1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71
72 static void unmap_region(struct mm_struct *mm,
73 struct vm_area_struct *vma, struct vm_area_struct *prev,
74 unsigned long start, unsigned long end);
75
76 /* description of effects of mapping type and prot in current implementation.
77 * this is due to the limited x86 page protection hardware. The expected
78 * behavior is in parens:
79 *
80 * map_type prot
81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
83 * w: (no) no w: (no) no w: (yes) yes w: (no) no
84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
85 *
86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (copy) copy w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 */
91 pgprot_t protection_map[16] = {
92 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95
vm_get_page_prot(unsigned long vm_flags)96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98 return __pgprot(pgprot_val(protection_map[vm_flags &
99 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100 pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112 unsigned long vm_flags = vma->vm_flags;
113
114 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
115 if (vma_wants_writenotify(vma)) {
116 vm_flags &= ~VM_SHARED;
117 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
118 vm_flags);
119 }
120 }
121
122
123 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
124 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
125 unsigned long sysctl_overcommit_kbytes __read_mostly;
126 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
127 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
128 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
129 /*
130 * Make sure vm_committed_as in one cacheline and not cacheline shared with
131 * other variables. It can be updated by several CPUs frequently.
132 */
133 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
134
135 /*
136 * The global memory commitment made in the system can be a metric
137 * that can be used to drive ballooning decisions when Linux is hosted
138 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
139 * balancing memory across competing virtual machines that are hosted.
140 * Several metrics drive this policy engine including the guest reported
141 * memory commitment.
142 */
vm_memory_committed(void)143 unsigned long vm_memory_committed(void)
144 {
145 return percpu_counter_read_positive(&vm_committed_as);
146 }
147 EXPORT_SYMBOL_GPL(vm_memory_committed);
148
149 /*
150 * Check that a process has enough memory to allocate a new virtual
151 * mapping. 0 means there is enough memory for the allocation to
152 * succeed and -ENOMEM implies there is not.
153 *
154 * We currently support three overcommit policies, which are set via the
155 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
156 *
157 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
158 * Additional code 2002 Jul 20 by Robert Love.
159 *
160 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
161 *
162 * Note this is a helper function intended to be used by LSMs which
163 * wish to use this logic.
164 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)165 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
166 {
167 long free, allowed, reserve;
168
169 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
170 -(s64)vm_committed_as_batch * num_online_cpus(),
171 "memory commitment underflow");
172
173 vm_acct_memory(pages);
174
175 /*
176 * Sometimes we want to use more memory than we have
177 */
178 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
179 return 0;
180
181 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
182 free = global_page_state(NR_FREE_PAGES);
183 free += global_page_state(NR_FILE_PAGES);
184
185 /*
186 * shmem pages shouldn't be counted as free in this
187 * case, they can't be purged, only swapped out, and
188 * that won't affect the overall amount of available
189 * memory in the system.
190 */
191 free -= global_page_state(NR_SHMEM);
192
193 free += get_nr_swap_pages();
194
195 /*
196 * Any slabs which are created with the
197 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
198 * which are reclaimable, under pressure. The dentry
199 * cache and most inode caches should fall into this
200 */
201 free += global_page_state(NR_SLAB_RECLAIMABLE);
202
203 /*
204 * Leave reserved pages. The pages are not for anonymous pages.
205 */
206 if (free <= totalreserve_pages)
207 goto error;
208 else
209 free -= totalreserve_pages;
210
211 /*
212 * Reserve some for root
213 */
214 if (!cap_sys_admin)
215 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
216
217 if (free > pages)
218 return 0;
219
220 goto error;
221 }
222
223 allowed = vm_commit_limit();
224 /*
225 * Reserve some for root
226 */
227 if (!cap_sys_admin)
228 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
229
230 /*
231 * Don't let a single process grow so big a user can't recover
232 */
233 if (mm) {
234 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
235 allowed -= min_t(long, mm->total_vm / 32, reserve);
236 }
237
238 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
239 return 0;
240 error:
241 vm_unacct_memory(pages);
242
243 return -ENOMEM;
244 }
245
246 /*
247 * Requires inode->i_mapping->i_mmap_mutex
248 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)249 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
250 struct file *file, struct address_space *mapping)
251 {
252 if (vma->vm_flags & VM_DENYWRITE)
253 atomic_inc(&file_inode(file)->i_writecount);
254 if (vma->vm_flags & VM_SHARED)
255 mapping_unmap_writable(mapping);
256
257 flush_dcache_mmap_lock(mapping);
258 if (unlikely(vma->vm_flags & VM_NONLINEAR))
259 list_del_init(&vma->shared.nonlinear);
260 else
261 vma_interval_tree_remove(vma, &mapping->i_mmap);
262 flush_dcache_mmap_unlock(mapping);
263 }
264
265 /*
266 * Unlink a file-based vm structure from its interval tree, to hide
267 * vma from rmap and vmtruncate before freeing its page tables.
268 */
unlink_file_vma(struct vm_area_struct * vma)269 void unlink_file_vma(struct vm_area_struct *vma)
270 {
271 struct file *file = vma->vm_file;
272
273 if (file) {
274 struct address_space *mapping = file->f_mapping;
275 mutex_lock(&mapping->i_mmap_mutex);
276 __remove_shared_vm_struct(vma, file, mapping);
277 mutex_unlock(&mapping->i_mmap_mutex);
278 }
279 }
280
281 /*
282 * Close a vm structure and free it, returning the next.
283 */
remove_vma(struct vm_area_struct * vma)284 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
285 {
286 struct vm_area_struct *next = vma->vm_next;
287
288 might_sleep();
289 if (vma->vm_ops && vma->vm_ops->close)
290 vma->vm_ops->close(vma);
291 if (vma->vm_file)
292 fput(vma->vm_file);
293 mpol_put(vma_policy(vma));
294 kmem_cache_free(vm_area_cachep, vma);
295 return next;
296 }
297
298 static unsigned long do_brk(unsigned long addr, unsigned long len);
299
SYSCALL_DEFINE1(brk,unsigned long,brk)300 SYSCALL_DEFINE1(brk, unsigned long, brk)
301 {
302 unsigned long retval;
303 unsigned long newbrk, oldbrk;
304 struct mm_struct *mm = current->mm;
305 struct vm_area_struct *next;
306 unsigned long min_brk;
307 bool populate;
308
309 down_write(&mm->mmap_sem);
310
311 #ifdef CONFIG_COMPAT_BRK
312 /*
313 * CONFIG_COMPAT_BRK can still be overridden by setting
314 * randomize_va_space to 2, which will still cause mm->start_brk
315 * to be arbitrarily shifted
316 */
317 if (current->brk_randomized)
318 min_brk = mm->start_brk;
319 else
320 min_brk = mm->end_data;
321 #else
322 min_brk = mm->start_brk;
323 #endif
324 if (brk < min_brk)
325 goto out;
326
327 /*
328 * Check against rlimit here. If this check is done later after the test
329 * of oldbrk with newbrk then it can escape the test and let the data
330 * segment grow beyond its set limit the in case where the limit is
331 * not page aligned -Ram Gupta
332 */
333 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
334 mm->end_data, mm->start_data))
335 goto out;
336
337 newbrk = PAGE_ALIGN(brk);
338 oldbrk = PAGE_ALIGN(mm->brk);
339 if (oldbrk == newbrk)
340 goto set_brk;
341
342 /* Always allow shrinking brk. */
343 if (brk <= mm->brk) {
344 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
345 goto set_brk;
346 goto out;
347 }
348
349 /* Check against existing mmap mappings. */
350 next = find_vma(mm, oldbrk);
351 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
352 goto out;
353
354 /* Ok, looks good - let it rip. */
355 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
356 goto out;
357
358 set_brk:
359 mm->brk = brk;
360 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
361 up_write(&mm->mmap_sem);
362 if (populate)
363 mm_populate(oldbrk, newbrk - oldbrk);
364 return brk;
365
366 out:
367 retval = mm->brk;
368 up_write(&mm->mmap_sem);
369 return retval;
370 }
371
vma_compute_subtree_gap(struct vm_area_struct * vma)372 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
373 {
374 unsigned long max, prev_end, subtree_gap;
375
376 /*
377 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
378 * allow two stack_guard_gaps between them here, and when choosing
379 * an unmapped area; whereas when expanding we only require one.
380 * That's a little inconsistent, but keeps the code here simpler.
381 */
382 max = vm_start_gap(vma);
383 if (vma->vm_prev) {
384 prev_end = vm_end_gap(vma->vm_prev);
385 if (max > prev_end)
386 max -= prev_end;
387 else
388 max = 0;
389 }
390 if (vma->vm_rb.rb_left) {
391 subtree_gap = rb_entry(vma->vm_rb.rb_left,
392 struct vm_area_struct, vm_rb)->rb_subtree_gap;
393 if (subtree_gap > max)
394 max = subtree_gap;
395 }
396 if (vma->vm_rb.rb_right) {
397 subtree_gap = rb_entry(vma->vm_rb.rb_right,
398 struct vm_area_struct, vm_rb)->rb_subtree_gap;
399 if (subtree_gap > max)
400 max = subtree_gap;
401 }
402 return max;
403 }
404
405 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct rb_root * root)406 static int browse_rb(struct rb_root *root)
407 {
408 int i = 0, j, bug = 0;
409 struct rb_node *nd, *pn = NULL;
410 unsigned long prev = 0, pend = 0;
411
412 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
413 struct vm_area_struct *vma;
414 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
415 if (vma->vm_start < prev) {
416 pr_emerg("vm_start %lx < prev %lx\n",
417 vma->vm_start, prev);
418 bug = 1;
419 }
420 if (vma->vm_start < pend) {
421 pr_emerg("vm_start %lx < pend %lx\n",
422 vma->vm_start, pend);
423 bug = 1;
424 }
425 if (vma->vm_start > vma->vm_end) {
426 pr_emerg("vm_start %lx > vm_end %lx\n",
427 vma->vm_start, vma->vm_end);
428 bug = 1;
429 }
430 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
431 pr_emerg("free gap %lx, correct %lx\n",
432 vma->rb_subtree_gap,
433 vma_compute_subtree_gap(vma));
434 bug = 1;
435 }
436 i++;
437 pn = nd;
438 prev = vma->vm_start;
439 pend = vma->vm_end;
440 }
441 j = 0;
442 for (nd = pn; nd; nd = rb_prev(nd))
443 j++;
444 if (i != j) {
445 pr_emerg("backwards %d, forwards %d\n", j, i);
446 bug = 1;
447 }
448 return bug ? -1 : i;
449 }
450
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)451 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
452 {
453 struct rb_node *nd;
454
455 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
456 struct vm_area_struct *vma;
457 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
458 VM_BUG_ON_VMA(vma != ignore &&
459 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
460 vma);
461 }
462 }
463
validate_mm(struct mm_struct * mm)464 static void validate_mm(struct mm_struct *mm)
465 {
466 int bug = 0;
467 int i = 0;
468 unsigned long highest_address = 0;
469 struct vm_area_struct *vma = mm->mmap;
470
471 while (vma) {
472 struct anon_vma *anon_vma = vma->anon_vma;
473 struct anon_vma_chain *avc;
474
475 if (anon_vma) {
476 anon_vma_lock_read(anon_vma);
477 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478 anon_vma_interval_tree_verify(avc);
479 anon_vma_unlock_read(anon_vma);
480 }
481
482 highest_address = vm_end_gap(vma);
483 vma = vma->vm_next;
484 i++;
485 }
486 if (i != mm->map_count) {
487 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
488 bug = 1;
489 }
490 if (highest_address != mm->highest_vm_end) {
491 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
492 mm->highest_vm_end, highest_address);
493 bug = 1;
494 }
495 i = browse_rb(&mm->mm_rb);
496 if (i != mm->map_count) {
497 if (i != -1)
498 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
499 bug = 1;
500 }
501 VM_BUG_ON_MM(bug, mm);
502 }
503 #else
504 #define validate_mm_rb(root, ignore) do { } while (0)
505 #define validate_mm(mm) do { } while (0)
506 #endif
507
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)508 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
509 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
510
511 /*
512 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
513 * vma->vm_prev->vm_end values changed, without modifying the vma's position
514 * in the rbtree.
515 */
516 static void vma_gap_update(struct vm_area_struct *vma)
517 {
518 /*
519 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
520 * function that does exacltly what we want.
521 */
522 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
523 }
524
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)525 static inline void vma_rb_insert(struct vm_area_struct *vma,
526 struct rb_root *root)
527 {
528 /* All rb_subtree_gap values must be consistent prior to insertion */
529 validate_mm_rb(root, NULL);
530
531 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
532 }
533
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)534 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
535 {
536 /*
537 * All rb_subtree_gap values must be consistent prior to erase,
538 * with the possible exception of the vma being erased.
539 */
540 validate_mm_rb(root, vma);
541
542 /*
543 * Note rb_erase_augmented is a fairly large inline function,
544 * so make sure we instantiate it only once with our desired
545 * augmented rbtree callbacks.
546 */
547 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
548 }
549
550 /*
551 * vma has some anon_vma assigned, and is already inserted on that
552 * anon_vma's interval trees.
553 *
554 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
555 * vma must be removed from the anon_vma's interval trees using
556 * anon_vma_interval_tree_pre_update_vma().
557 *
558 * After the update, the vma will be reinserted using
559 * anon_vma_interval_tree_post_update_vma().
560 *
561 * The entire update must be protected by exclusive mmap_sem and by
562 * the root anon_vma's mutex.
563 */
564 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)565 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
566 {
567 struct anon_vma_chain *avc;
568
569 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
570 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
571 }
572
573 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)574 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
575 {
576 struct anon_vma_chain *avc;
577
578 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
579 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
580 }
581
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)582 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
583 unsigned long end, struct vm_area_struct **pprev,
584 struct rb_node ***rb_link, struct rb_node **rb_parent)
585 {
586 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
587
588 __rb_link = &mm->mm_rb.rb_node;
589 rb_prev = __rb_parent = NULL;
590
591 while (*__rb_link) {
592 struct vm_area_struct *vma_tmp;
593
594 __rb_parent = *__rb_link;
595 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
596
597 if (vma_tmp->vm_end > addr) {
598 /* Fail if an existing vma overlaps the area */
599 if (vma_tmp->vm_start < end)
600 return -ENOMEM;
601 __rb_link = &__rb_parent->rb_left;
602 } else {
603 rb_prev = __rb_parent;
604 __rb_link = &__rb_parent->rb_right;
605 }
606 }
607
608 *pprev = NULL;
609 if (rb_prev)
610 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
611 *rb_link = __rb_link;
612 *rb_parent = __rb_parent;
613 return 0;
614 }
615
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)616 static unsigned long count_vma_pages_range(struct mm_struct *mm,
617 unsigned long addr, unsigned long end)
618 {
619 unsigned long nr_pages = 0;
620 struct vm_area_struct *vma;
621
622 /* Find first overlaping mapping */
623 vma = find_vma_intersection(mm, addr, end);
624 if (!vma)
625 return 0;
626
627 nr_pages = (min(end, vma->vm_end) -
628 max(addr, vma->vm_start)) >> PAGE_SHIFT;
629
630 /* Iterate over the rest of the overlaps */
631 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
632 unsigned long overlap_len;
633
634 if (vma->vm_start > end)
635 break;
636
637 overlap_len = min(end, vma->vm_end) - vma->vm_start;
638 nr_pages += overlap_len >> PAGE_SHIFT;
639 }
640
641 return nr_pages;
642 }
643
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)644 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
645 struct rb_node **rb_link, struct rb_node *rb_parent)
646 {
647 /* Update tracking information for the gap following the new vma. */
648 if (vma->vm_next)
649 vma_gap_update(vma->vm_next);
650 else
651 mm->highest_vm_end = vm_end_gap(vma);
652
653 /*
654 * vma->vm_prev wasn't known when we followed the rbtree to find the
655 * correct insertion point for that vma. As a result, we could not
656 * update the vma vm_rb parents rb_subtree_gap values on the way down.
657 * So, we first insert the vma with a zero rb_subtree_gap value
658 * (to be consistent with what we did on the way down), and then
659 * immediately update the gap to the correct value. Finally we
660 * rebalance the rbtree after all augmented values have been set.
661 */
662 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
663 vma->rb_subtree_gap = 0;
664 vma_gap_update(vma);
665 vma_rb_insert(vma, &mm->mm_rb);
666 }
667
__vma_link_file(struct vm_area_struct * vma)668 static void __vma_link_file(struct vm_area_struct *vma)
669 {
670 struct file *file;
671
672 file = vma->vm_file;
673 if (file) {
674 struct address_space *mapping = file->f_mapping;
675
676 if (vma->vm_flags & VM_DENYWRITE)
677 atomic_dec(&file_inode(file)->i_writecount);
678 if (vma->vm_flags & VM_SHARED)
679 atomic_inc(&mapping->i_mmap_writable);
680
681 flush_dcache_mmap_lock(mapping);
682 if (unlikely(vma->vm_flags & VM_NONLINEAR))
683 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
684 else
685 vma_interval_tree_insert(vma, &mapping->i_mmap);
686 flush_dcache_mmap_unlock(mapping);
687 }
688 }
689
690 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)691 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
692 struct vm_area_struct *prev, struct rb_node **rb_link,
693 struct rb_node *rb_parent)
694 {
695 __vma_link_list(mm, vma, prev, rb_parent);
696 __vma_link_rb(mm, vma, rb_link, rb_parent);
697 }
698
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)699 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
700 struct vm_area_struct *prev, struct rb_node **rb_link,
701 struct rb_node *rb_parent)
702 {
703 struct address_space *mapping = NULL;
704
705 if (vma->vm_file) {
706 mapping = vma->vm_file->f_mapping;
707 mutex_lock(&mapping->i_mmap_mutex);
708 }
709
710 __vma_link(mm, vma, prev, rb_link, rb_parent);
711 __vma_link_file(vma);
712
713 if (mapping)
714 mutex_unlock(&mapping->i_mmap_mutex);
715
716 mm->map_count++;
717 validate_mm(mm);
718 }
719
720 /*
721 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
722 * mm's list and rbtree. It has already been inserted into the interval tree.
723 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)724 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
725 {
726 struct vm_area_struct *prev;
727 struct rb_node **rb_link, *rb_parent;
728
729 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
730 &prev, &rb_link, &rb_parent))
731 BUG();
732 __vma_link(mm, vma, prev, rb_link, rb_parent);
733 mm->map_count++;
734 }
735
736 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)737 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
738 struct vm_area_struct *prev)
739 {
740 struct vm_area_struct *next;
741
742 vma_rb_erase(vma, &mm->mm_rb);
743 prev->vm_next = next = vma->vm_next;
744 if (next)
745 next->vm_prev = prev;
746
747 /* Kill the cache */
748 vmacache_invalidate(mm);
749 }
750
751 /*
752 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
753 * is already present in an i_mmap tree without adjusting the tree.
754 * The following helper function should be used when such adjustments
755 * are necessary. The "insert" vma (if any) is to be inserted
756 * before we drop the necessary locks.
757 */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)758 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
759 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
760 {
761 struct mm_struct *mm = vma->vm_mm;
762 struct vm_area_struct *next = vma->vm_next;
763 struct vm_area_struct *importer = NULL;
764 struct address_space *mapping = NULL;
765 struct rb_root *root = NULL;
766 struct anon_vma *anon_vma = NULL;
767 struct file *file = vma->vm_file;
768 bool start_changed = false, end_changed = false;
769 long adjust_next = 0;
770 int remove_next = 0;
771
772 if (next && !insert) {
773 struct vm_area_struct *exporter = NULL;
774
775 if (end >= next->vm_end) {
776 /*
777 * vma expands, overlapping all the next, and
778 * perhaps the one after too (mprotect case 6).
779 */
780 again: remove_next = 1 + (end > next->vm_end);
781 end = next->vm_end;
782 exporter = next;
783 importer = vma;
784 } else if (end > next->vm_start) {
785 /*
786 * vma expands, overlapping part of the next:
787 * mprotect case 5 shifting the boundary up.
788 */
789 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
790 exporter = next;
791 importer = vma;
792 } else if (end < vma->vm_end) {
793 /*
794 * vma shrinks, and !insert tells it's not
795 * split_vma inserting another: so it must be
796 * mprotect case 4 shifting the boundary down.
797 */
798 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
799 exporter = vma;
800 importer = next;
801 }
802
803 /*
804 * Easily overlooked: when mprotect shifts the boundary,
805 * make sure the expanding vma has anon_vma set if the
806 * shrinking vma had, to cover any anon pages imported.
807 */
808 if (exporter && exporter->anon_vma && !importer->anon_vma) {
809 int error;
810
811 importer->anon_vma = exporter->anon_vma;
812 error = anon_vma_clone(importer, exporter);
813 if (error)
814 return error;
815 }
816 }
817
818 if (file) {
819 mapping = file->f_mapping;
820 if (!(vma->vm_flags & VM_NONLINEAR)) {
821 root = &mapping->i_mmap;
822 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
823
824 if (adjust_next)
825 uprobe_munmap(next, next->vm_start,
826 next->vm_end);
827 }
828
829 mutex_lock(&mapping->i_mmap_mutex);
830 if (insert) {
831 /*
832 * Put into interval tree now, so instantiated pages
833 * are visible to arm/parisc __flush_dcache_page
834 * throughout; but we cannot insert into address
835 * space until vma start or end is updated.
836 */
837 __vma_link_file(insert);
838 }
839 }
840
841 vma_adjust_trans_huge(vma, start, end, adjust_next);
842
843 anon_vma = vma->anon_vma;
844 if (!anon_vma && adjust_next)
845 anon_vma = next->anon_vma;
846 if (anon_vma) {
847 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
848 anon_vma != next->anon_vma, next);
849 anon_vma_lock_write(anon_vma);
850 anon_vma_interval_tree_pre_update_vma(vma);
851 if (adjust_next)
852 anon_vma_interval_tree_pre_update_vma(next);
853 }
854
855 if (root) {
856 flush_dcache_mmap_lock(mapping);
857 vma_interval_tree_remove(vma, root);
858 if (adjust_next)
859 vma_interval_tree_remove(next, root);
860 }
861
862 if (start != vma->vm_start) {
863 vma->vm_start = start;
864 start_changed = true;
865 }
866 if (end != vma->vm_end) {
867 vma->vm_end = end;
868 end_changed = true;
869 }
870 vma->vm_pgoff = pgoff;
871 if (adjust_next) {
872 next->vm_start += adjust_next << PAGE_SHIFT;
873 next->vm_pgoff += adjust_next;
874 }
875
876 if (root) {
877 if (adjust_next)
878 vma_interval_tree_insert(next, root);
879 vma_interval_tree_insert(vma, root);
880 flush_dcache_mmap_unlock(mapping);
881 }
882
883 if (remove_next) {
884 /*
885 * vma_merge has merged next into vma, and needs
886 * us to remove next before dropping the locks.
887 */
888 __vma_unlink(mm, next, vma);
889 if (file)
890 __remove_shared_vm_struct(next, file, mapping);
891 } else if (insert) {
892 /*
893 * split_vma has split insert from vma, and needs
894 * us to insert it before dropping the locks
895 * (it may either follow vma or precede it).
896 */
897 __insert_vm_struct(mm, insert);
898 } else {
899 if (start_changed)
900 vma_gap_update(vma);
901 if (end_changed) {
902 if (!next)
903 mm->highest_vm_end = vm_end_gap(vma);
904 else if (!adjust_next)
905 vma_gap_update(next);
906 }
907 }
908
909 if (anon_vma) {
910 anon_vma_interval_tree_post_update_vma(vma);
911 if (adjust_next)
912 anon_vma_interval_tree_post_update_vma(next);
913 anon_vma_unlock_write(anon_vma);
914 }
915 if (mapping)
916 mutex_unlock(&mapping->i_mmap_mutex);
917
918 if (root) {
919 uprobe_mmap(vma);
920
921 if (adjust_next)
922 uprobe_mmap(next);
923 }
924
925 if (remove_next) {
926 if (file) {
927 uprobe_munmap(next, next->vm_start, next->vm_end);
928 fput(file);
929 }
930 if (next->anon_vma)
931 anon_vma_merge(vma, next);
932 mm->map_count--;
933 mpol_put(vma_policy(next));
934 kmem_cache_free(vm_area_cachep, next);
935 /*
936 * In mprotect's case 6 (see comments on vma_merge),
937 * we must remove another next too. It would clutter
938 * up the code too much to do both in one go.
939 */
940 next = vma->vm_next;
941 if (remove_next == 2)
942 goto again;
943 else if (next)
944 vma_gap_update(next);
945 else
946 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
947 }
948 if (insert && file)
949 uprobe_mmap(insert);
950
951 validate_mm(mm);
952
953 return 0;
954 }
955
956 /*
957 * If the vma has a ->close operation then the driver probably needs to release
958 * per-vma resources, so we don't attempt to merge those.
959 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,const char __user * anon_name)960 static inline int is_mergeable_vma(struct vm_area_struct *vma,
961 struct file *file, unsigned long vm_flags,
962 const char __user *anon_name)
963 {
964 /*
965 * VM_SOFTDIRTY should not prevent from VMA merging, if we
966 * match the flags but dirty bit -- the caller should mark
967 * merged VMA as dirty. If dirty bit won't be excluded from
968 * comparison, we increase pressue on the memory system forcing
969 * the kernel to generate new VMAs when old one could be
970 * extended instead.
971 */
972 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
973 return 0;
974 if (vma->vm_file != file)
975 return 0;
976 if (vma->vm_ops && vma->vm_ops->close)
977 return 0;
978 if (vma_get_anon_name(vma) != anon_name)
979 return 0;
980 return 1;
981 }
982
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)983 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
984 struct anon_vma *anon_vma2,
985 struct vm_area_struct *vma)
986 {
987 /*
988 * The list_is_singular() test is to avoid merging VMA cloned from
989 * parents. This can improve scalability caused by anon_vma lock.
990 */
991 if ((!anon_vma1 || !anon_vma2) && (!vma ||
992 list_is_singular(&vma->anon_vma_chain)))
993 return 1;
994 return anon_vma1 == anon_vma2;
995 }
996
997 /*
998 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
999 * in front of (at a lower virtual address and file offset than) the vma.
1000 *
1001 * We cannot merge two vmas if they have differently assigned (non-NULL)
1002 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1003 *
1004 * We don't check here for the merged mmap wrapping around the end of pagecache
1005 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1006 * wrap, nor mmaps which cover the final page at index -1UL.
1007 */
1008 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,const char __user * anon_name)1009 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1010 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
1011 const char __user *anon_name)
1012 {
1013 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
1014 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1015 if (vma->vm_pgoff == vm_pgoff)
1016 return 1;
1017 }
1018 return 0;
1019 }
1020
1021 /*
1022 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1023 * beyond (at a higher virtual address and file offset than) the vma.
1024 *
1025 * We cannot merge two vmas if they have differently assigned (non-NULL)
1026 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1027 */
1028 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,const char __user * anon_name)1029 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1030 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
1031 const char __user *anon_name)
1032 {
1033 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
1034 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1035 pgoff_t vm_pglen;
1036 vm_pglen = vma_pages(vma);
1037 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1038 return 1;
1039 }
1040 return 0;
1041 }
1042
1043 /*
1044 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1045 * figure out whether that can be merged with its predecessor or its
1046 * successor. Or both (it neatly fills a hole).
1047 *
1048 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1049 * certain not to be mapped by the time vma_merge is called; but when
1050 * called for mprotect, it is certain to be already mapped (either at
1051 * an offset within prev, or at the start of next), and the flags of
1052 * this area are about to be changed to vm_flags - and the no-change
1053 * case has already been eliminated.
1054 *
1055 * The following mprotect cases have to be considered, where AAAA is
1056 * the area passed down from mprotect_fixup, never extending beyond one
1057 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1058 *
1059 * AAAA AAAA AAAA AAAA
1060 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1061 * cannot merge might become might become might become
1062 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1063 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1064 * mremap move: PPPPNNNNNNNN 8
1065 * AAAA
1066 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1067 * might become case 1 below case 2 below case 3 below
1068 *
1069 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1070 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1071 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,const char __user * anon_name)1072 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1073 struct vm_area_struct *prev, unsigned long addr,
1074 unsigned long end, unsigned long vm_flags,
1075 struct anon_vma *anon_vma, struct file *file,
1076 pgoff_t pgoff, struct mempolicy *policy,
1077 const char __user *anon_name)
1078 {
1079 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1080 struct vm_area_struct *area, *next;
1081 int err;
1082
1083 /*
1084 * We later require that vma->vm_flags == vm_flags,
1085 * so this tests vma->vm_flags & VM_SPECIAL, too.
1086 */
1087 if (vm_flags & VM_SPECIAL)
1088 return NULL;
1089
1090 if (prev)
1091 next = prev->vm_next;
1092 else
1093 next = mm->mmap;
1094 area = next;
1095 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1096 next = next->vm_next;
1097
1098 /*
1099 * Can it merge with the predecessor?
1100 */
1101 if (prev && prev->vm_end == addr &&
1102 mpol_equal(vma_policy(prev), policy) &&
1103 can_vma_merge_after(prev, vm_flags, anon_vma,
1104 file, pgoff, anon_name)) {
1105 /*
1106 * OK, it can. Can we now merge in the successor as well?
1107 */
1108 if (next && end == next->vm_start &&
1109 mpol_equal(policy, vma_policy(next)) &&
1110 can_vma_merge_before(next, vm_flags, anon_vma,
1111 file, pgoff+pglen, anon_name) &&
1112 is_mergeable_anon_vma(prev->anon_vma,
1113 next->anon_vma, NULL)) {
1114 /* cases 1, 6 */
1115 err = vma_adjust(prev, prev->vm_start,
1116 next->vm_end, prev->vm_pgoff, NULL);
1117 } else /* cases 2, 5, 7 */
1118 err = vma_adjust(prev, prev->vm_start,
1119 end, prev->vm_pgoff, NULL);
1120 if (err)
1121 return NULL;
1122 khugepaged_enter_vma_merge(prev, vm_flags);
1123 return prev;
1124 }
1125
1126 /*
1127 * Can this new request be merged in front of next?
1128 */
1129 if (next && end == next->vm_start &&
1130 mpol_equal(policy, vma_policy(next)) &&
1131 can_vma_merge_before(next, vm_flags, anon_vma,
1132 file, pgoff+pglen, anon_name)) {
1133 if (prev && addr < prev->vm_end) /* case 4 */
1134 err = vma_adjust(prev, prev->vm_start,
1135 addr, prev->vm_pgoff, NULL);
1136 else /* cases 3, 8 */
1137 err = vma_adjust(area, addr, next->vm_end,
1138 next->vm_pgoff - pglen, NULL);
1139 if (err)
1140 return NULL;
1141 khugepaged_enter_vma_merge(area, vm_flags);
1142 return area;
1143 }
1144
1145 return NULL;
1146 }
1147
1148 /*
1149 * Rough compatbility check to quickly see if it's even worth looking
1150 * at sharing an anon_vma.
1151 *
1152 * They need to have the same vm_file, and the flags can only differ
1153 * in things that mprotect may change.
1154 *
1155 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1156 * we can merge the two vma's. For example, we refuse to merge a vma if
1157 * there is a vm_ops->close() function, because that indicates that the
1158 * driver is doing some kind of reference counting. But that doesn't
1159 * really matter for the anon_vma sharing case.
1160 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1161 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1162 {
1163 return a->vm_end == b->vm_start &&
1164 mpol_equal(vma_policy(a), vma_policy(b)) &&
1165 a->vm_file == b->vm_file &&
1166 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1167 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1168 }
1169
1170 /*
1171 * Do some basic sanity checking to see if we can re-use the anon_vma
1172 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1173 * the same as 'old', the other will be the new one that is trying
1174 * to share the anon_vma.
1175 *
1176 * NOTE! This runs with mm_sem held for reading, so it is possible that
1177 * the anon_vma of 'old' is concurrently in the process of being set up
1178 * by another page fault trying to merge _that_. But that's ok: if it
1179 * is being set up, that automatically means that it will be a singleton
1180 * acceptable for merging, so we can do all of this optimistically. But
1181 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1182 *
1183 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1184 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1185 * is to return an anon_vma that is "complex" due to having gone through
1186 * a fork).
1187 *
1188 * We also make sure that the two vma's are compatible (adjacent,
1189 * and with the same memory policies). That's all stable, even with just
1190 * a read lock on the mm_sem.
1191 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1192 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1193 {
1194 if (anon_vma_compatible(a, b)) {
1195 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1196
1197 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1198 return anon_vma;
1199 }
1200 return NULL;
1201 }
1202
1203 /*
1204 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1205 * neighbouring vmas for a suitable anon_vma, before it goes off
1206 * to allocate a new anon_vma. It checks because a repetitive
1207 * sequence of mprotects and faults may otherwise lead to distinct
1208 * anon_vmas being allocated, preventing vma merge in subsequent
1209 * mprotect.
1210 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1211 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1212 {
1213 struct anon_vma *anon_vma;
1214 struct vm_area_struct *near;
1215
1216 near = vma->vm_next;
1217 if (!near)
1218 goto try_prev;
1219
1220 anon_vma = reusable_anon_vma(near, vma, near);
1221 if (anon_vma)
1222 return anon_vma;
1223 try_prev:
1224 near = vma->vm_prev;
1225 if (!near)
1226 goto none;
1227
1228 anon_vma = reusable_anon_vma(near, near, vma);
1229 if (anon_vma)
1230 return anon_vma;
1231 none:
1232 /*
1233 * There's no absolute need to look only at touching neighbours:
1234 * we could search further afield for "compatible" anon_vmas.
1235 * But it would probably just be a waste of time searching,
1236 * or lead to too many vmas hanging off the same anon_vma.
1237 * We're trying to allow mprotect remerging later on,
1238 * not trying to minimize memory used for anon_vmas.
1239 */
1240 return NULL;
1241 }
1242
1243 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1244 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1245 struct file *file, long pages)
1246 {
1247 const unsigned long stack_flags
1248 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1249
1250 mm->total_vm += pages;
1251
1252 if (file) {
1253 mm->shared_vm += pages;
1254 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1255 mm->exec_vm += pages;
1256 } else if (flags & stack_flags)
1257 mm->stack_vm += pages;
1258 }
1259 #endif /* CONFIG_PROC_FS */
1260
1261 /*
1262 * If a hint addr is less than mmap_min_addr change hint to be as
1263 * low as possible but still greater than mmap_min_addr
1264 */
round_hint_to_min(unsigned long hint)1265 static inline unsigned long round_hint_to_min(unsigned long hint)
1266 {
1267 hint &= PAGE_MASK;
1268 if (((void *)hint != NULL) &&
1269 (hint < mmap_min_addr))
1270 return PAGE_ALIGN(mmap_min_addr);
1271 return hint;
1272 }
1273
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1274 static inline int mlock_future_check(struct mm_struct *mm,
1275 unsigned long flags,
1276 unsigned long len)
1277 {
1278 unsigned long locked, lock_limit;
1279
1280 /* mlock MCL_FUTURE? */
1281 if (flags & VM_LOCKED) {
1282 locked = len >> PAGE_SHIFT;
1283 locked += mm->locked_vm;
1284 lock_limit = rlimit(RLIMIT_MEMLOCK);
1285 lock_limit >>= PAGE_SHIFT;
1286 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1287 return -EAGAIN;
1288 }
1289 return 0;
1290 }
1291
1292 /*
1293 * The caller must hold down_write(¤t->mm->mmap_sem).
1294 */
1295
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate)1296 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1297 unsigned long len, unsigned long prot,
1298 unsigned long flags, unsigned long pgoff,
1299 unsigned long *populate)
1300 {
1301 struct mm_struct *mm = current->mm;
1302 vm_flags_t vm_flags;
1303
1304 *populate = 0;
1305
1306 /*
1307 * Does the application expect PROT_READ to imply PROT_EXEC?
1308 *
1309 * (the exception is when the underlying filesystem is noexec
1310 * mounted, in which case we dont add PROT_EXEC.)
1311 */
1312 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1313 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1314 prot |= PROT_EXEC;
1315
1316 if (!len)
1317 return -EINVAL;
1318
1319 if (!(flags & MAP_FIXED))
1320 addr = round_hint_to_min(addr);
1321
1322 /* Careful about overflows.. */
1323 len = PAGE_ALIGN(len);
1324 if (!len)
1325 return -ENOMEM;
1326
1327 /* offset overflow? */
1328 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1329 return -EOVERFLOW;
1330
1331 /* Too many mappings? */
1332 if (mm->map_count > sysctl_max_map_count)
1333 return -ENOMEM;
1334
1335 /* Obtain the address to map to. we verify (or select) it and ensure
1336 * that it represents a valid section of the address space.
1337 */
1338 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1339 if (addr & ~PAGE_MASK)
1340 return addr;
1341
1342 /* Do simple checking here so the lower-level routines won't have
1343 * to. we assume access permissions have been handled by the open
1344 * of the memory object, so we don't do any here.
1345 */
1346 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1347 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1348
1349 if (flags & MAP_LOCKED)
1350 if (!can_do_mlock())
1351 return -EPERM;
1352
1353 if (mlock_future_check(mm, vm_flags, len))
1354 return -EAGAIN;
1355
1356 if (file) {
1357 struct inode *inode = file_inode(file);
1358
1359 switch (flags & MAP_TYPE) {
1360 case MAP_SHARED:
1361 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1362 return -EACCES;
1363
1364 /*
1365 * Make sure we don't allow writing to an append-only
1366 * file..
1367 */
1368 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1369 return -EACCES;
1370
1371 /*
1372 * Make sure there are no mandatory locks on the file.
1373 */
1374 if (locks_verify_locked(file))
1375 return -EAGAIN;
1376
1377 vm_flags |= VM_SHARED | VM_MAYSHARE;
1378 if (!(file->f_mode & FMODE_WRITE))
1379 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1380
1381 /* fall through */
1382 case MAP_PRIVATE:
1383 if (!(file->f_mode & FMODE_READ))
1384 return -EACCES;
1385 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1386 if (vm_flags & VM_EXEC)
1387 return -EPERM;
1388 vm_flags &= ~VM_MAYEXEC;
1389 }
1390
1391 if (!file->f_op->mmap)
1392 return -ENODEV;
1393 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1394 return -EINVAL;
1395 break;
1396
1397 default:
1398 return -EINVAL;
1399 }
1400 } else {
1401 switch (flags & MAP_TYPE) {
1402 case MAP_SHARED:
1403 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1404 return -EINVAL;
1405 /*
1406 * Ignore pgoff.
1407 */
1408 pgoff = 0;
1409 vm_flags |= VM_SHARED | VM_MAYSHARE;
1410 break;
1411 case MAP_PRIVATE:
1412 /*
1413 * Set pgoff according to addr for anon_vma.
1414 */
1415 pgoff = addr >> PAGE_SHIFT;
1416 break;
1417 default:
1418 return -EINVAL;
1419 }
1420 }
1421
1422 /*
1423 * Set 'VM_NORESERVE' if we should not account for the
1424 * memory use of this mapping.
1425 */
1426 if (flags & MAP_NORESERVE) {
1427 /* We honor MAP_NORESERVE if allowed to overcommit */
1428 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1429 vm_flags |= VM_NORESERVE;
1430
1431 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1432 if (file && is_file_hugepages(file))
1433 vm_flags |= VM_NORESERVE;
1434 }
1435
1436 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1437 if (!IS_ERR_VALUE(addr) &&
1438 ((vm_flags & VM_LOCKED) ||
1439 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1440 *populate = len;
1441 return addr;
1442 }
1443
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1444 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1445 unsigned long, prot, unsigned long, flags,
1446 unsigned long, fd, unsigned long, pgoff)
1447 {
1448 struct file *file = NULL;
1449 unsigned long retval = -EBADF;
1450
1451 if (!(flags & MAP_ANONYMOUS)) {
1452 audit_mmap_fd(fd, flags);
1453 file = fget(fd);
1454 if (!file)
1455 goto out;
1456 if (is_file_hugepages(file))
1457 len = ALIGN(len, huge_page_size(hstate_file(file)));
1458 retval = -EINVAL;
1459 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1460 goto out_fput;
1461 } else if (flags & MAP_HUGETLB) {
1462 struct user_struct *user = NULL;
1463 struct hstate *hs;
1464
1465 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1466 if (!hs)
1467 return -EINVAL;
1468
1469 len = ALIGN(len, huge_page_size(hs));
1470 /*
1471 * VM_NORESERVE is used because the reservations will be
1472 * taken when vm_ops->mmap() is called
1473 * A dummy user value is used because we are not locking
1474 * memory so no accounting is necessary
1475 */
1476 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1477 VM_NORESERVE,
1478 &user, HUGETLB_ANONHUGE_INODE,
1479 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1480 if (IS_ERR(file))
1481 return PTR_ERR(file);
1482 }
1483
1484 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1485
1486 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1487 out_fput:
1488 if (file)
1489 fput(file);
1490 out:
1491 return retval;
1492 }
1493
1494 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1495 struct mmap_arg_struct {
1496 unsigned long addr;
1497 unsigned long len;
1498 unsigned long prot;
1499 unsigned long flags;
1500 unsigned long fd;
1501 unsigned long offset;
1502 };
1503
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1504 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1505 {
1506 struct mmap_arg_struct a;
1507
1508 if (copy_from_user(&a, arg, sizeof(a)))
1509 return -EFAULT;
1510 if (a.offset & ~PAGE_MASK)
1511 return -EINVAL;
1512
1513 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1514 a.offset >> PAGE_SHIFT);
1515 }
1516 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1517
1518 /*
1519 * Some shared mappigns will want the pages marked read-only
1520 * to track write events. If so, we'll downgrade vm_page_prot
1521 * to the private version (using protection_map[] without the
1522 * VM_SHARED bit).
1523 */
vma_wants_writenotify(struct vm_area_struct * vma)1524 int vma_wants_writenotify(struct vm_area_struct *vma)
1525 {
1526 vm_flags_t vm_flags = vma->vm_flags;
1527
1528 /* If it was private or non-writable, the write bit is already clear */
1529 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1530 return 0;
1531
1532 /* The backer wishes to know when pages are first written to? */
1533 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1534 return 1;
1535
1536 /* The open routine did something to the protections that pgprot_modify
1537 * won't preserve? */
1538 if (pgprot_val(vma->vm_page_prot) !=
1539 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1540 return 0;
1541
1542 /* Do we need to track softdirty? */
1543 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1544 return 1;
1545
1546 /* Specialty mapping? */
1547 if (vm_flags & VM_PFNMAP)
1548 return 0;
1549
1550 /* Can the mapping track the dirty pages? */
1551 return vma->vm_file && vma->vm_file->f_mapping &&
1552 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1553 }
1554
1555 /*
1556 * We account for memory if it's a private writeable mapping,
1557 * not hugepages and VM_NORESERVE wasn't set.
1558 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1559 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1560 {
1561 /*
1562 * hugetlb has its own accounting separate from the core VM
1563 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1564 */
1565 if (file && is_file_hugepages(file))
1566 return 0;
1567
1568 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1569 }
1570
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff)1571 unsigned long mmap_region(struct file *file, unsigned long addr,
1572 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1573 {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma, *prev;
1576 int error;
1577 struct rb_node **rb_link, *rb_parent;
1578 unsigned long charged = 0;
1579
1580 /* Check against address space limit. */
1581 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1582 unsigned long nr_pages;
1583
1584 /*
1585 * MAP_FIXED may remove pages of mappings that intersects with
1586 * requested mapping. Account for the pages it would unmap.
1587 */
1588 if (!(vm_flags & MAP_FIXED))
1589 return -ENOMEM;
1590
1591 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1592
1593 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1594 return -ENOMEM;
1595 }
1596
1597 /* Clear old maps */
1598 error = -ENOMEM;
1599 munmap_back:
1600 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1601 if (do_munmap(mm, addr, len))
1602 return -ENOMEM;
1603 goto munmap_back;
1604 }
1605
1606 /*
1607 * Private writable mapping: check memory availability
1608 */
1609 if (accountable_mapping(file, vm_flags)) {
1610 charged = len >> PAGE_SHIFT;
1611 if (security_vm_enough_memory_mm(mm, charged))
1612 return -ENOMEM;
1613 vm_flags |= VM_ACCOUNT;
1614 }
1615
1616 /*
1617 * Can we just expand an old mapping?
1618 */
1619 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1620 NULL, NULL);
1621 if (vma)
1622 goto out;
1623
1624 /*
1625 * Determine the object being mapped and call the appropriate
1626 * specific mapper. the address has already been validated, but
1627 * not unmapped, but the maps are removed from the list.
1628 */
1629 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1630 if (!vma) {
1631 error = -ENOMEM;
1632 goto unacct_error;
1633 }
1634
1635 vma->vm_mm = mm;
1636 vma->vm_start = addr;
1637 vma->vm_end = addr + len;
1638 vma->vm_flags = vm_flags;
1639 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1640 vma->vm_pgoff = pgoff;
1641 INIT_LIST_HEAD(&vma->anon_vma_chain);
1642
1643 if (file) {
1644 if (vm_flags & VM_DENYWRITE) {
1645 error = deny_write_access(file);
1646 if (error)
1647 goto free_vma;
1648 }
1649 if (vm_flags & VM_SHARED) {
1650 error = mapping_map_writable(file->f_mapping);
1651 if (error)
1652 goto allow_write_and_free_vma;
1653 }
1654
1655 /* ->mmap() can change vma->vm_file, but must guarantee that
1656 * vma_link() below can deny write-access if VM_DENYWRITE is set
1657 * and map writably if VM_SHARED is set. This usually means the
1658 * new file must not have been exposed to user-space, yet.
1659 */
1660 vma->vm_file = get_file(file);
1661 error = file->f_op->mmap(file, vma);
1662 if (error)
1663 goto unmap_and_free_vma;
1664
1665 /* Can addr have changed??
1666 *
1667 * Answer: Yes, several device drivers can do it in their
1668 * f_op->mmap method. -DaveM
1669 * Bug: If addr is changed, prev, rb_link, rb_parent should
1670 * be updated for vma_link()
1671 */
1672 WARN_ON_ONCE(addr != vma->vm_start);
1673
1674 addr = vma->vm_start;
1675 vm_flags = vma->vm_flags;
1676 } else if (vm_flags & VM_SHARED) {
1677 error = shmem_zero_setup(vma);
1678 if (error)
1679 goto free_vma;
1680 }
1681
1682 vma_link(mm, vma, prev, rb_link, rb_parent);
1683 /* Once vma denies write, undo our temporary denial count */
1684 if (file) {
1685 if (vm_flags & VM_SHARED)
1686 mapping_unmap_writable(file->f_mapping);
1687 if (vm_flags & VM_DENYWRITE)
1688 allow_write_access(file);
1689 }
1690 file = vma->vm_file;
1691 out:
1692 perf_event_mmap(vma);
1693
1694 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1695 if (vm_flags & VM_LOCKED) {
1696 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1697 vma == get_gate_vma(current->mm)))
1698 mm->locked_vm += (len >> PAGE_SHIFT);
1699 else
1700 vma->vm_flags &= ~VM_LOCKED;
1701 }
1702
1703 if (file)
1704 uprobe_mmap(vma);
1705
1706 /*
1707 * New (or expanded) vma always get soft dirty status.
1708 * Otherwise user-space soft-dirty page tracker won't
1709 * be able to distinguish situation when vma area unmapped,
1710 * then new mapped in-place (which must be aimed as
1711 * a completely new data area).
1712 */
1713 vma->vm_flags |= VM_SOFTDIRTY;
1714
1715 vma_set_page_prot(vma);
1716
1717 return addr;
1718
1719 unmap_and_free_vma:
1720 vma->vm_file = NULL;
1721 fput(file);
1722
1723 /* Undo any partial mapping done by a device driver. */
1724 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1725 charged = 0;
1726 if (vm_flags & VM_SHARED)
1727 mapping_unmap_writable(file->f_mapping);
1728 allow_write_and_free_vma:
1729 if (vm_flags & VM_DENYWRITE)
1730 allow_write_access(file);
1731 free_vma:
1732 kmem_cache_free(vm_area_cachep, vma);
1733 unacct_error:
1734 if (charged)
1735 vm_unacct_memory(charged);
1736 return error;
1737 }
1738
unmapped_area(struct vm_unmapped_area_info * info)1739 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1740 {
1741 /*
1742 * We implement the search by looking for an rbtree node that
1743 * immediately follows a suitable gap. That is,
1744 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1745 * - gap_end = vma->vm_start >= info->low_limit + length;
1746 * - gap_end - gap_start >= length
1747 */
1748
1749 struct mm_struct *mm = current->mm;
1750 struct vm_area_struct *vma;
1751 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1752
1753 /* Adjust search length to account for worst case alignment overhead */
1754 length = info->length + info->align_mask;
1755 if (length < info->length)
1756 return -ENOMEM;
1757
1758 /* Adjust search limits by the desired length */
1759 if (info->high_limit < length)
1760 return -ENOMEM;
1761 high_limit = info->high_limit - length;
1762
1763 if (info->low_limit > high_limit)
1764 return -ENOMEM;
1765 low_limit = info->low_limit + length;
1766
1767 /* Check if rbtree root looks promising */
1768 if (RB_EMPTY_ROOT(&mm->mm_rb))
1769 goto check_highest;
1770 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1771 if (vma->rb_subtree_gap < length)
1772 goto check_highest;
1773
1774 while (true) {
1775 /* Visit left subtree if it looks promising */
1776 gap_end = vm_start_gap(vma);
1777 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1778 struct vm_area_struct *left =
1779 rb_entry(vma->vm_rb.rb_left,
1780 struct vm_area_struct, vm_rb);
1781 if (left->rb_subtree_gap >= length) {
1782 vma = left;
1783 continue;
1784 }
1785 }
1786
1787 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1788 check_current:
1789 /* Check if current node has a suitable gap */
1790 if (gap_start > high_limit)
1791 return -ENOMEM;
1792 if (gap_end >= low_limit &&
1793 gap_end > gap_start && gap_end - gap_start >= length)
1794 goto found;
1795
1796 /* Visit right subtree if it looks promising */
1797 if (vma->vm_rb.rb_right) {
1798 struct vm_area_struct *right =
1799 rb_entry(vma->vm_rb.rb_right,
1800 struct vm_area_struct, vm_rb);
1801 if (right->rb_subtree_gap >= length) {
1802 vma = right;
1803 continue;
1804 }
1805 }
1806
1807 /* Go back up the rbtree to find next candidate node */
1808 while (true) {
1809 struct rb_node *prev = &vma->vm_rb;
1810 if (!rb_parent(prev))
1811 goto check_highest;
1812 vma = rb_entry(rb_parent(prev),
1813 struct vm_area_struct, vm_rb);
1814 if (prev == vma->vm_rb.rb_left) {
1815 gap_start = vm_end_gap(vma->vm_prev);
1816 gap_end = vm_start_gap(vma);
1817 goto check_current;
1818 }
1819 }
1820 }
1821
1822 check_highest:
1823 /* Check highest gap, which does not precede any rbtree node */
1824 gap_start = mm->highest_vm_end;
1825 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1826 if (gap_start > high_limit)
1827 return -ENOMEM;
1828
1829 found:
1830 /* We found a suitable gap. Clip it with the original low_limit. */
1831 if (gap_start < info->low_limit)
1832 gap_start = info->low_limit;
1833
1834 /* Adjust gap address to the desired alignment */
1835 gap_start += (info->align_offset - gap_start) & info->align_mask;
1836
1837 VM_BUG_ON(gap_start + info->length > info->high_limit);
1838 VM_BUG_ON(gap_start + info->length > gap_end);
1839 return gap_start;
1840 }
1841
unmapped_area_topdown(struct vm_unmapped_area_info * info)1842 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1843 {
1844 struct mm_struct *mm = current->mm;
1845 struct vm_area_struct *vma;
1846 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1847
1848 /* Adjust search length to account for worst case alignment overhead */
1849 length = info->length + info->align_mask;
1850 if (length < info->length)
1851 return -ENOMEM;
1852
1853 /*
1854 * Adjust search limits by the desired length.
1855 * See implementation comment at top of unmapped_area().
1856 */
1857 gap_end = info->high_limit;
1858 if (gap_end < length)
1859 return -ENOMEM;
1860 high_limit = gap_end - length;
1861
1862 if (info->low_limit > high_limit)
1863 return -ENOMEM;
1864 low_limit = info->low_limit + length;
1865
1866 /* Check highest gap, which does not precede any rbtree node */
1867 gap_start = mm->highest_vm_end;
1868 if (gap_start <= high_limit)
1869 goto found_highest;
1870
1871 /* Check if rbtree root looks promising */
1872 if (RB_EMPTY_ROOT(&mm->mm_rb))
1873 return -ENOMEM;
1874 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1875 if (vma->rb_subtree_gap < length)
1876 return -ENOMEM;
1877
1878 while (true) {
1879 /* Visit right subtree if it looks promising */
1880 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1881 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1882 struct vm_area_struct *right =
1883 rb_entry(vma->vm_rb.rb_right,
1884 struct vm_area_struct, vm_rb);
1885 if (right->rb_subtree_gap >= length) {
1886 vma = right;
1887 continue;
1888 }
1889 }
1890
1891 check_current:
1892 /* Check if current node has a suitable gap */
1893 gap_end = vm_start_gap(vma);
1894 if (gap_end < low_limit)
1895 return -ENOMEM;
1896 if (gap_start <= high_limit &&
1897 gap_end > gap_start && gap_end - gap_start >= length)
1898 goto found;
1899
1900 /* Visit left subtree if it looks promising */
1901 if (vma->vm_rb.rb_left) {
1902 struct vm_area_struct *left =
1903 rb_entry(vma->vm_rb.rb_left,
1904 struct vm_area_struct, vm_rb);
1905 if (left->rb_subtree_gap >= length) {
1906 vma = left;
1907 continue;
1908 }
1909 }
1910
1911 /* Go back up the rbtree to find next candidate node */
1912 while (true) {
1913 struct rb_node *prev = &vma->vm_rb;
1914 if (!rb_parent(prev))
1915 return -ENOMEM;
1916 vma = rb_entry(rb_parent(prev),
1917 struct vm_area_struct, vm_rb);
1918 if (prev == vma->vm_rb.rb_right) {
1919 gap_start = vma->vm_prev ?
1920 vm_end_gap(vma->vm_prev) : 0;
1921 goto check_current;
1922 }
1923 }
1924 }
1925
1926 found:
1927 /* We found a suitable gap. Clip it with the original high_limit. */
1928 if (gap_end > info->high_limit)
1929 gap_end = info->high_limit;
1930
1931 found_highest:
1932 /* Compute highest gap address at the desired alignment */
1933 gap_end -= info->length;
1934 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1935
1936 VM_BUG_ON(gap_end < info->low_limit);
1937 VM_BUG_ON(gap_end < gap_start);
1938 return gap_end;
1939 }
1940
1941 /* Get an address range which is currently unmapped.
1942 * For shmat() with addr=0.
1943 *
1944 * Ugly calling convention alert:
1945 * Return value with the low bits set means error value,
1946 * ie
1947 * if (ret & ~PAGE_MASK)
1948 * error = ret;
1949 *
1950 * This function "knows" that -ENOMEM has the bits set.
1951 */
1952 #ifndef HAVE_ARCH_UNMAPPED_AREA
1953 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1954 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1955 unsigned long len, unsigned long pgoff, unsigned long flags)
1956 {
1957 struct mm_struct *mm = current->mm;
1958 struct vm_area_struct *vma, *prev;
1959 struct vm_unmapped_area_info info;
1960
1961 if (len > TASK_SIZE - mmap_min_addr)
1962 return -ENOMEM;
1963
1964 if (flags & MAP_FIXED)
1965 return addr;
1966
1967 if (addr) {
1968 addr = PAGE_ALIGN(addr);
1969 vma = find_vma_prev(mm, addr, &prev);
1970 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1971 (!vma || addr + len <= vm_start_gap(vma)) &&
1972 (!prev || addr >= vm_end_gap(prev)))
1973 return addr;
1974 }
1975
1976 info.flags = 0;
1977 info.length = len;
1978 info.low_limit = mm->mmap_base;
1979 info.high_limit = TASK_SIZE;
1980 info.align_mask = 0;
1981 return vm_unmapped_area(&info);
1982 }
1983 #endif
1984
1985 /*
1986 * This mmap-allocator allocates new areas top-down from below the
1987 * stack's low limit (the base):
1988 */
1989 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1990 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1991 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1992 const unsigned long len, const unsigned long pgoff,
1993 const unsigned long flags)
1994 {
1995 struct vm_area_struct *vma, *prev;
1996 struct mm_struct *mm = current->mm;
1997 unsigned long addr = addr0;
1998 struct vm_unmapped_area_info info;
1999
2000 /* requested length too big for entire address space */
2001 if (len > TASK_SIZE - mmap_min_addr)
2002 return -ENOMEM;
2003
2004 if (flags & MAP_FIXED)
2005 return addr;
2006
2007 /* requesting a specific address */
2008 if (addr) {
2009 addr = PAGE_ALIGN(addr);
2010 vma = find_vma_prev(mm, addr, &prev);
2011 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2012 (!vma || addr + len <= vm_start_gap(vma)) &&
2013 (!prev || addr >= vm_end_gap(prev)))
2014 return addr;
2015 }
2016
2017 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2018 info.length = len;
2019 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2020 info.high_limit = mm->mmap_base;
2021 info.align_mask = 0;
2022 addr = vm_unmapped_area(&info);
2023
2024 /*
2025 * A failed mmap() very likely causes application failure,
2026 * so fall back to the bottom-up function here. This scenario
2027 * can happen with large stack limits and large mmap()
2028 * allocations.
2029 */
2030 if (addr & ~PAGE_MASK) {
2031 VM_BUG_ON(addr != -ENOMEM);
2032 info.flags = 0;
2033 info.low_limit = TASK_UNMAPPED_BASE;
2034 info.high_limit = TASK_SIZE;
2035 addr = vm_unmapped_area(&info);
2036 }
2037
2038 return addr;
2039 }
2040 #endif
2041
2042 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2043 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2044 unsigned long pgoff, unsigned long flags)
2045 {
2046 unsigned long (*get_area)(struct file *, unsigned long,
2047 unsigned long, unsigned long, unsigned long);
2048
2049 unsigned long error = arch_mmap_check(addr, len, flags);
2050 if (error)
2051 return error;
2052
2053 /* Careful about overflows.. */
2054 if (len > TASK_SIZE)
2055 return -ENOMEM;
2056
2057 get_area = current->mm->get_unmapped_area;
2058 if (file && file->f_op->get_unmapped_area)
2059 get_area = file->f_op->get_unmapped_area;
2060 addr = get_area(file, addr, len, pgoff, flags);
2061 if (IS_ERR_VALUE(addr))
2062 return addr;
2063
2064 if (addr > TASK_SIZE - len)
2065 return -ENOMEM;
2066 if (addr & ~PAGE_MASK)
2067 return -EINVAL;
2068
2069 addr = arch_rebalance_pgtables(addr, len);
2070 error = security_mmap_addr(addr);
2071 return error ? error : addr;
2072 }
2073
2074 EXPORT_SYMBOL(get_unmapped_area);
2075
2076 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2077 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2078 {
2079 struct rb_node *rb_node;
2080 struct vm_area_struct *vma;
2081
2082 /* Check the cache first. */
2083 vma = vmacache_find(mm, addr);
2084 if (likely(vma))
2085 return vma;
2086
2087 rb_node = mm->mm_rb.rb_node;
2088 vma = NULL;
2089
2090 while (rb_node) {
2091 struct vm_area_struct *tmp;
2092
2093 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2094
2095 if (tmp->vm_end > addr) {
2096 vma = tmp;
2097 if (tmp->vm_start <= addr)
2098 break;
2099 rb_node = rb_node->rb_left;
2100 } else
2101 rb_node = rb_node->rb_right;
2102 }
2103
2104 if (vma)
2105 vmacache_update(addr, vma);
2106 return vma;
2107 }
2108
2109 EXPORT_SYMBOL(find_vma);
2110
2111 /*
2112 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2113 */
2114 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2115 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2116 struct vm_area_struct **pprev)
2117 {
2118 struct vm_area_struct *vma;
2119
2120 vma = find_vma(mm, addr);
2121 if (vma) {
2122 *pprev = vma->vm_prev;
2123 } else {
2124 struct rb_node *rb_node = mm->mm_rb.rb_node;
2125 *pprev = NULL;
2126 while (rb_node) {
2127 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2128 rb_node = rb_node->rb_right;
2129 }
2130 }
2131 return vma;
2132 }
2133
2134 /*
2135 * Verify that the stack growth is acceptable and
2136 * update accounting. This is shared with both the
2137 * grow-up and grow-down cases.
2138 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2139 static int acct_stack_growth(struct vm_area_struct *vma,
2140 unsigned long size, unsigned long grow)
2141 {
2142 struct mm_struct *mm = vma->vm_mm;
2143 struct rlimit *rlim = current->signal->rlim;
2144 unsigned long new_start;
2145
2146 /* address space limit tests */
2147 if (!may_expand_vm(mm, grow))
2148 return -ENOMEM;
2149
2150 /* Stack limit test */
2151 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2152 return -ENOMEM;
2153
2154 /* mlock limit tests */
2155 if (vma->vm_flags & VM_LOCKED) {
2156 unsigned long locked;
2157 unsigned long limit;
2158 locked = mm->locked_vm + grow;
2159 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2160 limit >>= PAGE_SHIFT;
2161 if (locked > limit && !capable(CAP_IPC_LOCK))
2162 return -ENOMEM;
2163 }
2164
2165 /* Check to ensure the stack will not grow into a hugetlb-only region */
2166 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2167 vma->vm_end - size;
2168 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2169 return -EFAULT;
2170
2171 /*
2172 * Overcommit.. This must be the final test, as it will
2173 * update security statistics.
2174 */
2175 if (security_vm_enough_memory_mm(mm, grow))
2176 return -ENOMEM;
2177
2178 /* Ok, everything looks good - let it rip */
2179 if (vma->vm_flags & VM_LOCKED)
2180 mm->locked_vm += grow;
2181 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2182 return 0;
2183 }
2184
2185 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2186 /*
2187 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2188 * vma is the last one with address > vma->vm_end. Have to extend vma.
2189 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2190 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2191 {
2192 struct vm_area_struct *next;
2193 unsigned long gap_addr;
2194 int error = 0;
2195
2196 if (!(vma->vm_flags & VM_GROWSUP))
2197 return -EFAULT;
2198
2199 /* Guard against exceeding limits of the address space. */
2200 address &= PAGE_MASK;
2201 if (address >= (TASK_SIZE & PAGE_MASK))
2202 return -ENOMEM;
2203 address += PAGE_SIZE;
2204
2205 /* Enforce stack_guard_gap */
2206 gap_addr = address + stack_guard_gap;
2207
2208 /* Guard against overflow */
2209 if (gap_addr < address || gap_addr > TASK_SIZE)
2210 gap_addr = TASK_SIZE;
2211
2212 next = vma->vm_next;
2213 if (next && next->vm_start < gap_addr &&
2214 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2215 if (!(next->vm_flags & VM_GROWSUP))
2216 return -ENOMEM;
2217 /* Check that both stack segments have the same anon_vma? */
2218 }
2219
2220 /* We must make sure the anon_vma is allocated. */
2221 if (unlikely(anon_vma_prepare(vma)))
2222 return -ENOMEM;
2223
2224 /*
2225 * vma->vm_start/vm_end cannot change under us because the caller
2226 * is required to hold the mmap_sem in read mode. We need the
2227 * anon_vma lock to serialize against concurrent expand_stacks.
2228 */
2229 anon_vma_lock_write(vma->anon_vma);
2230
2231 /* Somebody else might have raced and expanded it already */
2232 if (address > vma->vm_end) {
2233 unsigned long size, grow;
2234
2235 size = address - vma->vm_start;
2236 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2237
2238 error = -ENOMEM;
2239 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2240 error = acct_stack_growth(vma, size, grow);
2241 if (!error) {
2242 /*
2243 * vma_gap_update() doesn't support concurrent
2244 * updates, but we only hold a shared mmap_sem
2245 * lock here, so we need to protect against
2246 * concurrent vma expansions.
2247 * anon_vma_lock_write() doesn't help here, as
2248 * we don't guarantee that all growable vmas
2249 * in a mm share the same root anon vma.
2250 * So, we reuse mm->page_table_lock to guard
2251 * against concurrent vma expansions.
2252 */
2253 spin_lock(&vma->vm_mm->page_table_lock);
2254 anon_vma_interval_tree_pre_update_vma(vma);
2255 vma->vm_end = address;
2256 anon_vma_interval_tree_post_update_vma(vma);
2257 if (vma->vm_next)
2258 vma_gap_update(vma->vm_next);
2259 else
2260 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2261 spin_unlock(&vma->vm_mm->page_table_lock);
2262
2263 perf_event_mmap(vma);
2264 }
2265 }
2266 }
2267 anon_vma_unlock_write(vma->anon_vma);
2268 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2269 validate_mm(vma->vm_mm);
2270 return error;
2271 }
2272 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2273
2274 /*
2275 * vma is the first one with address < vma->vm_start. Have to extend vma.
2276 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2277 int expand_downwards(struct vm_area_struct *vma,
2278 unsigned long address)
2279 {
2280 struct vm_area_struct *prev;
2281 unsigned long gap_addr;
2282 int error;
2283
2284 address &= PAGE_MASK;
2285 error = security_mmap_addr(address);
2286 if (error)
2287 return error;
2288
2289 /* Enforce stack_guard_gap */
2290 gap_addr = address - stack_guard_gap;
2291 if (gap_addr > address)
2292 return -ENOMEM;
2293 prev = vma->vm_prev;
2294 if (prev && prev->vm_end > gap_addr &&
2295 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2296 if (!(prev->vm_flags & VM_GROWSDOWN))
2297 return -ENOMEM;
2298 /* Check that both stack segments have the same anon_vma? */
2299 }
2300
2301 /* We must make sure the anon_vma is allocated. */
2302 if (unlikely(anon_vma_prepare(vma)))
2303 return -ENOMEM;
2304
2305 /*
2306 * vma->vm_start/vm_end cannot change under us because the caller
2307 * is required to hold the mmap_sem in read mode. We need the
2308 * anon_vma lock to serialize against concurrent expand_stacks.
2309 */
2310 anon_vma_lock_write(vma->anon_vma);
2311
2312 /* Somebody else might have raced and expanded it already */
2313 if (address < vma->vm_start) {
2314 unsigned long size, grow;
2315
2316 size = vma->vm_end - address;
2317 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2318
2319 error = -ENOMEM;
2320 if (grow <= vma->vm_pgoff) {
2321 error = acct_stack_growth(vma, size, grow);
2322 if (!error) {
2323 /*
2324 * vma_gap_update() doesn't support concurrent
2325 * updates, but we only hold a shared mmap_sem
2326 * lock here, so we need to protect against
2327 * concurrent vma expansions.
2328 * anon_vma_lock_write() doesn't help here, as
2329 * we don't guarantee that all growable vmas
2330 * in a mm share the same root anon vma.
2331 * So, we reuse mm->page_table_lock to guard
2332 * against concurrent vma expansions.
2333 */
2334 spin_lock(&vma->vm_mm->page_table_lock);
2335 anon_vma_interval_tree_pre_update_vma(vma);
2336 vma->vm_start = address;
2337 vma->vm_pgoff -= grow;
2338 anon_vma_interval_tree_post_update_vma(vma);
2339 vma_gap_update(vma);
2340 spin_unlock(&vma->vm_mm->page_table_lock);
2341
2342 perf_event_mmap(vma);
2343 }
2344 }
2345 }
2346 anon_vma_unlock_write(vma->anon_vma);
2347 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2348 validate_mm(vma->vm_mm);
2349 return error;
2350 }
2351
2352 /* enforced gap between the expanding stack and other mappings. */
2353 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2354
cmdline_parse_stack_guard_gap(char * p)2355 static int __init cmdline_parse_stack_guard_gap(char *p)
2356 {
2357 unsigned long val;
2358 char *endptr;
2359
2360 val = simple_strtoul(p, &endptr, 10);
2361 if (!*endptr)
2362 stack_guard_gap = val << PAGE_SHIFT;
2363
2364 return 0;
2365 }
2366 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2367
2368 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2369 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2370 {
2371 return expand_upwards(vma, address);
2372 }
2373
2374 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2375 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2376 {
2377 struct vm_area_struct *vma, *prev;
2378
2379 addr &= PAGE_MASK;
2380 vma = find_vma_prev(mm, addr, &prev);
2381 if (vma && (vma->vm_start <= addr))
2382 return vma;
2383 if (!prev || expand_stack(prev, addr))
2384 return NULL;
2385 if (prev->vm_flags & VM_LOCKED)
2386 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2387 return prev;
2388 }
2389 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2390 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2391 {
2392 return expand_downwards(vma, address);
2393 }
2394
2395 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2396 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2397 {
2398 struct vm_area_struct *vma;
2399 unsigned long start;
2400
2401 addr &= PAGE_MASK;
2402 vma = find_vma(mm, addr);
2403 if (!vma)
2404 return NULL;
2405 if (vma->vm_start <= addr)
2406 return vma;
2407 if (!(vma->vm_flags & VM_GROWSDOWN))
2408 return NULL;
2409 start = vma->vm_start;
2410 if (expand_stack(vma, addr))
2411 return NULL;
2412 if (vma->vm_flags & VM_LOCKED)
2413 __mlock_vma_pages_range(vma, addr, start, NULL);
2414 return vma;
2415 }
2416 #endif
2417
2418 /*
2419 * Ok - we have the memory areas we should free on the vma list,
2420 * so release them, and do the vma updates.
2421 *
2422 * Called with the mm semaphore held.
2423 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2424 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2425 {
2426 unsigned long nr_accounted = 0;
2427
2428 /* Update high watermark before we lower total_vm */
2429 update_hiwater_vm(mm);
2430 do {
2431 long nrpages = vma_pages(vma);
2432
2433 if (vma->vm_flags & VM_ACCOUNT)
2434 nr_accounted += nrpages;
2435 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2436 vma = remove_vma(vma);
2437 } while (vma);
2438 vm_unacct_memory(nr_accounted);
2439 validate_mm(mm);
2440 }
2441
2442 /*
2443 * Get rid of page table information in the indicated region.
2444 *
2445 * Called with the mm semaphore held.
2446 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2447 static void unmap_region(struct mm_struct *mm,
2448 struct vm_area_struct *vma, struct vm_area_struct *prev,
2449 unsigned long start, unsigned long end)
2450 {
2451 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2452 struct mmu_gather tlb;
2453
2454 lru_add_drain();
2455 tlb_gather_mmu(&tlb, mm, start, end);
2456 update_hiwater_rss(mm);
2457 unmap_vmas(&tlb, vma, start, end);
2458 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2459 next ? next->vm_start : USER_PGTABLES_CEILING);
2460 tlb_finish_mmu(&tlb, start, end);
2461 }
2462
2463 /*
2464 * Create a list of vma's touched by the unmap, removing them from the mm's
2465 * vma list as we go..
2466 */
2467 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2468 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2469 struct vm_area_struct *prev, unsigned long end)
2470 {
2471 struct vm_area_struct **insertion_point;
2472 struct vm_area_struct *tail_vma = NULL;
2473
2474 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2475 vma->vm_prev = NULL;
2476 do {
2477 vma_rb_erase(vma, &mm->mm_rb);
2478 mm->map_count--;
2479 tail_vma = vma;
2480 vma = vma->vm_next;
2481 } while (vma && vma->vm_start < end);
2482 *insertion_point = vma;
2483 if (vma) {
2484 vma->vm_prev = prev;
2485 vma_gap_update(vma);
2486 } else
2487 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2488 tail_vma->vm_next = NULL;
2489
2490 /* Kill the cache */
2491 vmacache_invalidate(mm);
2492 }
2493
2494 /*
2495 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2496 * munmap path where it doesn't make sense to fail.
2497 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2498 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2499 unsigned long addr, int new_below)
2500 {
2501 struct vm_area_struct *new;
2502 int err = -ENOMEM;
2503
2504 if (is_vm_hugetlb_page(vma) && (addr &
2505 ~(huge_page_mask(hstate_vma(vma)))))
2506 return -EINVAL;
2507
2508 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2509 if (!new)
2510 goto out_err;
2511
2512 /* most fields are the same, copy all, and then fixup */
2513 *new = *vma;
2514
2515 INIT_LIST_HEAD(&new->anon_vma_chain);
2516
2517 if (new_below)
2518 new->vm_end = addr;
2519 else {
2520 new->vm_start = addr;
2521 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2522 }
2523
2524 err = vma_dup_policy(vma, new);
2525 if (err)
2526 goto out_free_vma;
2527
2528 err = anon_vma_clone(new, vma);
2529 if (err)
2530 goto out_free_mpol;
2531
2532 if (new->vm_file)
2533 get_file(new->vm_file);
2534
2535 if (new->vm_ops && new->vm_ops->open)
2536 new->vm_ops->open(new);
2537
2538 if (new_below)
2539 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2540 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2541 else
2542 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2543
2544 /* Success. */
2545 if (!err)
2546 return 0;
2547
2548 /* Clean everything up if vma_adjust failed. */
2549 if (new->vm_ops && new->vm_ops->close)
2550 new->vm_ops->close(new);
2551 if (new->vm_file)
2552 fput(new->vm_file);
2553 unlink_anon_vmas(new);
2554 out_free_mpol:
2555 mpol_put(vma_policy(new));
2556 out_free_vma:
2557 kmem_cache_free(vm_area_cachep, new);
2558 out_err:
2559 return err;
2560 }
2561
2562 /*
2563 * Split a vma into two pieces at address 'addr', a new vma is allocated
2564 * either for the first part or the tail.
2565 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2566 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2567 unsigned long addr, int new_below)
2568 {
2569 if (mm->map_count >= sysctl_max_map_count)
2570 return -ENOMEM;
2571
2572 return __split_vma(mm, vma, addr, new_below);
2573 }
2574
2575 /* Munmap is split into 2 main parts -- this part which finds
2576 * what needs doing, and the areas themselves, which do the
2577 * work. This now handles partial unmappings.
2578 * Jeremy Fitzhardinge <jeremy@goop.org>
2579 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2580 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2581 {
2582 unsigned long end;
2583 struct vm_area_struct *vma, *prev, *last;
2584
2585 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2586 return -EINVAL;
2587
2588 len = PAGE_ALIGN(len);
2589 if (len == 0)
2590 return -EINVAL;
2591
2592 /* Find the first overlapping VMA */
2593 vma = find_vma(mm, start);
2594 if (!vma)
2595 return 0;
2596 prev = vma->vm_prev;
2597 /* we have start < vma->vm_end */
2598
2599 /* if it doesn't overlap, we have nothing.. */
2600 end = start + len;
2601 if (vma->vm_start >= end)
2602 return 0;
2603
2604 /*
2605 * If we need to split any vma, do it now to save pain later.
2606 *
2607 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2608 * unmapped vm_area_struct will remain in use: so lower split_vma
2609 * places tmp vma above, and higher split_vma places tmp vma below.
2610 */
2611 if (start > vma->vm_start) {
2612 int error;
2613
2614 /*
2615 * Make sure that map_count on return from munmap() will
2616 * not exceed its limit; but let map_count go just above
2617 * its limit temporarily, to help free resources as expected.
2618 */
2619 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2620 return -ENOMEM;
2621
2622 error = __split_vma(mm, vma, start, 0);
2623 if (error)
2624 return error;
2625 prev = vma;
2626 }
2627
2628 /* Does it split the last one? */
2629 last = find_vma(mm, end);
2630 if (last && end > last->vm_start) {
2631 int error = __split_vma(mm, last, end, 1);
2632 if (error)
2633 return error;
2634 }
2635 vma = prev ? prev->vm_next : mm->mmap;
2636
2637 /*
2638 * unlock any mlock()ed ranges before detaching vmas
2639 */
2640 if (mm->locked_vm) {
2641 struct vm_area_struct *tmp = vma;
2642 while (tmp && tmp->vm_start < end) {
2643 if (tmp->vm_flags & VM_LOCKED) {
2644 mm->locked_vm -= vma_pages(tmp);
2645 munlock_vma_pages_all(tmp);
2646 }
2647 tmp = tmp->vm_next;
2648 }
2649 }
2650
2651 /*
2652 * Remove the vma's, and unmap the actual pages
2653 */
2654 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2655 unmap_region(mm, vma, prev, start, end);
2656
2657 /* Fix up all other VM information */
2658 remove_vma_list(mm, vma);
2659
2660 return 0;
2661 }
2662 EXPORT_SYMBOL(do_munmap);
2663
vm_munmap(unsigned long start,size_t len)2664 int vm_munmap(unsigned long start, size_t len)
2665 {
2666 int ret;
2667 struct mm_struct *mm = current->mm;
2668
2669 down_write(&mm->mmap_sem);
2670 ret = do_munmap(mm, start, len);
2671 up_write(&mm->mmap_sem);
2672 return ret;
2673 }
2674 EXPORT_SYMBOL(vm_munmap);
2675
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2676 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2677 {
2678 profile_munmap(addr);
2679 return vm_munmap(addr, len);
2680 }
2681
verify_mm_writelocked(struct mm_struct * mm)2682 static inline void verify_mm_writelocked(struct mm_struct *mm)
2683 {
2684 #ifdef CONFIG_DEBUG_VM
2685 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2686 WARN_ON(1);
2687 up_read(&mm->mmap_sem);
2688 }
2689 #endif
2690 }
2691
2692 /*
2693 * this is really a simplified "do_mmap". it only handles
2694 * anonymous maps. eventually we may be able to do some
2695 * brk-specific accounting here.
2696 */
do_brk(unsigned long addr,unsigned long len)2697 static unsigned long do_brk(unsigned long addr, unsigned long len)
2698 {
2699 struct mm_struct *mm = current->mm;
2700 struct vm_area_struct *vma, *prev;
2701 unsigned long flags;
2702 struct rb_node **rb_link, *rb_parent;
2703 pgoff_t pgoff = addr >> PAGE_SHIFT;
2704 int error;
2705
2706 len = PAGE_ALIGN(len);
2707 if (!len)
2708 return addr;
2709
2710 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2711
2712 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2713 if (error & ~PAGE_MASK)
2714 return error;
2715
2716 error = mlock_future_check(mm, mm->def_flags, len);
2717 if (error)
2718 return error;
2719
2720 /*
2721 * mm->mmap_sem is required to protect against another thread
2722 * changing the mappings in case we sleep.
2723 */
2724 verify_mm_writelocked(mm);
2725
2726 /*
2727 * Clear old maps. this also does some error checking for us
2728 */
2729 munmap_back:
2730 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2731 if (do_munmap(mm, addr, len))
2732 return -ENOMEM;
2733 goto munmap_back;
2734 }
2735
2736 /* Check against address space limits *after* clearing old maps... */
2737 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2738 return -ENOMEM;
2739
2740 if (mm->map_count > sysctl_max_map_count)
2741 return -ENOMEM;
2742
2743 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2744 return -ENOMEM;
2745
2746 /* Can we just expand an old private anonymous mapping? */
2747 vma = vma_merge(mm, prev, addr, addr + len, flags,
2748 NULL, NULL, pgoff, NULL, NULL);
2749 if (vma)
2750 goto out;
2751
2752 /*
2753 * create a vma struct for an anonymous mapping
2754 */
2755 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2756 if (!vma) {
2757 vm_unacct_memory(len >> PAGE_SHIFT);
2758 return -ENOMEM;
2759 }
2760
2761 INIT_LIST_HEAD(&vma->anon_vma_chain);
2762 vma->vm_mm = mm;
2763 vma->vm_start = addr;
2764 vma->vm_end = addr + len;
2765 vma->vm_pgoff = pgoff;
2766 vma->vm_flags = flags;
2767 vma->vm_page_prot = vm_get_page_prot(flags);
2768 vma_link(mm, vma, prev, rb_link, rb_parent);
2769 out:
2770 perf_event_mmap(vma);
2771 mm->total_vm += len >> PAGE_SHIFT;
2772 if (flags & VM_LOCKED)
2773 mm->locked_vm += (len >> PAGE_SHIFT);
2774 vma->vm_flags |= VM_SOFTDIRTY;
2775 return addr;
2776 }
2777
vm_brk(unsigned long addr,unsigned long len)2778 unsigned long vm_brk(unsigned long addr, unsigned long len)
2779 {
2780 struct mm_struct *mm = current->mm;
2781 unsigned long ret;
2782 bool populate;
2783
2784 down_write(&mm->mmap_sem);
2785 ret = do_brk(addr, len);
2786 populate = ((mm->def_flags & VM_LOCKED) != 0);
2787 up_write(&mm->mmap_sem);
2788 if (populate)
2789 mm_populate(addr, len);
2790 return ret;
2791 }
2792 EXPORT_SYMBOL(vm_brk);
2793
2794 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2795 void exit_mmap(struct mm_struct *mm)
2796 {
2797 struct mmu_gather tlb;
2798 struct vm_area_struct *vma;
2799 unsigned long nr_accounted = 0;
2800
2801 /* mm's last user has gone, and its about to be pulled down */
2802 mmu_notifier_release(mm);
2803
2804 if (mm->locked_vm) {
2805 vma = mm->mmap;
2806 while (vma) {
2807 if (vma->vm_flags & VM_LOCKED)
2808 munlock_vma_pages_all(vma);
2809 vma = vma->vm_next;
2810 }
2811 }
2812
2813 arch_exit_mmap(mm);
2814
2815 vma = mm->mmap;
2816 if (!vma) /* Can happen if dup_mmap() received an OOM */
2817 return;
2818
2819 lru_add_drain();
2820 flush_cache_mm(mm);
2821 tlb_gather_mmu(&tlb, mm, 0, -1);
2822 /* update_hiwater_rss(mm) here? but nobody should be looking */
2823 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2824 unmap_vmas(&tlb, vma, 0, -1);
2825
2826 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2827 tlb_finish_mmu(&tlb, 0, -1);
2828
2829 /*
2830 * Walk the list again, actually closing and freeing it,
2831 * with preemption enabled, without holding any MM locks.
2832 */
2833 while (vma) {
2834 if (vma->vm_flags & VM_ACCOUNT)
2835 nr_accounted += vma_pages(vma);
2836 vma = remove_vma(vma);
2837 }
2838 vm_unacct_memory(nr_accounted);
2839
2840 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2841 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2842 }
2843
2844 /* Insert vm structure into process list sorted by address
2845 * and into the inode's i_mmap tree. If vm_file is non-NULL
2846 * then i_mmap_mutex is taken here.
2847 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2848 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2849 {
2850 struct vm_area_struct *prev;
2851 struct rb_node **rb_link, *rb_parent;
2852
2853 /*
2854 * The vm_pgoff of a purely anonymous vma should be irrelevant
2855 * until its first write fault, when page's anon_vma and index
2856 * are set. But now set the vm_pgoff it will almost certainly
2857 * end up with (unless mremap moves it elsewhere before that
2858 * first wfault), so /proc/pid/maps tells a consistent story.
2859 *
2860 * By setting it to reflect the virtual start address of the
2861 * vma, merges and splits can happen in a seamless way, just
2862 * using the existing file pgoff checks and manipulations.
2863 * Similarly in do_mmap_pgoff and in do_brk.
2864 */
2865 if (!vma->vm_file) {
2866 BUG_ON(vma->anon_vma);
2867 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2868 }
2869 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2870 &prev, &rb_link, &rb_parent))
2871 return -ENOMEM;
2872 if ((vma->vm_flags & VM_ACCOUNT) &&
2873 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2874 return -ENOMEM;
2875
2876 vma_link(mm, vma, prev, rb_link, rb_parent);
2877 return 0;
2878 }
2879
2880 /*
2881 * Copy the vma structure to a new location in the same mm,
2882 * prior to moving page table entries, to effect an mremap move.
2883 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)2884 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2885 unsigned long addr, unsigned long len, pgoff_t pgoff,
2886 bool *need_rmap_locks)
2887 {
2888 struct vm_area_struct *vma = *vmap;
2889 unsigned long vma_start = vma->vm_start;
2890 struct mm_struct *mm = vma->vm_mm;
2891 struct vm_area_struct *new_vma, *prev;
2892 struct rb_node **rb_link, *rb_parent;
2893 bool faulted_in_anon_vma = true;
2894
2895 /*
2896 * If anonymous vma has not yet been faulted, update new pgoff
2897 * to match new location, to increase its chance of merging.
2898 */
2899 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2900 pgoff = addr >> PAGE_SHIFT;
2901 faulted_in_anon_vma = false;
2902 }
2903
2904 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2905 return NULL; /* should never get here */
2906 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2907 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2908 vma_get_anon_name(vma));
2909 if (new_vma) {
2910 /*
2911 * Source vma may have been merged into new_vma
2912 */
2913 if (unlikely(vma_start >= new_vma->vm_start &&
2914 vma_start < new_vma->vm_end)) {
2915 /*
2916 * The only way we can get a vma_merge with
2917 * self during an mremap is if the vma hasn't
2918 * been faulted in yet and we were allowed to
2919 * reset the dst vma->vm_pgoff to the
2920 * destination address of the mremap to allow
2921 * the merge to happen. mremap must change the
2922 * vm_pgoff linearity between src and dst vmas
2923 * (in turn preventing a vma_merge) to be
2924 * safe. It is only safe to keep the vm_pgoff
2925 * linear if there are no pages mapped yet.
2926 */
2927 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2928 *vmap = vma = new_vma;
2929 }
2930 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2931 } else {
2932 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2933 if (new_vma) {
2934 *new_vma = *vma;
2935 new_vma->vm_start = addr;
2936 new_vma->vm_end = addr + len;
2937 new_vma->vm_pgoff = pgoff;
2938 if (vma_dup_policy(vma, new_vma))
2939 goto out_free_vma;
2940 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2941 if (anon_vma_clone(new_vma, vma))
2942 goto out_free_mempol;
2943 if (new_vma->vm_file)
2944 get_file(new_vma->vm_file);
2945 if (new_vma->vm_ops && new_vma->vm_ops->open)
2946 new_vma->vm_ops->open(new_vma);
2947 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2948 *need_rmap_locks = false;
2949 }
2950 }
2951 return new_vma;
2952
2953 out_free_mempol:
2954 mpol_put(vma_policy(new_vma));
2955 out_free_vma:
2956 kmem_cache_free(vm_area_cachep, new_vma);
2957 return NULL;
2958 }
2959
2960 /*
2961 * Return true if the calling process may expand its vm space by the passed
2962 * number of pages
2963 */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2964 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2965 {
2966 unsigned long cur = mm->total_vm; /* pages */
2967 unsigned long lim;
2968
2969 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2970
2971 if (cur + npages > lim)
2972 return 0;
2973 return 1;
2974 }
2975
2976 static int special_mapping_fault(struct vm_area_struct *vma,
2977 struct vm_fault *vmf);
2978
2979 /*
2980 * Having a close hook prevents vma merging regardless of flags.
2981 */
special_mapping_close(struct vm_area_struct * vma)2982 static void special_mapping_close(struct vm_area_struct *vma)
2983 {
2984 }
2985
special_mapping_name(struct vm_area_struct * vma)2986 static const char *special_mapping_name(struct vm_area_struct *vma)
2987 {
2988 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2989 }
2990
2991 static const struct vm_operations_struct special_mapping_vmops = {
2992 .close = special_mapping_close,
2993 .fault = special_mapping_fault,
2994 .name = special_mapping_name,
2995 };
2996
2997 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2998 .close = special_mapping_close,
2999 .fault = special_mapping_fault,
3000 };
3001
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3002 static int special_mapping_fault(struct vm_area_struct *vma,
3003 struct vm_fault *vmf)
3004 {
3005 pgoff_t pgoff;
3006 struct page **pages;
3007
3008 /*
3009 * special mappings have no vm_file, and in that case, the mm
3010 * uses vm_pgoff internally. So we have to subtract it from here.
3011 * We are allowed to do this because we are the mm; do not copy
3012 * this code into drivers!
3013 */
3014 pgoff = vmf->pgoff - vma->vm_pgoff;
3015
3016 if (vma->vm_ops == &legacy_special_mapping_vmops)
3017 pages = vma->vm_private_data;
3018 else
3019 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3020 pages;
3021
3022 for (; pgoff && *pages; ++pages)
3023 pgoff--;
3024
3025 if (*pages) {
3026 struct page *page = *pages;
3027 get_page(page);
3028 vmf->page = page;
3029 return 0;
3030 }
3031
3032 return VM_FAULT_SIGBUS;
3033 }
3034
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_operations_struct * ops,void * priv)3035 static struct vm_area_struct *__install_special_mapping(
3036 struct mm_struct *mm,
3037 unsigned long addr, unsigned long len,
3038 unsigned long vm_flags, const struct vm_operations_struct *ops,
3039 void *priv)
3040 {
3041 int ret;
3042 struct vm_area_struct *vma;
3043
3044 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3045 if (unlikely(vma == NULL))
3046 return ERR_PTR(-ENOMEM);
3047
3048 INIT_LIST_HEAD(&vma->anon_vma_chain);
3049 vma->vm_mm = mm;
3050 vma->vm_start = addr;
3051 vma->vm_end = addr + len;
3052
3053 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3054 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3055
3056 vma->vm_ops = ops;
3057 vma->vm_private_data = priv;
3058
3059 ret = insert_vm_struct(mm, vma);
3060 if (ret)
3061 goto out;
3062
3063 mm->total_vm += len >> PAGE_SHIFT;
3064
3065 perf_event_mmap(vma);
3066
3067 return vma;
3068
3069 out:
3070 kmem_cache_free(vm_area_cachep, vma);
3071 return ERR_PTR(ret);
3072 }
3073
3074 /*
3075 * Called with mm->mmap_sem held for writing.
3076 * Insert a new vma covering the given region, with the given flags.
3077 * Its pages are supplied by the given array of struct page *.
3078 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3079 * The region past the last page supplied will always produce SIGBUS.
3080 * The array pointer and the pages it points to are assumed to stay alive
3081 * for as long as this mapping might exist.
3082 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3083 struct vm_area_struct *_install_special_mapping(
3084 struct mm_struct *mm,
3085 unsigned long addr, unsigned long len,
3086 unsigned long vm_flags, const struct vm_special_mapping *spec)
3087 {
3088 return __install_special_mapping(mm, addr, len, vm_flags,
3089 &special_mapping_vmops, (void *)spec);
3090 }
3091
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3092 int install_special_mapping(struct mm_struct *mm,
3093 unsigned long addr, unsigned long len,
3094 unsigned long vm_flags, struct page **pages)
3095 {
3096 struct vm_area_struct *vma = __install_special_mapping(
3097 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3098 (void *)pages);
3099
3100 return PTR_ERR_OR_ZERO(vma);
3101 }
3102
3103 static DEFINE_MUTEX(mm_all_locks_mutex);
3104
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3105 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3106 {
3107 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3108 /*
3109 * The LSB of head.next can't change from under us
3110 * because we hold the mm_all_locks_mutex.
3111 */
3112 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3113 /*
3114 * We can safely modify head.next after taking the
3115 * anon_vma->root->rwsem. If some other vma in this mm shares
3116 * the same anon_vma we won't take it again.
3117 *
3118 * No need of atomic instructions here, head.next
3119 * can't change from under us thanks to the
3120 * anon_vma->root->rwsem.
3121 */
3122 if (__test_and_set_bit(0, (unsigned long *)
3123 &anon_vma->root->rb_root.rb_node))
3124 BUG();
3125 }
3126 }
3127
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3128 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3129 {
3130 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3131 /*
3132 * AS_MM_ALL_LOCKS can't change from under us because
3133 * we hold the mm_all_locks_mutex.
3134 *
3135 * Operations on ->flags have to be atomic because
3136 * even if AS_MM_ALL_LOCKS is stable thanks to the
3137 * mm_all_locks_mutex, there may be other cpus
3138 * changing other bitflags in parallel to us.
3139 */
3140 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3141 BUG();
3142 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3143 }
3144 }
3145
3146 /*
3147 * This operation locks against the VM for all pte/vma/mm related
3148 * operations that could ever happen on a certain mm. This includes
3149 * vmtruncate, try_to_unmap, and all page faults.
3150 *
3151 * The caller must take the mmap_sem in write mode before calling
3152 * mm_take_all_locks(). The caller isn't allowed to release the
3153 * mmap_sem until mm_drop_all_locks() returns.
3154 *
3155 * mmap_sem in write mode is required in order to block all operations
3156 * that could modify pagetables and free pages without need of
3157 * altering the vma layout (for example populate_range() with
3158 * nonlinear vmas). It's also needed in write mode to avoid new
3159 * anon_vmas to be associated with existing vmas.
3160 *
3161 * A single task can't take more than one mm_take_all_locks() in a row
3162 * or it would deadlock.
3163 *
3164 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3165 * mapping->flags avoid to take the same lock twice, if more than one
3166 * vma in this mm is backed by the same anon_vma or address_space.
3167 *
3168 * We can take all the locks in random order because the VM code
3169 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3170 * takes more than one of them in a row. Secondly we're protected
3171 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3172 *
3173 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3174 * that may have to take thousand of locks.
3175 *
3176 * mm_take_all_locks() can fail if it's interrupted by signals.
3177 */
mm_take_all_locks(struct mm_struct * mm)3178 int mm_take_all_locks(struct mm_struct *mm)
3179 {
3180 struct vm_area_struct *vma;
3181 struct anon_vma_chain *avc;
3182
3183 BUG_ON(down_read_trylock(&mm->mmap_sem));
3184
3185 mutex_lock(&mm_all_locks_mutex);
3186
3187 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3188 if (signal_pending(current))
3189 goto out_unlock;
3190 if (vma->vm_file && vma->vm_file->f_mapping)
3191 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3192 }
3193
3194 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3195 if (signal_pending(current))
3196 goto out_unlock;
3197 if (vma->anon_vma)
3198 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3199 vm_lock_anon_vma(mm, avc->anon_vma);
3200 }
3201
3202 return 0;
3203
3204 out_unlock:
3205 mm_drop_all_locks(mm);
3206 return -EINTR;
3207 }
3208
vm_unlock_anon_vma(struct anon_vma * anon_vma)3209 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3210 {
3211 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3212 /*
3213 * The LSB of head.next can't change to 0 from under
3214 * us because we hold the mm_all_locks_mutex.
3215 *
3216 * We must however clear the bitflag before unlocking
3217 * the vma so the users using the anon_vma->rb_root will
3218 * never see our bitflag.
3219 *
3220 * No need of atomic instructions here, head.next
3221 * can't change from under us until we release the
3222 * anon_vma->root->rwsem.
3223 */
3224 if (!__test_and_clear_bit(0, (unsigned long *)
3225 &anon_vma->root->rb_root.rb_node))
3226 BUG();
3227 anon_vma_unlock_write(anon_vma);
3228 }
3229 }
3230
vm_unlock_mapping(struct address_space * mapping)3231 static void vm_unlock_mapping(struct address_space *mapping)
3232 {
3233 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3234 /*
3235 * AS_MM_ALL_LOCKS can't change to 0 from under us
3236 * because we hold the mm_all_locks_mutex.
3237 */
3238 mutex_unlock(&mapping->i_mmap_mutex);
3239 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3240 &mapping->flags))
3241 BUG();
3242 }
3243 }
3244
3245 /*
3246 * The mmap_sem cannot be released by the caller until
3247 * mm_drop_all_locks() returns.
3248 */
mm_drop_all_locks(struct mm_struct * mm)3249 void mm_drop_all_locks(struct mm_struct *mm)
3250 {
3251 struct vm_area_struct *vma;
3252 struct anon_vma_chain *avc;
3253
3254 BUG_ON(down_read_trylock(&mm->mmap_sem));
3255 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3256
3257 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3258 if (vma->anon_vma)
3259 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3260 vm_unlock_anon_vma(avc->anon_vma);
3261 if (vma->vm_file && vma->vm_file->f_mapping)
3262 vm_unlock_mapping(vma->vm_file->f_mapping);
3263 }
3264
3265 mutex_unlock(&mm_all_locks_mutex);
3266 }
3267
3268 /*
3269 * initialise the VMA slab
3270 */
mmap_init(void)3271 void __init mmap_init(void)
3272 {
3273 int ret;
3274
3275 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3276 VM_BUG_ON(ret);
3277 }
3278
3279 /*
3280 * Initialise sysctl_user_reserve_kbytes.
3281 *
3282 * This is intended to prevent a user from starting a single memory hogging
3283 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3284 * mode.
3285 *
3286 * The default value is min(3% of free memory, 128MB)
3287 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3288 */
init_user_reserve(void)3289 static int init_user_reserve(void)
3290 {
3291 unsigned long free_kbytes;
3292
3293 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3294
3295 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3296 return 0;
3297 }
3298 subsys_initcall(init_user_reserve);
3299
3300 /*
3301 * Initialise sysctl_admin_reserve_kbytes.
3302 *
3303 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3304 * to log in and kill a memory hogging process.
3305 *
3306 * Systems with more than 256MB will reserve 8MB, enough to recover
3307 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3308 * only reserve 3% of free pages by default.
3309 */
init_admin_reserve(void)3310 static int init_admin_reserve(void)
3311 {
3312 unsigned long free_kbytes;
3313
3314 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3315
3316 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3317 return 0;
3318 }
3319 subsys_initcall(init_admin_reserve);
3320
3321 /*
3322 * Reinititalise user and admin reserves if memory is added or removed.
3323 *
3324 * The default user reserve max is 128MB, and the default max for the
3325 * admin reserve is 8MB. These are usually, but not always, enough to
3326 * enable recovery from a memory hogging process using login/sshd, a shell,
3327 * and tools like top. It may make sense to increase or even disable the
3328 * reserve depending on the existence of swap or variations in the recovery
3329 * tools. So, the admin may have changed them.
3330 *
3331 * If memory is added and the reserves have been eliminated or increased above
3332 * the default max, then we'll trust the admin.
3333 *
3334 * If memory is removed and there isn't enough free memory, then we
3335 * need to reset the reserves.
3336 *
3337 * Otherwise keep the reserve set by the admin.
3338 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3339 static int reserve_mem_notifier(struct notifier_block *nb,
3340 unsigned long action, void *data)
3341 {
3342 unsigned long tmp, free_kbytes;
3343
3344 switch (action) {
3345 case MEM_ONLINE:
3346 /* Default max is 128MB. Leave alone if modified by operator. */
3347 tmp = sysctl_user_reserve_kbytes;
3348 if (0 < tmp && tmp < (1UL << 17))
3349 init_user_reserve();
3350
3351 /* Default max is 8MB. Leave alone if modified by operator. */
3352 tmp = sysctl_admin_reserve_kbytes;
3353 if (0 < tmp && tmp < (1UL << 13))
3354 init_admin_reserve();
3355
3356 break;
3357 case MEM_OFFLINE:
3358 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3359
3360 if (sysctl_user_reserve_kbytes > free_kbytes) {
3361 init_user_reserve();
3362 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3363 sysctl_user_reserve_kbytes);
3364 }
3365
3366 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3367 init_admin_reserve();
3368 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3369 sysctl_admin_reserve_kbytes);
3370 }
3371 break;
3372 default:
3373 break;
3374 }
3375 return NOTIFY_OK;
3376 }
3377
3378 static struct notifier_block reserve_mem_nb = {
3379 .notifier_call = reserve_mem_notifier,
3380 };
3381
init_reserve_notifier(void)3382 static int __meminit init_reserve_notifier(void)
3383 {
3384 if (register_hotmemory_notifier(&reserve_mem_nb))
3385 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3386
3387 return 0;
3388 }
3389 subsys_initcall(init_reserve_notifier);
3390