1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 unsigned long sysctl_overcommit_kbytes __read_mostly;
69 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
70 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
71 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
72 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
73 int heap_stack_gap = 0;
74
75 atomic_long_t mmap_pages_allocated;
76
77 /*
78 * The global memory commitment made in the system can be a metric
79 * that can be used to drive ballooning decisions when Linux is hosted
80 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
81 * balancing memory across competing virtual machines that are hosted.
82 * Several metrics drive this policy engine including the guest reported
83 * memory commitment.
84 */
vm_memory_committed(void)85 unsigned long vm_memory_committed(void)
86 {
87 return percpu_counter_read_positive(&vm_committed_as);
88 }
89
90 EXPORT_SYMBOL_GPL(vm_memory_committed);
91
92 EXPORT_SYMBOL(mem_map);
93
94 /* list of mapped, potentially shareable regions */
95 static struct kmem_cache *vm_region_jar;
96 struct rb_root nommu_region_tree = RB_ROOT;
97 DECLARE_RWSEM(nommu_region_sem);
98
99 const struct vm_operations_struct generic_file_vm_ops = {
100 };
101
102 /*
103 * Return the total memory allocated for this pointer, not
104 * just what the caller asked for.
105 *
106 * Doesn't have to be accurate, i.e. may have races.
107 */
kobjsize(const void * objp)108 unsigned int kobjsize(const void *objp)
109 {
110 struct page *page;
111
112 /*
113 * If the object we have should not have ksize performed on it,
114 * return size of 0
115 */
116 if (!objp || !virt_addr_valid(objp))
117 return 0;
118
119 page = virt_to_head_page(objp);
120
121 /*
122 * If the allocator sets PageSlab, we know the pointer came from
123 * kmalloc().
124 */
125 if (PageSlab(page))
126 return ksize(objp);
127
128 /*
129 * If it's not a compound page, see if we have a matching VMA
130 * region. This test is intentionally done in reverse order,
131 * so if there's no VMA, we still fall through and hand back
132 * PAGE_SIZE for 0-order pages.
133 */
134 if (!PageCompound(page)) {
135 struct vm_area_struct *vma;
136
137 vma = find_vma(current->mm, (unsigned long)objp);
138 if (vma)
139 return vma->vm_end - vma->vm_start;
140 }
141
142 /*
143 * The ksize() function is only guaranteed to work for pointers
144 * returned by kmalloc(). So handle arbitrary pointers here.
145 */
146 return PAGE_SIZE << compound_order(page);
147 }
148
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int foll_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
150 unsigned long start, unsigned long nr_pages,
151 unsigned int foll_flags, struct page **pages,
152 struct vm_area_struct **vmas, int *nonblocking)
153 {
154 struct vm_area_struct *vma;
155 unsigned long vm_flags;
156 int i;
157
158 /* calculate required read or write permissions.
159 * If FOLL_FORCE is set, we only require the "MAY" flags.
160 */
161 vm_flags = (foll_flags & FOLL_WRITE) ?
162 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
163 vm_flags &= (foll_flags & FOLL_FORCE) ?
164 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
165
166 for (i = 0; i < nr_pages; i++) {
167 vma = find_vma(mm, start);
168 if (!vma)
169 goto finish_or_fault;
170
171 /* protect what we can, including chardevs */
172 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
173 !(vm_flags & vma->vm_flags))
174 goto finish_or_fault;
175
176 if (pages) {
177 pages[i] = virt_to_page(start);
178 if (pages[i])
179 page_cache_get(pages[i]);
180 }
181 if (vmas)
182 vmas[i] = vma;
183 start = (start + PAGE_SIZE) & PAGE_MASK;
184 }
185
186 return i;
187
188 finish_or_fault:
189 return i ? : -EFAULT;
190 }
191
192 /*
193 * get a list of pages in an address range belonging to the specified process
194 * and indicate the VMA that covers each page
195 * - this is potentially dodgy as we may end incrementing the page count of a
196 * slab page or a secondary page from a compound page
197 * - don't permit access to VMAs that don't support it, such as I/O mappings
198 */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)199 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
200 unsigned long start, unsigned long nr_pages,
201 int write, int force, struct page **pages,
202 struct vm_area_struct **vmas)
203 {
204 int flags = 0;
205
206 if (write)
207 flags |= FOLL_WRITE;
208 if (force)
209 flags |= FOLL_FORCE;
210
211 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
212 NULL);
213 }
214 EXPORT_SYMBOL(get_user_pages);
215
216 /**
217 * follow_pfn - look up PFN at a user virtual address
218 * @vma: memory mapping
219 * @address: user virtual address
220 * @pfn: location to store found PFN
221 *
222 * Only IO mappings and raw PFN mappings are allowed.
223 *
224 * Returns zero and the pfn at @pfn on success, -ve otherwise.
225 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)226 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
227 unsigned long *pfn)
228 {
229 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
230 return -EINVAL;
231
232 *pfn = address >> PAGE_SHIFT;
233 return 0;
234 }
235 EXPORT_SYMBOL(follow_pfn);
236
237 LIST_HEAD(vmap_area_list);
238
vfree(const void * addr)239 void vfree(const void *addr)
240 {
241 kfree(addr);
242 }
243 EXPORT_SYMBOL(vfree);
244
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)245 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
246 {
247 /*
248 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
249 * returns only a logical address.
250 */
251 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
252 }
253 EXPORT_SYMBOL(__vmalloc);
254
vmalloc_user(unsigned long size)255 void *vmalloc_user(unsigned long size)
256 {
257 void *ret;
258
259 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
260 PAGE_KERNEL);
261 if (ret) {
262 struct vm_area_struct *vma;
263
264 down_write(¤t->mm->mmap_sem);
265 vma = find_vma(current->mm, (unsigned long)ret);
266 if (vma)
267 vma->vm_flags |= VM_USERMAP;
268 up_write(¤t->mm->mmap_sem);
269 }
270
271 return ret;
272 }
273 EXPORT_SYMBOL(vmalloc_user);
274
vmalloc_to_page(const void * addr)275 struct page *vmalloc_to_page(const void *addr)
276 {
277 return virt_to_page(addr);
278 }
279 EXPORT_SYMBOL(vmalloc_to_page);
280
vmalloc_to_pfn(const void * addr)281 unsigned long vmalloc_to_pfn(const void *addr)
282 {
283 return page_to_pfn(virt_to_page(addr));
284 }
285 EXPORT_SYMBOL(vmalloc_to_pfn);
286
vread(char * buf,char * addr,unsigned long count)287 long vread(char *buf, char *addr, unsigned long count)
288 {
289 /* Don't allow overflow */
290 if ((unsigned long) buf + count < count)
291 count = -(unsigned long) buf;
292
293 memcpy(buf, addr, count);
294 return count;
295 }
296
vwrite(char * buf,char * addr,unsigned long count)297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 /* Don't allow overflow */
300 if ((unsigned long) addr + count < count)
301 count = -(unsigned long) addr;
302
303 memcpy(addr, buf, count);
304 return count;
305 }
306
307 /*
308 * vmalloc - allocate virtually continguos memory
309 *
310 * @size: allocation size
311 *
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
314 *
315 * For tight control over page level allocator and protection flags
316 * use __vmalloc() instead.
317 */
vmalloc(unsigned long size)318 void *vmalloc(unsigned long size)
319 {
320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323
324 /*
325 * vzalloc - allocate virtually continguos memory with zero fill
326 *
327 * @size: allocation size
328 *
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
331 * The memory allocated is set to zero.
332 *
333 * For tight control over page level allocator and protection flags
334 * use __vmalloc() instead.
335 */
vzalloc(unsigned long size)336 void *vzalloc(unsigned long size)
337 {
338 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
339 PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vzalloc);
342
343 /**
344 * vmalloc_node - allocate memory on a specific node
345 * @size: allocation size
346 * @node: numa node
347 *
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into contiguous kernel virtual space.
350 *
351 * For tight control over page level allocator and protection flags
352 * use __vmalloc() instead.
353 */
vmalloc_node(unsigned long size,int node)354 void *vmalloc_node(unsigned long size, int node)
355 {
356 return vmalloc(size);
357 }
358 EXPORT_SYMBOL(vmalloc_node);
359
360 /**
361 * vzalloc_node - allocate memory on a specific node with zero fill
362 * @size: allocation size
363 * @node: numa node
364 *
365 * Allocate enough pages to cover @size from the page level
366 * allocator and map them into contiguous kernel virtual space.
367 * The memory allocated is set to zero.
368 *
369 * For tight control over page level allocator and protection flags
370 * use __vmalloc() instead.
371 */
vzalloc_node(unsigned long size,int node)372 void *vzalloc_node(unsigned long size, int node)
373 {
374 return vzalloc(size);
375 }
376 EXPORT_SYMBOL(vzalloc_node);
377
378 #ifndef PAGE_KERNEL_EXEC
379 # define PAGE_KERNEL_EXEC PAGE_KERNEL
380 #endif
381
382 /**
383 * vmalloc_exec - allocate virtually contiguous, executable memory
384 * @size: allocation size
385 *
386 * Kernel-internal function to allocate enough pages to cover @size
387 * the page level allocator and map them into contiguous and
388 * executable kernel virtual space.
389 *
390 * For tight control over page level allocator and protection flags
391 * use __vmalloc() instead.
392 */
393
vmalloc_exec(unsigned long size)394 void *vmalloc_exec(unsigned long size)
395 {
396 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
397 }
398
399 /**
400 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
401 * @size: allocation size
402 *
403 * Allocate enough 32bit PA addressable pages to cover @size from the
404 * page level allocator and map them into continguos kernel virtual space.
405 */
vmalloc_32(unsigned long size)406 void *vmalloc_32(unsigned long size)
407 {
408 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
409 }
410 EXPORT_SYMBOL(vmalloc_32);
411
412 /**
413 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
414 * @size: allocation size
415 *
416 * The resulting memory area is 32bit addressable and zeroed so it can be
417 * mapped to userspace without leaking data.
418 *
419 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
420 * remap_vmalloc_range() are permissible.
421 */
vmalloc_32_user(unsigned long size)422 void *vmalloc_32_user(unsigned long size)
423 {
424 /*
425 * We'll have to sort out the ZONE_DMA bits for 64-bit,
426 * but for now this can simply use vmalloc_user() directly.
427 */
428 return vmalloc_user(size);
429 }
430 EXPORT_SYMBOL(vmalloc_32_user);
431
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)432 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
433 {
434 BUG();
435 return NULL;
436 }
437 EXPORT_SYMBOL(vmap);
438
vunmap(const void * addr)439 void vunmap(const void *addr)
440 {
441 BUG();
442 }
443 EXPORT_SYMBOL(vunmap);
444
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)445 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
446 {
447 BUG();
448 return NULL;
449 }
450 EXPORT_SYMBOL(vm_map_ram);
451
vm_unmap_ram(const void * mem,unsigned int count)452 void vm_unmap_ram(const void *mem, unsigned int count)
453 {
454 BUG();
455 }
456 EXPORT_SYMBOL(vm_unmap_ram);
457
vm_unmap_aliases(void)458 void vm_unmap_aliases(void)
459 {
460 }
461 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
462
463 /*
464 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
465 * have one.
466 */
vmalloc_sync_all(void)467 void __weak vmalloc_sync_all(void)
468 {
469 }
470
471 /**
472 * alloc_vm_area - allocate a range of kernel address space
473 * @size: size of the area
474 *
475 * Returns: NULL on failure, vm_struct on success
476 *
477 * This function reserves a range of kernel address space, and
478 * allocates pagetables to map that range. No actual mappings
479 * are created. If the kernel address space is not shared
480 * between processes, it syncs the pagetable across all
481 * processes.
482 */
alloc_vm_area(size_t size,pte_t ** ptes)483 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
484 {
485 BUG();
486 return NULL;
487 }
488 EXPORT_SYMBOL_GPL(alloc_vm_area);
489
free_vm_area(struct vm_struct * area)490 void free_vm_area(struct vm_struct *area)
491 {
492 BUG();
493 }
494 EXPORT_SYMBOL_GPL(free_vm_area);
495
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
497 struct page *page)
498 {
499 return -EINVAL;
500 }
501 EXPORT_SYMBOL(vm_insert_page);
502
503 /*
504 * sys_brk() for the most part doesn't need the global kernel
505 * lock, except when an application is doing something nasty
506 * like trying to un-brk an area that has already been mapped
507 * to a regular file. in this case, the unmapping will need
508 * to invoke file system routines that need the global lock.
509 */
SYSCALL_DEFINE1(brk,unsigned long,brk)510 SYSCALL_DEFINE1(brk, unsigned long, brk)
511 {
512 struct mm_struct *mm = current->mm;
513
514 if (brk < mm->start_brk || brk > mm->context.end_brk)
515 return mm->brk;
516
517 if (mm->brk == brk)
518 return mm->brk;
519
520 /*
521 * Always allow shrinking brk
522 */
523 if (brk <= mm->brk) {
524 mm->brk = brk;
525 return brk;
526 }
527
528 /*
529 * Ok, looks good - let it rip.
530 */
531 flush_icache_range(mm->brk, brk);
532 return mm->brk = brk;
533 }
534
535 /*
536 * initialise the VMA and region record slabs
537 */
mmap_init(void)538 void __init mmap_init(void)
539 {
540 int ret;
541
542 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
543 VM_BUG_ON(ret);
544 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
545 }
546
547 /*
548 * validate the region tree
549 * - the caller must hold the region lock
550 */
551 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)552 static noinline void validate_nommu_regions(void)
553 {
554 struct vm_region *region, *last;
555 struct rb_node *p, *lastp;
556
557 lastp = rb_first(&nommu_region_tree);
558 if (!lastp)
559 return;
560
561 last = rb_entry(lastp, struct vm_region, vm_rb);
562 BUG_ON(unlikely(last->vm_end <= last->vm_start));
563 BUG_ON(unlikely(last->vm_top < last->vm_end));
564
565 while ((p = rb_next(lastp))) {
566 region = rb_entry(p, struct vm_region, vm_rb);
567 last = rb_entry(lastp, struct vm_region, vm_rb);
568
569 BUG_ON(unlikely(region->vm_end <= region->vm_start));
570 BUG_ON(unlikely(region->vm_top < region->vm_end));
571 BUG_ON(unlikely(region->vm_start < last->vm_top));
572
573 lastp = p;
574 }
575 }
576 #else
validate_nommu_regions(void)577 static void validate_nommu_regions(void)
578 {
579 }
580 #endif
581
582 /*
583 * add a region into the global tree
584 */
add_nommu_region(struct vm_region * region)585 static void add_nommu_region(struct vm_region *region)
586 {
587 struct vm_region *pregion;
588 struct rb_node **p, *parent;
589
590 validate_nommu_regions();
591
592 parent = NULL;
593 p = &nommu_region_tree.rb_node;
594 while (*p) {
595 parent = *p;
596 pregion = rb_entry(parent, struct vm_region, vm_rb);
597 if (region->vm_start < pregion->vm_start)
598 p = &(*p)->rb_left;
599 else if (region->vm_start > pregion->vm_start)
600 p = &(*p)->rb_right;
601 else if (pregion == region)
602 return;
603 else
604 BUG();
605 }
606
607 rb_link_node(®ion->vm_rb, parent, p);
608 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
609
610 validate_nommu_regions();
611 }
612
613 /*
614 * delete a region from the global tree
615 */
delete_nommu_region(struct vm_region * region)616 static void delete_nommu_region(struct vm_region *region)
617 {
618 BUG_ON(!nommu_region_tree.rb_node);
619
620 validate_nommu_regions();
621 rb_erase(®ion->vm_rb, &nommu_region_tree);
622 validate_nommu_regions();
623 }
624
625 /*
626 * free a contiguous series of pages
627 */
free_page_series(unsigned long from,unsigned long to)628 static void free_page_series(unsigned long from, unsigned long to)
629 {
630 for (; from < to; from += PAGE_SIZE) {
631 struct page *page = virt_to_page(from);
632
633 kdebug("- free %lx", from);
634 atomic_long_dec(&mmap_pages_allocated);
635 if (page_count(page) != 1)
636 kdebug("free page %p: refcount not one: %d",
637 page, page_count(page));
638 put_page(page);
639 }
640 }
641
642 /*
643 * release a reference to a region
644 * - the caller must hold the region semaphore for writing, which this releases
645 * - the region may not have been added to the tree yet, in which case vm_top
646 * will equal vm_start
647 */
__put_nommu_region(struct vm_region * region)648 static void __put_nommu_region(struct vm_region *region)
649 __releases(nommu_region_sem)
650 {
651 kenter("%p{%d}", region, region->vm_usage);
652
653 BUG_ON(!nommu_region_tree.rb_node);
654
655 if (--region->vm_usage == 0) {
656 if (region->vm_top > region->vm_start)
657 delete_nommu_region(region);
658 up_write(&nommu_region_sem);
659
660 if (region->vm_file)
661 fput(region->vm_file);
662
663 /* IO memory and memory shared directly out of the pagecache
664 * from ramfs/tmpfs mustn't be released here */
665 if (region->vm_flags & VM_MAPPED_COPY) {
666 kdebug("free series");
667 free_page_series(region->vm_start, region->vm_top);
668 }
669 kmem_cache_free(vm_region_jar, region);
670 } else {
671 up_write(&nommu_region_sem);
672 }
673 }
674
675 /*
676 * release a reference to a region
677 */
put_nommu_region(struct vm_region * region)678 static void put_nommu_region(struct vm_region *region)
679 {
680 down_write(&nommu_region_sem);
681 __put_nommu_region(region);
682 }
683
684 /*
685 * update protection on a vma
686 */
protect_vma(struct vm_area_struct * vma,unsigned long flags)687 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
688 {
689 #ifdef CONFIG_MPU
690 struct mm_struct *mm = vma->vm_mm;
691 long start = vma->vm_start & PAGE_MASK;
692 while (start < vma->vm_end) {
693 protect_page(mm, start, flags);
694 start += PAGE_SIZE;
695 }
696 update_protections(mm);
697 #endif
698 }
699
700 /*
701 * add a VMA into a process's mm_struct in the appropriate place in the list
702 * and tree and add to the address space's page tree also if not an anonymous
703 * page
704 * - should be called with mm->mmap_sem held writelocked
705 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)706 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
707 {
708 struct vm_area_struct *pvma, *prev;
709 struct address_space *mapping;
710 struct rb_node **p, *parent, *rb_prev;
711
712 kenter(",%p", vma);
713
714 BUG_ON(!vma->vm_region);
715
716 mm->map_count++;
717 vma->vm_mm = mm;
718
719 protect_vma(vma, vma->vm_flags);
720
721 /* add the VMA to the mapping */
722 if (vma->vm_file) {
723 mapping = vma->vm_file->f_mapping;
724
725 mutex_lock(&mapping->i_mmap_mutex);
726 flush_dcache_mmap_lock(mapping);
727 vma_interval_tree_insert(vma, &mapping->i_mmap);
728 flush_dcache_mmap_unlock(mapping);
729 mutex_unlock(&mapping->i_mmap_mutex);
730 }
731
732 /* add the VMA to the tree */
733 parent = rb_prev = NULL;
734 p = &mm->mm_rb.rb_node;
735 while (*p) {
736 parent = *p;
737 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
738
739 /* sort by: start addr, end addr, VMA struct addr in that order
740 * (the latter is necessary as we may get identical VMAs) */
741 if (vma->vm_start < pvma->vm_start)
742 p = &(*p)->rb_left;
743 else if (vma->vm_start > pvma->vm_start) {
744 rb_prev = parent;
745 p = &(*p)->rb_right;
746 } else if (vma->vm_end < pvma->vm_end)
747 p = &(*p)->rb_left;
748 else if (vma->vm_end > pvma->vm_end) {
749 rb_prev = parent;
750 p = &(*p)->rb_right;
751 } else if (vma < pvma)
752 p = &(*p)->rb_left;
753 else if (vma > pvma) {
754 rb_prev = parent;
755 p = &(*p)->rb_right;
756 } else
757 BUG();
758 }
759
760 rb_link_node(&vma->vm_rb, parent, p);
761 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
762
763 /* add VMA to the VMA list also */
764 prev = NULL;
765 if (rb_prev)
766 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
767
768 __vma_link_list(mm, vma, prev, parent);
769 }
770
771 /*
772 * delete a VMA from its owning mm_struct and address space
773 */
delete_vma_from_mm(struct vm_area_struct * vma)774 static void delete_vma_from_mm(struct vm_area_struct *vma)
775 {
776 int i;
777 struct address_space *mapping;
778 struct mm_struct *mm = vma->vm_mm;
779 struct task_struct *curr = current;
780
781 kenter("%p", vma);
782
783 protect_vma(vma, 0);
784
785 mm->map_count--;
786 for (i = 0; i < VMACACHE_SIZE; i++) {
787 /* if the vma is cached, invalidate the entire cache */
788 if (curr->vmacache[i] == vma) {
789 vmacache_invalidate(mm);
790 break;
791 }
792 }
793
794 /* remove the VMA from the mapping */
795 if (vma->vm_file) {
796 mapping = vma->vm_file->f_mapping;
797
798 mutex_lock(&mapping->i_mmap_mutex);
799 flush_dcache_mmap_lock(mapping);
800 vma_interval_tree_remove(vma, &mapping->i_mmap);
801 flush_dcache_mmap_unlock(mapping);
802 mutex_unlock(&mapping->i_mmap_mutex);
803 }
804
805 /* remove from the MM's tree and list */
806 rb_erase(&vma->vm_rb, &mm->mm_rb);
807
808 if (vma->vm_prev)
809 vma->vm_prev->vm_next = vma->vm_next;
810 else
811 mm->mmap = vma->vm_next;
812
813 if (vma->vm_next)
814 vma->vm_next->vm_prev = vma->vm_prev;
815 }
816
817 /*
818 * destroy a VMA record
819 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)820 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
821 {
822 kenter("%p", vma);
823 if (vma->vm_ops && vma->vm_ops->close)
824 vma->vm_ops->close(vma);
825 if (vma->vm_file)
826 fput(vma->vm_file);
827 put_nommu_region(vma->vm_region);
828 kmem_cache_free(vm_area_cachep, vma);
829 }
830
831 /*
832 * look up the first VMA in which addr resides, NULL if none
833 * - should be called with mm->mmap_sem at least held readlocked
834 */
find_vma(struct mm_struct * mm,unsigned long addr)835 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
836 {
837 struct vm_area_struct *vma;
838
839 /* check the cache first */
840 vma = vmacache_find(mm, addr);
841 if (likely(vma))
842 return vma;
843
844 /* trawl the list (there may be multiple mappings in which addr
845 * resides) */
846 for (vma = mm->mmap; vma; vma = vma->vm_next) {
847 if (vma->vm_start > addr)
848 return NULL;
849 if (vma->vm_end > addr) {
850 vmacache_update(addr, vma);
851 return vma;
852 }
853 }
854
855 return NULL;
856 }
857 EXPORT_SYMBOL(find_vma);
858
859 /*
860 * find a VMA
861 * - we don't extend stack VMAs under NOMMU conditions
862 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)863 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
864 {
865 return find_vma(mm, addr);
866 }
867
868 /*
869 * expand a stack to a given address
870 * - not supported under NOMMU conditions
871 */
expand_stack(struct vm_area_struct * vma,unsigned long address)872 int expand_stack(struct vm_area_struct *vma, unsigned long address)
873 {
874 return -ENOMEM;
875 }
876
877 /*
878 * look up the first VMA exactly that exactly matches addr
879 * - should be called with mm->mmap_sem at least held readlocked
880 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)881 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
882 unsigned long addr,
883 unsigned long len)
884 {
885 struct vm_area_struct *vma;
886 unsigned long end = addr + len;
887
888 /* check the cache first */
889 vma = vmacache_find_exact(mm, addr, end);
890 if (vma)
891 return vma;
892
893 /* trawl the list (there may be multiple mappings in which addr
894 * resides) */
895 for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 if (vma->vm_start < addr)
897 continue;
898 if (vma->vm_start > addr)
899 return NULL;
900 if (vma->vm_end == end) {
901 vmacache_update(addr, vma);
902 return vma;
903 }
904 }
905
906 return NULL;
907 }
908
909 /*
910 * determine whether a mapping should be permitted and, if so, what sort of
911 * mapping we're capable of supporting
912 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)913 static int validate_mmap_request(struct file *file,
914 unsigned long addr,
915 unsigned long len,
916 unsigned long prot,
917 unsigned long flags,
918 unsigned long pgoff,
919 unsigned long *_capabilities)
920 {
921 unsigned long capabilities, rlen;
922 int ret;
923
924 /* do the simple checks first */
925 if (flags & MAP_FIXED) {
926 printk(KERN_DEBUG
927 "%d: Can't do fixed-address/overlay mmap of RAM\n",
928 current->pid);
929 return -EINVAL;
930 }
931
932 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
933 (flags & MAP_TYPE) != MAP_SHARED)
934 return -EINVAL;
935
936 if (!len)
937 return -EINVAL;
938
939 /* Careful about overflows.. */
940 rlen = PAGE_ALIGN(len);
941 if (!rlen || rlen > TASK_SIZE)
942 return -ENOMEM;
943
944 /* offset overflow? */
945 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
946 return -EOVERFLOW;
947
948 if (file) {
949 /* validate file mapping requests */
950 struct address_space *mapping;
951
952 /* files must support mmap */
953 if (!file->f_op->mmap)
954 return -ENODEV;
955
956 /* work out if what we've got could possibly be shared
957 * - we support chardevs that provide their own "memory"
958 * - we support files/blockdevs that are memory backed
959 */
960 mapping = file->f_mapping;
961 if (!mapping)
962 mapping = file_inode(file)->i_mapping;
963
964 capabilities = 0;
965 if (mapping && mapping->backing_dev_info)
966 capabilities = mapping->backing_dev_info->capabilities;
967
968 if (!capabilities) {
969 /* no explicit capabilities set, so assume some
970 * defaults */
971 switch (file_inode(file)->i_mode & S_IFMT) {
972 case S_IFREG:
973 case S_IFBLK:
974 capabilities = BDI_CAP_MAP_COPY;
975 break;
976
977 case S_IFCHR:
978 capabilities =
979 BDI_CAP_MAP_DIRECT |
980 BDI_CAP_READ_MAP |
981 BDI_CAP_WRITE_MAP;
982 break;
983
984 default:
985 return -EINVAL;
986 }
987 }
988
989 /* eliminate any capabilities that we can't support on this
990 * device */
991 if (!file->f_op->get_unmapped_area)
992 capabilities &= ~BDI_CAP_MAP_DIRECT;
993 if (!file->f_op->read)
994 capabilities &= ~BDI_CAP_MAP_COPY;
995
996 /* The file shall have been opened with read permission. */
997 if (!(file->f_mode & FMODE_READ))
998 return -EACCES;
999
1000 if (flags & MAP_SHARED) {
1001 /* do checks for writing, appending and locking */
1002 if ((prot & PROT_WRITE) &&
1003 !(file->f_mode & FMODE_WRITE))
1004 return -EACCES;
1005
1006 if (IS_APPEND(file_inode(file)) &&
1007 (file->f_mode & FMODE_WRITE))
1008 return -EACCES;
1009
1010 if (locks_verify_locked(file))
1011 return -EAGAIN;
1012
1013 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1014 return -ENODEV;
1015
1016 /* we mustn't privatise shared mappings */
1017 capabilities &= ~BDI_CAP_MAP_COPY;
1018 } else {
1019 /* we're going to read the file into private memory we
1020 * allocate */
1021 if (!(capabilities & BDI_CAP_MAP_COPY))
1022 return -ENODEV;
1023
1024 /* we don't permit a private writable mapping to be
1025 * shared with the backing device */
1026 if (prot & PROT_WRITE)
1027 capabilities &= ~BDI_CAP_MAP_DIRECT;
1028 }
1029
1030 if (capabilities & BDI_CAP_MAP_DIRECT) {
1031 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1032 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1033 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1034 ) {
1035 capabilities &= ~BDI_CAP_MAP_DIRECT;
1036 if (flags & MAP_SHARED) {
1037 printk(KERN_WARNING
1038 "MAP_SHARED not completely supported on !MMU\n");
1039 return -EINVAL;
1040 }
1041 }
1042 }
1043
1044 /* handle executable mappings and implied executable
1045 * mappings */
1046 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1047 if (prot & PROT_EXEC)
1048 return -EPERM;
1049 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1050 /* handle implication of PROT_EXEC by PROT_READ */
1051 if (current->personality & READ_IMPLIES_EXEC) {
1052 if (capabilities & BDI_CAP_EXEC_MAP)
1053 prot |= PROT_EXEC;
1054 }
1055 } else if ((prot & PROT_READ) &&
1056 (prot & PROT_EXEC) &&
1057 !(capabilities & BDI_CAP_EXEC_MAP)
1058 ) {
1059 /* backing file is not executable, try to copy */
1060 capabilities &= ~BDI_CAP_MAP_DIRECT;
1061 }
1062 } else {
1063 /* anonymous mappings are always memory backed and can be
1064 * privately mapped
1065 */
1066 capabilities = BDI_CAP_MAP_COPY;
1067
1068 /* handle PROT_EXEC implication by PROT_READ */
1069 if ((prot & PROT_READ) &&
1070 (current->personality & READ_IMPLIES_EXEC))
1071 prot |= PROT_EXEC;
1072 }
1073
1074 /* allow the security API to have its say */
1075 ret = security_mmap_addr(addr);
1076 if (ret < 0)
1077 return ret;
1078
1079 /* looks okay */
1080 *_capabilities = capabilities;
1081 return 0;
1082 }
1083
1084 /*
1085 * we've determined that we can make the mapping, now translate what we
1086 * now know into VMA flags
1087 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)1088 static unsigned long determine_vm_flags(struct file *file,
1089 unsigned long prot,
1090 unsigned long flags,
1091 unsigned long capabilities)
1092 {
1093 unsigned long vm_flags;
1094
1095 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1096 /* vm_flags |= mm->def_flags; */
1097
1098 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1099 /* attempt to share read-only copies of mapped file chunks */
1100 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1101 if (file && !(prot & PROT_WRITE))
1102 vm_flags |= VM_MAYSHARE;
1103 } else {
1104 /* overlay a shareable mapping on the backing device or inode
1105 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106 * romfs/cramfs */
1107 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1108 if (flags & MAP_SHARED)
1109 vm_flags |= VM_SHARED;
1110 }
1111
1112 /* refuse to let anyone share private mappings with this process if
1113 * it's being traced - otherwise breakpoints set in it may interfere
1114 * with another untraced process
1115 */
1116 if ((flags & MAP_PRIVATE) && current->ptrace)
1117 vm_flags &= ~VM_MAYSHARE;
1118
1119 return vm_flags;
1120 }
1121
1122 /*
1123 * set up a shared mapping on a file (the driver or filesystem provides and
1124 * pins the storage)
1125 */
do_mmap_shared_file(struct vm_area_struct * vma)1126 static int do_mmap_shared_file(struct vm_area_struct *vma)
1127 {
1128 int ret;
1129
1130 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131 if (ret == 0) {
1132 vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 return 0;
1134 }
1135 if (ret != -ENOSYS)
1136 return ret;
1137
1138 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1139 * opposed to tried but failed) so we can only give a suitable error as
1140 * it's not possible to make a private copy if MAP_SHARED was given */
1141 return -ENODEV;
1142 }
1143
1144 /*
1145 * set up a private mapping or an anonymous shared mapping
1146 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)1147 static int do_mmap_private(struct vm_area_struct *vma,
1148 struct vm_region *region,
1149 unsigned long len,
1150 unsigned long capabilities)
1151 {
1152 struct page *pages;
1153 unsigned long total, point, n;
1154 void *base;
1155 int ret, order;
1156
1157 /* invoke the file's mapping function so that it can keep track of
1158 * shared mappings on devices or memory
1159 * - VM_MAYSHARE will be set if it may attempt to share
1160 */
1161 if (capabilities & BDI_CAP_MAP_DIRECT) {
1162 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163 if (ret == 0) {
1164 /* shouldn't return success if we're not sharing */
1165 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166 vma->vm_region->vm_top = vma->vm_region->vm_end;
1167 return 0;
1168 }
1169 if (ret != -ENOSYS)
1170 return ret;
1171
1172 /* getting an ENOSYS error indicates that direct mmap isn't
1173 * possible (as opposed to tried but failed) so we'll try to
1174 * make a private copy of the data and map that instead */
1175 }
1176
1177
1178 /* allocate some memory to hold the mapping
1179 * - note that this may not return a page-aligned address if the object
1180 * we're allocating is smaller than a page
1181 */
1182 order = get_order(len);
1183 kdebug("alloc order %d for %lx", order, len);
1184
1185 pages = alloc_pages(GFP_KERNEL, order);
1186 if (!pages)
1187 goto enomem;
1188
1189 total = 1 << order;
1190 atomic_long_add(total, &mmap_pages_allocated);
1191
1192 point = len >> PAGE_SHIFT;
1193
1194 /* we allocated a power-of-2 sized page set, so we may want to trim off
1195 * the excess */
1196 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1197 while (total > point) {
1198 order = ilog2(total - point);
1199 n = 1 << order;
1200 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1201 atomic_long_sub(n, &mmap_pages_allocated);
1202 total -= n;
1203 set_page_refcounted(pages + total);
1204 __free_pages(pages + total, order);
1205 }
1206 }
1207
1208 for (point = 1; point < total; point++)
1209 set_page_refcounted(&pages[point]);
1210
1211 base = page_address(pages);
1212 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1213 region->vm_start = (unsigned long) base;
1214 region->vm_end = region->vm_start + len;
1215 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1216
1217 vma->vm_start = region->vm_start;
1218 vma->vm_end = region->vm_start + len;
1219
1220 if (vma->vm_file) {
1221 /* read the contents of a file into the copy */
1222 mm_segment_t old_fs;
1223 loff_t fpos;
1224
1225 fpos = vma->vm_pgoff;
1226 fpos <<= PAGE_SHIFT;
1227
1228 old_fs = get_fs();
1229 set_fs(KERNEL_DS);
1230 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1231 set_fs(old_fs);
1232
1233 if (ret < 0)
1234 goto error_free;
1235
1236 /* clear the last little bit */
1237 if (ret < len)
1238 memset(base + ret, 0, len - ret);
1239
1240 }
1241
1242 return 0;
1243
1244 error_free:
1245 free_page_series(region->vm_start, region->vm_top);
1246 region->vm_start = vma->vm_start = 0;
1247 region->vm_end = vma->vm_end = 0;
1248 region->vm_top = 0;
1249 return ret;
1250
1251 enomem:
1252 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1253 len, current->pid, current->comm);
1254 show_free_areas(0);
1255 return -ENOMEM;
1256 }
1257
1258 /*
1259 * handle mapping creation for uClinux
1260 */
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate)1261 unsigned long do_mmap_pgoff(struct file *file,
1262 unsigned long addr,
1263 unsigned long len,
1264 unsigned long prot,
1265 unsigned long flags,
1266 unsigned long pgoff,
1267 unsigned long *populate)
1268 {
1269 struct vm_area_struct *vma;
1270 struct vm_region *region;
1271 struct rb_node *rb;
1272 unsigned long capabilities, vm_flags, result;
1273 int ret;
1274
1275 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1276
1277 *populate = 0;
1278
1279 /* decide whether we should attempt the mapping, and if so what sort of
1280 * mapping */
1281 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1282 &capabilities);
1283 if (ret < 0) {
1284 kleave(" = %d [val]", ret);
1285 return ret;
1286 }
1287
1288 /* we ignore the address hint */
1289 addr = 0;
1290 len = PAGE_ALIGN(len);
1291
1292 /* we've determined that we can make the mapping, now translate what we
1293 * now know into VMA flags */
1294 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1295
1296 /* we're going to need to record the mapping */
1297 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1298 if (!region)
1299 goto error_getting_region;
1300
1301 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1302 if (!vma)
1303 goto error_getting_vma;
1304
1305 region->vm_usage = 1;
1306 region->vm_flags = vm_flags;
1307 region->vm_pgoff = pgoff;
1308
1309 INIT_LIST_HEAD(&vma->anon_vma_chain);
1310 vma->vm_flags = vm_flags;
1311 vma->vm_pgoff = pgoff;
1312
1313 if (file) {
1314 region->vm_file = get_file(file);
1315 vma->vm_file = get_file(file);
1316 }
1317
1318 down_write(&nommu_region_sem);
1319
1320 /* if we want to share, we need to check for regions created by other
1321 * mmap() calls that overlap with our proposed mapping
1322 * - we can only share with a superset match on most regular files
1323 * - shared mappings on character devices and memory backed files are
1324 * permitted to overlap inexactly as far as we are concerned for in
1325 * these cases, sharing is handled in the driver or filesystem rather
1326 * than here
1327 */
1328 if (vm_flags & VM_MAYSHARE) {
1329 struct vm_region *pregion;
1330 unsigned long pglen, rpglen, pgend, rpgend, start;
1331
1332 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333 pgend = pgoff + pglen;
1334
1335 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1336 pregion = rb_entry(rb, struct vm_region, vm_rb);
1337
1338 if (!(pregion->vm_flags & VM_MAYSHARE))
1339 continue;
1340
1341 /* search for overlapping mappings on the same file */
1342 if (file_inode(pregion->vm_file) !=
1343 file_inode(file))
1344 continue;
1345
1346 if (pregion->vm_pgoff >= pgend)
1347 continue;
1348
1349 rpglen = pregion->vm_end - pregion->vm_start;
1350 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1351 rpgend = pregion->vm_pgoff + rpglen;
1352 if (pgoff >= rpgend)
1353 continue;
1354
1355 /* handle inexactly overlapping matches between
1356 * mappings */
1357 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1358 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1359 /* new mapping is not a subset of the region */
1360 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1361 goto sharing_violation;
1362 continue;
1363 }
1364
1365 /* we've found a region we can share */
1366 pregion->vm_usage++;
1367 vma->vm_region = pregion;
1368 start = pregion->vm_start;
1369 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1370 vma->vm_start = start;
1371 vma->vm_end = start + len;
1372
1373 if (pregion->vm_flags & VM_MAPPED_COPY) {
1374 kdebug("share copy");
1375 vma->vm_flags |= VM_MAPPED_COPY;
1376 } else {
1377 kdebug("share mmap");
1378 ret = do_mmap_shared_file(vma);
1379 if (ret < 0) {
1380 vma->vm_region = NULL;
1381 vma->vm_start = 0;
1382 vma->vm_end = 0;
1383 pregion->vm_usage--;
1384 pregion = NULL;
1385 goto error_just_free;
1386 }
1387 }
1388 fput(region->vm_file);
1389 kmem_cache_free(vm_region_jar, region);
1390 region = pregion;
1391 result = start;
1392 goto share;
1393 }
1394
1395 /* obtain the address at which to make a shared mapping
1396 * - this is the hook for quasi-memory character devices to
1397 * tell us the location of a shared mapping
1398 */
1399 if (capabilities & BDI_CAP_MAP_DIRECT) {
1400 addr = file->f_op->get_unmapped_area(file, addr, len,
1401 pgoff, flags);
1402 if (IS_ERR_VALUE(addr)) {
1403 ret = addr;
1404 if (ret != -ENOSYS)
1405 goto error_just_free;
1406
1407 /* the driver refused to tell us where to site
1408 * the mapping so we'll have to attempt to copy
1409 * it */
1410 ret = -ENODEV;
1411 if (!(capabilities & BDI_CAP_MAP_COPY))
1412 goto error_just_free;
1413
1414 capabilities &= ~BDI_CAP_MAP_DIRECT;
1415 } else {
1416 vma->vm_start = region->vm_start = addr;
1417 vma->vm_end = region->vm_end = addr + len;
1418 }
1419 }
1420 }
1421
1422 vma->vm_region = region;
1423
1424 /* set up the mapping
1425 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1426 */
1427 if (file && vma->vm_flags & VM_SHARED)
1428 ret = do_mmap_shared_file(vma);
1429 else
1430 ret = do_mmap_private(vma, region, len, capabilities);
1431 if (ret < 0)
1432 goto error_just_free;
1433 add_nommu_region(region);
1434
1435 /* clear anonymous mappings that don't ask for uninitialized data */
1436 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1437 memset((void *)region->vm_start, 0,
1438 region->vm_end - region->vm_start);
1439
1440 /* okay... we have a mapping; now we have to register it */
1441 result = vma->vm_start;
1442
1443 current->mm->total_vm += len >> PAGE_SHIFT;
1444
1445 share:
1446 add_vma_to_mm(current->mm, vma);
1447
1448 /* we flush the region from the icache only when the first executable
1449 * mapping of it is made */
1450 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1451 flush_icache_range(region->vm_start, region->vm_end);
1452 region->vm_icache_flushed = true;
1453 }
1454
1455 up_write(&nommu_region_sem);
1456
1457 kleave(" = %lx", result);
1458 return result;
1459
1460 error_just_free:
1461 up_write(&nommu_region_sem);
1462 error:
1463 if (region->vm_file)
1464 fput(region->vm_file);
1465 kmem_cache_free(vm_region_jar, region);
1466 if (vma->vm_file)
1467 fput(vma->vm_file);
1468 kmem_cache_free(vm_area_cachep, vma);
1469 kleave(" = %d", ret);
1470 return ret;
1471
1472 sharing_violation:
1473 up_write(&nommu_region_sem);
1474 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1475 ret = -EINVAL;
1476 goto error;
1477
1478 error_getting_vma:
1479 kmem_cache_free(vm_region_jar, region);
1480 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1481 " from process %d failed\n",
1482 len, current->pid);
1483 show_free_areas(0);
1484 return -ENOMEM;
1485
1486 error_getting_region:
1487 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1488 " from process %d failed\n",
1489 len, current->pid);
1490 show_free_areas(0);
1491 return -ENOMEM;
1492 }
1493
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1494 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1495 unsigned long, prot, unsigned long, flags,
1496 unsigned long, fd, unsigned long, pgoff)
1497 {
1498 struct file *file = NULL;
1499 unsigned long retval = -EBADF;
1500
1501 audit_mmap_fd(fd, flags);
1502 if (!(flags & MAP_ANONYMOUS)) {
1503 file = fget(fd);
1504 if (!file)
1505 goto out;
1506 }
1507
1508 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1509
1510 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1511
1512 if (file)
1513 fput(file);
1514 out:
1515 return retval;
1516 }
1517
1518 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1519 struct mmap_arg_struct {
1520 unsigned long addr;
1521 unsigned long len;
1522 unsigned long prot;
1523 unsigned long flags;
1524 unsigned long fd;
1525 unsigned long offset;
1526 };
1527
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1528 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1529 {
1530 struct mmap_arg_struct a;
1531
1532 if (copy_from_user(&a, arg, sizeof(a)))
1533 return -EFAULT;
1534 if (a.offset & ~PAGE_MASK)
1535 return -EINVAL;
1536
1537 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1538 a.offset >> PAGE_SHIFT);
1539 }
1540 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1541
1542 /*
1543 * split a vma into two pieces at address 'addr', a new vma is allocated either
1544 * for the first part or the tail.
1545 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1546 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1547 unsigned long addr, int new_below)
1548 {
1549 struct vm_area_struct *new;
1550 struct vm_region *region;
1551 unsigned long npages;
1552
1553 kenter("");
1554
1555 /* we're only permitted to split anonymous regions (these should have
1556 * only a single usage on the region) */
1557 if (vma->vm_file)
1558 return -ENOMEM;
1559
1560 if (mm->map_count >= sysctl_max_map_count)
1561 return -ENOMEM;
1562
1563 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1564 if (!region)
1565 return -ENOMEM;
1566
1567 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1568 if (!new) {
1569 kmem_cache_free(vm_region_jar, region);
1570 return -ENOMEM;
1571 }
1572
1573 /* most fields are the same, copy all, and then fixup */
1574 *new = *vma;
1575 *region = *vma->vm_region;
1576 new->vm_region = region;
1577
1578 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1579
1580 if (new_below) {
1581 region->vm_top = region->vm_end = new->vm_end = addr;
1582 } else {
1583 region->vm_start = new->vm_start = addr;
1584 region->vm_pgoff = new->vm_pgoff += npages;
1585 }
1586
1587 if (new->vm_ops && new->vm_ops->open)
1588 new->vm_ops->open(new);
1589
1590 delete_vma_from_mm(vma);
1591 down_write(&nommu_region_sem);
1592 delete_nommu_region(vma->vm_region);
1593 if (new_below) {
1594 vma->vm_region->vm_start = vma->vm_start = addr;
1595 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1596 } else {
1597 vma->vm_region->vm_end = vma->vm_end = addr;
1598 vma->vm_region->vm_top = addr;
1599 }
1600 add_nommu_region(vma->vm_region);
1601 add_nommu_region(new->vm_region);
1602 up_write(&nommu_region_sem);
1603 add_vma_to_mm(mm, vma);
1604 add_vma_to_mm(mm, new);
1605 return 0;
1606 }
1607
1608 /*
1609 * shrink a VMA by removing the specified chunk from either the beginning or
1610 * the end
1611 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1612 static int shrink_vma(struct mm_struct *mm,
1613 struct vm_area_struct *vma,
1614 unsigned long from, unsigned long to)
1615 {
1616 struct vm_region *region;
1617
1618 kenter("");
1619
1620 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1621 * and list */
1622 delete_vma_from_mm(vma);
1623 if (from > vma->vm_start)
1624 vma->vm_end = from;
1625 else
1626 vma->vm_start = to;
1627 add_vma_to_mm(mm, vma);
1628
1629 /* cut the backing region down to size */
1630 region = vma->vm_region;
1631 BUG_ON(region->vm_usage != 1);
1632
1633 down_write(&nommu_region_sem);
1634 delete_nommu_region(region);
1635 if (from > region->vm_start) {
1636 to = region->vm_top;
1637 region->vm_top = region->vm_end = from;
1638 } else {
1639 region->vm_start = to;
1640 }
1641 add_nommu_region(region);
1642 up_write(&nommu_region_sem);
1643
1644 free_page_series(from, to);
1645 return 0;
1646 }
1647
1648 /*
1649 * release a mapping
1650 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1651 * VMA, though it need not cover the whole VMA
1652 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)1653 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1654 {
1655 struct vm_area_struct *vma;
1656 unsigned long end;
1657 int ret;
1658
1659 kenter(",%lx,%zx", start, len);
1660
1661 len = PAGE_ALIGN(len);
1662 if (len == 0)
1663 return -EINVAL;
1664
1665 end = start + len;
1666
1667 /* find the first potentially overlapping VMA */
1668 vma = find_vma(mm, start);
1669 if (!vma) {
1670 static int limit;
1671 if (limit < 5) {
1672 printk(KERN_WARNING
1673 "munmap of memory not mmapped by process %d"
1674 " (%s): 0x%lx-0x%lx\n",
1675 current->pid, current->comm,
1676 start, start + len - 1);
1677 limit++;
1678 }
1679 return -EINVAL;
1680 }
1681
1682 /* we're allowed to split an anonymous VMA but not a file-backed one */
1683 if (vma->vm_file) {
1684 do {
1685 if (start > vma->vm_start) {
1686 kleave(" = -EINVAL [miss]");
1687 return -EINVAL;
1688 }
1689 if (end == vma->vm_end)
1690 goto erase_whole_vma;
1691 vma = vma->vm_next;
1692 } while (vma);
1693 kleave(" = -EINVAL [split file]");
1694 return -EINVAL;
1695 } else {
1696 /* the chunk must be a subset of the VMA found */
1697 if (start == vma->vm_start && end == vma->vm_end)
1698 goto erase_whole_vma;
1699 if (start < vma->vm_start || end > vma->vm_end) {
1700 kleave(" = -EINVAL [superset]");
1701 return -EINVAL;
1702 }
1703 if (start & ~PAGE_MASK) {
1704 kleave(" = -EINVAL [unaligned start]");
1705 return -EINVAL;
1706 }
1707 if (end != vma->vm_end && end & ~PAGE_MASK) {
1708 kleave(" = -EINVAL [unaligned split]");
1709 return -EINVAL;
1710 }
1711 if (start != vma->vm_start && end != vma->vm_end) {
1712 ret = split_vma(mm, vma, start, 1);
1713 if (ret < 0) {
1714 kleave(" = %d [split]", ret);
1715 return ret;
1716 }
1717 }
1718 return shrink_vma(mm, vma, start, end);
1719 }
1720
1721 erase_whole_vma:
1722 delete_vma_from_mm(vma);
1723 delete_vma(mm, vma);
1724 kleave(" = 0");
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(do_munmap);
1728
vm_munmap(unsigned long addr,size_t len)1729 int vm_munmap(unsigned long addr, size_t len)
1730 {
1731 struct mm_struct *mm = current->mm;
1732 int ret;
1733
1734 down_write(&mm->mmap_sem);
1735 ret = do_munmap(mm, addr, len);
1736 up_write(&mm->mmap_sem);
1737 return ret;
1738 }
1739 EXPORT_SYMBOL(vm_munmap);
1740
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1741 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1742 {
1743 return vm_munmap(addr, len);
1744 }
1745
1746 /*
1747 * release all the mappings made in a process's VM space
1748 */
exit_mmap(struct mm_struct * mm)1749 void exit_mmap(struct mm_struct *mm)
1750 {
1751 struct vm_area_struct *vma;
1752
1753 if (!mm)
1754 return;
1755
1756 kenter("");
1757
1758 mm->total_vm = 0;
1759
1760 while ((vma = mm->mmap)) {
1761 mm->mmap = vma->vm_next;
1762 delete_vma_from_mm(vma);
1763 delete_vma(mm, vma);
1764 cond_resched();
1765 }
1766
1767 kleave("");
1768 }
1769
vm_brk(unsigned long addr,unsigned long len)1770 unsigned long vm_brk(unsigned long addr, unsigned long len)
1771 {
1772 return -ENOMEM;
1773 }
1774
1775 /*
1776 * expand (or shrink) an existing mapping, potentially moving it at the same
1777 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1778 *
1779 * under NOMMU conditions, we only permit changing a mapping's size, and only
1780 * as long as it stays within the region allocated by do_mmap_private() and the
1781 * block is not shareable
1782 *
1783 * MREMAP_FIXED is not supported under NOMMU conditions
1784 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1785 static unsigned long do_mremap(unsigned long addr,
1786 unsigned long old_len, unsigned long new_len,
1787 unsigned long flags, unsigned long new_addr)
1788 {
1789 struct vm_area_struct *vma;
1790
1791 /* insanity checks first */
1792 old_len = PAGE_ALIGN(old_len);
1793 new_len = PAGE_ALIGN(new_len);
1794 if (old_len == 0 || new_len == 0)
1795 return (unsigned long) -EINVAL;
1796
1797 if (addr & ~PAGE_MASK)
1798 return -EINVAL;
1799
1800 if (flags & MREMAP_FIXED && new_addr != addr)
1801 return (unsigned long) -EINVAL;
1802
1803 vma = find_vma_exact(current->mm, addr, old_len);
1804 if (!vma)
1805 return (unsigned long) -EINVAL;
1806
1807 if (vma->vm_end != vma->vm_start + old_len)
1808 return (unsigned long) -EFAULT;
1809
1810 if (vma->vm_flags & VM_MAYSHARE)
1811 return (unsigned long) -EPERM;
1812
1813 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1814 return (unsigned long) -ENOMEM;
1815
1816 /* all checks complete - do it */
1817 vma->vm_end = vma->vm_start + new_len;
1818 return vma->vm_start;
1819 }
1820
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1821 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1822 unsigned long, new_len, unsigned long, flags,
1823 unsigned long, new_addr)
1824 {
1825 unsigned long ret;
1826
1827 down_write(¤t->mm->mmap_sem);
1828 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1829 up_write(¤t->mm->mmap_sem);
1830 return ret;
1831 }
1832
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)1833 struct page *follow_page_mask(struct vm_area_struct *vma,
1834 unsigned long address, unsigned int flags,
1835 unsigned int *page_mask)
1836 {
1837 *page_mask = 0;
1838 return NULL;
1839 }
1840
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842 unsigned long pfn, unsigned long size, pgprot_t prot)
1843 {
1844 if (addr != (pfn << PAGE_SHIFT))
1845 return -EINVAL;
1846
1847 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1848 return 0;
1849 }
1850 EXPORT_SYMBOL(remap_pfn_range);
1851
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1852 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1853 {
1854 unsigned long pfn = start >> PAGE_SHIFT;
1855 unsigned long vm_len = vma->vm_end - vma->vm_start;
1856
1857 pfn += vma->vm_pgoff;
1858 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859 }
1860 EXPORT_SYMBOL(vm_iomap_memory);
1861
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1862 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1863 unsigned long pgoff)
1864 {
1865 unsigned int size = vma->vm_end - vma->vm_start;
1866
1867 if (!(vma->vm_flags & VM_USERMAP))
1868 return -EINVAL;
1869
1870 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1871 vma->vm_end = vma->vm_start + size;
1872
1873 return 0;
1874 }
1875 EXPORT_SYMBOL(remap_vmalloc_range);
1876
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1877 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1878 unsigned long len, unsigned long pgoff, unsigned long flags)
1879 {
1880 return -ENOMEM;
1881 }
1882
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1883 void unmap_mapping_range(struct address_space *mapping,
1884 loff_t const holebegin, loff_t const holelen,
1885 int even_cows)
1886 {
1887 }
1888 EXPORT_SYMBOL(unmap_mapping_range);
1889
1890 /*
1891 * Check that a process has enough memory to allocate a new virtual
1892 * mapping. 0 means there is enough memory for the allocation to
1893 * succeed and -ENOMEM implies there is not.
1894 *
1895 * We currently support three overcommit policies, which are set via the
1896 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1897 *
1898 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1899 * Additional code 2002 Jul 20 by Robert Love.
1900 *
1901 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1902 *
1903 * Note this is a helper function intended to be used by LSMs which
1904 * wish to use this logic.
1905 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1906 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1907 {
1908 long free, allowed, reserve;
1909
1910 vm_acct_memory(pages);
1911
1912 /*
1913 * Sometimes we want to use more memory than we have
1914 */
1915 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1916 return 0;
1917
1918 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1919 free = global_page_state(NR_FREE_PAGES);
1920 free += global_page_state(NR_FILE_PAGES);
1921
1922 /*
1923 * shmem pages shouldn't be counted as free in this
1924 * case, they can't be purged, only swapped out, and
1925 * that won't affect the overall amount of available
1926 * memory in the system.
1927 */
1928 free -= global_page_state(NR_SHMEM);
1929
1930 free += get_nr_swap_pages();
1931
1932 /*
1933 * Any slabs which are created with the
1934 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1935 * which are reclaimable, under pressure. The dentry
1936 * cache and most inode caches should fall into this
1937 */
1938 free += global_page_state(NR_SLAB_RECLAIMABLE);
1939
1940 /*
1941 * Leave reserved pages. The pages are not for anonymous pages.
1942 */
1943 if (free <= totalreserve_pages)
1944 goto error;
1945 else
1946 free -= totalreserve_pages;
1947
1948 /*
1949 * Reserve some for root
1950 */
1951 if (!cap_sys_admin)
1952 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1953
1954 if (free > pages)
1955 return 0;
1956
1957 goto error;
1958 }
1959
1960 allowed = vm_commit_limit();
1961 /*
1962 * Reserve some 3% for root
1963 */
1964 if (!cap_sys_admin)
1965 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966
1967 /*
1968 * Don't let a single process grow so big a user can't recover
1969 */
1970 if (mm) {
1971 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1972 allowed -= min_t(long, mm->total_vm / 32, reserve);
1973 }
1974
1975 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1976 return 0;
1977
1978 error:
1979 vm_unacct_memory(pages);
1980
1981 return -ENOMEM;
1982 }
1983
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1984 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1985 {
1986 BUG();
1987 return 0;
1988 }
1989 EXPORT_SYMBOL(filemap_fault);
1990
filemap_map_pages(struct vm_area_struct * vma,struct vm_fault * vmf)1991 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1992 {
1993 BUG();
1994 }
1995 EXPORT_SYMBOL(filemap_map_pages);
1996
generic_file_remap_pages(struct vm_area_struct * vma,unsigned long addr,unsigned long size,pgoff_t pgoff)1997 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1998 unsigned long size, pgoff_t pgoff)
1999 {
2000 BUG();
2001 return 0;
2002 }
2003 EXPORT_SYMBOL(generic_file_remap_pages);
2004
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)2005 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2006 unsigned long addr, void *buf, int len, int write)
2007 {
2008 struct vm_area_struct *vma;
2009
2010 down_read(&mm->mmap_sem);
2011
2012 /* the access must start within one of the target process's mappings */
2013 vma = find_vma(mm, addr);
2014 if (vma) {
2015 /* don't overrun this mapping */
2016 if (addr + len >= vma->vm_end)
2017 len = vma->vm_end - addr;
2018
2019 /* only read or write mappings where it is permitted */
2020 if (write && vma->vm_flags & VM_MAYWRITE)
2021 copy_to_user_page(vma, NULL, addr,
2022 (void *) addr, buf, len);
2023 else if (!write && vma->vm_flags & VM_MAYREAD)
2024 copy_from_user_page(vma, NULL, addr,
2025 buf, (void *) addr, len);
2026 else
2027 len = 0;
2028 } else {
2029 len = 0;
2030 }
2031
2032 up_read(&mm->mmap_sem);
2033
2034 return len;
2035 }
2036
2037 /**
2038 * @access_remote_vm - access another process' address space
2039 * @mm: the mm_struct of the target address space
2040 * @addr: start address to access
2041 * @buf: source or destination buffer
2042 * @len: number of bytes to transfer
2043 * @write: whether the access is a write
2044 *
2045 * The caller must hold a reference on @mm.
2046 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)2047 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2048 void *buf, int len, int write)
2049 {
2050 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2051 }
2052
2053 /*
2054 * Access another process' address space.
2055 * - source/target buffer must be kernel space
2056 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)2057 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2058 {
2059 struct mm_struct *mm;
2060
2061 if (addr + len < addr)
2062 return 0;
2063
2064 mm = get_task_mm(tsk);
2065 if (!mm)
2066 return 0;
2067
2068 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2069
2070 mmput(mm);
2071 return len;
2072 }
2073
2074 /**
2075 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2076 * @inode: The inode to check
2077 * @size: The current filesize of the inode
2078 * @newsize: The proposed filesize of the inode
2079 *
2080 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2081 * make sure that that any outstanding VMAs aren't broken and then shrink the
2082 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2083 * automatically grant mappings that are too large.
2084 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)2085 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2086 size_t newsize)
2087 {
2088 struct vm_area_struct *vma;
2089 struct vm_region *region;
2090 pgoff_t low, high;
2091 size_t r_size, r_top;
2092
2093 low = newsize >> PAGE_SHIFT;
2094 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2095
2096 down_write(&nommu_region_sem);
2097 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2098
2099 /* search for VMAs that fall within the dead zone */
2100 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2101 /* found one - only interested if it's shared out of the page
2102 * cache */
2103 if (vma->vm_flags & VM_SHARED) {
2104 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2105 up_write(&nommu_region_sem);
2106 return -ETXTBSY; /* not quite true, but near enough */
2107 }
2108 }
2109
2110 /* reduce any regions that overlap the dead zone - if in existence,
2111 * these will be pointed to by VMAs that don't overlap the dead zone
2112 *
2113 * we don't check for any regions that start beyond the EOF as there
2114 * shouldn't be any
2115 */
2116 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2117 0, ULONG_MAX) {
2118 if (!(vma->vm_flags & VM_SHARED))
2119 continue;
2120
2121 region = vma->vm_region;
2122 r_size = region->vm_top - region->vm_start;
2123 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2124
2125 if (r_top > newsize) {
2126 region->vm_top -= r_top - newsize;
2127 if (region->vm_end > region->vm_top)
2128 region->vm_end = region->vm_top;
2129 }
2130 }
2131
2132 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2133 up_write(&nommu_region_sem);
2134 return 0;
2135 }
2136
2137 /*
2138 * Initialise sysctl_user_reserve_kbytes.
2139 *
2140 * This is intended to prevent a user from starting a single memory hogging
2141 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2142 * mode.
2143 *
2144 * The default value is min(3% of free memory, 128MB)
2145 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2146 */
init_user_reserve(void)2147 static int __meminit init_user_reserve(void)
2148 {
2149 unsigned long free_kbytes;
2150
2151 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2152
2153 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2154 return 0;
2155 }
module_init(init_user_reserve)2156 module_init(init_user_reserve)
2157
2158 /*
2159 * Initialise sysctl_admin_reserve_kbytes.
2160 *
2161 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2162 * to log in and kill a memory hogging process.
2163 *
2164 * Systems with more than 256MB will reserve 8MB, enough to recover
2165 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2166 * only reserve 3% of free pages by default.
2167 */
2168 static int __meminit init_admin_reserve(void)
2169 {
2170 unsigned long free_kbytes;
2171
2172 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2173
2174 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2175 return 0;
2176 }
2177 module_init(init_admin_reserve)
2178