} while (pgd++, addr = next, addr != end);
618 	return 0;
619 }
620 
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623  * This is used to mark a range of virtual addresses to be inaccessible.
624  * These are later cleared by a NUMA hinting fault. Depending on these
625  * faults, pages may be migrated for better NUMA placement.
626  *
627  * This is assuming that NUMA faults are handled using PROT_NONE. If
628  * an architecture makes a different choice, it will need further
629  * changes to the core.
630  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 			unsigned long addr, unsigned long end)
633 {
634 	int nr_updated;
635 
636 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 	if (nr_updated)
638 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639 
640 	return nr_updated;
641 }
642 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)643 static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 			unsigned long addr, unsigned long end)
645 {
646 	return 0;
647 }
648 #endif /* CONFIG_NUMA_BALANCING */
649 
650 /*
651  * Walk through page tables and collect pages to be migrated.
652  *
653  * If pages found in a given range are on a set of nodes (determined by
654  * @nodes and @flags,) it's isolated and queued to the pagelist which is
655  * passed via @private.)
656  */
657 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)658 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 		const nodemask_t *nodes, unsigned long flags, void *private)
660 {
661 	int err = 0;
662 	struct vm_area_struct *vma, *prev;
663 
664 	vma = find_vma(mm, start);
665 	if (!vma)
666 		return -EFAULT;
667 	prev = NULL;
668 	for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 		unsigned long endvma = vma->vm_end;
670 
671 		if (endvma > end)
672 			endvma = end;
673 		if (vma->vm_start > start)
674 			start = vma->vm_start;
675 
676 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 			if (!vma->vm_next && vma->vm_end < end)
678 				return -EFAULT;
679 			if (prev && prev->vm_end < vma->vm_start)
680 				return -EFAULT;
681 		}
682 
683 		if (flags & MPOL_MF_LAZY) {
684 			/* Similar to task_numa_work, skip inaccessible VMAs */
685 			if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
686 				change_prot_numa(vma, start, endvma);
687 			goto next;
688 		}
689 
690 		if ((flags & MPOL_MF_STRICT) ||
691 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
692 		      vma_migratable(vma))) {
693 
694 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
695 						flags, private);
696 			if (err)
697 				break;
698 		}
699 next:
700 		prev = vma;
701 	}
702 	return err;
703 }
704 
705 /*
706  * Apply policy to a single VMA
707  * This must be called with the mmap_sem held for writing.
708  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)709 static int vma_replace_policy(struct vm_area_struct *vma,
710 						struct mempolicy *pol)
711 {
712 	int err;
713 	struct mempolicy *old;
714 	struct mempolicy *new;
715 
716 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
718 		 vma->vm_ops, vma->vm_file,
719 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
720 
721 	new = mpol_dup(pol);
722 	if (IS_ERR(new))
723 		return PTR_ERR(new);
724 
725 	if (vma->vm_ops && vma->vm_ops->set_policy) {
726 		err = vma->vm_ops->set_policy(vma, new);
727 		if (err)
728 			goto err_out;
729 	}
730 
731 	old = vma->vm_policy;
732 	vma->vm_policy = new; /* protected by mmap_sem */
733 	mpol_put(old);
734 
735 	return 0;
736  err_out:
737 	mpol_put(new);
738 	return err;
739 }
740 
741 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)742 static int mbind_range(struct mm_struct *mm, unsigned long start,
743 		       unsigned long end, struct mempolicy *new_pol)
744 {
745 	struct vm_area_struct *next;
746 	struct vm_area_struct *prev;
747 	struct vm_area_struct *vma;
748 	int err = 0;
749 	pgoff_t pgoff;
750 	unsigned long vmstart;
751 	unsigned long vmend;
752 
753 	vma = find_vma(mm, start);
754 	if (!vma || vma->vm_start > start)
755 		return -EFAULT;
756 
757 	prev = vma->vm_prev;
758 	if (start > vma->vm_start)
759 		prev = vma;
760 
761 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
762 		next = vma->vm_next;
763 		vmstart = max(start, vma->vm_start);
764 		vmend   = min(end, vma->vm_end);
765 
766 		if (mpol_equal(vma_policy(vma), new_pol))
767 			continue;
768 
769 		pgoff = vma->vm_pgoff +
770 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
771 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
772 				  vma->anon_vma, vma->vm_file, pgoff,
773 				  new_pol, vma_get_anon_name(vma));
774 		if (prev) {
775 			vma = prev;
776 			next = vma->vm_next;
777 			if (mpol_equal(vma_policy(vma), new_pol))
778 				continue;
779 			/* vma_merge() joined vma && vma->next, case 8 */
780 			goto replace;
781 		}
782 		if (vma->vm_start != vmstart) {
783 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
784 			if (err)
785 				goto out;
786 		}
787 		if (vma->vm_end != vmend) {
788 			err = split_vma(vma->vm_mm, vma, vmend, 0);
789 			if (err)
790 				goto out;
791 		}
792  replace:
793 		err = vma_replace_policy(vma, new_pol);
794 		if (err)
795 			goto out;
796 	}
797 
798  out:
799 	return err;
800 }
801 
802 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)803 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
804 			     nodemask_t *nodes)
805 {
806 	struct mempolicy *new, *old;
807 	NODEMASK_SCRATCH(scratch);
808 	int ret;
809 
810 	if (!scratch)
811 		return -ENOMEM;
812 
813 	new = mpol_new(mode, flags, nodes);
814 	if (IS_ERR(new)) {
815 		ret = PTR_ERR(new);
816 		goto out;
817 	}
818 
819 	task_lock(current);
820 	ret = mpol_set_nodemask(new, nodes, scratch);
821 	if (ret) {
822 		task_unlock(current);
823 		mpol_put(new);
824 		goto out;
825 	}
826 	old = current->mempolicy;
827 	current->mempolicy = new;
828 	if (new && new->mode == MPOL_INTERLEAVE &&
829 	    nodes_weight(new->v.nodes))
830 		current->il_next = first_node(new->v.nodes);
831 	task_unlock(current);
832 	mpol_put(old);
833 	ret = 0;
834 out:
835 	NODEMASK_SCRATCH_FREE(scratch);
836 	return ret;
837 }
838 
839 /*
840  * Return nodemask for policy for get_mempolicy() query
841  *
842  * Called with task's alloc_lock held
843  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)844 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
845 {
846 	nodes_clear(*nodes);
847 	if (p == &default_policy)
848 		return;
849 
850 	switch (p->mode) {
851 	case MPOL_BIND:
852 		/* Fall through */
853 	case MPOL_INTERLEAVE:
854 		*nodes = p->v.nodes;
855 		break;
856 	case MPOL_PREFERRED:
857 		if (!(p->flags & MPOL_F_LOCAL))
858 			node_set(p->v.preferred_node, *nodes);
859 		/* else return empty node mask for local allocation */
860 		break;
861 	default:
862 		BUG();
863 	}
864 }
865 
lookup_node(struct mm_struct * mm,unsigned long addr)866 static int lookup_node(struct mm_struct *mm, unsigned long addr)
867 {
868 	struct page *p;
869 	int err;
870 
871 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
872 	if (err >= 0) {
873 		err = page_to_nid(p);
874 		put_page(p);
875 	}
876 	return err;
877 }
878 
879 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)880 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
881 			     unsigned long addr, unsigned long flags)
882 {
883 	int err;
884 	struct mm_struct *mm = current->mm;
885 	struct vm_area_struct *vma = NULL;
886 	struct mempolicy *pol = current->mempolicy;
887 
888 	if (flags &
889 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
890 		return -EINVAL;
891 
892 	if (flags & MPOL_F_MEMS_ALLOWED) {
893 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
894 			return -EINVAL;
895 		*policy = 0;	/* just so it's initialized */
896 		task_lock(current);
897 		*nmask  = cpuset_current_mems_allowed;
898 		task_unlock(current);
899 		return 0;
900 	}
901 
902 	if (flags & MPOL_F_ADDR) {
903 		/*
904 		 * Do NOT fall back to task policy if the
905 		 * vma/shared policy at addr is NULL.  We
906 		 * want to return MPOL_DEFAULT in this case.
907 		 */
908 		down_read(&mm->mmap_sem);
909 		vma = find_vma_intersection(mm, addr, addr+1);
910 		if (!vma) {
911 			up_read(&mm->mmap_sem);
912 			return -EFAULT;
913 		}
914 		if (vma->vm_ops && vma->vm_ops->get_policy)
915 			pol = vma->vm_ops->get_policy(vma, addr);
916 		else
917 			pol = vma->vm_policy;
918 	} else if (addr)
919 		return -EINVAL;
920 
921 	if (!pol)
922 		pol = &default_policy;	/* indicates default behavior */
923 
924 	if (flags & MPOL_F_NODE) {
925 		if (flags & MPOL_F_ADDR) {
926 			err = lookup_node(mm, addr);
927 			if (err < 0)
928 				goto out;
929 			*policy = err;
930 		} else if (pol == current->mempolicy &&
931 				pol->mode == MPOL_INTERLEAVE) {
932 			*policy = current->il_next;
933 		} else {
934 			err = -EINVAL;
935 			goto out;
936 		}
937 	} else {
938 		*policy = pol == &default_policy ? MPOL_DEFAULT :
939 						pol->mode;
940 		/*
941 		 * Internal mempolicy flags must be masked off before exposing
942 		 * the policy to userspace.
943 		 */
944 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
945 	}
946 
947 	err = 0;
948 	if (nmask) {
949 		if (mpol_store_user_nodemask(pol)) {
950 			*nmask = pol->w.user_nodemask;
951 		} else {
952 			task_lock(current);
953 			get_policy_nodemask(pol, nmask);
954 			task_unlock(current);
955 		}
956 	}
957 
958  out:
959 	mpol_cond_put(pol);
960 	if (vma)
961 		up_read(&current->mm->mmap_sem);
962 	return err;
963 }
964 
965 #ifdef CONFIG_MIGRATION
966 /*
967  * page migration
968  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)969 static void migrate_page_add(struct page *page, struct list_head *pagelist,
970 				unsigned long flags)
971 {
972 	/*
973 	 * Avoid migrating a page that is shared with others.
974 	 */
975 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
976 		if (!isolate_lru_page(page)) {
977 			list_add_tail(&page->lru, pagelist);
978 			inc_zone_page_state(page, NR_ISOLATED_ANON +
979 					    page_is_file_cache(page));
980 		}
981 	}
982 }
983 
new_node_page(struct page * page,unsigned long node,int ** x)984 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
985 {
986 	if (PageHuge(page))
987 		return alloc_huge_page_node(page_hstate(compound_head(page)),
988 					node);
989 	else
990 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
991 }
992 
993 /*
994  * Migrate pages from one node to a target node.
995  * Returns error or the number of pages not migrated.
996  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)997 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
998 			   int flags)
999 {
1000 	nodemask_t nmask;
1001 	LIST_HEAD(pagelist);
1002 	int err = 0;
1003 
1004 	nodes_clear(nmask);
1005 	node_set(source, nmask);
1006 
1007 	/*
1008 	 * This does not "check" the range but isolates all pages that
1009 	 * need migration.  Between passing in the full user address
1010 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1011 	 */
1012 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1013 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1014 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1015 
1016 	if (!list_empty(&pagelist)) {
1017 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1018 					MIGRATE_SYNC, MR_SYSCALL);
1019 		if (err)
1020 			putback_movable_pages(&pagelist);
1021 	}
1022 
1023 	return err;
1024 }
1025 
1026 /*
1027  * Move pages between the two nodesets so as to preserve the physical
1028  * layout as much as possible.
1029  *
1030  * Returns the number of page that could not be moved.
1031  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1032 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1033 		     const nodemask_t *to, int flags)
1034 {
1035 	int busy = 0;
1036 	int err;
1037 	nodemask_t tmp;
1038 
1039 	err = migrate_prep();
1040 	if (err)
1041 		return err;
1042 
1043 	down_read(&mm->mmap_sem);
1044 
1045 	err = migrate_vmas(mm, from, to, flags);
1046 	if (err)
1047 		goto out;
1048 
1049 	/*
1050 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1051 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1052 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1053 	 * The pair of nodemasks 'to' and 'from' define the map.
1054 	 *
1055 	 * If no pair of bits is found that way, fallback to picking some
1056 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1057 	 * 'source' and 'dest' bits are the same, this represents a node
1058 	 * that will be migrating to itself, so no pages need move.
1059 	 *
1060 	 * If no bits are left in 'tmp', or if all remaining bits left
1061 	 * in 'tmp' correspond to the same bit in 'to', return false
1062 	 * (nothing left to migrate).
1063 	 *
1064 	 * This lets us pick a pair of nodes to migrate between, such that
1065 	 * if possible the dest node is not already occupied by some other
1066 	 * source node, minimizing the risk of overloading the memory on a
1067 	 * node that would happen if we migrated incoming memory to a node
1068 	 * before migrating outgoing memory source that same node.
1069 	 *
1070 	 * A single scan of tmp is sufficient.  As we go, we remember the
1071 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1072 	 * that not only moved, but what's better, moved to an empty slot
1073 	 * (d is not set in tmp), then we break out then, with that pair.
1074 	 * Otherwise when we finish scanning from_tmp, we at least have the
1075 	 * most recent <s, d> pair that moved.  If we get all the way through
1076 	 * the scan of tmp without finding any node that moved, much less
1077 	 * moved to an empty node, then there is nothing left worth migrating.
1078 	 */
1079 
1080 	tmp = *from;
1081 	while (!nodes_empty(tmp)) {
1082 		int s,d;
1083 		int source = NUMA_NO_NODE;
1084 		int dest = 0;
1085 
1086 		for_each_node_mask(s, tmp) {
1087 
1088 			/*
1089 			 * do_migrate_pages() tries to maintain the relative
1090 			 * node relationship of the pages established between
1091 			 * threads and memory areas.
1092                          *
1093 			 * However if the number of source nodes is not equal to
1094 			 * the number of destination nodes we can not preserve
1095 			 * this node relative relationship.  In that case, skip
1096 			 * copying memory from a node that is in the destination
1097 			 * mask.
1098 			 *
1099 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1100 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1101 			 */
1102 
1103 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1104 						(node_isset(s, *to)))
1105 				continue;
1106 
1107 			d = node_remap(s, *from, *to);
1108 			if (s == d)
1109 				continue;
1110 
1111 			source = s;	/* Node moved. Memorize */
1112 			dest = d;
1113 
1114 			/* dest not in remaining from nodes? */
1115 			if (!node_isset(dest, tmp))
1116 				break;
1117 		}
1118 		if (source == NUMA_NO_NODE)
1119 			break;
1120 
1121 		node_clear(source, tmp);
1122 		err = migrate_to_node(mm, source, dest, flags);
1123 		if (err > 0)
1124 			busy += err;
1125 		if (err < 0)
1126 			break;
1127 	}
1128 out:
1129 	up_read(&mm->mmap_sem);
1130 	if (err < 0)
1131 		return err;
1132 	return busy;
1133 
1134 }
1135 
1136 /*
1137  * Allocate a new page for page migration based on vma policy.
1138  * Start by assuming the page is mapped by the same vma as contains @start.
1139  * Search forward from there, if not.  N.B., this assumes that the
1140  * list of pages handed to migrate_pages()--which is how we get here--
1141  * is in virtual address order.
1142  */
new_page(struct page * page,unsigned long start,int ** x)1143 static struct page *new_page(struct page *page, unsigned long start, int **x)
1144 {
1145 	struct vm_area_struct *vma;
1146 	unsigned long uninitialized_var(address);
1147 
1148 	vma = find_vma(current->mm, start);
1149 	while (vma) {
1150 		address = page_address_in_vma(page, vma);
1151 		if (address != -EFAULT)
1152 			break;
1153 		vma = vma->vm_next;
1154 	}
1155 
1156 	if (PageHuge(page)) {
1157 		BUG_ON(!vma);
1158 		return alloc_huge_page_noerr(vma, address, 1);
1159 	}
1160 	/*
1161 	 * if !vma, alloc_page_vma() will use task or system default policy
1162 	 */
1163 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1164 }
1165 #else
1166 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1167 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1168 				unsigned long flags)
1169 {
1170 }
1171 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1172 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1173 		     const nodemask_t *to, int flags)
1174 {
1175 	return -ENOSYS;
1176 }
1177 
new_page(struct page * page,unsigned long start,int ** x)1178 static struct page *new_page(struct page *page, unsigned long start, int **x)
1179 {
1180 	return NULL;
1181 }
1182 #endif
1183 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1184 static long do_mbind(unsigned long start, unsigned long len,
1185 		     unsigned short mode, unsigned short mode_flags,
1186 		     nodemask_t *nmask, unsigned long flags)
1187 {
1188 	struct mm_struct *mm = current->mm;
1189 	struct mempolicy *new;
1190 	unsigned long end;
1191 	int err;
1192 	LIST_HEAD(pagelist);
1193 
1194 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1195 		return -EINVAL;
1196 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1197 		return -EPERM;
1198 
1199 	if (start & ~PAGE_MASK)
1200 		return -EINVAL;
1201 
1202 	if (mode == MPOL_DEFAULT)
1203 		flags &= ~MPOL_MF_STRICT;
1204 
1205 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1206 	end = start + len;
1207 
1208 	if (end < start)
1209 		return -EINVAL;
1210 	if (end == start)
1211 		return 0;
1212 
1213 	new = mpol_new(mode, mode_flags, nmask);
1214 	if (IS_ERR(new))
1215 		return PTR_ERR(new);
1216 
1217 	if (flags & MPOL_MF_LAZY)
1218 		new->flags |= MPOL_F_MOF;
1219 
1220 	/*
1221 	 * If we are using the default policy then operation
1222 	 * on discontinuous address spaces is okay after all
1223 	 */
1224 	if (!new)
1225 		flags |= MPOL_MF_DISCONTIG_OK;
1226 
1227 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1228 		 start, start + len, mode, mode_flags,
1229 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1230 
1231 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1232 
1233 		err = migrate_prep();
1234 		if (err)
1235 			goto mpol_out;
1236 	}
1237 	{
1238 		NODEMASK_SCRATCH(scratch);
1239 		if (scratch) {
1240 			down_write(&mm->mmap_sem);
1241 			task_lock(current);
1242 			err = mpol_set_nodemask(new, nmask, scratch);
1243 			task_unlock(current);
1244 			if (err)
1245 				up_write(&mm->mmap_sem);
1246 		} else
1247 			err = -ENOMEM;
1248 		NODEMASK_SCRATCH_FREE(scratch);
1249 	}
1250 	if (err)
1251 		goto mpol_out;
1252 
1253 	err = queue_pages_range(mm, start, end, nmask,
1254 			  flags | MPOL_MF_INVERT, &pagelist);
1255 	if (!err)
1256 		err = mbind_range(mm, start, end, new);
1257 
1258 	if (!err) {
1259 		int nr_failed = 0;
1260 
1261 		if (!list_empty(&pagelist)) {
1262 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1263 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1264 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1265 			if (nr_failed)
1266 				putback_movable_pages(&pagelist);
1267 		}
1268 
1269 		if (nr_failed && (flags & MPOL_MF_STRICT))
1270 			err = -EIO;
1271 	} else
1272 		putback_movable_pages(&pagelist);
1273 
1274 	up_write(&mm->mmap_sem);
1275  mpol_out:
1276 	mpol_put(new);
1277 	return err;
1278 }
1279 
1280 /*
1281  * User space interface with variable sized bitmaps for nodelists.
1282  */
1283 
1284 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1285 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1286 		     unsigned long maxnode)
1287 {
1288 	unsigned long k;
1289 	unsigned long nlongs;
1290 	unsigned long endmask;
1291 
1292 	--maxnode;
1293 	nodes_clear(*nodes);
1294 	if (maxnode == 0 || !nmask)
1295 		return 0;
1296 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1297 		return -EINVAL;
1298 
1299 	nlongs = BITS_TO_LONGS(maxnode);
1300 	if ((maxnode % BITS_PER_LONG) == 0)
1301 		endmask = ~0UL;
1302 	else
1303 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1304 
1305 	/* When the user specified more nodes than supported just check
1306 	   if the non supported part is all zero. */
1307 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1308 		if (nlongs > PAGE_SIZE/sizeof(long))
1309 			return -EINVAL;
1310 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1311 			unsigned long t;
1312 			if (get_user(t, nmask + k))
1313 				return -EFAULT;
1314 			if (k == nlongs - 1) {
1315 				if (t & endmask)
1316 					return -EINVAL;
1317 			} else if (t)
1318 				return -EINVAL;
1319 		}
1320 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1321 		endmask = ~0UL;
1322 	}
1323 
1324 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1325 		return -EFAULT;
1326 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1327 	return 0;
1328 }
1329 
1330 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1331 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1332 			      nodemask_t *nodes)
1333 {
1334 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1335 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1336 
1337 	if (copy > nbytes) {
1338 		if (copy > PAGE_SIZE)
1339 			return -EINVAL;
1340 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1341 			return -EFAULT;
1342 		copy = nbytes;
1343 	}
1344 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1345 }
1346 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned,flags)1347 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1348 		unsigned long, mode, const unsigned long __user *, nmask,
1349 		unsigned long, maxnode, unsigned, flags)
1350 {
1351 	nodemask_t nodes;
1352 	int err;
1353 	unsigned short mode_flags;
1354 
1355 	mode_flags = mode & MPOL_MODE_FLAGS;
1356 	mode &= ~MPOL_MODE_FLAGS;
1357 	if (mode >= MPOL_MAX)
1358 		return -EINVAL;
1359 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1360 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1361 		return -EINVAL;
1362 	err = get_nodes(&nodes, nmask, maxnode);
1363 	if (err)
1364 		return err;
1365 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1366 }
1367 
1368 /* Set the process memory policy */
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1369 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1370 		unsigned long, maxnode)
1371 {
1372 	int err;
1373 	nodemask_t nodes;
1374 	unsigned short flags;
1375 
1376 	flags = mode & MPOL_MODE_FLAGS;
1377 	mode &= ~MPOL_MODE_FLAGS;
1378 	if ((unsigned int)mode >= MPOL_MAX)
1379 		return -EINVAL;
1380 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1381 		return -EINVAL;
1382 	err = get_nodes(&nodes, nmask, maxnode);
1383 	if (err)
1384 		return err;
1385 	return do_set_mempolicy(mode, flags, &nodes);
1386 }
1387 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1388 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1389 		const unsigned long __user *, old_nodes,
1390 		const unsigned long __user *, new_nodes)
1391 {
1392 	const struct cred *cred = current_cred(), *tcred;
1393 	struct mm_struct *mm = NULL;
1394 	struct task_struct *task;
1395 	nodemask_t task_nodes;
1396 	int err;
1397 	nodemask_t *old;
1398 	nodemask_t *new;
1399 	NODEMASK_SCRATCH(scratch);
1400 
1401 	if (!scratch)
1402 		return -ENOMEM;
1403 
1404 	old = &scratch->mask1;
1405 	new = &scratch->mask2;
1406 
1407 	err = get_nodes(old, old_nodes, maxnode);
1408 	if (err)
1409 		goto out;
1410 
1411 	err = get_nodes(new, new_nodes, maxnode);
1412 	if (err)
1413 		goto out;
1414 
1415 	/* Find the mm_struct */
1416 	rcu_read_lock();
1417 	task = pid ? find_task_by_vpid(pid) : current;
1418 	if (!task) {
1419 		rcu_read_unlock();
1420 		err = -ESRCH;
1421 		goto out;
1422 	}
1423 	get_task_struct(task);
1424 
1425 	err = -EINVAL;
1426 
1427 	/*
1428 	 * Check if this process has the right to modify the specified
1429 	 * process. The right exists if the process has administrative
1430 	 * capabilities, superuser privileges or the same
1431 	 * userid as the target process.
1432 	 */
1433 	tcred = __task_cred(task);
1434 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1435 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1436 	    !capable(CAP_SYS_NICE)) {
1437 		rcu_read_unlock();
1438 		err = -EPERM;
1439 		goto out_put;
1440 	}
1441 	rcu_read_unlock();
1442 
1443 	task_nodes = cpuset_mems_allowed(task);
1444 	/* Is the user allowed to access the target nodes? */
1445 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1446 		err = -EPERM;
1447 		goto out_put;
1448 	}
1449 
1450 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1451 		err = -EINVAL;
1452 		goto out_put;
1453 	}
1454 
1455 	err = security_task_movememory(task);
1456 	if (err)
1457 		goto out_put;
1458 
1459 	mm = get_task_mm(task);
1460 	put_task_struct(task);
1461 
1462 	if (!mm) {
1463 		err = -EINVAL;
1464 		goto out;
1465 	}
1466 
1467 	err = do_migrate_pages(mm, old, new,
1468 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1469 
1470 	mmput(mm);
1471 out:
1472 	NODEMASK_SCRATCH_FREE(scratch);
1473 
1474 	return err;
1475 
1476 out_put:
1477 	put_task_struct(task);
1478 	goto out;
1479 
1480 }
1481 
1482 
1483 /* Retrieve NUMA policy */
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1484 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1485 		unsigned long __user *, nmask, unsigned long, maxnode,
1486 		unsigned long, addr, unsigned long, flags)
1487 {
1488 	int err;
1489 	int uninitialized_var(pval);
1490 	nodemask_t nodes;
1491 
1492 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1493 		return -EINVAL;
1494 
1495 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1496 
1497 	if (err)
1498 		return err;
1499 
1500 	if (policy && put_user(pval, policy))
1501 		return -EFAULT;
1502 
1503 	if (nmask)
1504 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1505 
1506 	return err;
1507 }
1508 
1509 #ifdef CONFIG_COMPAT
1510 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1511 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1512 		       compat_ulong_t __user *, nmask,
1513 		       compat_ulong_t, maxnode,
1514 		       compat_ulong_t, addr, compat_ulong_t, flags)
1515 {
1516 	long err;
1517 	unsigned long __user *nm = NULL;
1518 	unsigned long nr_bits, alloc_size;
1519 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1520 
1521 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1522 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1523 
1524 	if (nmask)
1525 		nm = compat_alloc_user_space(alloc_size);
1526 
1527 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1528 
1529 	if (!err && nmask) {
1530 		unsigned long copy_size;
1531 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1532 		err = copy_from_user(bm, nm, copy_size);
1533 		/* ensure entire bitmap is zeroed */
1534 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1535 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1536 	}
1537 
1538 	return err;
1539 }
1540 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1541 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1542 		       compat_ulong_t, maxnode)
1543 {
1544 	unsigned long __user *nm = NULL;
1545 	unsigned long nr_bits, alloc_size;
1546 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1547 
1548 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1549 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1550 
1551 	if (nmask) {
1552 		if (compat_get_bitmap(bm, nmask, nr_bits))
1553 			return -EFAULT;
1554 		nm = compat_alloc_user_space(alloc_size);
1555 		if (copy_to_user(nm, bm, alloc_size))
1556 			return -EFAULT;
1557 	}
1558 
1559 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1560 }
1561 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1562 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1563 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1564 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1565 {
1566 	unsigned long __user *nm = NULL;
1567 	unsigned long nr_bits, alloc_size;
1568 	nodemask_t bm;
1569 
1570 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1571 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1572 
1573 	if (nmask) {
1574 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1575 			return -EFAULT;
1576 		nm = compat_alloc_user_space(alloc_size);
1577 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1578 			return -EFAULT;
1579 	}
1580 
1581 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1582 }
1583 
1584 #endif
1585 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1586 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1587 						unsigned long addr)
1588 {
1589 	struct mempolicy *pol = NULL;
1590 
1591 	if (vma) {
1592 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1593 			pol = vma->vm_ops->get_policy(vma, addr);
1594 		} else if (vma->vm_policy) {
1595 			pol = vma->vm_policy;
1596 
1597 			/*
1598 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1599 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1600 			 * count on these policies which will be dropped by
1601 			 * mpol_cond_put() later
1602 			 */
1603 			if (mpol_needs_cond_ref(pol))
1604 				mpol_get(pol);
1605 		}
1606 	}
1607 
1608 	return pol;
1609 }
1610 
1611 /*
1612  * get_vma_policy(@vma, @addr)
1613  * @vma: virtual memory area whose policy is sought
1614  * @addr: address in @vma for shared policy lookup
1615  *
1616  * Returns effective policy for a VMA at specified address.
1617  * Falls back to current->mempolicy or system default policy, as necessary.
1618  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1619  * count--added by the get_policy() vm_op, as appropriate--to protect against
1620  * freeing by another task.  It is the caller's responsibility to free the
1621  * extra reference for shared policies.
1622  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1623 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1624 						unsigned long addr)
1625 {
1626 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1627 
1628 	if (!pol)
1629 		pol = get_task_policy(current);
1630 
1631 	return pol;
1632 }
1633 
vma_policy_mof(struct vm_area_struct * vma)1634 bool vma_policy_mof(struct vm_area_struct *vma)
1635 {
1636 	struct mempolicy *pol;
1637 
1638 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1639 		bool ret = false;
1640 
1641 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1642 		if (pol && (pol->flags & MPOL_F_MOF))
1643 			ret = true;
1644 		mpol_cond_put(pol);
1645 
1646 		return ret;
1647 	}
1648 
1649 	pol = vma->vm_policy;
1650 	if (!pol)
1651 		pol = get_task_policy(current);
1652 
1653 	return pol->flags & MPOL_F_MOF;
1654 }
1655 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1656 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1657 {
1658 	enum zone_type dynamic_policy_zone = policy_zone;
1659 
1660 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1661 
1662 	/*
1663 	 * if policy->v.nodes has movable memory only,
1664 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1665 	 *
1666 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1667 	 * so if the following test faile, it implies
1668 	 * policy->v.nodes has movable memory only.
1669 	 */
1670 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1671 		dynamic_policy_zone = ZONE_MOVABLE;
1672 
1673 	return zone >= dynamic_policy_zone;
1674 }
1675 
1676 /*
1677  * Return a nodemask representing a mempolicy for filtering nodes for
1678  * page allocation
1679  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1680 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1681 {
1682 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1683 	if (unlikely(policy->mode == MPOL_BIND) &&
1684 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1685 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1686 		return &policy->v.nodes;
1687 
1688 	return NULL;
1689 }
1690 
1691 /* Return a zonelist indicated by gfp for node representing a mempolicy */
policy_zonelist(gfp_t gfp,struct mempolicy * policy,int nd)1692 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1693 	int nd)
1694 {
1695 	switch (policy->mode) {
1696 	case MPOL_PREFERRED:
1697 		if (!(policy->flags & MPOL_F_LOCAL))
1698 			nd = policy->v.preferred_node;
1699 		break;
1700 	case MPOL_BIND:
1701 		/*
1702 		 * Normally, MPOL_BIND allocations are node-local within the
1703 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1704 		 * current node isn't part of the mask, we use the zonelist for
1705 		 * the first node in the mask instead.
1706 		 */
1707 		if (unlikely(gfp & __GFP_THISNODE) &&
1708 				unlikely(!node_isset(nd, policy->v.nodes)))
1709 			nd = first_node(policy->v.nodes);
1710 		break;
1711 	default:
1712 		BUG();
1713 	}
1714 	return node_zonelist(nd, gfp);
1715 }
1716 
1717 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1718 static unsigned interleave_nodes(struct mempolicy *policy)
1719 {
1720 	unsigned nid, next;
1721 	struct task_struct *me = current;
1722 
1723 	nid = me->il_next;
1724 	next = next_node(nid, policy->v.nodes);
1725 	if (next >= MAX_NUMNODES)
1726 		next = first_node(policy->v.nodes);
1727 	if (next < MAX_NUMNODES)
1728 		me->il_next = next;
1729 	return nid;
1730 }
1731 
1732 /*
1733  * Depending on the memory policy provide a node from which to allocate the
1734  * next slab entry.
1735  */
mempolicy_slab_node(void)1736 unsigned int mempolicy_slab_node(void)
1737 {
1738 	struct mempolicy *policy;
1739 	int node = numa_mem_id();
1740 
1741 	if (in_interrupt())
1742 		return node;
1743 
1744 	policy = current->mempolicy;
1745 	if (!policy || policy->flags & MPOL_F_LOCAL)
1746 		return node;
1747 
1748 	switch (policy->mode) {
1749 	case MPOL_PREFERRED:
1750 		/*
1751 		 * handled MPOL_F_LOCAL above
1752 		 */
1753 		return policy->v.preferred_node;
1754 
1755 	case MPOL_INTERLEAVE:
1756 		return interleave_nodes(policy);
1757 
1758 	case MPOL_BIND: {
1759 		/*
1760 		 * Follow bind policy behavior and start allocation at the
1761 		 * first node.
1762 		 */
1763 		struct zonelist *zonelist;
1764 		struct zone *zone;
1765 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1766 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1767 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1768 							&policy->v.nodes,
1769 							&zone);
1770 		return zone ? zone->node : node;
1771 	}
1772 
1773 	default:
1774 		BUG();
1775 	}
1776 }
1777 
1778 /* Do static interleaving for a VMA with known offset. */
offset_il_node(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long off)1779 static unsigned offset_il_node(struct mempolicy *pol,
1780 		struct vm_area_struct *vma, unsigned long off)
1781 {
1782 	unsigned nnodes = nodes_weight(pol->v.nodes);
1783 	unsigned target;
1784 	int c;
1785 	int nid = NUMA_NO_NODE;
1786 
1787 	if (!nnodes)
1788 		return numa_node_id();
1789 	target = (unsigned int)off % nnodes;
1790 	c = 0;
1791 	do {
1792 		nid = next_node(nid, pol->v.nodes);
1793 		c++;
1794 	} while (c <= target);
1795 	return nid;
1796 }
1797 
1798 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1799 static inline unsigned interleave_nid(struct mempolicy *pol,
1800 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1801 {
1802 	if (vma) {
1803 		unsigned long off;
1804 
1805 		/*
1806 		 * for small pages, there is no difference between
1807 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1808 		 * for huge pages, since vm_pgoff is in units of small
1809 		 * pages, we need to shift off the always 0 bits to get
1810 		 * a useful offset.
1811 		 */
1812 		BUG_ON(shift < PAGE_SHIFT);
1813 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1814 		off += (addr - vma->vm_start) >> shift;
1815 		return offset_il_node(pol, vma, off);
1816 	} else
1817 		return interleave_nodes(pol);
1818 }
1819 
1820 /*
1821  * Return the bit number of a random bit set in the nodemask.
1822  * (returns NUMA_NO_NODE if nodemask is empty)
1823  */
node_random(const nodemask_t * maskp)1824 int node_random(const nodemask_t *maskp)
1825 {
1826 	int w, bit = NUMA_NO_NODE;
1827 
1828 	w = nodes_weight(*maskp);
1829 	if (w)
1830 		bit = bitmap_ord_to_pos(maskp->bits,
1831 			get_random_int() % w, MAX_NUMNODES);
1832 	return bit;
1833 }
1834 
1835 #ifdef CONFIG_HUGETLBFS
1836 /*
1837  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1838  * @vma: virtual memory area whose policy is sought
1839  * @addr: address in @vma for shared policy lookup and interleave policy
1840  * @gfp_flags: for requested zone
1841  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1842  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1843  *
1844  * Returns a zonelist suitable for a huge page allocation and a pointer
1845  * to the struct mempolicy for conditional unref after allocation.
1846  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1847  * @nodemask for filtering the zonelist.
1848  *
1849  * Must be protected by read_mems_allowed_begin()
1850  */
huge_zonelist(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1851 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1852 				gfp_t gfp_flags, struct mempolicy **mpol,
1853 				nodemask_t **nodemask)
1854 {
1855 	struct zonelist *zl;
1856 
1857 	*mpol = get_vma_policy(vma, addr);
1858 	*nodemask = NULL;	/* assume !MPOL_BIND */
1859 
1860 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1861 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1862 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1863 	} else {
1864 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1865 		if ((*mpol)->mode == MPOL_BIND)
1866 			*nodemask = &(*mpol)->v.nodes;
1867 	}
1868 	return zl;
1869 }
1870 
1871 /*
1872  * init_nodemask_of_mempolicy
1873  *
1874  * If the current task's mempolicy is "default" [NULL], return 'false'
1875  * to indicate default policy.  Otherwise, extract the policy nodemask
1876  * for 'bind' or 'interleave' policy into the argument nodemask, or
1877  * initialize the argument nodemask to contain the single node for
1878  * 'preferred' or 'local' policy and return 'true' to indicate presence
1879  * of non-default mempolicy.
1880  *
1881  * We don't bother with reference counting the mempolicy [mpol_get/put]
1882  * because the current task is examining it's own mempolicy and a task's
1883  * mempolicy is only ever changed by the task itself.
1884  *
1885  * N.B., it is the caller's responsibility to free a returned nodemask.
1886  */
init_nodemask_of_mempolicy(nodemask_t * mask)1887 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1888 {
1889 	struct mempolicy *mempolicy;
1890 	int nid;
1891 
1892 	if (!(mask && current->mempolicy))
1893 		return false;
1894 
1895 	task_lock(current);
1896 	mempolicy = current->mempolicy;
1897 	switch (mempolicy->mode) {
1898 	case MPOL_PREFERRED:
1899 		if (mempolicy->flags & MPOL_F_LOCAL)
1900 			nid = numa_node_id();
1901 		else
1902 			nid = mempolicy->v.preferred_node;
1903 		init_nodemask_of_node(mask, nid);
1904 		break;
1905 
1906 	case MPOL_BIND:
1907 		/* Fall through */
1908 	case MPOL_INTERLEAVE:
1909 		*mask =  mempolicy->v.nodes;
1910 		break;
1911 
1912 	default:
1913 		BUG();
1914 	}
1915 	task_unlock(current);
1916 
1917 	return true;
1918 }
1919 #endif
1920 
1921 /*
1922  * mempolicy_nodemask_intersects
1923  *
1924  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1925  * policy.  Otherwise, check for intersection between mask and the policy
1926  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1927  * policy, always return true since it may allocate elsewhere on fallback.
1928  *
1929  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1930  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)1931 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1932 					const nodemask_t *mask)
1933 {
1934 	struct mempolicy *mempolicy;
1935 	bool ret = true;
1936 
1937 	if (!mask)
1938 		return ret;
1939 	task_lock(tsk);
1940 	mempolicy = tsk->mempolicy;
1941 	if (!mempolicy)
1942 		goto out;
1943 
1944 	switch (mempolicy->mode) {
1945 	case MPOL_PREFERRED:
1946 		/*
1947 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1948 		 * allocate from, they may fallback to other nodes when oom.
1949 		 * Thus, it's possible for tsk to have allocated memory from
1950 		 * nodes in mask.
1951 		 */
1952 		break;
1953 	case MPOL_BIND:
1954 	case MPOL_INTERLEAVE:
1955 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1956 		break;
1957 	default:
1958 		BUG();
1959 	}
1960 out:
1961 	task_unlock(tsk);
1962 	return ret;
1963 }
1964 
1965 /* Allocate a page in interleaved policy.
1966    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)1967 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1968 					unsigned nid)
1969 {
1970 	struct zonelist *zl;
1971 	struct page *page;
1972 
1973 	zl = node_zonelist(nid, gfp);
1974 	page = __alloc_pages(gfp, order, zl);
1975 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1976 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1977 	return page;
1978 }
1979 
1980 /**
1981  * 	alloc_pages_vma	- Allocate a page for a VMA.
1982  *
1983  * 	@gfp:
1984  *      %GFP_USER    user allocation.
1985  *      %GFP_KERNEL  kernel allocations,
1986  *      %GFP_HIGHMEM highmem/user allocations,
1987  *      %GFP_FS      allocation should not call back into a file system.
1988  *      %GFP_ATOMIC  don't sleep.
1989  *
1990  *	@order:Order of the GFP allocation.
1991  * 	@vma:  Pointer to VMA or NULL if not available.
1992  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1993  *
1994  * 	This function allocates a page from the kernel page pool and applies
1995  *	a NUMA policy associated with the VMA or the current process.
1996  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1997  *	mm_struct of the VMA to prevent it from going away. Should be used for
1998  *	all allocations for pages that will be mapped into
1999  * 	user space. Returns NULL when no page can be allocated.
2000  *
2001  *	Should be called with the mm_sem of the vma hold.
2002  */
2003 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node)2004 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2005 		unsigned long addr, int node)
2006 {
2007 	struct mempolicy *pol;
2008 	struct page *page;
2009 	unsigned int cpuset_mems_cookie;
2010 
2011 retry_cpuset:
2012 	pol = get_vma_policy(vma, addr);
2013 	cpuset_mems_cookie = read_mems_allowed_begin();
2014 
2015 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2016 		unsigned nid;
2017 
2018 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2019 		mpol_cond_put(pol);
2020 		page = alloc_page_interleave(gfp, order, nid);
2021 		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2022 			goto retry_cpuset;
2023 
2024 		return page;
2025 	}
2026 	page = __alloc_pages_nodemask(gfp, order,
2027 				      policy_zonelist(gfp, pol, node),
2028 				      policy_nodemask(gfp, pol));
2029 	mpol_cond_put(pol);
2030 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2031 		goto retry_cpuset;
2032 	return page;
2033 }
2034 
2035 /**
2036  * 	alloc_pages_current - Allocate pages.
2037  *
2038  *	@gfp:
2039  *		%GFP_USER   user allocation,
2040  *      	%GFP_KERNEL kernel allocation,
2041  *      	%GFP_HIGHMEM highmem allocation,
2042  *      	%GFP_FS     don't call back into a file system.
2043  *      	%GFP_ATOMIC don't sleep.
2044  *	@order: Power of two of allocation size in pages. 0 is a single page.
2045  *
2046  *	Allocate a page from the kernel page pool.  When not in
2047  *	interrupt context and apply the current process NUMA policy.
2048  *	Returns NULL when no page can be allocated.
2049  *
2050  *	Don't call cpuset_update_task_memory_state() unless
2051  *	1) it's ok to take cpuset_sem (can WAIT), and
2052  *	2) allocating for current task (not interrupt).
2053  */
alloc_pages_current(gfp_t gfp,unsigned order)2054 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2055 {
2056 	struct mempolicy *pol = &default_policy;
2057 	struct page *page;
2058 	unsigned int cpuset_mems_cookie;
2059 
2060 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2061 		pol = get_task_policy(current);
2062 
2063 retry_cpuset:
2064 	cpuset_mems_cookie = read_mems_allowed_begin();
2065 
2066 	/*
2067 	 * No reference counting needed for current->mempolicy
2068 	 * nor system default_policy
2069 	 */
2070 	if (pol->mode == MPOL_INTERLEAVE)
2071 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2072 	else
2073 		page = __alloc_pages_nodemask(gfp, order,
2074 				policy_zonelist(gfp, pol, numa_node_id()),
2075 				policy_nodemask(gfp, pol));
2076 
2077 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2078 		goto retry_cpuset;
2079 
2080 	return page;
2081 }
2082 EXPORT_SYMBOL(alloc_pages_current);
2083 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2084 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2085 {
2086 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2087 
2088 	if (IS_ERR(pol))
2089 		return PTR_ERR(pol);
2090 	dst->vm_policy = pol;
2091 	return 0;
2092 }
2093 
2094 /*
2095  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2096  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2097  * with the mems_allowed returned by cpuset_mems_allowed().  This
2098  * keeps mempolicies cpuset relative after its cpuset moves.  See
2099  * further kernel/cpuset.c update_nodemask().
2100  *
2101  * current's mempolicy may be rebinded by the other task(the task that changes
2102  * cpuset's mems), so we needn't do rebind work for current task.
2103  */
2104 
2105 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2106 struct mempolicy *__mpol_dup(struct mempolicy *old)
2107 {
2108 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2109 
2110 	if (!new)
2111 		return ERR_PTR(-ENOMEM);
2112 
2113 	/* task's mempolicy is protected by alloc_lock */
2114 	if (old == current->mempolicy) {
2115 		task_lock(current);
2116 		*new = *old;
2117 		task_unlock(current);
2118 	} else
2119 		*new = *old;
2120 
2121 	if (current_cpuset_is_being_rebound()) {
2122 		nodemask_t mems = cpuset_mems_allowed(current);
2123 		if (new->flags & MPOL_F_REBINDING)
2124 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2125 		else
2126 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2127 	}
2128 	atomic_set(&new->refcnt, 1);
2129 	return new;
2130 }
2131 
2132 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2133 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2134 {
2135 	if (!a || !b)
2136 		return false;
2137 	if (a->mode != b->mode)
2138 		return false;
2139 	if (a->flags != b->flags)
2140 		return false;
2141 	if (mpol_store_user_nodemask(a))
2142 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2143 			return false;
2144 
2145 	switch (a->mode) {
2146 	case MPOL_BIND:
2147 		/* Fall through */
2148 	case MPOL_INTERLEAVE:
2149 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2150 	case MPOL_PREFERRED:
2151 		return a->v.preferred_node == b->v.preferred_node;
2152 	default:
2153 		BUG();
2154 		return false;
2155 	}
2156 }
2157 
2158 /*
2159  * Shared memory backing store policy support.
2160  *
2161  * Remember policies even when nobody has shared memory mapped.
2162  * The policies are kept in Red-Black tree linked from the inode.
2163  * They are protected by the sp->lock spinlock, which should be held
2164  * for any accesses to the tree.
2165  */
2166 
2167 /* lookup first element intersecting start-end */
2168 /* Caller holds sp->lock */
2169 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2170 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2171 {
2172 	struct rb_node *n = sp->root.rb_node;
2173 
2174 	while (n) {
2175 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2176 
2177 		if (start >= p->end)
2178 			n = n->rb_right;
2179 		else if (end <= p->start)
2180 			n = n->rb_left;
2181 		else
2182 			break;
2183 	}
2184 	if (!n)
2185 		return NULL;
2186 	for (;;) {
2187 		struct sp_node *w = NULL;
2188 		struct rb_node *prev = rb_prev(n);
2189 		if (!prev)
2190 			break;
2191 		w = rb_entry(prev, struct sp_node, nd);
2192 		if (w->end <= start)
2193 			break;
2194 		n = prev;
2195 	}
2196 	return rb_entry(n, struct sp_node, nd);
2197 }
2198 
2199 /* Insert a new shared policy into the list. */
2200 /* Caller holds sp->lock */
sp_insert(struct shared_policy * sp,struct sp_node * new)2201 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2202 {
2203 	struct rb_node **p = &sp->root.rb_node;
2204 	struct rb_node *parent = NULL;
2205 	struct sp_node *nd;
2206 
2207 	while (*p) {
2208 		parent = *p;
2209 		nd = rb_entry(parent, struct sp_node, nd);
2210 		if (new->start < nd->start)
2211 			p = &(*p)->rb_left;
2212 		else if (new->end > nd->end)
2213 			p = &(*p)->rb_right;
2214 		else
2215 			BUG();
2216 	}
2217 	rb_link_node(&new->nd, parent, p);
2218 	rb_insert_color(&new->nd, &sp->root);
2219 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2220 		 new->policy ? new->policy->mode : 0);
2221 }
2222 
2223 /* Find shared policy intersecting idx */
2224 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2225 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2226 {
2227 	struct mempolicy *pol = NULL;
2228 	struct sp_node *sn;
2229 
2230 	if (!sp->root.rb_node)
2231 		return NULL;
2232 	spin_lock(&sp->lock);
2233 	sn = sp_lookup(sp, idx, idx+1);
2234 	if (sn) {
2235 		mpol_get(sn->policy);
2236 		pol = sn->policy;
2237 	}
2238 	spin_unlock(&sp->lock);
2239 	return pol;
2240 }
2241 
sp_free(struct sp_node * n)2242 static void sp_free(struct sp_node *n)
2243 {
2244 	mpol_put(n->policy);
2245 	kmem_cache_free(sn_cache, n);
2246 }
2247 
2248 /**
2249  * mpol_misplaced - check whether current page node is valid in policy
2250  *
2251  * @page: page to be checked
2252  * @vma: vm area where page mapped
2253  * @addr: virtual address where page mapped
2254  *
2255  * Lookup current policy node id for vma,addr and "compare to" page's
2256  * node id.
2257  *
2258  * Returns:
2259  *	-1	- not misplaced, page is in the right node
2260  *	node	- node id where the page should be
2261  *
2262  * Policy determination "mimics" alloc_page_vma().
2263  * Called from fault path where we know the vma and faulting address.
2264  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2265 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 	struct mempolicy *pol;
2268 	struct zone *zone;
2269 	int curnid = page_to_nid(page);
2270 	unsigned long pgoff;
2271 	int thiscpu = raw_smp_processor_id();
2272 	int thisnid = cpu_to_node(thiscpu);
2273 	int polnid = -1;
2274 	int ret = -1;
2275 
2276 	BUG_ON(!vma);
2277 
2278 	pol = get_vma_policy(vma, addr);
2279 	if (!(pol->flags & MPOL_F_MOF))
2280 		goto out;
2281 
2282 	switch (pol->mode) {
2283 	case MPOL_INTERLEAVE:
2284 		BUG_ON(addr >= vma->vm_end);
2285 		BUG_ON(addr < vma->vm_start);
2286 
2287 		pgoff = vma->vm_pgoff;
2288 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2289 		polnid = offset_il_node(pol, vma, pgoff);
2290 		break;
2291 
2292 	case MPOL_PREFERRED:
2293 		if (pol->flags & MPOL_F_LOCAL)
2294 			polnid = numa_node_id();
2295 		else
2296 			polnid = pol->v.preferred_node;
2297 		break;
2298 
2299 	case MPOL_BIND:
2300 		/*
2301 		 * allows binding to multiple nodes.
2302 		 * use current page if in policy nodemask,
2303 		 * else select nearest allowed node, if any.
2304 		 * If no allowed nodes, use current [!misplaced].
2305 		 */
2306 		if (node_isset(curnid, pol->v.nodes))
2307 			goto out;
2308 		(void)first_zones_zonelist(
2309 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2310 				gfp_zone(GFP_HIGHUSER),
2311 				&pol->v.nodes, &zone);
2312 		polnid = zone->node;
2313 		break;
2314 
2315 	default:
2316 		BUG();
2317 	}
2318 
2319 	/* Migrate the page towards the node whose CPU is referencing it */
2320 	if (pol->flags & MPOL_F_MORON) {
2321 		polnid = thisnid;
2322 
2323 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2324 			goto out;
2325 	}
2326 
2327 	if (curnid != polnid)
2328 		ret = polnid;
2329 out:
2330 	mpol_cond_put(pol);
2331 
2332 	return ret;
2333 }
2334 
sp_delete(struct shared_policy * sp,struct sp_node * n)2335 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2336 {
2337 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2338 	rb_erase(&n->nd, &sp->root);
2339 	sp_free(n);
2340 }
2341 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2342 static void sp_node_init(struct sp_node *node, unsigned long start,
2343 			unsigned long end, struct mempolicy *pol)
2344 {
2345 	node->start = start;
2346 	node->end = end;
2347 	node->policy = pol;
2348 }
2349 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2350 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2351 				struct mempolicy *pol)
2352 {
2353 	struct sp_node *n;
2354 	struct mempolicy *newpol;
2355 
2356 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2357 	if (!n)
2358 		return NULL;
2359 
2360 	newpol = mpol_dup(pol);
2361 	if (IS_ERR(newpol)) {
2362 		kmem_cache_free(sn_cache, n);
2363 		return NULL;
2364 	}
2365 	newpol->flags |= MPOL_F_SHARED;
2366 	sp_node_init(n, start, end, newpol);
2367 
2368 	return n;
2369 }
2370 
2371 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2372 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2373 				 unsigned long end, struct sp_node *new)
2374 {
2375 	struct sp_node *n;
2376 	struct sp_node *n_new = NULL;
2377 	struct mempolicy *mpol_new = NULL;
2378 	int ret = 0;
2379 
2380 restart:
2381 	spin_lock(&sp->lock);
2382 	n = sp_lookup(sp, start, end);
2383 	/* Take care of old policies in the same range. */
2384 	while (n && n->start < end) {
2385 		struct rb_node *next = rb_next(&n->nd);
2386 		if (n->start >= start) {
2387 			if (n->end <= end)
2388 				sp_delete(sp, n);
2389 			else
2390 				n->start = end;
2391 		} else {
2392 			/* Old policy spanning whole new range. */
2393 			if (n->end > end) {
2394 				if (!n_new)
2395 					goto alloc_new;
2396 
2397 				*mpol_new = *n->policy;
2398 				atomic_set(&mpol_new->refcnt, 1);
2399 				sp_node_init(n_new, end, n->end, mpol_new);
2400 				n->end = start;
2401 				sp_insert(sp, n_new);
2402 				n_new = NULL;
2403 				mpol_new = NULL;
2404 				break;
2405 			} else
2406 				n->end = start;
2407 		}
2408 		if (!next)
2409 			break;
2410 		n = rb_entry(next, struct sp_node, nd);
2411 	}
2412 	if (new)
2413 		sp_insert(sp, new);
2414 	spin_unlock(&sp->lock);
2415 	ret = 0;
2416 
2417 err_out:
2418 	if (mpol_new)
2419 		mpol_put(mpol_new);
2420 	if (n_new)
2421 		kmem_cache_free(sn_cache, n_new);
2422 
2423 	return ret;
2424 
2425 alloc_new:
2426 	spin_unlock(&sp->lock);
2427 	ret = -ENOMEM;
2428 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2429 	if (!n_new)
2430 		goto err_out;
2431 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2432 	if (!mpol_new)
2433 		goto err_out;
2434 	goto restart;
2435 }
2436 
2437 /**
2438  * mpol_shared_policy_init - initialize shared policy for inode
2439  * @sp: pointer to inode shared policy
2440  * @mpol:  struct mempolicy to install
2441  *
2442  * Install non-NULL @mpol in inode's shared policy rb-tree.
2443  * On entry, the current task has a reference on a non-NULL @mpol.
2444  * This must be released on exit.
2445  * This is called at get_inode() calls and we can use GFP_KERNEL.
2446  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2447 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2448 {
2449 	int ret;
2450 
2451 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2452 	spin_lock_init(&sp->lock);
2453 
2454 	if (mpol) {
2455 		struct vm_area_struct pvma;
2456 		struct mempolicy *new;
2457 		NODEMASK_SCRATCH(scratch);
2458 
2459 		if (!scratch)
2460 			goto put_mpol;
2461 		/* contextualize the tmpfs mount point mempolicy */
2462 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2463 		if (IS_ERR(new))
2464 			goto free_scratch; /* no valid nodemask intersection */
2465 
2466 		task_lock(current);
2467 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2468 		task_unlock(current);
2469 		if (ret)
2470 			goto put_new;
2471 
2472 		/* Create pseudo-vma that contains just the policy */
2473 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2474 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2475 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2476 
2477 put_new:
2478 		mpol_put(new);			/* drop initial ref */
2479 free_scratch:
2480 		NODEMASK_SCRATCH_FREE(scratch);
2481 put_mpol:
2482 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2483 	}
2484 }
2485 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2486 int mpol_set_shared_policy(struct shared_policy *info,
2487 			struct vm_area_struct *vma, struct mempolicy *npol)
2488 {
2489 	int err;
2490 	struct sp_node *new = NULL;
2491 	unsigned long sz = vma_pages(vma);
2492 
2493 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2494 		 vma->vm_pgoff,
2495 		 sz, npol ? npol->mode : -1,
2496 		 npol ? npol->flags : -1,
2497 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2498 
2499 	if (npol) {
2500 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2501 		if (!new)
2502 			return -ENOMEM;
2503 	}
2504 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2505 	if (err && new)
2506 		sp_free(new);
2507 	return err;
2508 }
2509 
2510 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2511 void mpol_free_shared_policy(struct shared_policy *p)
2512 {
2513 	struct sp_node *n;
2514 	struct rb_node *next;
2515 
2516 	if (!p->root.rb_node)
2517 		return;
2518 	spin_lock(&p->lock);
2519 	next = rb_first(&p->root);
2520 	while (next) {
2521 		n = rb_entry(next, struct sp_node, nd);
2522 		next = rb_next(&n->nd);
2523 		sp_delete(p, n);
2524 	}
2525 	spin_unlock(&p->lock);
2526 }
2527 
2528 #ifdef CONFIG_NUMA_BALANCING
2529 static int __initdata numabalancing_override;
2530 
check_numabalancing_enable(void)2531 static void __init check_numabalancing_enable(void)
2532 {
2533 	bool numabalancing_default = false;
2534 
2535 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2536 		numabalancing_default = true;
2537 
2538 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2539 	if (numabalancing_override)
2540 		set_numabalancing_state(numabalancing_override == 1);
2541 
2542 	if (num_online_nodes() > 1 && !numabalancing_override) {
2543 		pr_info("%s automatic NUMA balancing. "
2544 			"Configure with numa_balancing= or the "
2545 			"kernel.numa_balancing sysctl",
2546 			numabalancing_default ? "Enabling" : "Disabling");
2547 		set_numabalancing_state(numabalancing_default);
2548 	}
2549 }
2550 
setup_numabalancing(char * str)2551 static int __init setup_numabalancing(char *str)
2552 {
2553 	int ret = 0;
2554 	if (!str)
2555 		goto out;
2556 
2557 	if (!strcmp(str, "enable")) {
2558 		numabalancing_override = 1;
2559 		ret = 1;
2560 	} else if (!strcmp(str, "disable")) {
2561 		numabalancing_override = -1;
2562 		ret = 1;
2563 	}
2564 out:
2565 	if (!ret)
2566 		pr_warn("Unable to parse numa_balancing=\n");
2567 
2568 	return ret;
2569 }
2570 __setup("numa_balancing=", setup_numabalancing);
2571 #else
check_numabalancing_enable(void)2572 static inline void __init check_numabalancing_enable(void)
2573 {
2574 }
2575 #endif /* CONFIG_NUMA_BALANCING */
2576 
2577 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2578 void __init numa_policy_init(void)
2579 {
2580 	nodemask_t interleave_nodes;
2581 	unsigned long largest = 0;
2582 	int nid, prefer = 0;
2583 
2584 	policy_cache = kmem_cache_create("numa_policy",
2585 					 sizeof(struct mempolicy),
2586 					 0, SLAB_PANIC, NULL);
2587 
2588 	sn_cache = kmem_cache_create("shared_policy_node",
2589 				     sizeof(struct sp_node),
2590 				     0, SLAB_PANIC, NULL);
2591 
2592 	for_each_node(nid) {
2593 		preferred_node_policy[nid] = (struct mempolicy) {
2594 			.refcnt = ATOMIC_INIT(1),
2595 			.mode = MPOL_PREFERRED,
2596 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2597 			.v = { .preferred_node = nid, },
2598 		};
2599 	}
2600 
2601 	/*
2602 	 * Set interleaving policy for system init. Interleaving is only
2603 	 * enabled across suitably sized nodes (default is >= 16MB), or
2604 	 * fall back to the largest node if they're all smaller.
2605 	 */
2606 	nodes_clear(interleave_nodes);
2607 	for_each_node_state(nid, N_MEMORY) {
2608 		unsigned long total_pages = node_present_pages(nid);
2609 
2610 		/* Preserve the largest node */
2611 		if (largest < total_pages) {
2612 			largest = total_pages;
2613 			prefer = nid;
2614 		}
2615 
2616 		/* Interleave this node? */
2617 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2618 			node_set(nid, interleave_nodes);
2619 	}
2620 
2621 	/* All too small, use the largest */
2622 	if (unlikely(nodes_empty(interleave_nodes)))
2623 		node_set(prefer, interleave_nodes);
2624 
2625 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2626 		pr_err("%s: interleaving failed\n", __func__);
2627 
2628 	check_numabalancing_enable();
2629 }
2630 
2631 /* Reset policy of current process to default */
numa_default_policy(void)2632 void numa_default_policy(void)
2633 {
2634 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2635 }
2636 
2637 /*
2638  * Parse and format mempolicy from/to strings
2639  */
2640 
2641 /*
2642  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2643  */
2644 static const char * const policy_modes[] =
2645 {
2646 	[MPOL_DEFAULT]    = "default",
2647 	[MPOL_PREFERRED]  = "prefer",
2648 	[MPOL_BIND]       = "bind",
2649 	[MPOL_INTERLEAVE] = "interleave",
2650 	[MPOL_LOCAL]      = "local",
2651 };
2652 
2653 
2654 #ifdef CONFIG_TMPFS
2655 /**
2656  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2657  * @str:  string containing mempolicy to parse
2658  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2659  *
2660  * Format of input:
2661  *	<mode>[=<flags>][:<nodelist>]
2662  *
2663  * On success, returns 0, else 1
2664  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2665 int mpol_parse_str(char *str, struct mempolicy **mpol)
2666 {
2667 	struct mempolicy *new = NULL;
2668 	unsigned short mode;
2669 	unsigned short mode_flags;
2670 	nodemask_t nodes;
2671 	char *nodelist = strchr(str, ':');
2672 	char *flags = strchr(str, '=');
2673 	int err = 1;
2674 
2675 	if (nodelist) {
2676 		/* NUL-terminate mode or flags string */
2677 		*nodelist++ = '\0';
2678 		if (nodelist_parse(nodelist, nodes))
2679 			goto out;
2680 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2681 			goto out;
2682 	} else
2683 		nodes_clear(nodes);
2684 
2685 	if (flags)
2686 		*flags++ = '\0';	/* terminate mode string */
2687 
2688 	for (mode = 0; mode < MPOL_MAX; mode++) {
2689 		if (!strcmp(str, policy_modes[mode])) {
2690 			break;
2691 		}
2692 	}
2693 	if (mode >= MPOL_MAX)
2694 		goto out;
2695 
2696 	switch (mode) {
2697 	case MPOL_PREFERRED:
2698 		/*
2699 		 * Insist on a nodelist of one node only
2700 		 */
2701 		if (nodelist) {
2702 			char *rest = nodelist;
2703 			while (isdigit(*rest))
2704 				rest++;
2705 			if (*rest)
2706 				goto out;
2707 		}
2708 		break;
2709 	case MPOL_INTERLEAVE:
2710 		/*
2711 		 * Default to online nodes with memory if no nodelist
2712 		 */
2713 		if (!nodelist)
2714 			nodes = node_states[N_MEMORY];
2715 		break;
2716 	case MPOL_LOCAL:
2717 		/*
2718 		 * Don't allow a nodelist;  mpol_new() checks flags
2719 		 */
2720 		if (nodelist)
2721 			goto out;
2722 		mode = MPOL_PREFERRED;
2723 		break;
2724 	case MPOL_DEFAULT:
2725 		/*
2726 		 * Insist on a empty nodelist
2727 		 */
2728 		if (!nodelist)
2729 			err = 0;
2730 		goto out;
2731 	case MPOL_BIND:
2732 		/*
2733 		 * Insist on a nodelist
2734 		 */
2735 		if (!nodelist)
2736 			goto out;
2737 	}
2738 
2739 	mode_flags = 0;
2740 	if (flags) {
2741 		/*
2742 		 * Currently, we only support two mutually exclusive
2743 		 * mode flags.
2744 		 */
2745 		if (!strcmp(flags, "static"))
2746 			mode_flags |= MPOL_F_STATIC_NODES;
2747 		else if (!strcmp(flags, "relative"))
2748 			mode_flags |= MPOL_F_RELATIVE_NODES;
2749 		else
2750 			goto out;
2751 	}
2752 
2753 	new = mpol_new(mode, mode_flags, &nodes);
2754 	if (IS_ERR(new))
2755 		goto out;
2756 
2757 	/*
2758 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2759 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2760 	 */
2761 	if (mode != MPOL_PREFERRED)
2762 		new->v.nodes = nodes;
2763 	else if (nodelist)
2764 		new->v.preferred_node = first_node(nodes);
2765 	else
2766 		new->flags |= MPOL_F_LOCAL;
2767 
2768 	/*
2769 	 * Save nodes for contextualization: this will be used to "clone"
2770 	 * the mempolicy in a specific context [cpuset] at a later time.
2771 	 */
2772 	new->w.user_nodemask = nodes;
2773 
2774 	err = 0;
2775 
2776 out:
2777 	/* Restore string for error message */
2778 	if (nodelist)
2779 		*--nodelist = ':';
2780 	if (flags)
2781 		*--flags = '=';
2782 	if (!err)
2783 		*mpol = new;
2784 	return err;
2785 }
2786 #endif /* CONFIG_TMPFS */
2787 
2788 /**
2789  * mpol_to_str - format a mempolicy structure for printing
2790  * @buffer:  to contain formatted mempolicy string
2791  * @maxlen:  length of @buffer
2792  * @pol:  pointer to mempolicy to be formatted
2793  *
2794  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2795  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2796  * longest flag, "relative", and to display at least a few node ids.
2797  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2798 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2799 {
2800 	char *p = buffer;
2801 	nodemask_t nodes = NODE_MASK_NONE;
2802 	unsigned short mode = MPOL_DEFAULT;
2803 	unsigned short flags = 0;
2804 
2805 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2806 		mode = pol->mode;
2807 		flags = pol->flags;
2808 	}
2809 
2810 	switch (mode) {
2811 	case MPOL_DEFAULT:
2812 		break;
2813 	case MPOL_PREFERRED:
2814 		if (flags & MPOL_F_LOCAL)
2815 			mode = MPOL_LOCAL;
2816 		else
2817 			node_set(pol->v.preferred_node, nodes);
2818 		break;
2819 	case MPOL_BIND:
2820 	case MPOL_INTERLEAVE:
2821 		nodes = pol->v.nodes;
2822 		break;
2823 	default:
2824 		WARN_ON_ONCE(1);
2825 		snprintf(p, maxlen, "unknown");
2826 		return;
2827 	}
2828 
2829 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2830 
2831 	if (flags & MPOL_MODE_FLAGS) {
2832 		p += snprintf(p, buffer + maxlen - p, "=");
2833 
2834 		/*
2835 		 * Currently, the only defined flags are mutually exclusive
2836 		 */
2837 		if (flags & MPOL_F_STATIC_NODES)
2838 			p += snprintf(p, buffer + maxlen - p, "static");
2839 		else if (flags & MPOL_F_RELATIVE_NODES)
2840 			p += snprintf(p, buffer + maxlen - p, "relative");
2841 	}
2842 
2843 	if (!nodes_empty(nodes)) {
2844 		p += snprintf(p, buffer + maxlen - p, ":");
2845 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2846 	}
2847 }
2848