1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/ptrace.h>
41
42 #include <asm/tlbflush.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
46
47 #include "internal.h"
48
49 /*
50 * migrate_prep() needs to be called before we start compiling a list of pages
51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52 * undesirable, use migrate_prep_local()
53 */
migrate_prep(void)54 int migrate_prep(void)
55 {
56 /*
57 * Clear the LRU lists so pages can be isolated.
58 * Note that pages may be moved off the LRU after we have
59 * drained them. Those pages will fail to migrate like other
60 * pages that may be busy.
61 */
62 lru_add_drain_all();
63
64 return 0;
65 }
66
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)68 int migrate_prep_local(void)
69 {
70 lru_add_drain();
71
72 return 0;
73 }
74
75 /*
76 * Put previously isolated pages back onto the appropriate lists
77 * from where they were once taken off for compaction/migration.
78 *
79 * This function shall be used whenever the isolated pageset has been
80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81 * and isolate_huge_page().
82 */
putback_movable_pages(struct list_head * l)83 void putback_movable_pages(struct list_head *l)
84 {
85 struct page *page;
86 struct page *page2;
87
88 list_for_each_entry_safe(page, page2, l, lru) {
89 if (unlikely(PageHuge(page))) {
90 putback_active_hugepage(page);
91 continue;
92 }
93 list_del(&page->lru);
94 dec_zone_page_state(page, NR_ISOLATED_ANON +
95 page_is_file_cache(page));
96 if (unlikely(isolated_balloon_page(page)))
97 balloon_page_putback(page);
98 else
99 putback_lru_page(page);
100 }
101 }
102
103 /*
104 * Restore a potential migration pte to a working pte entry
105 */
remove_migration_pte(struct page * new,struct vm_area_struct * vma,unsigned long addr,void * old)106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 unsigned long addr, void *old)
108 {
109 struct mm_struct *mm = vma->vm_mm;
110 swp_entry_t entry;
111 pmd_t *pmd;
112 pte_t *ptep, pte;
113 spinlock_t *ptl;
114
115 if (unlikely(PageHuge(new))) {
116 ptep = huge_pte_offset(mm, addr);
117 if (!ptep)
118 goto out;
119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 } else {
121 pmd = mm_find_pmd(mm, addr);
122 if (!pmd)
123 goto out;
124
125 ptep = pte_offset_map(pmd, addr);
126
127 /*
128 * Peek to check is_swap_pte() before taking ptlock? No, we
129 * can race mremap's move_ptes(), which skips anon_vma lock.
130 */
131
132 ptl = pte_lockptr(mm, pmd);
133 }
134
135 spin_lock(ptl);
136 pte = *ptep;
137 if (!is_swap_pte(pte))
138 goto unlock;
139
140 entry = pte_to_swp_entry(pte);
141
142 if (!is_migration_entry(entry) ||
143 migration_entry_to_page(entry) != old)
144 goto unlock;
145
146 get_page(new);
147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 if (pte_swp_soft_dirty(*ptep))
149 pte = pte_mksoft_dirty(pte);
150
151 /* Recheck VMA as permissions can change since migration started */
152 if (is_write_migration_entry(entry))
153 pte = maybe_mkwrite(pte, vma);
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 if (PageHuge(new)) {
157 pte = pte_mkhuge(pte);
158 pte = arch_make_huge_pte(pte, vma, new, 0);
159 }
160 #endif
161 flush_dcache_page(new);
162 set_pte_at(mm, addr, ptep, pte);
163
164 if (PageHuge(new)) {
165 if (PageAnon(new))
166 hugepage_add_anon_rmap(new, vma, addr);
167 else
168 page_dup_rmap(new);
169 } else if (PageAnon(new))
170 page_add_anon_rmap(new, vma, addr);
171 else
172 page_add_file_rmap(new);
173
174 /* No need to invalidate - it was non-present before */
175 update_mmu_cache(vma, addr, ptep);
176 unlock:
177 pte_unmap_unlock(ptep, ptl);
178 out:
179 return SWAP_AGAIN;
180 }
181
182 /*
183 * Congratulations to trinity for discovering this bug.
184 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
185 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
186 * replace the specified range by file ptes throughout (maybe populated after).
187 * If page migration finds a page within that range, while it's still located
188 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
189 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
190 * But if the migrating page is in a part of the vma outside the range to be
191 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
192 * deal with it. Fortunately, this part of the vma is of course still linear,
193 * so we just need to use linear location on the nonlinear list.
194 */
remove_linear_migration_ptes_from_nonlinear(struct page * page,struct address_space * mapping,void * arg)195 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
196 struct address_space *mapping, void *arg)
197 {
198 struct vm_area_struct *vma;
199 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
200 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201 unsigned long addr;
202
203 list_for_each_entry(vma,
204 &mapping->i_mmap_nonlinear, shared.nonlinear) {
205
206 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
207 if (addr >= vma->vm_start && addr < vma->vm_end)
208 remove_migration_pte(page, vma, addr, arg);
209 }
210 return SWAP_AGAIN;
211 }
212
213 /*
214 * Get rid of all migration entries and replace them by
215 * references to the indicated page.
216 */
remove_migration_ptes(struct page * old,struct page * new)217 static void remove_migration_ptes(struct page *old, struct page *new)
218 {
219 struct rmap_walk_control rwc = {
220 .rmap_one = remove_migration_pte,
221 .arg = old,
222 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
223 };
224
225 rmap_walk(new, &rwc);
226 }
227
228 /*
229 * Something used the pte of a page under migration. We need to
230 * get to the page and wait until migration is finished.
231 * When we return from this function the fault will be retried.
232 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)233 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
234 spinlock_t *ptl)
235 {
236 pte_t pte;
237 swp_entry_t entry;
238 struct page *page;
239
240 spin_lock(ptl);
241 pte = *ptep;
242 if (!is_swap_pte(pte))
243 goto out;
244
245 entry = pte_to_swp_entry(pte);
246 if (!is_migration_entry(entry))
247 goto out;
248
249 page = migration_entry_to_page(entry);
250
251 /*
252 * Once radix-tree replacement of page migration started, page_count
253 * *must* be zero. And, we don't want to call wait_on_page_locked()
254 * against a page without get_page().
255 * So, we use get_page_unless_zero(), here. Even failed, page fault
256 * will occur again.
257 */
258 if (!get_page_unless_zero(page))
259 goto out;
260 pte_unmap_unlock(ptep, ptl);
261 wait_on_page_locked(page);
262 put_page(page);
263 return;
264 out:
265 pte_unmap_unlock(ptep, ptl);
266 }
267
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)268 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
269 unsigned long address)
270 {
271 spinlock_t *ptl = pte_lockptr(mm, pmd);
272 pte_t *ptep = pte_offset_map(pmd, address);
273 __migration_entry_wait(mm, ptep, ptl);
274 }
275
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)276 void migration_entry_wait_huge(struct vm_area_struct *vma,
277 struct mm_struct *mm, pte_t *pte)
278 {
279 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
280 __migration_entry_wait(mm, pte, ptl);
281 }
282
283 #ifdef CONFIG_BLOCK
284 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)285 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
286 enum migrate_mode mode)
287 {
288 struct buffer_head *bh = head;
289
290 /* Simple case, sync compaction */
291 if (mode != MIGRATE_ASYNC) {
292 do {
293 get_bh(bh);
294 lock_buffer(bh);
295 bh = bh->b_this_page;
296
297 } while (bh != head);
298
299 return true;
300 }
301
302 /* async case, we cannot block on lock_buffer so use trylock_buffer */
303 do {
304 get_bh(bh);
305 if (!trylock_buffer(bh)) {
306 /*
307 * We failed to lock the buffer and cannot stall in
308 * async migration. Release the taken locks
309 */
310 struct buffer_head *failed_bh = bh;
311 put_bh(failed_bh);
312 bh = head;
313 while (bh != failed_bh) {
314 unlock_buffer(bh);
315 put_bh(bh);
316 bh = bh->b_this_page;
317 }
318 return false;
319 }
320
321 bh = bh->b_this_page;
322 } while (bh != head);
323 return true;
324 }
325 #else
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)326 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
327 enum migrate_mode mode)
328 {
329 return true;
330 }
331 #endif /* CONFIG_BLOCK */
332
333 /*
334 * Replace the page in the mapping.
335 *
336 * The number of remaining references must be:
337 * 1 for anonymous pages without a mapping
338 * 2 for pages with a mapping
339 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
340 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,struct buffer_head * head,enum migrate_mode mode,int extra_count)341 int migrate_page_move_mapping(struct address_space *mapping,
342 struct page *newpage, struct page *page,
343 struct buffer_head *head, enum migrate_mode mode,
344 int extra_count)
345 {
346 int expected_count = 1 + extra_count;
347 void **pslot;
348
349 if (!mapping) {
350 /* Anonymous page without mapping */
351 if (page_count(page) != expected_count)
352 return -EAGAIN;
353 return MIGRATEPAGE_SUCCESS;
354 }
355
356 spin_lock_irq(&mapping->tree_lock);
357
358 pslot = radix_tree_lookup_slot(&mapping->page_tree,
359 page_index(page));
360
361 expected_count += 1 + page_has_private(page);
362 if (page_count(page) != expected_count ||
363 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
364 spin_unlock_irq(&mapping->tree_lock);
365 return -EAGAIN;
366 }
367
368 if (!page_freeze_refs(page, expected_count)) {
369 spin_unlock_irq(&mapping->tree_lock);
370 return -EAGAIN;
371 }
372
373 /*
374 * In the async migration case of moving a page with buffers, lock the
375 * buffers using trylock before the mapping is moved. If the mapping
376 * was moved, we later failed to lock the buffers and could not move
377 * the mapping back due to an elevated page count, we would have to
378 * block waiting on other references to be dropped.
379 */
380 if (mode == MIGRATE_ASYNC && head &&
381 !buffer_migrate_lock_buffers(head, mode)) {
382 page_unfreeze_refs(page, expected_count);
383 spin_unlock_irq(&mapping->tree_lock);
384 return -EAGAIN;
385 }
386
387 /*
388 * Now we know that no one else is looking at the page.
389 */
390 get_page(newpage); /* add cache reference */
391 if (PageSwapCache(page)) {
392 SetPageSwapCache(newpage);
393 set_page_private(newpage, page_private(page));
394 }
395
396 radix_tree_replace_slot(pslot, newpage);
397
398 /*
399 * Drop cache reference from old page by unfreezing
400 * to one less reference.
401 * We know this isn't the last reference.
402 */
403 page_unfreeze_refs(page, expected_count - 1);
404
405 /*
406 * If moved to a different zone then also account
407 * the page for that zone. Other VM counters will be
408 * taken care of when we establish references to the
409 * new page and drop references to the old page.
410 *
411 * Note that anonymous pages are accounted for
412 * via NR_FILE_PAGES and NR_ANON_PAGES if they
413 * are mapped to swap space.
414 */
415 __dec_zone_page_state(page, NR_FILE_PAGES);
416 __inc_zone_page_state(newpage, NR_FILE_PAGES);
417 if (!PageSwapCache(page) && PageSwapBacked(page)) {
418 __dec_zone_page_state(page, NR_SHMEM);
419 __inc_zone_page_state(newpage, NR_SHMEM);
420 }
421 spin_unlock_irq(&mapping->tree_lock);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425 EXPORT_SYMBOL(migrate_page_move_mapping);
426
427 /*
428 * The expected number of remaining references is the same as that
429 * of migrate_page_move_mapping().
430 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)431 int migrate_huge_page_move_mapping(struct address_space *mapping,
432 struct page *newpage, struct page *page)
433 {
434 int expected_count;
435 void **pslot;
436
437 if (!mapping) {
438 if (page_count(page) != 1)
439 return -EAGAIN;
440 return MIGRATEPAGE_SUCCESS;
441 }
442
443 spin_lock_irq(&mapping->tree_lock);
444
445 pslot = radix_tree_lookup_slot(&mapping->page_tree,
446 page_index(page));
447
448 expected_count = 2 + page_has_private(page);
449 if (page_count(page) != expected_count ||
450 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
451 spin_unlock_irq(&mapping->tree_lock);
452 return -EAGAIN;
453 }
454
455 if (!page_freeze_refs(page, expected_count)) {
456 spin_unlock_irq(&mapping->tree_lock);
457 return -EAGAIN;
458 }
459
460 get_page(newpage);
461
462 radix_tree_replace_slot(pslot, newpage);
463
464 page_unfreeze_refs(page, expected_count - 1);
465
466 spin_unlock_irq(&mapping->tree_lock);
467 return MIGRATEPAGE_SUCCESS;
468 }
469
470 /*
471 * Gigantic pages are so large that we do not guarantee that page++ pointer
472 * arithmetic will work across the entire page. We need something more
473 * specialized.
474 */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)475 static void __copy_gigantic_page(struct page *dst, struct page *src,
476 int nr_pages)
477 {
478 int i;
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < nr_pages; ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
copy_huge_page(struct page * dst,struct page * src)492 static void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 int nr_pages;
496
497 if (PageHuge(src)) {
498 /* hugetlbfs page */
499 struct hstate *h = page_hstate(src);
500 nr_pages = pages_per_huge_page(h);
501
502 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
503 __copy_gigantic_page(dst, src, nr_pages);
504 return;
505 }
506 } else {
507 /* thp page */
508 BUG_ON(!PageTransHuge(src));
509 nr_pages = hpage_nr_pages(src);
510 }
511
512 for (i = 0; i < nr_pages; i++) {
513 cond_resched();
514 copy_highpage(dst + i, src + i);
515 }
516 }
517
518 /*
519 * Copy the page to its new location
520 */
migrate_page_copy(struct page * newpage,struct page * page)521 void migrate_page_copy(struct page *newpage, struct page *page)
522 {
523 int cpupid;
524
525 if (PageHuge(page) || PageTransHuge(page))
526 copy_huge_page(newpage, page);
527 else
528 copy_highpage(newpage, page);
529
530 if (PageError(page))
531 SetPageError(newpage);
532 if (PageReferenced(page))
533 SetPageReferenced(newpage);
534 if (PageUptodate(page))
535 SetPageUptodate(newpage);
536 if (TestClearPageActive(page)) {
537 VM_BUG_ON_PAGE(PageUnevictable(page), page);
538 SetPageActive(newpage);
539 } else if (TestClearPageUnevictable(page))
540 SetPageUnevictable(newpage);
541 if (PageChecked(page))
542 SetPageChecked(newpage);
543 if (PageMappedToDisk(page))
544 SetPageMappedToDisk(newpage);
545
546 if (PageDirty(page)) {
547 clear_page_dirty_for_io(page);
548 /*
549 * Want to mark the page and the radix tree as dirty, and
550 * redo the accounting that clear_page_dirty_for_io undid,
551 * but we can't use set_page_dirty because that function
552 * is actually a signal that all of the page has become dirty.
553 * Whereas only part of our page may be dirty.
554 */
555 if (PageSwapBacked(page))
556 SetPageDirty(newpage);
557 else
558 __set_page_dirty_nobuffers(newpage);
559 }
560
561 /*
562 * Copy NUMA information to the new page, to prevent over-eager
563 * future migrations of this same page.
564 */
565 cpupid = page_cpupid_xchg_last(page, -1);
566 page_cpupid_xchg_last(newpage, cpupid);
567
568 mlock_migrate_page(newpage, page);
569 ksm_migrate_page(newpage, page);
570 /*
571 * Please do not reorder this without considering how mm/ksm.c's
572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
573 */
574 ClearPageSwapCache(page);
575 ClearPagePrivate(page);
576 set_page_private(page, 0);
577
578 /*
579 * If any waiters have accumulated on the new page then
580 * wake them up.
581 */
582 if (PageWriteback(newpage))
583 end_page_writeback(newpage);
584 }
585 EXPORT_SYMBOL(migrate_page_copy);
586
587 /************************************************************
588 * Migration functions
589 ***********************************************************/
590
591 /*
592 * Common logic to directly migrate a single page suitable for
593 * pages that do not use PagePrivate/PagePrivate2.
594 *
595 * Pages are locked upon entry and exit.
596 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)597 int migrate_page(struct address_space *mapping,
598 struct page *newpage, struct page *page,
599 enum migrate_mode mode)
600 {
601 int rc;
602
603 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
604
605 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
606
607 if (rc != MIGRATEPAGE_SUCCESS)
608 return rc;
609
610 migrate_page_copy(newpage, page);
611 return MIGRATEPAGE_SUCCESS;
612 }
613 EXPORT_SYMBOL(migrate_page);
614
615 #ifdef CONFIG_BLOCK
616 /*
617 * Migration function for pages with buffers. This function can only be used
618 * if the underlying filesystem guarantees that no other references to "page"
619 * exist.
620 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)621 int buffer_migrate_page(struct address_space *mapping,
622 struct page *newpage, struct page *page, enum migrate_mode mode)
623 {
624 struct buffer_head *bh, *head;
625 int rc;
626
627 if (!page_has_buffers(page))
628 return migrate_page(mapping, newpage, page, mode);
629
630 head = page_buffers(page);
631
632 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
633
634 if (rc != MIGRATEPAGE_SUCCESS)
635 return rc;
636
637 /*
638 * In the async case, migrate_page_move_mapping locked the buffers
639 * with an IRQ-safe spinlock held. In the sync case, the buffers
640 * need to be locked now
641 */
642 if (mode != MIGRATE_ASYNC)
643 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
644
645 ClearPagePrivate(page);
646 set_page_private(newpage, page_private(page));
647 set_page_private(page, 0);
648 put_page(page);
649 get_page(newpage);
650
651 bh = head;
652 do {
653 set_bh_page(bh, newpage, bh_offset(bh));
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
658 SetPagePrivate(newpage);
659
660 migrate_page_copy(newpage, page);
661
662 bh = head;
663 do {
664 unlock_buffer(bh);
665 put_bh(bh);
666 bh = bh->b_this_page;
667
668 } while (bh != head);
669
670 return MIGRATEPAGE_SUCCESS;
671 }
672 EXPORT_SYMBOL(buffer_migrate_page);
673 #endif
674
675 /*
676 * Writeback a page to clean the dirty state
677 */
writeout(struct address_space * mapping,struct page * page)678 static int writeout(struct address_space *mapping, struct page *page)
679 {
680 struct writeback_control wbc = {
681 .sync_mode = WB_SYNC_NONE,
682 .nr_to_write = 1,
683 .range_start = 0,
684 .range_end = LLONG_MAX,
685 .for_reclaim = 1
686 };
687 int rc;
688
689 if (!mapping->a_ops->writepage)
690 /* No write method for the address space */
691 return -EINVAL;
692
693 if (!clear_page_dirty_for_io(page))
694 /* Someone else already triggered a write */
695 return -EAGAIN;
696
697 /*
698 * A dirty page may imply that the underlying filesystem has
699 * the page on some queue. So the page must be clean for
700 * migration. Writeout may mean we loose the lock and the
701 * page state is no longer what we checked for earlier.
702 * At this point we know that the migration attempt cannot
703 * be successful.
704 */
705 remove_migration_ptes(page, page);
706
707 rc = mapping->a_ops->writepage(page, &wbc);
708
709 if (rc != AOP_WRITEPAGE_ACTIVATE)
710 /* unlocked. Relock */
711 lock_page(page);
712
713 return (rc < 0) ? -EIO : -EAGAIN;
714 }
715
716 /*
717 * Default handling if a filesystem does not provide a migration function.
718 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)719 static int fallback_migrate_page(struct address_space *mapping,
720 struct page *newpage, struct page *page, enum migrate_mode mode)
721 {
722 if (PageDirty(page)) {
723 /* Only writeback pages in full synchronous migration */
724 if (mode != MIGRATE_SYNC)
725 return -EBUSY;
726 return writeout(mapping, page);
727 }
728
729 /*
730 * Buffers may be managed in a filesystem specific way.
731 * We must have no buffers or drop them.
732 */
733 if (page_has_private(page) &&
734 !try_to_release_page(page, GFP_KERNEL))
735 return -EAGAIN;
736
737 return migrate_page(mapping, newpage, page, mode);
738 }
739
740 /*
741 * Move a page to a newly allocated page
742 * The page is locked and all ptes have been successfully removed.
743 *
744 * The new page will have replaced the old page if this function
745 * is successful.
746 *
747 * Return value:
748 * < 0 - error code
749 * MIGRATEPAGE_SUCCESS - success
750 */
move_to_new_page(struct page * newpage,struct page * page,int remap_swapcache,enum migrate_mode mode)751 static int move_to_new_page(struct page *newpage, struct page *page,
752 int remap_swapcache, enum migrate_mode mode)
753 {
754 struct address_space *mapping;
755 int rc;
756
757 /*
758 * Block others from accessing the page when we get around to
759 * establishing additional references. We are the only one
760 * holding a reference to the new page at this point.
761 */
762 if (!trylock_page(newpage))
763 BUG();
764
765 /* Prepare mapping for the new page.*/
766 newpage->index = page->index;
767 newpage->mapping = page->mapping;
768 if (PageSwapBacked(page))
769 SetPageSwapBacked(newpage);
770
771 mapping = page_mapping(page);
772 if (!mapping)
773 rc = migrate_page(mapping, newpage, page, mode);
774 else if (mapping->a_ops->migratepage)
775 /*
776 * Most pages have a mapping and most filesystems provide a
777 * migratepage callback. Anonymous pages are part of swap
778 * space which also has its own migratepage callback. This
779 * is the most common path for page migration.
780 */
781 rc = mapping->a_ops->migratepage(mapping,
782 newpage, page, mode);
783 else
784 rc = fallback_migrate_page(mapping, newpage, page, mode);
785
786 if (rc != MIGRATEPAGE_SUCCESS) {
787 newpage->mapping = NULL;
788 } else {
789 mem_cgroup_migrate(page, newpage, false);
790 if (remap_swapcache)
791 remove_migration_ptes(page, newpage);
792 page->mapping = NULL;
793 }
794
795 unlock_page(newpage);
796
797 return rc;
798 }
799
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)800 static int __unmap_and_move(struct page *page, struct page *newpage,
801 int force, enum migrate_mode mode)
802 {
803 int rc = -EAGAIN;
804 int remap_swapcache = 1;
805 struct anon_vma *anon_vma = NULL;
806
807 if (!trylock_page(page)) {
808 if (!force || mode == MIGRATE_ASYNC)
809 goto out;
810
811 /*
812 * It's not safe for direct compaction to call lock_page.
813 * For example, during page readahead pages are added locked
814 * to the LRU. Later, when the IO completes the pages are
815 * marked uptodate and unlocked. However, the queueing
816 * could be merging multiple pages for one bio (e.g.
817 * mpage_readpages). If an allocation happens for the
818 * second or third page, the process can end up locking
819 * the same page twice and deadlocking. Rather than
820 * trying to be clever about what pages can be locked,
821 * avoid the use of lock_page for direct compaction
822 * altogether.
823 */
824 if (current->flags & PF_MEMALLOC)
825 goto out;
826
827 lock_page(page);
828 }
829
830 if (PageWriteback(page)) {
831 /*
832 * Only in the case of a full synchronous migration is it
833 * necessary to wait for PageWriteback. In the async case,
834 * the retry loop is too short and in the sync-light case,
835 * the overhead of stalling is too much
836 */
837 if (mode != MIGRATE_SYNC) {
838 rc = -EBUSY;
839 goto out_unlock;
840 }
841 if (!force)
842 goto out_unlock;
843 wait_on_page_writeback(page);
844 }
845 /*
846 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
847 * we cannot notice that anon_vma is freed while we migrates a page.
848 * This get_anon_vma() delays freeing anon_vma pointer until the end
849 * of migration. File cache pages are no problem because of page_lock()
850 * File Caches may use write_page() or lock_page() in migration, then,
851 * just care Anon page here.
852 */
853 if (PageAnon(page) && !PageKsm(page)) {
854 /*
855 * Only page_lock_anon_vma_read() understands the subtleties of
856 * getting a hold on an anon_vma from outside one of its mms.
857 */
858 anon_vma = page_get_anon_vma(page);
859 if (anon_vma) {
860 /*
861 * Anon page
862 */
863 } else if (PageSwapCache(page)) {
864 /*
865 * We cannot be sure that the anon_vma of an unmapped
866 * swapcache page is safe to use because we don't
867 * know in advance if the VMA that this page belonged
868 * to still exists. If the VMA and others sharing the
869 * data have been freed, then the anon_vma could
870 * already be invalid.
871 *
872 * To avoid this possibility, swapcache pages get
873 * migrated but are not remapped when migration
874 * completes
875 */
876 remap_swapcache = 0;
877 } else {
878 goto out_unlock;
879 }
880 }
881
882 if (unlikely(isolated_balloon_page(page))) {
883 /*
884 * A ballooned page does not need any special attention from
885 * physical to virtual reverse mapping procedures.
886 * Skip any attempt to unmap PTEs or to remap swap cache,
887 * in order to avoid burning cycles at rmap level, and perform
888 * the page migration right away (proteced by page lock).
889 */
890 rc = balloon_page_migrate(newpage, page, mode);
891 goto out_unlock;
892 }
893
894 /*
895 * Corner case handling:
896 * 1. When a new swap-cache page is read into, it is added to the LRU
897 * and treated as swapcache but it has no rmap yet.
898 * Calling try_to_unmap() against a page->mapping==NULL page will
899 * trigger a BUG. So handle it here.
900 * 2. An orphaned page (see truncate_complete_page) might have
901 * fs-private metadata. The page can be picked up due to memory
902 * offlining. Everywhere else except page reclaim, the page is
903 * invisible to the vm, so the page can not be migrated. So try to
904 * free the metadata, so the page can be freed.
905 */
906 if (!page->mapping) {
907 VM_BUG_ON_PAGE(PageAnon(page), page);
908 if (page_has_private(page)) {
909 try_to_free_buffers(page);
910 goto out_unlock;
911 }
912 goto skip_unmap;
913 }
914
915 /* Establish migration ptes or remove ptes */
916 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
917
918 skip_unmap:
919 if (!page_mapped(page))
920 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
921
922 if (rc && remap_swapcache)
923 remove_migration_ptes(page, page);
924
925 /* Drop an anon_vma reference if we took one */
926 if (anon_vma)
927 put_anon_vma(anon_vma);
928
929 out_unlock:
930 unlock_page(page);
931 out:
932 return rc;
933 }
934
935 /*
936 * Obtain the lock on page, remove all ptes and migrate the page
937 * to the newly allocated page in newpage.
938 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode)939 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
940 unsigned long private, struct page *page, int force,
941 enum migrate_mode mode)
942 {
943 int rc = 0;
944 int *result = NULL;
945 struct page *newpage = get_new_page(page, private, &result);
946
947 if (!newpage)
948 return -ENOMEM;
949
950 if (page_count(page) == 1) {
951 /* page was freed from under us. So we are done. */
952 goto out;
953 }
954
955 if (unlikely(PageTransHuge(page)))
956 if (unlikely(split_huge_page(page)))
957 goto out;
958
959 rc = __unmap_and_move(page, newpage, force, mode);
960
961 out:
962 if (rc != -EAGAIN) {
963 /*
964 * A page that has been migrated has all references
965 * removed and will be freed. A page that has not been
966 * migrated will have kepts its references and be
967 * restored.
968 */
969 list_del(&page->lru);
970 dec_zone_page_state(page, NR_ISOLATED_ANON +
971 page_is_file_cache(page));
972 putback_lru_page(page);
973 }
974
975 /*
976 * If migration was not successful and there's a freeing callback, use
977 * it. Otherwise, putback_lru_page() will drop the reference grabbed
978 * during isolation.
979 */
980 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
981 ClearPageSwapBacked(newpage);
982 put_new_page(newpage, private);
983 } else if (unlikely(__is_movable_balloon_page(newpage))) {
984 /* drop our reference, page already in the balloon */
985 put_page(newpage);
986 } else
987 putback_lru_page(newpage);
988
989 if (result) {
990 if (rc)
991 *result = rc;
992 else
993 *result = page_to_nid(newpage);
994 }
995 return rc;
996 }
997
998 /*
999 * Counterpart of unmap_and_move_page() for hugepage migration.
1000 *
1001 * This function doesn't wait the completion of hugepage I/O
1002 * because there is no race between I/O and migration for hugepage.
1003 * Note that currently hugepage I/O occurs only in direct I/O
1004 * where no lock is held and PG_writeback is irrelevant,
1005 * and writeback status of all subpages are counted in the reference
1006 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1007 * under direct I/O, the reference of the head page is 512 and a bit more.)
1008 * This means that when we try to migrate hugepage whose subpages are
1009 * doing direct I/O, some references remain after try_to_unmap() and
1010 * hugepage migration fails without data corruption.
1011 *
1012 * There is also no race when direct I/O is issued on the page under migration,
1013 * because then pte is replaced with migration swap entry and direct I/O code
1014 * will wait in the page fault for migration to complete.
1015 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode)1016 static int unmap_and_move_huge_page(new_page_t get_new_page,
1017 free_page_t put_new_page, unsigned long private,
1018 struct page *hpage, int force,
1019 enum migrate_mode mode)
1020 {
1021 int rc = 0;
1022 int *result = NULL;
1023 struct page *new_hpage;
1024 struct anon_vma *anon_vma = NULL;
1025
1026 /*
1027 * Movability of hugepages depends on architectures and hugepage size.
1028 * This check is necessary because some callers of hugepage migration
1029 * like soft offline and memory hotremove don't walk through page
1030 * tables or check whether the hugepage is pmd-based or not before
1031 * kicking migration.
1032 */
1033 if (!hugepage_migration_supported(page_hstate(hpage))) {
1034 putback_active_hugepage(hpage);
1035 return -ENOSYS;
1036 }
1037
1038 new_hpage = get_new_page(hpage, private, &result);
1039 if (!new_hpage)
1040 return -ENOMEM;
1041
1042 rc = -EAGAIN;
1043
1044 if (!trylock_page(hpage)) {
1045 if (!force || mode != MIGRATE_SYNC)
1046 goto out;
1047 lock_page(hpage);
1048 }
1049
1050 if (PageAnon(hpage))
1051 anon_vma = page_get_anon_vma(hpage);
1052
1053 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1054
1055 if (!page_mapped(hpage))
1056 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1057
1058 if (rc != MIGRATEPAGE_SUCCESS)
1059 remove_migration_ptes(hpage, hpage);
1060
1061 if (anon_vma)
1062 put_anon_vma(anon_vma);
1063
1064 if (rc == MIGRATEPAGE_SUCCESS)
1065 hugetlb_cgroup_migrate(hpage, new_hpage);
1066
1067 unlock_page(hpage);
1068 out:
1069 if (rc != -EAGAIN)
1070 putback_active_hugepage(hpage);
1071
1072 /*
1073 * If migration was not successful and there's a freeing callback, use
1074 * it. Otherwise, put_page() will drop the reference grabbed during
1075 * isolation.
1076 */
1077 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1078 put_new_page(new_hpage, private);
1079 else
1080 put_page(new_hpage);
1081
1082 if (result) {
1083 if (rc)
1084 *result = rc;
1085 else
1086 *result = page_to_nid(new_hpage);
1087 }
1088 return rc;
1089 }
1090
1091 /*
1092 * migrate_pages - migrate the pages specified in a list, to the free pages
1093 * supplied as the target for the page migration
1094 *
1095 * @from: The list of pages to be migrated.
1096 * @get_new_page: The function used to allocate free pages to be used
1097 * as the target of the page migration.
1098 * @put_new_page: The function used to free target pages if migration
1099 * fails, or NULL if no special handling is necessary.
1100 * @private: Private data to be passed on to get_new_page()
1101 * @mode: The migration mode that specifies the constraints for
1102 * page migration, if any.
1103 * @reason: The reason for page migration.
1104 *
1105 * The function returns after 10 attempts or if no pages are movable any more
1106 * because the list has become empty or no retryable pages exist any more.
1107 * The caller should call putback_lru_pages() to return pages to the LRU
1108 * or free list only if ret != 0.
1109 *
1110 * Returns the number of pages that were not migrated, or an error code.
1111 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1112 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1113 free_page_t put_new_page, unsigned long private,
1114 enum migrate_mode mode, int reason)
1115 {
1116 int retry = 1;
1117 int nr_failed = 0;
1118 int nr_succeeded = 0;
1119 int pass = 0;
1120 struct page *page;
1121 struct page *page2;
1122 int swapwrite = current->flags & PF_SWAPWRITE;
1123 int rc;
1124
1125 if (!swapwrite)
1126 current->flags |= PF_SWAPWRITE;
1127
1128 for(pass = 0; pass < 10 && retry; pass++) {
1129 retry = 0;
1130
1131 list_for_each_entry_safe(page, page2, from, lru) {
1132 cond_resched();
1133
1134 if (PageHuge(page))
1135 rc = unmap_and_move_huge_page(get_new_page,
1136 put_new_page, private, page,
1137 pass > 2, mode);
1138 else
1139 rc = unmap_and_move(get_new_page, put_new_page,
1140 private, page, pass > 2, mode);
1141
1142 switch(rc) {
1143 case -ENOMEM:
1144 goto out;
1145 case -EAGAIN:
1146 retry++;
1147 break;
1148 case MIGRATEPAGE_SUCCESS:
1149 nr_succeeded++;
1150 break;
1151 default:
1152 /*
1153 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1154 * unlike -EAGAIN case, the failed page is
1155 * removed from migration page list and not
1156 * retried in the next outer loop.
1157 */
1158 nr_failed++;
1159 break;
1160 }
1161 }
1162 }
1163 rc = nr_failed + retry;
1164 out:
1165 if (nr_succeeded)
1166 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1167 if (nr_failed)
1168 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1169 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1170
1171 if (!swapwrite)
1172 current->flags &= ~PF_SWAPWRITE;
1173
1174 return rc;
1175 }
1176
1177 #ifdef CONFIG_NUMA
1178 /*
1179 * Move a list of individual pages
1180 */
1181 struct page_to_node {
1182 unsigned long addr;
1183 struct page *page;
1184 int node;
1185 int status;
1186 };
1187
new_page_node(struct page * p,unsigned long private,int ** result)1188 static struct page *new_page_node(struct page *p, unsigned long private,
1189 int **result)
1190 {
1191 struct page_to_node *pm = (struct page_to_node *)private;
1192
1193 while (pm->node != MAX_NUMNODES && pm->page != p)
1194 pm++;
1195
1196 if (pm->node == MAX_NUMNODES)
1197 return NULL;
1198
1199 *result = &pm->status;
1200
1201 if (PageHuge(p))
1202 return alloc_huge_page_node(page_hstate(compound_head(p)),
1203 pm->node);
1204 else
1205 return alloc_pages_exact_node(pm->node,
1206 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1207 }
1208
1209 /*
1210 * Move a set of pages as indicated in the pm array. The addr
1211 * field must be set to the virtual address of the page to be moved
1212 * and the node number must contain a valid target node.
1213 * The pm array ends with node = MAX_NUMNODES.
1214 */
do_move_page_to_node_array(struct mm_struct * mm,struct page_to_node * pm,int migrate_all)1215 static int do_move_page_to_node_array(struct mm_struct *mm,
1216 struct page_to_node *pm,
1217 int migrate_all)
1218 {
1219 int err;
1220 struct page_to_node *pp;
1221 LIST_HEAD(pagelist);
1222
1223 down_read(&mm->mmap_sem);
1224
1225 /*
1226 * Build a list of pages to migrate
1227 */
1228 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1229 struct vm_area_struct *vma;
1230 struct page *page;
1231
1232 err = -EFAULT;
1233 vma = find_vma(mm, pp->addr);
1234 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1235 goto set_status;
1236
1237 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1238
1239 err = PTR_ERR(page);
1240 if (IS_ERR(page))
1241 goto set_status;
1242
1243 err = -ENOENT;
1244 if (!page)
1245 goto set_status;
1246
1247 /* Use PageReserved to check for zero page */
1248 if (PageReserved(page))
1249 goto put_and_set;
1250
1251 pp->page = page;
1252 err = page_to_nid(page);
1253
1254 if (err == pp->node)
1255 /*
1256 * Node already in the right place
1257 */
1258 goto put_and_set;
1259
1260 err = -EACCES;
1261 if (page_mapcount(page) > 1 &&
1262 !migrate_all)
1263 goto put_and_set;
1264
1265 if (PageHuge(page)) {
1266 if (PageHead(page))
1267 isolate_huge_page(page, &pagelist);
1268 goto put_and_set;
1269 }
1270
1271 err = isolate_lru_page(page);
1272 if (!err) {
1273 list_add_tail(&page->lru, &pagelist);
1274 inc_zone_page_state(page, NR_ISOLATED_ANON +
1275 page_is_file_cache(page));
1276 }
1277 put_and_set:
1278 /*
1279 * Either remove the duplicate refcount from
1280 * isolate_lru_page() or drop the page ref if it was
1281 * not isolated.
1282 */
1283 put_page(page);
1284 set_status:
1285 pp->status = err;
1286 }
1287
1288 err = 0;
1289 if (!list_empty(&pagelist)) {
1290 err = migrate_pages(&pagelist, new_page_node, NULL,
1291 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1292 if (err)
1293 putback_movable_pages(&pagelist);
1294 }
1295
1296 up_read(&mm->mmap_sem);
1297 return err;
1298 }
1299
1300 /*
1301 * Migrate an array of page address onto an array of nodes and fill
1302 * the corresponding array of status.
1303 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1304 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1305 unsigned long nr_pages,
1306 const void __user * __user *pages,
1307 const int __user *nodes,
1308 int __user *status, int flags)
1309 {
1310 struct page_to_node *pm;
1311 unsigned long chunk_nr_pages;
1312 unsigned long chunk_start;
1313 int err;
1314
1315 err = -ENOMEM;
1316 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1317 if (!pm)
1318 goto out;
1319
1320 migrate_prep();
1321
1322 /*
1323 * Store a chunk of page_to_node array in a page,
1324 * but keep the last one as a marker
1325 */
1326 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1327
1328 for (chunk_start = 0;
1329 chunk_start < nr_pages;
1330 chunk_start += chunk_nr_pages) {
1331 int j;
1332
1333 if (chunk_start + chunk_nr_pages > nr_pages)
1334 chunk_nr_pages = nr_pages - chunk_start;
1335
1336 /* fill the chunk pm with addrs and nodes from user-space */
1337 for (j = 0; j < chunk_nr_pages; j++) {
1338 const void __user *p;
1339 int node;
1340
1341 err = -EFAULT;
1342 if (get_user(p, pages + j + chunk_start))
1343 goto out_pm;
1344 pm[j].addr = (unsigned long) p;
1345
1346 if (get_user(node, nodes + j + chunk_start))
1347 goto out_pm;
1348
1349 err = -ENODEV;
1350 if (node < 0 || node >= MAX_NUMNODES)
1351 goto out_pm;
1352
1353 if (!node_state(node, N_MEMORY))
1354 goto out_pm;
1355
1356 err = -EACCES;
1357 if (!node_isset(node, task_nodes))
1358 goto out_pm;
1359
1360 pm[j].node = node;
1361 }
1362
1363 /* End marker for this chunk */
1364 pm[chunk_nr_pages].node = MAX_NUMNODES;
1365
1366 /* Migrate this chunk */
1367 err = do_move_page_to_node_array(mm, pm,
1368 flags & MPOL_MF_MOVE_ALL);
1369 if (err < 0)
1370 goto out_pm;
1371
1372 /* Return status information */
1373 for (j = 0; j < chunk_nr_pages; j++)
1374 if (put_user(pm[j].status, status + j + chunk_start)) {
1375 err = -EFAULT;
1376 goto out_pm;
1377 }
1378 }
1379 err = 0;
1380
1381 out_pm:
1382 free_page((unsigned long)pm);
1383 out:
1384 return err;
1385 }
1386
1387 /*
1388 * Determine the nodes of an array of pages and store it in an array of status.
1389 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1390 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1391 const void __user **pages, int *status)
1392 {
1393 unsigned long i;
1394
1395 down_read(&mm->mmap_sem);
1396
1397 for (i = 0; i < nr_pages; i++) {
1398 unsigned long addr = (unsigned long)(*pages);
1399 struct vm_area_struct *vma;
1400 struct page *page;
1401 int err = -EFAULT;
1402
1403 vma = find_vma(mm, addr);
1404 if (!vma || addr < vma->vm_start)
1405 goto set_status;
1406
1407 page = follow_page(vma, addr, 0);
1408
1409 err = PTR_ERR(page);
1410 if (IS_ERR(page))
1411 goto set_status;
1412
1413 err = -ENOENT;
1414 /* Use PageReserved to check for zero page */
1415 if (!page || PageReserved(page))
1416 goto set_status;
1417
1418 err = page_to_nid(page);
1419 set_status:
1420 *status = err;
1421
1422 pages++;
1423 status++;
1424 }
1425
1426 up_read(&mm->mmap_sem);
1427 }
1428
1429 /*
1430 * Determine the nodes of a user array of pages and store it in
1431 * a user array of status.
1432 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1433 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1434 const void __user * __user *pages,
1435 int __user *status)
1436 {
1437 #define DO_PAGES_STAT_CHUNK_NR 16
1438 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1439 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1440
1441 while (nr_pages) {
1442 unsigned long chunk_nr;
1443
1444 chunk_nr = nr_pages;
1445 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1446 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1447
1448 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1449 break;
1450
1451 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1452
1453 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1454 break;
1455
1456 pages += chunk_nr;
1457 status += chunk_nr;
1458 nr_pages -= chunk_nr;
1459 }
1460 return nr_pages ? -EFAULT : 0;
1461 }
1462
1463 /*
1464 * Move a list of pages in the address space of the currently executing
1465 * process.
1466 */
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1467 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1468 const void __user * __user *, pages,
1469 const int __user *, nodes,
1470 int __user *, status, int, flags)
1471 {
1472 struct task_struct *task;
1473 struct mm_struct *mm;
1474 int err;
1475 nodemask_t task_nodes;
1476
1477 /* Check flags */
1478 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1479 return -EINVAL;
1480
1481 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1482 return -EPERM;
1483
1484 /* Find the mm_struct */
1485 rcu_read_lock();
1486 task = pid ? find_task_by_vpid(pid) : current;
1487 if (!task) {
1488 rcu_read_unlock();
1489 return -ESRCH;
1490 }
1491 get_task_struct(task);
1492
1493 /*
1494 * Check if this process has the right to modify the specified
1495 * process. Use the regular "ptrace_may_access()" checks.
1496 */
1497 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1498 rcu_read_unlock();
1499 err = -EPERM;
1500 goto out;
1501 }
1502 rcu_read_unlock();
1503
1504 err = security_task_movememory(task);
1505 if (err)
1506 goto out;
1507
1508 task_nodes = cpuset_mems_allowed(task);
1509 mm = get_task_mm(task);
1510 put_task_struct(task);
1511
1512 if (!mm)
1513 return -EINVAL;
1514
1515 if (nodes)
1516 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1517 nodes, status, flags);
1518 else
1519 err = do_pages_stat(mm, nr_pages, pages, status);
1520
1521 mmput(mm);
1522 return err;
1523
1524 out:
1525 put_task_struct(task);
1526 return err;
1527 }
1528
1529 /*
1530 * Call migration functions in the vma_ops that may prepare
1531 * memory in a vm for migration. migration functions may perform
1532 * the migration for vmas that do not have an underlying page struct.
1533 */
migrate_vmas(struct mm_struct * mm,const nodemask_t * to,const nodemask_t * from,unsigned long flags)1534 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1535 const nodemask_t *from, unsigned long flags)
1536 {
1537 struct vm_area_struct *vma;
1538 int err = 0;
1539
1540 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1541 if (vma->vm_ops && vma->vm_ops->migrate) {
1542 err = vma->vm_ops->migrate(vma, to, from, flags);
1543 if (err)
1544 break;
1545 }
1546 }
1547 return err;
1548 }
1549
1550 #ifdef CONFIG_NUMA_BALANCING
1551 /*
1552 * Returns true if this is a safe migration target node for misplaced NUMA
1553 * pages. Currently it only checks the watermarks which crude
1554 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1555 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1556 unsigned long nr_migrate_pages)
1557 {
1558 int z;
1559 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1560 struct zone *zone = pgdat->node_zones + z;
1561
1562 if (!populated_zone(zone))
1563 continue;
1564
1565 if (!zone_reclaimable(zone))
1566 continue;
1567
1568 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1569 if (!zone_watermark_ok(zone, 0,
1570 high_wmark_pages(zone) +
1571 nr_migrate_pages,
1572 0, 0))
1573 continue;
1574 return true;
1575 }
1576 return false;
1577 }
1578
alloc_misplaced_dst_page(struct page * page,unsigned long data,int ** result)1579 static struct page *alloc_misplaced_dst_page(struct page *page,
1580 unsigned long data,
1581 int **result)
1582 {
1583 int nid = (int) data;
1584 struct page *newpage;
1585
1586 newpage = alloc_pages_exact_node(nid,
1587 (GFP_HIGHUSER_MOVABLE |
1588 __GFP_THISNODE | __GFP_NOMEMALLOC |
1589 __GFP_NORETRY | __GFP_NOWARN) &
1590 ~GFP_IOFS, 0);
1591
1592 return newpage;
1593 }
1594
1595 /*
1596 * page migration rate limiting control.
1597 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1598 * window of time. Default here says do not migrate more than 1280M per second.
1599 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1600 * as it is faults that reset the window, pte updates will happen unconditionally
1601 * if there has not been a fault since @pteupdate_interval_millisecs after the
1602 * throttle window closed.
1603 */
1604 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1605 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1606 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1607
1608 /* Returns true if NUMA migration is currently rate limited */
migrate_ratelimited(int node)1609 bool migrate_ratelimited(int node)
1610 {
1611 pg_data_t *pgdat = NODE_DATA(node);
1612
1613 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1614 msecs_to_jiffies(pteupdate_interval_millisecs)))
1615 return false;
1616
1617 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1618 return false;
1619
1620 return true;
1621 }
1622
1623 /* Returns true if the node is migrate rate-limited after the update */
numamigrate_update_ratelimit(pg_data_t * pgdat,unsigned long nr_pages)1624 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1625 unsigned long nr_pages)
1626 {
1627 /*
1628 * Rate-limit the amount of data that is being migrated to a node.
1629 * Optimal placement is no good if the memory bus is saturated and
1630 * all the time is being spent migrating!
1631 */
1632 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1633 spin_lock(&pgdat->numabalancing_migrate_lock);
1634 pgdat->numabalancing_migrate_nr_pages = 0;
1635 pgdat->numabalancing_migrate_next_window = jiffies +
1636 msecs_to_jiffies(migrate_interval_millisecs);
1637 spin_unlock(&pgdat->numabalancing_migrate_lock);
1638 }
1639 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1640 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1641 nr_pages);
1642 return true;
1643 }
1644
1645 /*
1646 * This is an unlocked non-atomic update so errors are possible.
1647 * The consequences are failing to migrate when we potentiall should
1648 * have which is not severe enough to warrant locking. If it is ever
1649 * a problem, it can be converted to a per-cpu counter.
1650 */
1651 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1652 return false;
1653 }
1654
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)1655 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1656 {
1657 int page_lru;
1658
1659 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1660
1661 /* Avoid migrating to a node that is nearly full */
1662 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1663 return 0;
1664
1665 if (isolate_lru_page(page))
1666 return 0;
1667
1668 /*
1669 * migrate_misplaced_transhuge_page() skips page migration's usual
1670 * check on page_count(), so we must do it here, now that the page
1671 * has been isolated: a GUP pin, or any other pin, prevents migration.
1672 * The expected page count is 3: 1 for page's mapcount and 1 for the
1673 * caller's pin and 1 for the reference taken by isolate_lru_page().
1674 */
1675 if (PageTransHuge(page) && page_count(page) != 3) {
1676 putback_lru_page(page);
1677 return 0;
1678 }
1679
1680 page_lru = page_is_file_cache(page);
1681 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1682 hpage_nr_pages(page));
1683
1684 /*
1685 * Isolating the page has taken another reference, so the
1686 * caller's reference can be safely dropped without the page
1687 * disappearing underneath us during migration.
1688 */
1689 put_page(page);
1690 return 1;
1691 }
1692
pmd_trans_migrating(pmd_t pmd)1693 bool pmd_trans_migrating(pmd_t pmd)
1694 {
1695 struct page *page = pmd_page(pmd);
1696 return PageLocked(page);
1697 }
1698
wait_migrate_huge_page(struct anon_vma * anon_vma,pmd_t * pmd)1699 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1700 {
1701 struct page *page = pmd_page(*pmd);
1702 wait_on_page_locked(page);
1703 }
1704
1705 /*
1706 * Attempt to migrate a misplaced page to the specified destination
1707 * node. Caller is expected to have an elevated reference count on
1708 * the page that will be dropped by this function before returning.
1709 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)1710 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1711 int node)
1712 {
1713 pg_data_t *pgdat = NODE_DATA(node);
1714 int isolated;
1715 int nr_remaining;
1716 LIST_HEAD(migratepages);
1717
1718 /*
1719 * Don't migrate file pages that are mapped in multiple processes
1720 * with execute permissions as they are probably shared libraries.
1721 */
1722 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1723 (vma->vm_flags & VM_EXEC))
1724 goto out;
1725
1726 /*
1727 * Rate-limit the amount of data that is being migrated to a node.
1728 * Optimal placement is no good if the memory bus is saturated and
1729 * all the time is being spent migrating!
1730 */
1731 if (numamigrate_update_ratelimit(pgdat, 1))
1732 goto out;
1733
1734 isolated = numamigrate_isolate_page(pgdat, page);
1735 if (!isolated)
1736 goto out;
1737
1738 list_add(&page->lru, &migratepages);
1739 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1740 NULL, node, MIGRATE_ASYNC,
1741 MR_NUMA_MISPLACED);
1742 if (nr_remaining) {
1743 if (!list_empty(&migratepages)) {
1744 list_del(&page->lru);
1745 dec_zone_page_state(page, NR_ISOLATED_ANON +
1746 page_is_file_cache(page));
1747 putback_lru_page(page);
1748 }
1749 isolated = 0;
1750 } else
1751 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1752 BUG_ON(!list_empty(&migratepages));
1753 return isolated;
1754
1755 out:
1756 put_page(page);
1757 return 0;
1758 }
1759 #endif /* CONFIG_NUMA_BALANCING */
1760
1761 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1762 /*
1763 * Migrates a THP to a given target node. page must be locked and is unlocked
1764 * before returning.
1765 */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)1766 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1767 struct vm_area_struct *vma,
1768 pmd_t *pmd, pmd_t entry,
1769 unsigned long address,
1770 struct page *page, int node)
1771 {
1772 spinlock_t *ptl;
1773 pg_data_t *pgdat = NODE_DATA(node);
1774 int isolated = 0;
1775 struct page *new_page = NULL;
1776 int page_lru = page_is_file_cache(page);
1777 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1778 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1779 pmd_t orig_entry;
1780
1781 /*
1782 * Rate-limit the amount of data that is being migrated to a node.
1783 * Optimal placement is no good if the memory bus is saturated and
1784 * all the time is being spent migrating!
1785 */
1786 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1787 goto out_dropref;
1788
1789 new_page = alloc_pages_node(node,
1790 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1791 HPAGE_PMD_ORDER);
1792 if (!new_page)
1793 goto out_fail;
1794
1795 isolated = numamigrate_isolate_page(pgdat, page);
1796 if (!isolated) {
1797 put_page(new_page);
1798 goto out_fail;
1799 }
1800
1801 if (mm_tlb_flush_pending(mm))
1802 flush_tlb_range(vma, mmun_start, mmun_end);
1803
1804 /* Prepare a page as a migration target */
1805 __set_page_locked(new_page);
1806 SetPageSwapBacked(new_page);
1807
1808 /* anon mapping, we can simply copy page->mapping to the new page: */
1809 new_page->mapping = page->mapping;
1810 new_page->index = page->index;
1811 migrate_page_copy(new_page, page);
1812 WARN_ON(PageLRU(new_page));
1813
1814 /* Recheck the target PMD */
1815 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1816 ptl = pmd_lock(mm, pmd);
1817 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1818 fail_putback:
1819 spin_unlock(ptl);
1820 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1821
1822 /* Reverse changes made by migrate_page_copy() */
1823 if (TestClearPageActive(new_page))
1824 SetPageActive(page);
1825 if (TestClearPageUnevictable(new_page))
1826 SetPageUnevictable(page);
1827 mlock_migrate_page(page, new_page);
1828
1829 unlock_page(new_page);
1830 put_page(new_page); /* Free it */
1831
1832 /* Retake the callers reference and putback on LRU */
1833 get_page(page);
1834 putback_lru_page(page);
1835 mod_zone_page_state(page_zone(page),
1836 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1837
1838 goto out_unlock;
1839 }
1840
1841 orig_entry = *pmd;
1842 entry = mk_pmd(new_page, vma->vm_page_prot);
1843 entry = pmd_mkhuge(entry);
1844 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1845
1846 /*
1847 * Clear the old entry under pagetable lock and establish the new PTE.
1848 * Any parallel GUP will either observe the old page blocking on the
1849 * page lock, block on the page table lock or observe the new page.
1850 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1851 * guarantee the copy is visible before the pagetable update.
1852 */
1853 flush_cache_range(vma, mmun_start, mmun_end);
1854 page_add_anon_rmap(new_page, vma, mmun_start);
1855 pmdp_clear_flush(vma, mmun_start, pmd);
1856 set_pmd_at(mm, mmun_start, pmd, entry);
1857 flush_tlb_range(vma, mmun_start, mmun_end);
1858 update_mmu_cache_pmd(vma, address, &entry);
1859
1860 if (page_count(page) != 2) {
1861 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1862 flush_tlb_range(vma, mmun_start, mmun_end);
1863 update_mmu_cache_pmd(vma, address, &entry);
1864 page_remove_rmap(new_page);
1865 goto fail_putback;
1866 }
1867
1868 mem_cgroup_migrate(page, new_page, false);
1869
1870 page_remove_rmap(page);
1871
1872 spin_unlock(ptl);
1873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1874
1875 /* Take an "isolate" reference and put new page on the LRU. */
1876 get_page(new_page);
1877 putback_lru_page(new_page);
1878
1879 unlock_page(new_page);
1880 unlock_page(page);
1881 put_page(page); /* Drop the rmap reference */
1882 put_page(page); /* Drop the LRU isolation reference */
1883
1884 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1885 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1886
1887 mod_zone_page_state(page_zone(page),
1888 NR_ISOLATED_ANON + page_lru,
1889 -HPAGE_PMD_NR);
1890 return isolated;
1891
1892 out_fail:
1893 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1894 out_dropref:
1895 ptl = pmd_lock(mm, pmd);
1896 if (pmd_same(*pmd, entry)) {
1897 entry = pmd_mknonnuma(entry);
1898 set_pmd_at(mm, mmun_start, pmd, entry);
1899 update_mmu_cache_pmd(vma, address, &entry);
1900 }
1901 spin_unlock(ptl);
1902
1903 out_unlock:
1904 unlock_page(page);
1905 put_page(page);
1906 return 0;
1907 }
1908 #endif /* CONFIG_NUMA_BALANCING */
1909
1910 #endif /* CONFIG_NUMA */
1911