1 /*
2 * linux/mm/page_isolation.c
3 */
4
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include "internal.h"
11
set_migratetype_isolate(struct page * page,bool skip_hwpoisoned_pages)12 int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages)
13 {
14 struct zone *zone;
15 unsigned long flags, pfn;
16 struct memory_isolate_notify arg;
17 int notifier_ret;
18 int ret = -EBUSY;
19
20 zone = page_zone(page);
21
22 spin_lock_irqsave(&zone->lock, flags);
23
24 pfn = page_to_pfn(page);
25 arg.start_pfn = pfn;
26 arg.nr_pages = pageblock_nr_pages;
27 arg.pages_found = 0;
28
29 /*
30 * It may be possible to isolate a pageblock even if the
31 * migratetype is not MIGRATE_MOVABLE. The memory isolation
32 * notifier chain is used by balloon drivers to return the
33 * number of pages in a range that are held by the balloon
34 * driver to shrink memory. If all the pages are accounted for
35 * by balloons, are free, or on the LRU, isolation can continue.
36 * Later, for example, when memory hotplug notifier runs, these
37 * pages reported as "can be isolated" should be isolated(freed)
38 * by the balloon driver through the memory notifier chain.
39 */
40 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
41 notifier_ret = notifier_to_errno(notifier_ret);
42 if (notifier_ret)
43 goto out;
44 /*
45 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
46 * We just check MOVABLE pages.
47 */
48 if (!has_unmovable_pages(zone, page, arg.pages_found,
49 skip_hwpoisoned_pages))
50 ret = 0;
51
52 /*
53 * immobile means "not-on-lru" paes. If immobile is larger than
54 * removable-by-driver pages reported by notifier, we'll fail.
55 */
56
57 out:
58 if (!ret) {
59 unsigned long nr_pages;
60 int migratetype = get_pageblock_migratetype(page);
61
62 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
63 zone->nr_isolate_pageblock++;
64 nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
65
66 __mod_zone_freepage_state(zone, -nr_pages, migratetype);
67 }
68
69 spin_unlock_irqrestore(&zone->lock, flags);
70 if (!ret)
71 drain_all_pages();
72 return ret;
73 }
74
unset_migratetype_isolate(struct page * page,unsigned migratetype)75 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
76 {
77 struct zone *zone;
78 unsigned long flags, nr_pages;
79 struct page *isolated_page = NULL;
80 unsigned int order;
81 unsigned long page_idx, buddy_idx;
82 struct page *buddy;
83
84 zone = page_zone(page);
85 spin_lock_irqsave(&zone->lock, flags);
86 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
87 goto out;
88
89 /*
90 * Because freepage with more than pageblock_order on isolated
91 * pageblock is restricted to merge due to freepage counting problem,
92 * it is possible that there is free buddy page.
93 * move_freepages_block() doesn't care of merge so we need other
94 * approach in order to merge them. Isolation and free will make
95 * these pages to be merged.
96 */
97 if (PageBuddy(page)) {
98 order = page_order(page);
99 if (order >= pageblock_order) {
100 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
101 buddy_idx = __find_buddy_index(page_idx, order);
102 buddy = page + (buddy_idx - page_idx);
103
104 if (!is_migrate_isolate_page(buddy)) {
105 __isolate_free_page(page, order);
106 kernel_map_pages(page, (1 << order), 1);
107 set_page_refcounted(page);
108 isolated_page = page;
109 }
110 }
111 }
112
113 /*
114 * If we isolate freepage with more than pageblock_order, there
115 * should be no freepage in the range, so we could avoid costly
116 * pageblock scanning for freepage moving.
117 */
118 if (!isolated_page) {
119 nr_pages = move_freepages_block(zone, page, migratetype);
120 __mod_zone_freepage_state(zone, nr_pages, migratetype);
121 }
122 set_pageblock_migratetype(page, migratetype);
123 zone->nr_isolate_pageblock--;
124 out:
125 spin_unlock_irqrestore(&zone->lock, flags);
126 if (isolated_page)
127 __free_pages(isolated_page, order);
128 }
129
130 static inline struct page *
__first_valid_page(unsigned long pfn,unsigned long nr_pages)131 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
132 {
133 int i;
134 for (i = 0; i < nr_pages; i++)
135 if (pfn_valid_within(pfn + i))
136 break;
137 if (unlikely(i == nr_pages))
138 return NULL;
139 return pfn_to_page(pfn + i);
140 }
141
142 /*
143 * start_isolate_page_range() -- make page-allocation-type of range of pages
144 * to be MIGRATE_ISOLATE.
145 * @start_pfn: The lower PFN of the range to be isolated.
146 * @end_pfn: The upper PFN of the range to be isolated.
147 * @migratetype: migrate type to set in error recovery.
148 *
149 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
150 * the range will never be allocated. Any free pages and pages freed in the
151 * future will not be allocated again.
152 *
153 * start_pfn/end_pfn must be aligned to pageblock_order.
154 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
155 */
start_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,unsigned migratetype,bool skip_hwpoisoned_pages)156 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
157 unsigned migratetype, bool skip_hwpoisoned_pages)
158 {
159 unsigned long pfn;
160 unsigned long undo_pfn;
161 struct page *page;
162
163 BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
164 BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
165
166 for (pfn = start_pfn;
167 pfn < end_pfn;
168 pfn += pageblock_nr_pages) {
169 page = __first_valid_page(pfn, pageblock_nr_pages);
170 if (page &&
171 set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
172 undo_pfn = pfn;
173 goto undo;
174 }
175 }
176 return 0;
177 undo:
178 for (pfn = start_pfn;
179 pfn < undo_pfn;
180 pfn += pageblock_nr_pages)
181 unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
182
183 return -EBUSY;
184 }
185
186 /*
187 * Make isolated pages available again.
188 */
undo_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,unsigned migratetype)189 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
190 unsigned migratetype)
191 {
192 unsigned long pfn;
193 struct page *page;
194 BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
195 BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
196 for (pfn = start_pfn;
197 pfn < end_pfn;
198 pfn += pageblock_nr_pages) {
199 page = __first_valid_page(pfn, pageblock_nr_pages);
200 if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
201 continue;
202 unset_migratetype_isolate(page, migratetype);
203 }
204 return 0;
205 }
206 /*
207 * Test all pages in the range is free(means isolated) or not.
208 * all pages in [start_pfn...end_pfn) must be in the same zone.
209 * zone->lock must be held before call this.
210 *
211 * Returns 1 if all pages in the range are isolated.
212 */
213 static int
__test_page_isolated_in_pageblock(unsigned long pfn,unsigned long end_pfn,bool skip_hwpoisoned_pages)214 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
215 bool skip_hwpoisoned_pages)
216 {
217 struct page *page;
218
219 while (pfn < end_pfn) {
220 if (!pfn_valid_within(pfn)) {
221 pfn++;
222 continue;
223 }
224 page = pfn_to_page(pfn);
225 if (PageBuddy(page)) {
226 /*
227 * If race between isolatation and allocation happens,
228 * some free pages could be in MIGRATE_MOVABLE list
229 * although pageblock's migratation type of the page
230 * is MIGRATE_ISOLATE. Catch it and move the page into
231 * MIGRATE_ISOLATE list.
232 */
233 if (get_freepage_migratetype(page) != MIGRATE_ISOLATE) {
234 struct page *end_page;
235
236 end_page = page + (1 << page_order(page)) - 1;
237 move_freepages(page_zone(page), page, end_page,
238 MIGRATE_ISOLATE);
239 }
240 pfn += 1 << page_order(page);
241 }
242 else if (page_count(page) == 0 &&
243 get_freepage_migratetype(page) == MIGRATE_ISOLATE)
244 pfn += 1;
245 else if (skip_hwpoisoned_pages && PageHWPoison(page)) {
246 /*
247 * The HWPoisoned page may be not in buddy
248 * system, and page_count() is not 0.
249 */
250 pfn++;
251 continue;
252 }
253 else
254 break;
255 }
256 if (pfn < end_pfn)
257 return 0;
258 return 1;
259 }
260
test_pages_isolated(unsigned long start_pfn,unsigned long end_pfn,bool skip_hwpoisoned_pages)261 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
262 bool skip_hwpoisoned_pages)
263 {
264 unsigned long pfn, flags;
265 struct page *page;
266 struct zone *zone;
267 int ret;
268
269 /*
270 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
271 * are not aligned to pageblock_nr_pages.
272 * Then we just check migratetype first.
273 */
274 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
275 page = __first_valid_page(pfn, pageblock_nr_pages);
276 if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
277 break;
278 }
279 page = __first_valid_page(start_pfn, end_pfn - start_pfn);
280 if ((pfn < end_pfn) || !page)
281 return -EBUSY;
282 /* Check all pages are free or marked as ISOLATED */
283 zone = page_zone(page);
284 spin_lock_irqsave(&zone->lock, flags);
285 ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
286 skip_hwpoisoned_pages);
287 spin_unlock_irqrestore(&zone->lock, flags);
288 return ret ? 0 : -EBUSY;
289 }
290
alloc_migrate_target(struct page * page,unsigned long private,int ** resultp)291 struct page *alloc_migrate_target(struct page *page, unsigned long private,
292 int **resultp)
293 {
294 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
295
296 /*
297 * TODO: allocate a destination hugepage from a nearest neighbor node,
298 * accordance with memory policy of the user process if possible. For
299 * now as a simple work-around, we use the next node for destination.
300 */
301 if (PageHuge(page)) {
302 int node = next_online_node(page_to_nid(page));
303 if (node == MAX_NUMNODES)
304 node = first_online_node;
305 return alloc_huge_page_node(page_hstate(compound_head(page)),
306 node);
307 }
308
309 if (PageHighMem(page))
310 gfp_mask |= __GFP_HIGHMEM;
311
312 return alloc_page(gfp_mask);
313 }
314