• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176 
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190 	unsigned int avail;
191 	unsigned int limit;
192 	unsigned int batchcount;
193 	unsigned int touched;
194 	void *entry[];	/*
195 			 * Must have this definition in here for the proper
196 			 * alignment of array_cache. Also simplifies accessing
197 			 * the entries.
198 			 *
199 			 * Entries should not be directly dereferenced as
200 			 * entries belonging to slabs marked pfmemalloc will
201 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 			 */
203 };
204 
205 struct alien_cache {
206 	spinlock_t lock;
207 	struct array_cache ac;
208 };
209 
210 #define SLAB_OBJ_PFMEMALLOC	1
is_obj_pfmemalloc(void * objp)211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215 
set_obj_pfmemalloc(void ** objp)216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 	return;
220 }
221 
clear_obj_pfmemalloc(void ** objp)222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226 
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES	1
232 struct arraycache_init {
233 	struct array_cache cache;
234 	void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236 
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define	CACHE_CACHE 0
243 #define	SIZE_NODE (MAX_NUMNODES)
244 
245 static int drain_freelist(struct kmem_cache *cache,
246 			struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 			int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252 
253 static int slab_early_init = 1;
254 
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256 
kmem_cache_node_init(struct kmem_cache_node * parent)257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259 	INIT_LIST_HEAD(&parent->slabs_full);
260 	INIT_LIST_HEAD(&parent->slabs_partial);
261 	INIT_LIST_HEAD(&parent->slabs_free);
262 	parent->shared = NULL;
263 	parent->alien = NULL;
264 	parent->colour_next = 0;
265 	spin_lock_init(&parent->list_lock);
266 	parent->free_objects = 0;
267 	parent->free_touched = 0;
268 }
269 
270 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
271 	do {								\
272 		INIT_LIST_HEAD(listp);					\
273 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274 	} while (0)
275 
276 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277 	do {								\
278 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281 	} while (0)
282 
283 #define CFLGS_OFF_SLAB		(0x80000000UL)
284 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285 
286 #define BATCHREFILL_LIMIT	16
287 /*
288  * Optimization question: fewer reaps means less probability for unnessary
289  * cpucache drain/refill cycles.
290  *
291  * OTOH the cpuarrays can contain lots of objects,
292  * which could lock up otherwise freeable slabs.
293  */
294 #define REAPTIMEOUT_AC		(2*HZ)
295 #define REAPTIMEOUT_NODE	(4*HZ)
296 
297 #if STATS
298 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
299 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
300 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
301 #define	STATS_INC_GROWN(x)	((x)->grown++)
302 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
303 #define	STATS_SET_HIGH(x)						\
304 	do {								\
305 		if ((x)->num_active > (x)->high_mark)			\
306 			(x)->high_mark = (x)->num_active;		\
307 	} while (0)
308 #define	STATS_INC_ERR(x)	((x)->errors++)
309 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
312 #define	STATS_SET_FREEABLE(x, i)					\
313 	do {								\
314 		if ((x)->max_freeable < i)				\
315 			(x)->max_freeable = i;				\
316 	} while (0)
317 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
321 #else
322 #define	STATS_INC_ACTIVE(x)	do { } while (0)
323 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
324 #define	STATS_INC_ALLOCED(x)	do { } while (0)
325 #define	STATS_INC_GROWN(x)	do { } while (0)
326 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
327 #define	STATS_SET_HIGH(x)	do { } while (0)
328 #define	STATS_INC_ERR(x)	do { } while (0)
329 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330 #define	STATS_INC_NODEFREES(x)	do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
332 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
334 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
335 #define STATS_INC_FREEHIT(x)	do { } while (0)
336 #define STATS_INC_FREEMISS(x)	do { } while (0)
337 #endif
338 
339 #if DEBUG
340 
341 /*
342  * memory layout of objects:
343  * 0		: objp
344  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345  * 		the end of an object is aligned with the end of the real
346  * 		allocation. Catches writes behind the end of the allocation.
347  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348  * 		redzone word.
349  * cachep->obj_offset: The real object.
350  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351  * cachep->size - 1* BYTES_PER_WORD: last caller address
352  *					[BYTES_PER_WORD long]
353  */
obj_offset(struct kmem_cache * cachep)354 static int obj_offset(struct kmem_cache *cachep)
355 {
356 	return cachep->obj_offset;
357 }
358 
dbg_redzone1(struct kmem_cache * cachep,void * objp)359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360 {
361 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 	return (unsigned long long*) (objp + obj_offset(cachep) -
363 				      sizeof(unsigned long long));
364 }
365 
dbg_redzone2(struct kmem_cache * cachep,void * objp)366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367 {
368 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 	if (cachep->flags & SLAB_STORE_USER)
370 		return (unsigned long long *)(objp + cachep->size -
371 					      sizeof(unsigned long long) -
372 					      REDZONE_ALIGN);
373 	return (unsigned long long *) (objp + cachep->size -
374 				       sizeof(unsigned long long));
375 }
376 
dbg_userword(struct kmem_cache * cachep,void * objp)377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378 {
379 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
381 }
382 
383 #else
384 
385 #define obj_offset(x)			0
386 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
389 
390 #endif
391 
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
394 
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
396 
set_obj_status(struct page * page,int idx,int val)397 static void set_obj_status(struct page *page, int idx, int val)
398 {
399 	int freelist_size;
400 	char *status;
401 	struct kmem_cache *cachep = page->slab_cache;
402 
403 	freelist_size = cachep->num * sizeof(freelist_idx_t);
404 	status = (char *)page->freelist + freelist_size;
405 	status[idx] = val;
406 }
407 
get_obj_status(struct page * page,int idx)408 static inline unsigned int get_obj_status(struct page *page, int idx)
409 {
410 	int freelist_size;
411 	char *status;
412 	struct kmem_cache *cachep = page->slab_cache;
413 
414 	freelist_size = cachep->num * sizeof(freelist_idx_t);
415 	status = (char *)page->freelist + freelist_size;
416 
417 	return status[idx];
418 }
419 
420 #else
set_obj_status(struct page * page,int idx,int val)421 static inline void set_obj_status(struct page *page, int idx, int val) {}
422 
423 #endif
424 
425 /*
426  * Do not go above this order unless 0 objects fit into the slab or
427  * overridden on the command line.
428  */
429 #define	SLAB_MAX_ORDER_HI	1
430 #define	SLAB_MAX_ORDER_LO	0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
433 
virt_to_cache(const void * obj)434 static inline struct kmem_cache *virt_to_cache(const void *obj)
435 {
436 	struct page *page = virt_to_head_page(obj);
437 	return page->slab_cache;
438 }
439 
index_to_obj(struct kmem_cache * cache,struct page * page,unsigned int idx)440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 				 unsigned int idx)
442 {
443 	return page->s_mem + cache->size * idx;
444 }
445 
446 /*
447  * We want to avoid an expensive divide : (offset / cache->size)
448  *   Using the fact that size is a constant for a particular cache,
449  *   we can replace (offset / cache->size) by
450  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
451  */
obj_to_index(const struct kmem_cache * cache,const struct page * page,void * obj)452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 					const struct page *page, void *obj)
454 {
455 	u32 offset = (obj - page->s_mem);
456 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457 }
458 
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 	.batchcount = 1,
462 	.limit = BOOT_CPUCACHE_ENTRIES,
463 	.shared = 1,
464 	.size = sizeof(struct kmem_cache),
465 	.name = "kmem_cache",
466 };
467 
468 #define BAD_ALIEN_MAGIC 0x01020304ul
469 
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471 
cpu_cache_get(struct kmem_cache * cachep)472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473 {
474 	return this_cpu_ptr(cachep->cpu_cache);
475 }
476 
calculate_freelist_size(int nr_objs,size_t align)477 static size_t calculate_freelist_size(int nr_objs, size_t align)
478 {
479 	size_t freelist_size;
480 
481 	freelist_size = nr_objs * sizeof(freelist_idx_t);
482 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 		freelist_size += nr_objs * sizeof(char);
484 
485 	if (align)
486 		freelist_size = ALIGN(freelist_size, align);
487 
488 	return freelist_size;
489 }
490 
calculate_nr_objs(size_t slab_size,size_t buffer_size,size_t idx_size,size_t align)491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 				size_t idx_size, size_t align)
493 {
494 	int nr_objs;
495 	size_t remained_size;
496 	size_t freelist_size;
497 	int extra_space = 0;
498 
499 	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 		extra_space = sizeof(char);
501 	/*
502 	 * Ignore padding for the initial guess. The padding
503 	 * is at most @align-1 bytes, and @buffer_size is at
504 	 * least @align. In the worst case, this result will
505 	 * be one greater than the number of objects that fit
506 	 * into the memory allocation when taking the padding
507 	 * into account.
508 	 */
509 	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510 
511 	/*
512 	 * This calculated number will be either the right
513 	 * amount, or one greater than what we want.
514 	 */
515 	remained_size = slab_size - nr_objs * buffer_size;
516 	freelist_size = calculate_freelist_size(nr_objs, align);
517 	if (remained_size < freelist_size)
518 		nr_objs--;
519 
520 	return nr_objs;
521 }
522 
523 /*
524  * Calculate the number of objects and left-over bytes for a given buffer size.
525  */
cache_estimate(unsigned long gfporder,size_t buffer_size,size_t align,int flags,size_t * left_over,unsigned int * num)526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 			   size_t align, int flags, size_t *left_over,
528 			   unsigned int *num)
529 {
530 	int nr_objs;
531 	size_t mgmt_size;
532 	size_t slab_size = PAGE_SIZE << gfporder;
533 
534 	/*
535 	 * The slab management structure can be either off the slab or
536 	 * on it. For the latter case, the memory allocated for a
537 	 * slab is used for:
538 	 *
539 	 * - One unsigned int for each object
540 	 * - Padding to respect alignment of @align
541 	 * - @buffer_size bytes for each object
542 	 *
543 	 * If the slab management structure is off the slab, then the
544 	 * alignment will already be calculated into the size. Because
545 	 * the slabs are all pages aligned, the objects will be at the
546 	 * correct alignment when allocated.
547 	 */
548 	if (flags & CFLGS_OFF_SLAB) {
549 		mgmt_size = 0;
550 		nr_objs = slab_size / buffer_size;
551 
552 	} else {
553 		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 					sizeof(freelist_idx_t), align);
555 		mgmt_size = calculate_freelist_size(nr_objs, align);
556 	}
557 	*num = nr_objs;
558 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559 }
560 
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563 
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 			char *msg)
566 {
567 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 	       function, cachep->name, msg);
569 	dump_stack();
570 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572 #endif
573 
574 /*
575  * By default on NUMA we use alien caches to stage the freeing of
576  * objects allocated from other nodes. This causes massive memory
577  * inefficiencies when using fake NUMA setup to split memory into a
578  * large number of small nodes, so it can be disabled on the command
579  * line
580   */
581 
582 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)583 static int __init noaliencache_setup(char *s)
584 {
585 	use_alien_caches = 0;
586 	return 1;
587 }
588 __setup("noaliencache", noaliencache_setup);
589 
slab_max_order_setup(char * str)590 static int __init slab_max_order_setup(char *str)
591 {
592 	get_option(&str, &slab_max_order);
593 	slab_max_order = slab_max_order < 0 ? 0 :
594 				min(slab_max_order, MAX_ORDER - 1);
595 	slab_max_order_set = true;
596 
597 	return 1;
598 }
599 __setup("slab_max_order=", slab_max_order_setup);
600 
601 #ifdef CONFIG_NUMA
602 /*
603  * Special reaping functions for NUMA systems called from cache_reap().
604  * These take care of doing round robin flushing of alien caches (containing
605  * objects freed on different nodes from which they were allocated) and the
606  * flushing of remote pcps by calling drain_node_pages.
607  */
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609 
init_reap_node(int cpu)610 static void init_reap_node(int cpu)
611 {
612 	int node;
613 
614 	node = next_node(cpu_to_mem(cpu), node_online_map);
615 	if (node == MAX_NUMNODES)
616 		node = first_node(node_online_map);
617 
618 	per_cpu(slab_reap_node, cpu) = node;
619 }
620 
next_reap_node(void)621 static void next_reap_node(void)
622 {
623 	int node = __this_cpu_read(slab_reap_node);
624 
625 	node = next_node(node, node_online_map);
626 	if (unlikely(node >= MAX_NUMNODES))
627 		node = first_node(node_online_map);
628 	__this_cpu_write(slab_reap_node, node);
629 }
630 
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
635 
636 /*
637  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
638  * via the workqueue/eventd.
639  * Add the CPU number into the expiration time to minimize the possibility of
640  * the CPUs getting into lockstep and contending for the global cache chain
641  * lock.
642  */
start_cpu_timer(int cpu)643 static void start_cpu_timer(int cpu)
644 {
645 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646 
647 	/*
648 	 * When this gets called from do_initcalls via cpucache_init(),
649 	 * init_workqueues() has already run, so keventd will be setup
650 	 * at that time.
651 	 */
652 	if (keventd_up() && reap_work->work.func == NULL) {
653 		init_reap_node(cpu);
654 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 		schedule_delayed_work_on(cpu, reap_work,
656 					__round_jiffies_relative(HZ, cpu));
657 	}
658 }
659 
init_arraycache(struct array_cache * ac,int limit,int batch)660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
661 {
662 	/*
663 	 * The array_cache structures contain pointers to free object.
664 	 * However, when such objects are allocated or transferred to another
665 	 * cache the pointers are not cleared and they could be counted as
666 	 * valid references during a kmemleak scan. Therefore, kmemleak must
667 	 * not scan such objects.
668 	 */
669 	kmemleak_no_scan(ac);
670 	if (ac) {
671 		ac->avail = 0;
672 		ac->limit = limit;
673 		ac->batchcount = batch;
674 		ac->touched = 0;
675 	}
676 }
677 
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)678 static struct array_cache *alloc_arraycache(int node, int entries,
679 					    int batchcount, gfp_t gfp)
680 {
681 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 	struct array_cache *ac = NULL;
683 
684 	ac = kmalloc_node(memsize, gfp, node);
685 	init_arraycache(ac, entries, batchcount);
686 	return ac;
687 }
688 
is_slab_pfmemalloc(struct page * page)689 static inline bool is_slab_pfmemalloc(struct page *page)
690 {
691 	return PageSlabPfmemalloc(page);
692 }
693 
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
recheck_pfmemalloc_active(struct kmem_cache * cachep,struct array_cache * ac)695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 						struct array_cache *ac)
697 {
698 	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 	struct page *page;
700 	unsigned long flags;
701 
702 	if (!pfmemalloc_active)
703 		return;
704 
705 	spin_lock_irqsave(&n->list_lock, flags);
706 	list_for_each_entry(page, &n->slabs_full, lru)
707 		if (is_slab_pfmemalloc(page))
708 			goto out;
709 
710 	list_for_each_entry(page, &n->slabs_partial, lru)
711 		if (is_slab_pfmemalloc(page))
712 			goto out;
713 
714 	list_for_each_entry(page, &n->slabs_free, lru)
715 		if (is_slab_pfmemalloc(page))
716 			goto out;
717 
718 	pfmemalloc_active = false;
719 out:
720 	spin_unlock_irqrestore(&n->list_lock, flags);
721 }
722 
__ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 						gfp_t flags, bool force_refill)
725 {
726 	int i;
727 	void *objp = ac->entry[--ac->avail];
728 
729 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 	if (unlikely(is_obj_pfmemalloc(objp))) {
731 		struct kmem_cache_node *n;
732 
733 		if (gfp_pfmemalloc_allowed(flags)) {
734 			clear_obj_pfmemalloc(&objp);
735 			return objp;
736 		}
737 
738 		/* The caller cannot use PFMEMALLOC objects, find another one */
739 		for (i = 0; i < ac->avail; i++) {
740 			/* If a !PFMEMALLOC object is found, swap them */
741 			if (!is_obj_pfmemalloc(ac->entry[i])) {
742 				objp = ac->entry[i];
743 				ac->entry[i] = ac->entry[ac->avail];
744 				ac->entry[ac->avail] = objp;
745 				return objp;
746 			}
747 		}
748 
749 		/*
750 		 * If there are empty slabs on the slabs_free list and we are
751 		 * being forced to refill the cache, mark this one !pfmemalloc.
752 		 */
753 		n = get_node(cachep, numa_mem_id());
754 		if (!list_empty(&n->slabs_free) && force_refill) {
755 			struct page *page = virt_to_head_page(objp);
756 			ClearPageSlabPfmemalloc(page);
757 			clear_obj_pfmemalloc(&objp);
758 			recheck_pfmemalloc_active(cachep, ac);
759 			return objp;
760 		}
761 
762 		/* No !PFMEMALLOC objects available */
763 		ac->avail++;
764 		objp = NULL;
765 	}
766 
767 	return objp;
768 }
769 
ac_get_obj(struct kmem_cache * cachep,struct array_cache * ac,gfp_t flags,bool force_refill)770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 			struct array_cache *ac, gfp_t flags, bool force_refill)
772 {
773 	void *objp;
774 
775 	if (unlikely(sk_memalloc_socks()))
776 		objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 	else
778 		objp = ac->entry[--ac->avail];
779 
780 	return objp;
781 }
782 
__ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 			struct array_cache *ac, void *objp)
785 {
786 	if (unlikely(pfmemalloc_active)) {
787 		/* Some pfmemalloc slabs exist, check if this is one */
788 		struct page *page = virt_to_head_page(objp);
789 		if (PageSlabPfmemalloc(page))
790 			set_obj_pfmemalloc(&objp);
791 	}
792 
793 	return objp;
794 }
795 
ac_put_obj(struct kmem_cache * cachep,struct array_cache * ac,void * objp)796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 								void *objp)
798 {
799 	if (unlikely(sk_memalloc_socks()))
800 		objp = __ac_put_obj(cachep, ac, objp);
801 
802 	ac->entry[ac->avail++] = objp;
803 }
804 
805 /*
806  * Transfer objects in one arraycache to another.
807  * Locking must be handled by the caller.
808  *
809  * Return the number of entries transferred.
810  */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)811 static int transfer_objects(struct array_cache *to,
812 		struct array_cache *from, unsigned int max)
813 {
814 	/* Figure out how many entries to transfer */
815 	int nr = min3(from->avail, max, to->limit - to->avail);
816 
817 	if (!nr)
818 		return 0;
819 
820 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 			sizeof(void *) *nr);
822 
823 	from->avail -= nr;
824 	to->avail += nr;
825 	return nr;
826 }
827 
828 #ifndef CONFIG_NUMA
829 
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
832 
alloc_alien_cache(int node,int limit,gfp_t gfp)833 static inline struct alien_cache **alloc_alien_cache(int node,
834 						int limit, gfp_t gfp)
835 {
836 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837 }
838 
free_alien_cache(struct alien_cache ** ac_ptr)839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
840 {
841 }
842 
cache_free_alien(struct kmem_cache * cachep,void * objp)843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844 {
845 	return 0;
846 }
847 
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 		gfp_t flags)
850 {
851 	return NULL;
852 }
853 
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 		 gfp_t flags, int nodeid)
856 {
857 	return NULL;
858 }
859 
860 #else	/* CONFIG_NUMA */
861 
862 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864 
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)865 static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 						int batch, gfp_t gfp)
867 {
868 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869 	struct alien_cache *alc = NULL;
870 
871 	alc = kmalloc_node(memsize, gfp, node);
872 	init_arraycache(&alc->ac, entries, batch);
873 	spin_lock_init(&alc->lock);
874 	return alc;
875 }
876 
alloc_alien_cache(int node,int limit,gfp_t gfp)877 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878 {
879 	struct alien_cache **alc_ptr;
880 	size_t memsize = sizeof(void *) * nr_node_ids;
881 	int i;
882 
883 	if (limit > 1)
884 		limit = 12;
885 	alc_ptr = kzalloc_node(memsize, gfp, node);
886 	if (!alc_ptr)
887 		return NULL;
888 
889 	for_each_node(i) {
890 		if (i == node || !node_online(i))
891 			continue;
892 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 		if (!alc_ptr[i]) {
894 			for (i--; i >= 0; i--)
895 				kfree(alc_ptr[i]);
896 			kfree(alc_ptr);
897 			return NULL;
898 		}
899 	}
900 	return alc_ptr;
901 }
902 
free_alien_cache(struct alien_cache ** alc_ptr)903 static void free_alien_cache(struct alien_cache **alc_ptr)
904 {
905 	int i;
906 
907 	if (!alc_ptr)
908 		return;
909 	for_each_node(i)
910 	    kfree(alc_ptr[i]);
911 	kfree(alc_ptr);
912 }
913 
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)914 static void __drain_alien_cache(struct kmem_cache *cachep,
915 				struct array_cache *ac, int node,
916 				struct list_head *list)
917 {
918 	struct kmem_cache_node *n = get_node(cachep, node);
919 
920 	if (ac->avail) {
921 		spin_lock(&n->list_lock);
922 		/*
923 		 * Stuff objects into the remote nodes shared array first.
924 		 * That way we could avoid the overhead of putting the objects
925 		 * into the free lists and getting them back later.
926 		 */
927 		if (n->shared)
928 			transfer_objects(n->shared, ac, ac->limit);
929 
930 		free_block(cachep, ac->entry, ac->avail, node, list);
931 		ac->avail = 0;
932 		spin_unlock(&n->list_lock);
933 	}
934 }
935 
936 /*
937  * Called from cache_reap() to regularly drain alien caches round robin.
938  */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)939 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940 {
941 	int node = __this_cpu_read(slab_reap_node);
942 
943 	if (n->alien) {
944 		struct alien_cache *alc = n->alien[node];
945 		struct array_cache *ac;
946 
947 		if (alc) {
948 			ac = &alc->ac;
949 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 				LIST_HEAD(list);
951 
952 				__drain_alien_cache(cachep, ac, node, &list);
953 				spin_unlock_irq(&alc->lock);
954 				slabs_destroy(cachep, &list);
955 			}
956 		}
957 	}
958 }
959 
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)960 static void drain_alien_cache(struct kmem_cache *cachep,
961 				struct alien_cache **alien)
962 {
963 	int i = 0;
964 	struct alien_cache *alc;
965 	struct array_cache *ac;
966 	unsigned long flags;
967 
968 	for_each_online_node(i) {
969 		alc = alien[i];
970 		if (alc) {
971 			LIST_HEAD(list);
972 
973 			ac = &alc->ac;
974 			spin_lock_irqsave(&alc->lock, flags);
975 			__drain_alien_cache(cachep, ac, i, &list);
976 			spin_unlock_irqrestore(&alc->lock, flags);
977 			slabs_destroy(cachep, &list);
978 		}
979 	}
980 }
981 
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int page_node)982 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 				int node, int page_node)
984 {
985 	struct kmem_cache_node *n;
986 	struct alien_cache *alien = NULL;
987 	struct array_cache *ac;
988 	LIST_HEAD(list);
989 
990 	n = get_node(cachep, node);
991 	STATS_INC_NODEFREES(cachep);
992 	if (n->alien && n->alien[page_node]) {
993 		alien = n->alien[page_node];
994 		ac = &alien->ac;
995 		spin_lock(&alien->lock);
996 		if (unlikely(ac->avail == ac->limit)) {
997 			STATS_INC_ACOVERFLOW(cachep);
998 			__drain_alien_cache(cachep, ac, page_node, &list);
999 		}
1000 		ac_put_obj(cachep, ac, objp);
1001 		spin_unlock(&alien->lock);
1002 		slabs_destroy(cachep, &list);
1003 	} else {
1004 		n = get_node(cachep, page_node);
1005 		spin_lock(&n->list_lock);
1006 		free_block(cachep, &objp, 1, page_node, &list);
1007 		spin_unlock(&n->list_lock);
1008 		slabs_destroy(cachep, &list);
1009 	}
1010 	return 1;
1011 }
1012 
cache_free_alien(struct kmem_cache * cachep,void * objp)1013 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014 {
1015 	int page_node = page_to_nid(virt_to_page(objp));
1016 	int node = numa_mem_id();
1017 	/*
1018 	 * Make sure we are not freeing a object from another node to the array
1019 	 * cache on this cpu.
1020 	 */
1021 	if (likely(node == page_node))
1022 		return 0;
1023 
1024 	return __cache_free_alien(cachep, objp, node, page_node);
1025 }
1026 #endif
1027 
1028 /*
1029  * Allocates and initializes node for a node on each slab cache, used for
1030  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1031  * will be allocated off-node since memory is not yet online for the new node.
1032  * When hotplugging memory or a cpu, existing node are not replaced if
1033  * already in use.
1034  *
1035  * Must hold slab_mutex.
1036  */
init_cache_node_node(int node)1037 static int init_cache_node_node(int node)
1038 {
1039 	struct kmem_cache *cachep;
1040 	struct kmem_cache_node *n;
1041 	const size_t memsize = sizeof(struct kmem_cache_node);
1042 
1043 	list_for_each_entry(cachep, &slab_caches, list) {
1044 		/*
1045 		 * Set up the kmem_cache_node for cpu before we can
1046 		 * begin anything. Make sure some other cpu on this
1047 		 * node has not already allocated this
1048 		 */
1049 		n = get_node(cachep, node);
1050 		if (!n) {
1051 			n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 			if (!n)
1053 				return -ENOMEM;
1054 			kmem_cache_node_init(n);
1055 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057 
1058 			/*
1059 			 * The kmem_cache_nodes don't come and go as CPUs
1060 			 * come and go.  slab_mutex is sufficient
1061 			 * protection here.
1062 			 */
1063 			cachep->node[node] = n;
1064 		}
1065 
1066 		spin_lock_irq(&n->list_lock);
1067 		n->free_limit =
1068 			(1 + nr_cpus_node(node)) *
1069 			cachep->batchcount + cachep->num;
1070 		spin_unlock_irq(&n->list_lock);
1071 	}
1072 	return 0;
1073 }
1074 
slabs_tofree(struct kmem_cache * cachep,struct kmem_cache_node * n)1075 static inline int slabs_tofree(struct kmem_cache *cachep,
1076 						struct kmem_cache_node *n)
1077 {
1078 	return (n->free_objects + cachep->num - 1) / cachep->num;
1079 }
1080 
cpuup_canceled(long cpu)1081 static void cpuup_canceled(long cpu)
1082 {
1083 	struct kmem_cache *cachep;
1084 	struct kmem_cache_node *n = NULL;
1085 	int node = cpu_to_mem(cpu);
1086 	const struct cpumask *mask = cpumask_of_node(node);
1087 
1088 	list_for_each_entry(cachep, &slab_caches, list) {
1089 		struct array_cache *nc;
1090 		struct array_cache *shared;
1091 		struct alien_cache **alien;
1092 		LIST_HEAD(list);
1093 
1094 		n = get_node(cachep, node);
1095 		if (!n)
1096 			continue;
1097 
1098 		spin_lock_irq(&n->list_lock);
1099 
1100 		/* Free limit for this kmem_cache_node */
1101 		n->free_limit -= cachep->batchcount;
1102 
1103 		/* cpu is dead; no one can alloc from it. */
1104 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 		if (nc) {
1106 			free_block(cachep, nc->entry, nc->avail, node, &list);
1107 			nc->avail = 0;
1108 		}
1109 
1110 		if (!cpumask_empty(mask)) {
1111 			spin_unlock_irq(&n->list_lock);
1112 			goto free_slab;
1113 		}
1114 
1115 		shared = n->shared;
1116 		if (shared) {
1117 			free_block(cachep, shared->entry,
1118 				   shared->avail, node, &list);
1119 			n->shared = NULL;
1120 		}
1121 
1122 		alien = n->alien;
1123 		n->alien = NULL;
1124 
1125 		spin_unlock_irq(&n->list_lock);
1126 
1127 		kfree(shared);
1128 		if (alien) {
1129 			drain_alien_cache(cachep, alien);
1130 			free_alien_cache(alien);
1131 		}
1132 
1133 free_slab:
1134 		slabs_destroy(cachep, &list);
1135 	}
1136 	/*
1137 	 * In the previous loop, all the objects were freed to
1138 	 * the respective cache's slabs,  now we can go ahead and
1139 	 * shrink each nodelist to its limit.
1140 	 */
1141 	list_for_each_entry(cachep, &slab_caches, list) {
1142 		n = get_node(cachep, node);
1143 		if (!n)
1144 			continue;
1145 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 	}
1147 }
1148 
cpuup_prepare(long cpu)1149 static int cpuup_prepare(long cpu)
1150 {
1151 	struct kmem_cache *cachep;
1152 	struct kmem_cache_node *n = NULL;
1153 	int node = cpu_to_mem(cpu);
1154 	int err;
1155 
1156 	/*
1157 	 * We need to do this right in the beginning since
1158 	 * alloc_arraycache's are going to use this list.
1159 	 * kmalloc_node allows us to add the slab to the right
1160 	 * kmem_cache_node and not this cpu's kmem_cache_node
1161 	 */
1162 	err = init_cache_node_node(node);
1163 	if (err < 0)
1164 		goto bad;
1165 
1166 	/*
1167 	 * Now we can go ahead with allocating the shared arrays and
1168 	 * array caches
1169 	 */
1170 	list_for_each_entry(cachep, &slab_caches, list) {
1171 		struct array_cache *shared = NULL;
1172 		struct alien_cache **alien = NULL;
1173 
1174 		if (cachep->shared) {
1175 			shared = alloc_arraycache(node,
1176 				cachep->shared * cachep->batchcount,
1177 				0xbaadf00d, GFP_KERNEL);
1178 			if (!shared)
1179 				goto bad;
1180 		}
1181 		if (use_alien_caches) {
1182 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 			if (!alien) {
1184 				kfree(shared);
1185 				goto bad;
1186 			}
1187 		}
1188 		n = get_node(cachep, node);
1189 		BUG_ON(!n);
1190 
1191 		spin_lock_irq(&n->list_lock);
1192 		if (!n->shared) {
1193 			/*
1194 			 * We are serialised from CPU_DEAD or
1195 			 * CPU_UP_CANCELLED by the cpucontrol lock
1196 			 */
1197 			n->shared = shared;
1198 			shared = NULL;
1199 		}
1200 #ifdef CONFIG_NUMA
1201 		if (!n->alien) {
1202 			n->alien = alien;
1203 			alien = NULL;
1204 		}
1205 #endif
1206 		spin_unlock_irq(&n->list_lock);
1207 		kfree(shared);
1208 		free_alien_cache(alien);
1209 	}
1210 
1211 	return 0;
1212 bad:
1213 	cpuup_canceled(cpu);
1214 	return -ENOMEM;
1215 }
1216 
cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1217 static int cpuup_callback(struct notifier_block *nfb,
1218 				    unsigned long action, void *hcpu)
1219 {
1220 	long cpu = (long)hcpu;
1221 	int err = 0;
1222 
1223 	switch (action) {
1224 	case CPU_UP_PREPARE:
1225 	case CPU_UP_PREPARE_FROZEN:
1226 		mutex_lock(&slab_mutex);
1227 		err = cpuup_prepare(cpu);
1228 		mutex_unlock(&slab_mutex);
1229 		break;
1230 	case CPU_ONLINE:
1231 	case CPU_ONLINE_FROZEN:
1232 		start_cpu_timer(cpu);
1233 		break;
1234 #ifdef CONFIG_HOTPLUG_CPU
1235   	case CPU_DOWN_PREPARE:
1236   	case CPU_DOWN_PREPARE_FROZEN:
1237 		/*
1238 		 * Shutdown cache reaper. Note that the slab_mutex is
1239 		 * held so that if cache_reap() is invoked it cannot do
1240 		 * anything expensive but will only modify reap_work
1241 		 * and reschedule the timer.
1242 		*/
1243 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244 		/* Now the cache_reaper is guaranteed to be not running. */
1245 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1246   		break;
1247   	case CPU_DOWN_FAILED:
1248   	case CPU_DOWN_FAILED_FROZEN:
1249 		start_cpu_timer(cpu);
1250   		break;
1251 	case CPU_DEAD:
1252 	case CPU_DEAD_FROZEN:
1253 		/*
1254 		 * Even if all the cpus of a node are down, we don't free the
1255 		 * kmem_cache_node of any cache. This to avoid a race between
1256 		 * cpu_down, and a kmalloc allocation from another cpu for
1257 		 * memory from the node of the cpu going down.  The node
1258 		 * structure is usually allocated from kmem_cache_create() and
1259 		 * gets destroyed at kmem_cache_destroy().
1260 		 */
1261 		/* fall through */
1262 #endif
1263 	case CPU_UP_CANCELED:
1264 	case CPU_UP_CANCELED_FROZEN:
1265 		mutex_lock(&slab_mutex);
1266 		cpuup_canceled(cpu);
1267 		mutex_unlock(&slab_mutex);
1268 		break;
1269 	}
1270 	return notifier_from_errno(err);
1271 }
1272 
1273 static struct notifier_block cpucache_notifier = {
1274 	&cpuup_callback, NULL, 0
1275 };
1276 
1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278 /*
1279  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280  * Returns -EBUSY if all objects cannot be drained so that the node is not
1281  * removed.
1282  *
1283  * Must hold slab_mutex.
1284  */
drain_cache_node_node(int node)1285 static int __meminit drain_cache_node_node(int node)
1286 {
1287 	struct kmem_cache *cachep;
1288 	int ret = 0;
1289 
1290 	list_for_each_entry(cachep, &slab_caches, list) {
1291 		struct kmem_cache_node *n;
1292 
1293 		n = get_node(cachep, node);
1294 		if (!n)
1295 			continue;
1296 
1297 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298 
1299 		if (!list_empty(&n->slabs_full) ||
1300 		    !list_empty(&n->slabs_partial)) {
1301 			ret = -EBUSY;
1302 			break;
1303 		}
1304 	}
1305 	return ret;
1306 }
1307 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1308 static int __meminit slab_memory_callback(struct notifier_block *self,
1309 					unsigned long action, void *arg)
1310 {
1311 	struct memory_notify *mnb = arg;
1312 	int ret = 0;
1313 	int nid;
1314 
1315 	nid = mnb->status_change_nid;
1316 	if (nid < 0)
1317 		goto out;
1318 
1319 	switch (action) {
1320 	case MEM_GOING_ONLINE:
1321 		mutex_lock(&slab_mutex);
1322 		ret = init_cache_node_node(nid);
1323 		mutex_unlock(&slab_mutex);
1324 		break;
1325 	case MEM_GOING_OFFLINE:
1326 		mutex_lock(&slab_mutex);
1327 		ret = drain_cache_node_node(nid);
1328 		mutex_unlock(&slab_mutex);
1329 		break;
1330 	case MEM_ONLINE:
1331 	case MEM_OFFLINE:
1332 	case MEM_CANCEL_ONLINE:
1333 	case MEM_CANCEL_OFFLINE:
1334 		break;
1335 	}
1336 out:
1337 	return notifier_from_errno(ret);
1338 }
1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1340 
1341 /*
1342  * swap the static kmem_cache_node with kmalloced memory
1343  */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1344 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345 				int nodeid)
1346 {
1347 	struct kmem_cache_node *ptr;
1348 
1349 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 	BUG_ON(!ptr);
1351 
1352 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353 	/*
1354 	 * Do not assume that spinlocks can be initialized via memcpy:
1355 	 */
1356 	spin_lock_init(&ptr->list_lock);
1357 
1358 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359 	cachep->node[nodeid] = ptr;
1360 }
1361 
1362 /*
1363  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364  * size of kmem_cache_node.
1365  */
set_up_node(struct kmem_cache * cachep,int index)1366 static void __init set_up_node(struct kmem_cache *cachep, int index)
1367 {
1368 	int node;
1369 
1370 	for_each_online_node(node) {
1371 		cachep->node[node] = &init_kmem_cache_node[index + node];
1372 		cachep->node[node]->next_reap = jiffies +
1373 		    REAPTIMEOUT_NODE +
1374 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375 	}
1376 }
1377 
1378 /*
1379  * Initialisation.  Called after the page allocator have been initialised and
1380  * before smp_init().
1381  */
kmem_cache_init(void)1382 void __init kmem_cache_init(void)
1383 {
1384 	int i;
1385 
1386 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 					sizeof(struct rcu_head));
1388 	kmem_cache = &kmem_cache_boot;
1389 
1390 	if (num_possible_nodes() == 1)
1391 		use_alien_caches = 0;
1392 
1393 	for (i = 0; i < NUM_INIT_LISTS; i++)
1394 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1395 
1396 	/*
1397 	 * Fragmentation resistance on low memory - only use bigger
1398 	 * page orders on machines with more than 32MB of memory if
1399 	 * not overridden on the command line.
1400 	 */
1401 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 		slab_max_order = SLAB_MAX_ORDER_HI;
1403 
1404 	/* Bootstrap is tricky, because several objects are allocated
1405 	 * from caches that do not exist yet:
1406 	 * 1) initialize the kmem_cache cache: it contains the struct
1407 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1408 	 *    kmem_cache is statically allocated.
1409 	 *    Initially an __init data area is used for the head array and the
1410 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1411 	 *    array at the end of the bootstrap.
1412 	 * 2) Create the first kmalloc cache.
1413 	 *    The struct kmem_cache for the new cache is allocated normally.
1414 	 *    An __init data area is used for the head array.
1415 	 * 3) Create the remaining kmalloc caches, with minimally sized
1416 	 *    head arrays.
1417 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1418 	 *    kmalloc cache with kmalloc allocated arrays.
1419 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 	 *    the other cache's with kmalloc allocated memory.
1421 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1422 	 */
1423 
1424 	/* 1) create the kmem_cache */
1425 
1426 	/*
1427 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1428 	 */
1429 	create_boot_cache(kmem_cache, "kmem_cache",
1430 		offsetof(struct kmem_cache, node) +
1431 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1432 				  SLAB_HWCACHE_ALIGN);
1433 	list_add(&kmem_cache->list, &slab_caches);
1434 	slab_state = PARTIAL;
1435 
1436 	/*
1437 	 * Initialize the caches that provide memory for the  kmem_cache_node
1438 	 * structures first.  Without this, further allocations will bug.
1439 	 */
1440 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442 	slab_state = PARTIAL_NODE;
1443 
1444 	slab_early_init = 0;
1445 
1446 	/* 5) Replace the bootstrap kmem_cache_node */
1447 	{
1448 		int nid;
1449 
1450 		for_each_online_node(nid) {
1451 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452 
1453 			init_list(kmalloc_caches[INDEX_NODE],
1454 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455 		}
1456 	}
1457 
1458 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459 }
1460 
kmem_cache_init_late(void)1461 void __init kmem_cache_init_late(void)
1462 {
1463 	struct kmem_cache *cachep;
1464 
1465 	slab_state = UP;
1466 
1467 	/* 6) resize the head arrays to their final sizes */
1468 	mutex_lock(&slab_mutex);
1469 	list_for_each_entry(cachep, &slab_caches, list)
1470 		if (enable_cpucache(cachep, GFP_NOWAIT))
1471 			BUG();
1472 	mutex_unlock(&slab_mutex);
1473 
1474 	/* Done! */
1475 	slab_state = FULL;
1476 
1477 	/*
1478 	 * Register a cpu startup notifier callback that initializes
1479 	 * cpu_cache_get for all new cpus
1480 	 */
1481 	register_cpu_notifier(&cpucache_notifier);
1482 
1483 #ifdef CONFIG_NUMA
1484 	/*
1485 	 * Register a memory hotplug callback that initializes and frees
1486 	 * node.
1487 	 */
1488 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489 #endif
1490 
1491 	/*
1492 	 * The reap timers are started later, with a module init call: That part
1493 	 * of the kernel is not yet operational.
1494 	 */
1495 }
1496 
cpucache_init(void)1497 static int __init cpucache_init(void)
1498 {
1499 	int cpu;
1500 
1501 	/*
1502 	 * Register the timers that return unneeded pages to the page allocator
1503 	 */
1504 	for_each_online_cpu(cpu)
1505 		start_cpu_timer(cpu);
1506 
1507 	/* Done! */
1508 	slab_state = FULL;
1509 	return 0;
1510 }
1511 __initcall(cpucache_init);
1512 
1513 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1514 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515 {
1516 #if DEBUG
1517 	struct kmem_cache_node *n;
1518 	struct page *page;
1519 	unsigned long flags;
1520 	int node;
1521 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 				      DEFAULT_RATELIMIT_BURST);
1523 
1524 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 		return;
1526 
1527 	printk(KERN_WARNING
1528 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 		nodeid, gfpflags);
1530 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1531 		cachep->name, cachep->size, cachep->gfporder);
1532 
1533 	for_each_kmem_cache_node(cachep, node, n) {
1534 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 		unsigned long active_slabs = 0, num_slabs = 0;
1536 
1537 		spin_lock_irqsave(&n->list_lock, flags);
1538 		list_for_each_entry(page, &n->slabs_full, lru) {
1539 			active_objs += cachep->num;
1540 			active_slabs++;
1541 		}
1542 		list_for_each_entry(page, &n->slabs_partial, lru) {
1543 			active_objs += page->active;
1544 			active_slabs++;
1545 		}
1546 		list_for_each_entry(page, &n->slabs_free, lru)
1547 			num_slabs++;
1548 
1549 		free_objects += n->free_objects;
1550 		spin_unlock_irqrestore(&n->list_lock, flags);
1551 
1552 		num_slabs += active_slabs;
1553 		num_objs = num_slabs * cachep->num;
1554 		printk(KERN_WARNING
1555 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 			node, active_slabs, num_slabs, active_objs, num_objs,
1557 			free_objects);
1558 	}
1559 #endif
1560 }
1561 
1562 /*
1563  * Interface to system's page allocator. No need to hold the
1564  * kmem_cache_node ->list_lock.
1565  *
1566  * If we requested dmaable memory, we will get it. Even if we
1567  * did not request dmaable memory, we might get it, but that
1568  * would be relatively rare and ignorable.
1569  */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1570 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 								int nodeid)
1572 {
1573 	struct page *page;
1574 	int nr_pages;
1575 
1576 	flags |= cachep->allocflags;
1577 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 		flags |= __GFP_RECLAIMABLE;
1579 
1580 	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 		return NULL;
1582 
1583 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 	if (!page) {
1585 		memcg_uncharge_slab(cachep, cachep->gfporder);
1586 		slab_out_of_memory(cachep, flags, nodeid);
1587 		return NULL;
1588 	}
1589 
1590 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 	if (unlikely(page->pfmemalloc))
1592 		pfmemalloc_active = true;
1593 
1594 	nr_pages = (1 << cachep->gfporder);
1595 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 		add_zone_page_state(page_zone(page),
1597 			NR_SLAB_RECLAIMABLE, nr_pages);
1598 	else
1599 		add_zone_page_state(page_zone(page),
1600 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 	__SetPageSlab(page);
1602 	if (page->pfmemalloc)
1603 		SetPageSlabPfmemalloc(page);
1604 
1605 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607 
1608 		if (cachep->ctor)
1609 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 		else
1611 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1612 	}
1613 
1614 	return page;
1615 }
1616 
1617 /*
1618  * Interface to system's page release.
1619  */
kmem_freepages(struct kmem_cache * cachep,struct page * page)1620 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1621 {
1622 	const unsigned long nr_freed = (1 << cachep->gfporder);
1623 
1624 	kmemcheck_free_shadow(page, cachep->gfporder);
1625 
1626 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 		sub_zone_page_state(page_zone(page),
1628 				NR_SLAB_RECLAIMABLE, nr_freed);
1629 	else
1630 		sub_zone_page_state(page_zone(page),
1631 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1632 
1633 	BUG_ON(!PageSlab(page));
1634 	__ClearPageSlabPfmemalloc(page);
1635 	__ClearPageSlab(page);
1636 	page_mapcount_reset(page);
1637 	page->mapping = NULL;
1638 
1639 	if (current->reclaim_state)
1640 		current->reclaim_state->reclaimed_slab += nr_freed;
1641 	__free_pages(page, cachep->gfporder);
1642 	memcg_uncharge_slab(cachep, cachep->gfporder);
1643 }
1644 
kmem_rcu_free(struct rcu_head * head)1645 static void kmem_rcu_free(struct rcu_head *head)
1646 {
1647 	struct kmem_cache *cachep;
1648 	struct page *page;
1649 
1650 	page = container_of(head, struct page, rcu_head);
1651 	cachep = page->slab_cache;
1652 
1653 	kmem_freepages(cachep, page);
1654 }
1655 
1656 #if DEBUG
1657 
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
store_stackinfo(struct kmem_cache * cachep,unsigned long * addr,unsigned long caller)1659 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660 			    unsigned long caller)
1661 {
1662 	int size = cachep->object_size;
1663 
1664 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1665 
1666 	if (size < 5 * sizeof(unsigned long))
1667 		return;
1668 
1669 	*addr++ = 0x12345678;
1670 	*addr++ = caller;
1671 	*addr++ = smp_processor_id();
1672 	size -= 3 * sizeof(unsigned long);
1673 	{
1674 		unsigned long *sptr = &caller;
1675 		unsigned long svalue;
1676 
1677 		while (!kstack_end(sptr)) {
1678 			svalue = *sptr++;
1679 			if (kernel_text_address(svalue)) {
1680 				*addr++ = svalue;
1681 				size -= sizeof(unsigned long);
1682 				if (size <= sizeof(unsigned long))
1683 					break;
1684 			}
1685 		}
1686 
1687 	}
1688 	*addr++ = 0x87654321;
1689 }
1690 #endif
1691 
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1692 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1693 {
1694 	int size = cachep->object_size;
1695 	addr = &((char *)addr)[obj_offset(cachep)];
1696 
1697 	memset(addr, val, size);
1698 	*(unsigned char *)(addr + size - 1) = POISON_END;
1699 }
1700 
dump_line(char * data,int offset,int limit)1701 static void dump_line(char *data, int offset, int limit)
1702 {
1703 	int i;
1704 	unsigned char error = 0;
1705 	int bad_count = 0;
1706 
1707 	printk(KERN_ERR "%03x: ", offset);
1708 	for (i = 0; i < limit; i++) {
1709 		if (data[offset + i] != POISON_FREE) {
1710 			error = data[offset + i];
1711 			bad_count++;
1712 		}
1713 	}
1714 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 			&data[offset], limit, 1);
1716 
1717 	if (bad_count == 1) {
1718 		error ^= POISON_FREE;
1719 		if (!(error & (error - 1))) {
1720 			printk(KERN_ERR "Single bit error detected. Probably "
1721 					"bad RAM.\n");
1722 #ifdef CONFIG_X86
1723 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 					"test tool.\n");
1725 #else
1726 			printk(KERN_ERR "Run a memory test tool.\n");
1727 #endif
1728 		}
1729 	}
1730 }
1731 #endif
1732 
1733 #if DEBUG
1734 
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1735 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1736 {
1737 	int i, size;
1738 	char *realobj;
1739 
1740 	if (cachep->flags & SLAB_RED_ZONE) {
1741 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742 			*dbg_redzone1(cachep, objp),
1743 			*dbg_redzone2(cachep, objp));
1744 	}
1745 
1746 	if (cachep->flags & SLAB_STORE_USER) {
1747 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 		       *dbg_userword(cachep, objp),
1749 		       *dbg_userword(cachep, objp));
1750 	}
1751 	realobj = (char *)objp + obj_offset(cachep);
1752 	size = cachep->object_size;
1753 	for (i = 0; i < size && lines; i += 16, lines--) {
1754 		int limit;
1755 		limit = 16;
1756 		if (i + limit > size)
1757 			limit = size - i;
1758 		dump_line(realobj, i, limit);
1759 	}
1760 }
1761 
check_poison_obj(struct kmem_cache * cachep,void * objp)1762 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1763 {
1764 	char *realobj;
1765 	int size, i;
1766 	int lines = 0;
1767 
1768 	realobj = (char *)objp + obj_offset(cachep);
1769 	size = cachep->object_size;
1770 
1771 	for (i = 0; i < size; i++) {
1772 		char exp = POISON_FREE;
1773 		if (i == size - 1)
1774 			exp = POISON_END;
1775 		if (realobj[i] != exp) {
1776 			int limit;
1777 			/* Mismatch ! */
1778 			/* Print header */
1779 			if (lines == 0) {
1780 				printk(KERN_ERR
1781 					"Slab corruption (%s): %s start=%p, len=%d\n",
1782 					print_tainted(), cachep->name, realobj, size);
1783 				print_objinfo(cachep, objp, 0);
1784 			}
1785 			/* Hexdump the affected line */
1786 			i = (i / 16) * 16;
1787 			limit = 16;
1788 			if (i + limit > size)
1789 				limit = size - i;
1790 			dump_line(realobj, i, limit);
1791 			i += 16;
1792 			lines++;
1793 			/* Limit to 5 lines */
1794 			if (lines > 5)
1795 				break;
1796 		}
1797 	}
1798 	if (lines != 0) {
1799 		/* Print some data about the neighboring objects, if they
1800 		 * exist:
1801 		 */
1802 		struct page *page = virt_to_head_page(objp);
1803 		unsigned int objnr;
1804 
1805 		objnr = obj_to_index(cachep, page, objp);
1806 		if (objnr) {
1807 			objp = index_to_obj(cachep, page, objnr - 1);
1808 			realobj = (char *)objp + obj_offset(cachep);
1809 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810 			       realobj, size);
1811 			print_objinfo(cachep, objp, 2);
1812 		}
1813 		if (objnr + 1 < cachep->num) {
1814 			objp = index_to_obj(cachep, page, objnr + 1);
1815 			realobj = (char *)objp + obj_offset(cachep);
1816 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817 			       realobj, size);
1818 			print_objinfo(cachep, objp, 2);
1819 		}
1820 	}
1821 }
1822 #endif
1823 
1824 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1825 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 						struct page *page)
1827 {
1828 	int i;
1829 	for (i = 0; i < cachep->num; i++) {
1830 		void *objp = index_to_obj(cachep, page, i);
1831 
1832 		if (cachep->flags & SLAB_POISON) {
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834 			if (cachep->size % PAGE_SIZE == 0 &&
1835 					OFF_SLAB(cachep))
1836 				kernel_map_pages(virt_to_page(objp),
1837 					cachep->size / PAGE_SIZE, 1);
1838 			else
1839 				check_poison_obj(cachep, objp);
1840 #else
1841 			check_poison_obj(cachep, objp);
1842 #endif
1843 		}
1844 		if (cachep->flags & SLAB_RED_ZONE) {
1845 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 				slab_error(cachep, "start of a freed object "
1847 					   "was overwritten");
1848 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 				slab_error(cachep, "end of a freed object "
1850 					   "was overwritten");
1851 		}
1852 	}
1853 }
1854 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1855 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 						struct page *page)
1857 {
1858 }
1859 #endif
1860 
1861 /**
1862  * slab_destroy - destroy and release all objects in a slab
1863  * @cachep: cache pointer being destroyed
1864  * @page: page pointer being destroyed
1865  *
1866  * Destroy all the objs in a slab page, and release the mem back to the system.
1867  * Before calling the slab page must have been unlinked from the cache. The
1868  * kmem_cache_node ->list_lock is not held/needed.
1869  */
slab_destroy(struct kmem_cache * cachep,struct page * page)1870 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871 {
1872 	void *freelist;
1873 
1874 	freelist = page->freelist;
1875 	slab_destroy_debugcheck(cachep, page);
1876 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 		struct rcu_head *head;
1878 
1879 		/*
1880 		 * RCU free overloads the RCU head over the LRU.
1881 		 * slab_page has been overloeaded over the LRU,
1882 		 * however it is not used from now on so that
1883 		 * we can use it safely.
1884 		 */
1885 		head = (void *)&page->rcu_head;
1886 		call_rcu(head, kmem_rcu_free);
1887 
1888 	} else {
1889 		kmem_freepages(cachep, page);
1890 	}
1891 
1892 	/*
1893 	 * From now on, we don't use freelist
1894 	 * although actual page can be freed in rcu context
1895 	 */
1896 	if (OFF_SLAB(cachep))
1897 		kmem_cache_free(cachep->freelist_cache, freelist);
1898 }
1899 
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1900 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901 {
1902 	struct page *page, *n;
1903 
1904 	list_for_each_entry_safe(page, n, list, lru) {
1905 		list_del(&page->lru);
1906 		slab_destroy(cachep, page);
1907 	}
1908 }
1909 
1910 /**
1911  * calculate_slab_order - calculate size (page order) of slabs
1912  * @cachep: pointer to the cache that is being created
1913  * @size: size of objects to be created in this cache.
1914  * @align: required alignment for the objects.
1915  * @flags: slab allocation flags
1916  *
1917  * Also calculates the number of objects per slab.
1918  *
1919  * This could be made much more intelligent.  For now, try to avoid using
1920  * high order pages for slabs.  When the gfp() functions are more friendly
1921  * towards high-order requests, this should be changed.
1922  */
calculate_slab_order(struct kmem_cache * cachep,size_t size,size_t align,unsigned long flags)1923 static size_t calculate_slab_order(struct kmem_cache *cachep,
1924 			size_t size, size_t align, unsigned long flags)
1925 {
1926 	unsigned long offslab_limit;
1927 	size_t left_over = 0;
1928 	int gfporder;
1929 
1930 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 		unsigned int num;
1932 		size_t remainder;
1933 
1934 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 		if (!num)
1936 			continue;
1937 
1938 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 		if (num > SLAB_OBJ_MAX_NUM)
1940 			break;
1941 
1942 		if (flags & CFLGS_OFF_SLAB) {
1943 			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944 			/*
1945 			 * Max number of objs-per-slab for caches which
1946 			 * use off-slab slabs. Needed to avoid a possible
1947 			 * looping condition in cache_grow().
1948 			 */
1949 			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 				freelist_size_per_obj += sizeof(char);
1951 			offslab_limit = size;
1952 			offslab_limit /= freelist_size_per_obj;
1953 
1954  			if (num > offslab_limit)
1955 				break;
1956 		}
1957 
1958 		/* Found something acceptable - save it away */
1959 		cachep->num = num;
1960 		cachep->gfporder = gfporder;
1961 		left_over = remainder;
1962 
1963 		/*
1964 		 * A VFS-reclaimable slab tends to have most allocations
1965 		 * as GFP_NOFS and we really don't want to have to be allocating
1966 		 * higher-order pages when we are unable to shrink dcache.
1967 		 */
1968 		if (flags & SLAB_RECLAIM_ACCOUNT)
1969 			break;
1970 
1971 		/*
1972 		 * Large number of objects is good, but very large slabs are
1973 		 * currently bad for the gfp()s.
1974 		 */
1975 		if (gfporder >= slab_max_order)
1976 			break;
1977 
1978 		/*
1979 		 * Acceptable internal fragmentation?
1980 		 */
1981 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 			break;
1983 	}
1984 	return left_over;
1985 }
1986 
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)1987 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 		struct kmem_cache *cachep, int entries, int batchcount)
1989 {
1990 	int cpu;
1991 	size_t size;
1992 	struct array_cache __percpu *cpu_cache;
1993 
1994 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1995 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1996 
1997 	if (!cpu_cache)
1998 		return NULL;
1999 
2000 	for_each_possible_cpu(cpu) {
2001 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 				entries, batchcount);
2003 	}
2004 
2005 	return cpu_cache;
2006 }
2007 
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)2008 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009 {
2010 	if (slab_state >= FULL)
2011 		return enable_cpucache(cachep, gfp);
2012 
2013 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 	if (!cachep->cpu_cache)
2015 		return 1;
2016 
2017 	if (slab_state == DOWN) {
2018 		/* Creation of first cache (kmem_cache). */
2019 		set_up_node(kmem_cache, CACHE_CACHE);
2020 	} else if (slab_state == PARTIAL) {
2021 		/* For kmem_cache_node */
2022 		set_up_node(cachep, SIZE_NODE);
2023 	} else {
2024 		int node;
2025 
2026 		for_each_online_node(node) {
2027 			cachep->node[node] = kmalloc_node(
2028 				sizeof(struct kmem_cache_node), gfp, node);
2029 			BUG_ON(!cachep->node[node]);
2030 			kmem_cache_node_init(cachep->node[node]);
2031 		}
2032 	}
2033 
2034 	cachep->node[numa_mem_id()]->next_reap =
2035 			jiffies + REAPTIMEOUT_NODE +
2036 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037 
2038 	cpu_cache_get(cachep)->avail = 0;
2039 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 	cpu_cache_get(cachep)->batchcount = 1;
2041 	cpu_cache_get(cachep)->touched = 0;
2042 	cachep->batchcount = 1;
2043 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 	return 0;
2045 }
2046 
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))2047 unsigned long kmem_cache_flags(unsigned long object_size,
2048 	unsigned long flags, const char *name,
2049 	void (*ctor)(void *))
2050 {
2051 	return flags;
2052 }
2053 
2054 struct kmem_cache *
__kmem_cache_alias(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))2055 __kmem_cache_alias(const char *name, size_t size, size_t align,
2056 		   unsigned long flags, void (*ctor)(void *))
2057 {
2058 	struct kmem_cache *cachep;
2059 
2060 	cachep = find_mergeable(size, align, flags, name, ctor);
2061 	if (cachep) {
2062 		cachep->refcount++;
2063 
2064 		/*
2065 		 * Adjust the object sizes so that we clear
2066 		 * the complete object on kzalloc.
2067 		 */
2068 		cachep->object_size = max_t(int, cachep->object_size, size);
2069 	}
2070 	return cachep;
2071 }
2072 
2073 /**
2074  * __kmem_cache_create - Create a cache.
2075  * @cachep: cache management descriptor
2076  * @flags: SLAB flags
2077  *
2078  * Returns a ptr to the cache on success, NULL on failure.
2079  * Cannot be called within a int, but can be interrupted.
2080  * The @ctor is run when new pages are allocated by the cache.
2081  *
2082  * The flags are
2083  *
2084  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085  * to catch references to uninitialised memory.
2086  *
2087  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088  * for buffer overruns.
2089  *
2090  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091  * cacheline.  This can be beneficial if you're counting cycles as closely
2092  * as davem.
2093  */
2094 int
__kmem_cache_create(struct kmem_cache * cachep,unsigned long flags)2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096 {
2097 	size_t left_over, freelist_size;
2098 	size_t ralign = BYTES_PER_WORD;
2099 	gfp_t gfp;
2100 	int err;
2101 	size_t size = cachep->size;
2102 
2103 #if DEBUG
2104 #if FORCED_DEBUG
2105 	/*
2106 	 * Enable redzoning and last user accounting, except for caches with
2107 	 * large objects, if the increased size would increase the object size
2108 	 * above the next power of two: caches with object sizes just above a
2109 	 * power of two have a significant amount of internal fragmentation.
2110 	 */
2111 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 						2 * sizeof(unsigned long long)))
2113 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114 	if (!(flags & SLAB_DESTROY_BY_RCU))
2115 		flags |= SLAB_POISON;
2116 #endif
2117 	if (flags & SLAB_DESTROY_BY_RCU)
2118 		BUG_ON(flags & SLAB_POISON);
2119 #endif
2120 
2121 	/*
2122 	 * Check that size is in terms of words.  This is needed to avoid
2123 	 * unaligned accesses for some archs when redzoning is used, and makes
2124 	 * sure any on-slab bufctl's are also correctly aligned.
2125 	 */
2126 	if (size & (BYTES_PER_WORD - 1)) {
2127 		size += (BYTES_PER_WORD - 1);
2128 		size &= ~(BYTES_PER_WORD - 1);
2129 	}
2130 
2131 	if (flags & SLAB_RED_ZONE) {
2132 		ralign = REDZONE_ALIGN;
2133 		/* If redzoning, ensure that the second redzone is suitably
2134 		 * aligned, by adjusting the object size accordingly. */
2135 		size += REDZONE_ALIGN - 1;
2136 		size &= ~(REDZONE_ALIGN - 1);
2137 	}
2138 
2139 	/* 3) caller mandated alignment */
2140 	if (ralign < cachep->align) {
2141 		ralign = cachep->align;
2142 	}
2143 	/* disable debug if necessary */
2144 	if (ralign > __alignof__(unsigned long long))
2145 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2146 	/*
2147 	 * 4) Store it.
2148 	 */
2149 	cachep->align = ralign;
2150 
2151 	if (slab_is_available())
2152 		gfp = GFP_KERNEL;
2153 	else
2154 		gfp = GFP_NOWAIT;
2155 
2156 #if DEBUG
2157 
2158 	/*
2159 	 * Both debugging options require word-alignment which is calculated
2160 	 * into align above.
2161 	 */
2162 	if (flags & SLAB_RED_ZONE) {
2163 		/* add space for red zone words */
2164 		cachep->obj_offset += sizeof(unsigned long long);
2165 		size += 2 * sizeof(unsigned long long);
2166 	}
2167 	if (flags & SLAB_STORE_USER) {
2168 		/* user store requires one word storage behind the end of
2169 		 * the real object. But if the second red zone needs to be
2170 		 * aligned to 64 bits, we must allow that much space.
2171 		 */
2172 		if (flags & SLAB_RED_ZONE)
2173 			size += REDZONE_ALIGN;
2174 		else
2175 			size += BYTES_PER_WORD;
2176 	}
2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178 	/*
2179 	 * To activate debug pagealloc, off-slab management is necessary
2180 	 * requirement. In early phase of initialization, small sized slab
2181 	 * doesn't get initialized so it would not be possible. So, we need
2182 	 * to check size >= 256. It guarantees that all necessary small
2183 	 * sized slab is initialized in current slab initialization sequence.
2184 	 */
2185 	if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2186 		size >= 256 && cachep->object_size > cache_line_size() &&
2187 		ALIGN(size, cachep->align) < PAGE_SIZE) {
2188 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2189 		size = PAGE_SIZE;
2190 	}
2191 #endif
2192 #endif
2193 
2194 	/*
2195 	 * Determine if the slab management is 'on' or 'off' slab.
2196 	 * (bootstrapping cannot cope with offslab caches so don't do
2197 	 * it too early on. Always use on-slab management when
2198 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2199 	 */
2200 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2201 	    !(flags & SLAB_NOLEAKTRACE))
2202 		/*
2203 		 * Size is large, assume best to place the slab management obj
2204 		 * off-slab (should allow better packing of objs).
2205 		 */
2206 		flags |= CFLGS_OFF_SLAB;
2207 
2208 	size = ALIGN(size, cachep->align);
2209 	/*
2210 	 * We should restrict the number of objects in a slab to implement
2211 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2212 	 */
2213 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2214 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2215 
2216 	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2217 
2218 	if (!cachep->num)
2219 		return -E2BIG;
2220 
2221 	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2222 
2223 	/*
2224 	 * If the slab has been placed off-slab, and we have enough space then
2225 	 * move it on-slab. This is at the expense of any extra colouring.
2226 	 */
2227 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2228 		flags &= ~CFLGS_OFF_SLAB;
2229 		left_over -= freelist_size;
2230 	}
2231 
2232 	if (flags & CFLGS_OFF_SLAB) {
2233 		/* really off slab. No need for manual alignment */
2234 		freelist_size = calculate_freelist_size(cachep->num, 0);
2235 
2236 #ifdef CONFIG_PAGE_POISONING
2237 		/* If we're going to use the generic kernel_map_pages()
2238 		 * poisoning, then it's going to smash the contents of
2239 		 * the redzone and userword anyhow, so switch them off.
2240 		 */
2241 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2242 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2243 #endif
2244 	}
2245 
2246 	cachep->colour_off = cache_line_size();
2247 	/* Offset must be a multiple of the alignment. */
2248 	if (cachep->colour_off < cachep->align)
2249 		cachep->colour_off = cachep->align;
2250 	cachep->colour = left_over / cachep->colour_off;
2251 	cachep->freelist_size = freelist_size;
2252 	cachep->flags = flags;
2253 	cachep->allocflags = __GFP_COMP;
2254 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2255 		cachep->allocflags |= GFP_DMA;
2256 	cachep->size = size;
2257 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2258 
2259 	if (flags & CFLGS_OFF_SLAB) {
2260 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2261 		/*
2262 		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2263 		 * But since we go off slab only for object size greater than
2264 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2265 		 * in ascending order,this should not happen at all.
2266 		 * But leave a BUG_ON for some lucky dude.
2267 		 */
2268 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2269 	}
2270 
2271 	err = setup_cpu_cache(cachep, gfp);
2272 	if (err) {
2273 		__kmem_cache_shutdown(cachep);
2274 		return err;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 #if DEBUG
check_irq_off(void)2281 static void check_irq_off(void)
2282 {
2283 	BUG_ON(!irqs_disabled());
2284 }
2285 
check_irq_on(void)2286 static void check_irq_on(void)
2287 {
2288 	BUG_ON(irqs_disabled());
2289 }
2290 
check_spinlock_acquired(struct kmem_cache * cachep)2291 static void check_spinlock_acquired(struct kmem_cache *cachep)
2292 {
2293 #ifdef CONFIG_SMP
2294 	check_irq_off();
2295 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2296 #endif
2297 }
2298 
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2299 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2300 {
2301 #ifdef CONFIG_SMP
2302 	check_irq_off();
2303 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2304 #endif
2305 }
2306 
2307 #else
2308 #define check_irq_off()	do { } while(0)
2309 #define check_irq_on()	do { } while(0)
2310 #define check_spinlock_acquired(x) do { } while(0)
2311 #define check_spinlock_acquired_node(x, y) do { } while(0)
2312 #endif
2313 
2314 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2315 			struct array_cache *ac,
2316 			int force, int node);
2317 
do_drain(void * arg)2318 static void do_drain(void *arg)
2319 {
2320 	struct kmem_cache *cachep = arg;
2321 	struct array_cache *ac;
2322 	int node = numa_mem_id();
2323 	struct kmem_cache_node *n;
2324 	LIST_HEAD(list);
2325 
2326 	check_irq_off();
2327 	ac = cpu_cache_get(cachep);
2328 	n = get_node(cachep, node);
2329 	spin_lock(&n->list_lock);
2330 	free_block(cachep, ac->entry, ac->avail, node, &list);
2331 	spin_unlock(&n->list_lock);
2332 	slabs_destroy(cachep, &list);
2333 	ac->avail = 0;
2334 }
2335 
drain_cpu_caches(struct kmem_cache * cachep)2336 static void drain_cpu_caches(struct kmem_cache *cachep)
2337 {
2338 	struct kmem_cache_node *n;
2339 	int node;
2340 
2341 	on_each_cpu(do_drain, cachep, 1);
2342 	check_irq_on();
2343 	for_each_kmem_cache_node(cachep, node, n)
2344 		if (n->alien)
2345 			drain_alien_cache(cachep, n->alien);
2346 
2347 	for_each_kmem_cache_node(cachep, node, n)
2348 		drain_array(cachep, n, n->shared, 1, node);
2349 }
2350 
2351 /*
2352  * Remove slabs from the list of free slabs.
2353  * Specify the number of slabs to drain in tofree.
2354  *
2355  * Returns the actual number of slabs released.
2356  */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2357 static int drain_freelist(struct kmem_cache *cache,
2358 			struct kmem_cache_node *n, int tofree)
2359 {
2360 	struct list_head *p;
2361 	int nr_freed;
2362 	struct page *page;
2363 
2364 	nr_freed = 0;
2365 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2366 
2367 		spin_lock_irq(&n->list_lock);
2368 		p = n->slabs_free.prev;
2369 		if (p == &n->slabs_free) {
2370 			spin_unlock_irq(&n->list_lock);
2371 			goto out;
2372 		}
2373 
2374 		page = list_entry(p, struct page, lru);
2375 #if DEBUG
2376 		BUG_ON(page->active);
2377 #endif
2378 		list_del(&page->lru);
2379 		/*
2380 		 * Safe to drop the lock. The slab is no longer linked
2381 		 * to the cache.
2382 		 */
2383 		n->free_objects -= cache->num;
2384 		spin_unlock_irq(&n->list_lock);
2385 		slab_destroy(cache, page);
2386 		nr_freed++;
2387 	}
2388 out:
2389 	return nr_freed;
2390 }
2391 
__kmem_cache_shrink(struct kmem_cache * cachep)2392 int __kmem_cache_shrink(struct kmem_cache *cachep)
2393 {
2394 	int ret = 0;
2395 	int node;
2396 	struct kmem_cache_node *n;
2397 
2398 	drain_cpu_caches(cachep);
2399 
2400 	check_irq_on();
2401 	for_each_kmem_cache_node(cachep, node, n) {
2402 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2403 
2404 		ret += !list_empty(&n->slabs_full) ||
2405 			!list_empty(&n->slabs_partial);
2406 	}
2407 	return (ret ? 1 : 0);
2408 }
2409 
__kmem_cache_shutdown(struct kmem_cache * cachep)2410 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2411 {
2412 	int i;
2413 	struct kmem_cache_node *n;
2414 	int rc = __kmem_cache_shrink(cachep);
2415 
2416 	if (rc)
2417 		return rc;
2418 
2419 	free_percpu(cachep->cpu_cache);
2420 
2421 	/* NUMA: free the node structures */
2422 	for_each_kmem_cache_node(cachep, i, n) {
2423 		kfree(n->shared);
2424 		free_alien_cache(n->alien);
2425 		kfree(n);
2426 		cachep->node[i] = NULL;
2427 	}
2428 	return 0;
2429 }
2430 
2431 /*
2432  * Get the memory for a slab management obj.
2433  *
2434  * For a slab cache when the slab descriptor is off-slab, the
2435  * slab descriptor can't come from the same cache which is being created,
2436  * Because if it is the case, that means we defer the creation of
2437  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2438  * And we eventually call down to __kmem_cache_create(), which
2439  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2440  * This is a "chicken-and-egg" problem.
2441  *
2442  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2443  * which are all initialized during kmem_cache_init().
2444  */
alloc_slabmgmt(struct kmem_cache * cachep,struct page * page,int colour_off,gfp_t local_flags,int nodeid)2445 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2446 				   struct page *page, int colour_off,
2447 				   gfp_t local_flags, int nodeid)
2448 {
2449 	void *freelist;
2450 	void *addr = page_address(page);
2451 
2452 	if (OFF_SLAB(cachep)) {
2453 		/* Slab management obj is off-slab. */
2454 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2455 					      local_flags, nodeid);
2456 		if (!freelist)
2457 			return NULL;
2458 	} else {
2459 		freelist = addr + colour_off;
2460 		colour_off += cachep->freelist_size;
2461 	}
2462 	page->active = 0;
2463 	page->s_mem = addr + colour_off;
2464 	return freelist;
2465 }
2466 
get_free_obj(struct page * page,unsigned int idx)2467 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2468 {
2469 	return ((freelist_idx_t *)page->freelist)[idx];
2470 }
2471 
set_free_obj(struct page * page,unsigned int idx,freelist_idx_t val)2472 static inline void set_free_obj(struct page *page,
2473 					unsigned int idx, freelist_idx_t val)
2474 {
2475 	((freelist_idx_t *)(page->freelist))[idx] = val;
2476 }
2477 
cache_init_objs(struct kmem_cache * cachep,struct page * page)2478 static void cache_init_objs(struct kmem_cache *cachep,
2479 			    struct page *page)
2480 {
2481 	int i;
2482 
2483 	for (i = 0; i < cachep->num; i++) {
2484 		void *objp = index_to_obj(cachep, page, i);
2485 #if DEBUG
2486 		/* need to poison the objs? */
2487 		if (cachep->flags & SLAB_POISON)
2488 			poison_obj(cachep, objp, POISON_FREE);
2489 		if (cachep->flags & SLAB_STORE_USER)
2490 			*dbg_userword(cachep, objp) = NULL;
2491 
2492 		if (cachep->flags & SLAB_RED_ZONE) {
2493 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2494 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2495 		}
2496 		/*
2497 		 * Constructors are not allowed to allocate memory from the same
2498 		 * cache which they are a constructor for.  Otherwise, deadlock.
2499 		 * They must also be threaded.
2500 		 */
2501 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2502 			cachep->ctor(objp + obj_offset(cachep));
2503 
2504 		if (cachep->flags & SLAB_RED_ZONE) {
2505 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2506 				slab_error(cachep, "constructor overwrote the"
2507 					   " end of an object");
2508 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2509 				slab_error(cachep, "constructor overwrote the"
2510 					   " start of an object");
2511 		}
2512 		if ((cachep->size % PAGE_SIZE) == 0 &&
2513 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2514 			kernel_map_pages(virt_to_page(objp),
2515 					 cachep->size / PAGE_SIZE, 0);
2516 #else
2517 		if (cachep->ctor)
2518 			cachep->ctor(objp);
2519 #endif
2520 		set_obj_status(page, i, OBJECT_FREE);
2521 		set_free_obj(page, i, i);
2522 	}
2523 }
2524 
kmem_flagcheck(struct kmem_cache * cachep,gfp_t flags)2525 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2526 {
2527 	if (CONFIG_ZONE_DMA_FLAG) {
2528 		if (flags & GFP_DMA)
2529 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2530 		else
2531 			BUG_ON(cachep->allocflags & GFP_DMA);
2532 	}
2533 }
2534 
slab_get_obj(struct kmem_cache * cachep,struct page * page,int nodeid)2535 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2536 				int nodeid)
2537 {
2538 	void *objp;
2539 
2540 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2541 	page->active++;
2542 #if DEBUG
2543 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2544 #endif
2545 
2546 	return objp;
2547 }
2548 
slab_put_obj(struct kmem_cache * cachep,struct page * page,void * objp,int nodeid)2549 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2550 				void *objp, int nodeid)
2551 {
2552 	unsigned int objnr = obj_to_index(cachep, page, objp);
2553 #if DEBUG
2554 	unsigned int i;
2555 
2556 	/* Verify that the slab belongs to the intended node */
2557 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2558 
2559 	/* Verify double free bug */
2560 	for (i = page->active; i < cachep->num; i++) {
2561 		if (get_free_obj(page, i) == objnr) {
2562 			printk(KERN_ERR "slab: double free detected in cache "
2563 					"'%s', objp %p\n", cachep->name, objp);
2564 			BUG();
2565 		}
2566 	}
2567 #endif
2568 	page->active--;
2569 	set_free_obj(page, page->active, objnr);
2570 }
2571 
2572 /*
2573  * Map pages beginning at addr to the given cache and slab. This is required
2574  * for the slab allocator to be able to lookup the cache and slab of a
2575  * virtual address for kfree, ksize, and slab debugging.
2576  */
slab_map_pages(struct kmem_cache * cache,struct page * page,void * freelist)2577 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2578 			   void *freelist)
2579 {
2580 	page->slab_cache = cache;
2581 	page->freelist = freelist;
2582 }
2583 
2584 /*
2585  * Grow (by 1) the number of slabs within a cache.  This is called by
2586  * kmem_cache_alloc() when there are no active objs left in a cache.
2587  */
cache_grow(struct kmem_cache * cachep,gfp_t flags,int nodeid,struct page * page)2588 static int cache_grow(struct kmem_cache *cachep,
2589 		gfp_t flags, int nodeid, struct page *page)
2590 {
2591 	void *freelist;
2592 	size_t offset;
2593 	gfp_t local_flags;
2594 	struct kmem_cache_node *n;
2595 
2596 	/*
2597 	 * Be lazy and only check for valid flags here,  keeping it out of the
2598 	 * critical path in kmem_cache_alloc().
2599 	 */
2600 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2601 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2602 
2603 	/* Take the node list lock to change the colour_next on this node */
2604 	check_irq_off();
2605 	n = get_node(cachep, nodeid);
2606 	spin_lock(&n->list_lock);
2607 
2608 	/* Get colour for the slab, and cal the next value. */
2609 	offset = n->colour_next;
2610 	n->colour_next++;
2611 	if (n->colour_next >= cachep->colour)
2612 		n->colour_next = 0;
2613 	spin_unlock(&n->list_lock);
2614 
2615 	offset *= cachep->colour_off;
2616 
2617 	if (local_flags & __GFP_WAIT)
2618 		local_irq_enable();
2619 
2620 	/*
2621 	 * The test for missing atomic flag is performed here, rather than
2622 	 * the more obvious place, simply to reduce the critical path length
2623 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2624 	 * will eventually be caught here (where it matters).
2625 	 */
2626 	kmem_flagcheck(cachep, flags);
2627 
2628 	/*
2629 	 * Get mem for the objs.  Attempt to allocate a physical page from
2630 	 * 'nodeid'.
2631 	 */
2632 	if (!page)
2633 		page = kmem_getpages(cachep, local_flags, nodeid);
2634 	if (!page)
2635 		goto failed;
2636 
2637 	/* Get slab management. */
2638 	freelist = alloc_slabmgmt(cachep, page, offset,
2639 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2640 	if (!freelist)
2641 		goto opps1;
2642 
2643 	slab_map_pages(cachep, page, freelist);
2644 
2645 	cache_init_objs(cachep, page);
2646 
2647 	if (local_flags & __GFP_WAIT)
2648 		local_irq_disable();
2649 	check_irq_off();
2650 	spin_lock(&n->list_lock);
2651 
2652 	/* Make slab active. */
2653 	list_add_tail(&page->lru, &(n->slabs_free));
2654 	STATS_INC_GROWN(cachep);
2655 	n->free_objects += cachep->num;
2656 	spin_unlock(&n->list_lock);
2657 	return 1;
2658 opps1:
2659 	kmem_freepages(cachep, page);
2660 failed:
2661 	if (local_flags & __GFP_WAIT)
2662 		local_irq_disable();
2663 	return 0;
2664 }
2665 
2666 #if DEBUG
2667 
2668 /*
2669  * Perform extra freeing checks:
2670  * - detect bad pointers.
2671  * - POISON/RED_ZONE checking
2672  */
kfree_debugcheck(const void * objp)2673 static void kfree_debugcheck(const void *objp)
2674 {
2675 	if (!virt_addr_valid(objp)) {
2676 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2677 		       (unsigned long)objp);
2678 		BUG();
2679 	}
2680 }
2681 
verify_redzone_free(struct kmem_cache * cache,void * obj)2682 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2683 {
2684 	unsigned long long redzone1, redzone2;
2685 
2686 	redzone1 = *dbg_redzone1(cache, obj);
2687 	redzone2 = *dbg_redzone2(cache, obj);
2688 
2689 	/*
2690 	 * Redzone is ok.
2691 	 */
2692 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2693 		return;
2694 
2695 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2696 		slab_error(cache, "double free detected");
2697 	else
2698 		slab_error(cache, "memory outside object was overwritten");
2699 
2700 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2701 			obj, redzone1, redzone2);
2702 }
2703 
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2704 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2705 				   unsigned long caller)
2706 {
2707 	unsigned int objnr;
2708 	struct page *page;
2709 
2710 	BUG_ON(virt_to_cache(objp) != cachep);
2711 
2712 	objp -= obj_offset(cachep);
2713 	kfree_debugcheck(objp);
2714 	page = virt_to_head_page(objp);
2715 
2716 	if (cachep->flags & SLAB_RED_ZONE) {
2717 		verify_redzone_free(cachep, objp);
2718 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2719 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2720 	}
2721 	if (cachep->flags & SLAB_STORE_USER)
2722 		*dbg_userword(cachep, objp) = (void *)caller;
2723 
2724 	objnr = obj_to_index(cachep, page, objp);
2725 
2726 	BUG_ON(objnr >= cachep->num);
2727 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2728 
2729 	set_obj_status(page, objnr, OBJECT_FREE);
2730 	if (cachep->flags & SLAB_POISON) {
2731 #ifdef CONFIG_DEBUG_PAGEALLOC
2732 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2733 			store_stackinfo(cachep, objp, caller);
2734 			kernel_map_pages(virt_to_page(objp),
2735 					 cachep->size / PAGE_SIZE, 0);
2736 		} else {
2737 			poison_obj(cachep, objp, POISON_FREE);
2738 		}
2739 #else
2740 		poison_obj(cachep, objp, POISON_FREE);
2741 #endif
2742 	}
2743 	return objp;
2744 }
2745 
2746 #else
2747 #define kfree_debugcheck(x) do { } while(0)
2748 #define cache_free_debugcheck(x,objp,z) (objp)
2749 #endif
2750 
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags,bool force_refill)2751 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2752 							bool force_refill)
2753 {
2754 	int batchcount;
2755 	struct kmem_cache_node *n;
2756 	struct array_cache *ac;
2757 	int node;
2758 
2759 	check_irq_off();
2760 	node = numa_mem_id();
2761 	if (unlikely(force_refill))
2762 		goto force_grow;
2763 retry:
2764 	ac = cpu_cache_get(cachep);
2765 	batchcount = ac->batchcount;
2766 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2767 		/*
2768 		 * If there was little recent activity on this cache, then
2769 		 * perform only a partial refill.  Otherwise we could generate
2770 		 * refill bouncing.
2771 		 */
2772 		batchcount = BATCHREFILL_LIMIT;
2773 	}
2774 	n = get_node(cachep, node);
2775 
2776 	BUG_ON(ac->avail > 0 || !n);
2777 	spin_lock(&n->list_lock);
2778 
2779 	/* See if we can refill from the shared array */
2780 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2781 		n->shared->touched = 1;
2782 		goto alloc_done;
2783 	}
2784 
2785 	while (batchcount > 0) {
2786 		struct list_head *entry;
2787 		struct page *page;
2788 		/* Get slab alloc is to come from. */
2789 		entry = n->slabs_partial.next;
2790 		if (entry == &n->slabs_partial) {
2791 			n->free_touched = 1;
2792 			entry = n->slabs_free.next;
2793 			if (entry == &n->slabs_free)
2794 				goto must_grow;
2795 		}
2796 
2797 		page = list_entry(entry, struct page, lru);
2798 		check_spinlock_acquired(cachep);
2799 
2800 		/*
2801 		 * The slab was either on partial or free list so
2802 		 * there must be at least one object available for
2803 		 * allocation.
2804 		 */
2805 		BUG_ON(page->active >= cachep->num);
2806 
2807 		while (page->active < cachep->num && batchcount--) {
2808 			STATS_INC_ALLOCED(cachep);
2809 			STATS_INC_ACTIVE(cachep);
2810 			STATS_SET_HIGH(cachep);
2811 
2812 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2813 									node));
2814 		}
2815 
2816 		/* move slabp to correct slabp list: */
2817 		list_del(&page->lru);
2818 		if (page->active == cachep->num)
2819 			list_add(&page->lru, &n->slabs_full);
2820 		else
2821 			list_add(&page->lru, &n->slabs_partial);
2822 	}
2823 
2824 must_grow:
2825 	n->free_objects -= ac->avail;
2826 alloc_done:
2827 	spin_unlock(&n->list_lock);
2828 
2829 	if (unlikely(!ac->avail)) {
2830 		int x;
2831 force_grow:
2832 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2833 
2834 		/* cache_grow can reenable interrupts, then ac could change. */
2835 		ac = cpu_cache_get(cachep);
2836 		node = numa_mem_id();
2837 
2838 		/* no objects in sight? abort */
2839 		if (!x && (ac->avail == 0 || force_refill))
2840 			return NULL;
2841 
2842 		if (!ac->avail)		/* objects refilled by interrupt? */
2843 			goto retry;
2844 	}
2845 	ac->touched = 1;
2846 
2847 	return ac_get_obj(cachep, ac, flags, force_refill);
2848 }
2849 
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)2850 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2851 						gfp_t flags)
2852 {
2853 	might_sleep_if(flags & __GFP_WAIT);
2854 #if DEBUG
2855 	kmem_flagcheck(cachep, flags);
2856 #endif
2857 }
2858 
2859 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)2860 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2861 				gfp_t flags, void *objp, unsigned long caller)
2862 {
2863 	struct page *page;
2864 
2865 	if (!objp)
2866 		return objp;
2867 	if (cachep->flags & SLAB_POISON) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2870 			kernel_map_pages(virt_to_page(objp),
2871 					 cachep->size / PAGE_SIZE, 1);
2872 		else
2873 			check_poison_obj(cachep, objp);
2874 #else
2875 		check_poison_obj(cachep, objp);
2876 #endif
2877 		poison_obj(cachep, objp, POISON_INUSE);
2878 	}
2879 	if (cachep->flags & SLAB_STORE_USER)
2880 		*dbg_userword(cachep, objp) = (void *)caller;
2881 
2882 	if (cachep->flags & SLAB_RED_ZONE) {
2883 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2884 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2885 			slab_error(cachep, "double free, or memory outside"
2886 						" object was overwritten");
2887 			printk(KERN_ERR
2888 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2889 				objp, *dbg_redzone1(cachep, objp),
2890 				*dbg_redzone2(cachep, objp));
2891 		}
2892 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2893 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2894 	}
2895 
2896 	page = virt_to_head_page(objp);
2897 	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2898 	objp += obj_offset(cachep);
2899 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2900 		cachep->ctor(objp);
2901 	if (ARCH_SLAB_MINALIGN &&
2902 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2903 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2904 		       objp, (int)ARCH_SLAB_MINALIGN);
2905 	}
2906 	return objp;
2907 }
2908 #else
2909 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2910 #endif
2911 
slab_should_failslab(struct kmem_cache * cachep,gfp_t flags)2912 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2913 {
2914 	if (unlikely(cachep == kmem_cache))
2915 		return false;
2916 
2917 	return should_failslab(cachep->object_size, flags, cachep->flags);
2918 }
2919 
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)2920 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2921 {
2922 	void *objp;
2923 	struct array_cache *ac;
2924 	bool force_refill = false;
2925 
2926 	check_irq_off();
2927 
2928 	ac = cpu_cache_get(cachep);
2929 	if (likely(ac->avail)) {
2930 		ac->touched = 1;
2931 		objp = ac_get_obj(cachep, ac, flags, false);
2932 
2933 		/*
2934 		 * Allow for the possibility all avail objects are not allowed
2935 		 * by the current flags
2936 		 */
2937 		if (objp) {
2938 			STATS_INC_ALLOCHIT(cachep);
2939 			goto out;
2940 		}
2941 		force_refill = true;
2942 	}
2943 
2944 	STATS_INC_ALLOCMISS(cachep);
2945 	objp = cache_alloc_refill(cachep, flags, force_refill);
2946 	/*
2947 	 * the 'ac' may be updated by cache_alloc_refill(),
2948 	 * and kmemleak_erase() requires its correct value.
2949 	 */
2950 	ac = cpu_cache_get(cachep);
2951 
2952 out:
2953 	/*
2954 	 * To avoid a false negative, if an object that is in one of the
2955 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2956 	 * treat the array pointers as a reference to the object.
2957 	 */
2958 	if (objp)
2959 		kmemleak_erase(&ac->entry[ac->avail]);
2960 	return objp;
2961 }
2962 
2963 #ifdef CONFIG_NUMA
2964 /*
2965  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2966  *
2967  * If we are in_interrupt, then process context, including cpusets and
2968  * mempolicy, may not apply and should not be used for allocation policy.
2969  */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)2970 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2971 {
2972 	int nid_alloc, nid_here;
2973 
2974 	if (in_interrupt() || (flags & __GFP_THISNODE))
2975 		return NULL;
2976 	nid_alloc = nid_here = numa_mem_id();
2977 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2978 		nid_alloc = cpuset_slab_spread_node();
2979 	else if (current->mempolicy)
2980 		nid_alloc = mempolicy_slab_node();
2981 	if (nid_alloc != nid_here)
2982 		return ____cache_alloc_node(cachep, flags, nid_alloc);
2983 	return NULL;
2984 }
2985 
2986 /*
2987  * Fallback function if there was no memory available and no objects on a
2988  * certain node and fall back is permitted. First we scan all the
2989  * available node for available objects. If that fails then we
2990  * perform an allocation without specifying a node. This allows the page
2991  * allocator to do its reclaim / fallback magic. We then insert the
2992  * slab into the proper nodelist and then allocate from it.
2993  */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)2994 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2995 {
2996 	struct zonelist *zonelist;
2997 	gfp_t local_flags;
2998 	struct zoneref *z;
2999 	struct zone *zone;
3000 	enum zone_type high_zoneidx = gfp_zone(flags);
3001 	void *obj = NULL;
3002 	int nid;
3003 	unsigned int cpuset_mems_cookie;
3004 
3005 	if (flags & __GFP_THISNODE)
3006 		return NULL;
3007 
3008 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3009 
3010 retry_cpuset:
3011 	cpuset_mems_cookie = read_mems_allowed_begin();
3012 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3013 
3014 retry:
3015 	/*
3016 	 * Look through allowed nodes for objects available
3017 	 * from existing per node queues.
3018 	 */
3019 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3020 		nid = zone_to_nid(zone);
3021 
3022 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3023 			get_node(cache, nid) &&
3024 			get_node(cache, nid)->free_objects) {
3025 				obj = ____cache_alloc_node(cache,
3026 					flags | GFP_THISNODE, nid);
3027 				if (obj)
3028 					break;
3029 		}
3030 	}
3031 
3032 	if (!obj) {
3033 		/*
3034 		 * This allocation will be performed within the constraints
3035 		 * of the current cpuset / memory policy requirements.
3036 		 * We may trigger various forms of reclaim on the allowed
3037 		 * set and go into memory reserves if necessary.
3038 		 */
3039 		struct page *page;
3040 
3041 		if (local_flags & __GFP_WAIT)
3042 			local_irq_enable();
3043 		kmem_flagcheck(cache, flags);
3044 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3045 		if (local_flags & __GFP_WAIT)
3046 			local_irq_disable();
3047 		if (page) {
3048 			/*
3049 			 * Insert into the appropriate per node queues
3050 			 */
3051 			nid = page_to_nid(page);
3052 			if (cache_grow(cache, flags, nid, page)) {
3053 				obj = ____cache_alloc_node(cache,
3054 					flags | GFP_THISNODE, nid);
3055 				if (!obj)
3056 					/*
3057 					 * Another processor may allocate the
3058 					 * objects in the slab since we are
3059 					 * not holding any locks.
3060 					 */
3061 					goto retry;
3062 			} else {
3063 				/* cache_grow already freed obj */
3064 				obj = NULL;
3065 			}
3066 		}
3067 	}
3068 
3069 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3070 		goto retry_cpuset;
3071 	return obj;
3072 }
3073 
3074 /*
3075  * A interface to enable slab creation on nodeid
3076  */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3077 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3078 				int nodeid)
3079 {
3080 	struct list_head *entry;
3081 	struct page *page;
3082 	struct kmem_cache_node *n;
3083 	void *obj;
3084 	int x;
3085 
3086 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3087 	n = get_node(cachep, nodeid);
3088 	BUG_ON(!n);
3089 
3090 retry:
3091 	check_irq_off();
3092 	spin_lock(&n->list_lock);
3093 	entry = n->slabs_partial.next;
3094 	if (entry == &n->slabs_partial) {
3095 		n->free_touched = 1;
3096 		entry = n->slabs_free.next;
3097 		if (entry == &n->slabs_free)
3098 			goto must_grow;
3099 	}
3100 
3101 	page = list_entry(entry, struct page, lru);
3102 	check_spinlock_acquired_node(cachep, nodeid);
3103 
3104 	STATS_INC_NODEALLOCS(cachep);
3105 	STATS_INC_ACTIVE(cachep);
3106 	STATS_SET_HIGH(cachep);
3107 
3108 	BUG_ON(page->active == cachep->num);
3109 
3110 	obj = slab_get_obj(cachep, page, nodeid);
3111 	n->free_objects--;
3112 	/* move slabp to correct slabp list: */
3113 	list_del(&page->lru);
3114 
3115 	if (page->active == cachep->num)
3116 		list_add(&page->lru, &n->slabs_full);
3117 	else
3118 		list_add(&page->lru, &n->slabs_partial);
3119 
3120 	spin_unlock(&n->list_lock);
3121 	goto done;
3122 
3123 must_grow:
3124 	spin_unlock(&n->list_lock);
3125 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3126 	if (x)
3127 		goto retry;
3128 
3129 	return fallback_alloc(cachep, flags);
3130 
3131 done:
3132 	return obj;
3133 }
3134 
3135 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,unsigned long caller)3136 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3137 		   unsigned long caller)
3138 {
3139 	unsigned long save_flags;
3140 	void *ptr;
3141 	int slab_node = numa_mem_id();
3142 
3143 	flags &= gfp_allowed_mask;
3144 
3145 	lockdep_trace_alloc(flags);
3146 
3147 	if (slab_should_failslab(cachep, flags))
3148 		return NULL;
3149 
3150 	cachep = memcg_kmem_get_cache(cachep, flags);
3151 
3152 	cache_alloc_debugcheck_before(cachep, flags);
3153 	local_irq_save(save_flags);
3154 
3155 	if (nodeid == NUMA_NO_NODE)
3156 		nodeid = slab_node;
3157 
3158 	if (unlikely(!get_node(cachep, nodeid))) {
3159 		/* Node not bootstrapped yet */
3160 		ptr = fallback_alloc(cachep, flags);
3161 		goto out;
3162 	}
3163 
3164 	if (nodeid == slab_node) {
3165 		/*
3166 		 * Use the locally cached objects if possible.
3167 		 * However ____cache_alloc does not allow fallback
3168 		 * to other nodes. It may fail while we still have
3169 		 * objects on other nodes available.
3170 		 */
3171 		ptr = ____cache_alloc(cachep, flags);
3172 		if (ptr)
3173 			goto out;
3174 	}
3175 	/* ___cache_alloc_node can fall back to other nodes */
3176 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3177   out:
3178 	local_irq_restore(save_flags);
3179 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3180 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3181 				 flags);
3182 
3183 	if (likely(ptr)) {
3184 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3185 		if (unlikely(flags & __GFP_ZERO))
3186 			memset(ptr, 0, cachep->object_size);
3187 	}
3188 
3189 	return ptr;
3190 }
3191 
3192 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3193 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3194 {
3195 	void *objp;
3196 
3197 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198 		objp = alternate_node_alloc(cache, flags);
3199 		if (objp)
3200 			goto out;
3201 	}
3202 	objp = ____cache_alloc(cache, flags);
3203 
3204 	/*
3205 	 * We may just have run out of memory on the local node.
3206 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3207 	 */
3208 	if (!objp)
3209 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3210 
3211   out:
3212 	return objp;
3213 }
3214 #else
3215 
3216 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3217 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3218 {
3219 	return ____cache_alloc(cachep, flags);
3220 }
3221 
3222 #endif /* CONFIG_NUMA */
3223 
3224 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,gfp_t flags,unsigned long caller)3225 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3226 {
3227 	unsigned long save_flags;
3228 	void *objp;
3229 
3230 	flags &= gfp_allowed_mask;
3231 
3232 	lockdep_trace_alloc(flags);
3233 
3234 	if (slab_should_failslab(cachep, flags))
3235 		return NULL;
3236 
3237 	cachep = memcg_kmem_get_cache(cachep, flags);
3238 
3239 	cache_alloc_debugcheck_before(cachep, flags);
3240 	local_irq_save(save_flags);
3241 	objp = __do_cache_alloc(cachep, flags);
3242 	local_irq_restore(save_flags);
3243 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3244 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3245 				 flags);
3246 	prefetchw(objp);
3247 
3248 	if (likely(objp)) {
3249 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3250 		if (unlikely(flags & __GFP_ZERO))
3251 			memset(objp, 0, cachep->object_size);
3252 	}
3253 
3254 	return objp;
3255 }
3256 
3257 /*
3258  * Caller needs to acquire correct kmem_cache_node's list_lock
3259  * @list: List of detached free slabs should be freed by caller
3260  */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3261 static void free_block(struct kmem_cache *cachep, void **objpp,
3262 			int nr_objects, int node, struct list_head *list)
3263 {
3264 	int i;
3265 	struct kmem_cache_node *n = get_node(cachep, node);
3266 
3267 	for (i = 0; i < nr_objects; i++) {
3268 		void *objp;
3269 		struct page *page;
3270 
3271 		clear_obj_pfmemalloc(&objpp[i]);
3272 		objp = objpp[i];
3273 
3274 		page = virt_to_head_page(objp);
3275 		list_del(&page->lru);
3276 		check_spinlock_acquired_node(cachep, node);
3277 		slab_put_obj(cachep, page, objp, node);
3278 		STATS_DEC_ACTIVE(cachep);
3279 		n->free_objects++;
3280 
3281 		/* fixup slab chains */
3282 		if (page->active == 0) {
3283 			if (n->free_objects > n->free_limit) {
3284 				n->free_objects -= cachep->num;
3285 				list_add_tail(&page->lru, list);
3286 			} else {
3287 				list_add(&page->lru, &n->slabs_free);
3288 			}
3289 		} else {
3290 			/* Unconditionally move a slab to the end of the
3291 			 * partial list on free - maximum time for the
3292 			 * other objects to be freed, too.
3293 			 */
3294 			list_add_tail(&page->lru, &n->slabs_partial);
3295 		}
3296 	}
3297 }
3298 
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3299 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3300 {
3301 	int batchcount;
3302 	struct kmem_cache_node *n;
3303 	int node = numa_mem_id();
3304 	LIST_HEAD(list);
3305 
3306 	batchcount = ac->batchcount;
3307 #if DEBUG
3308 	BUG_ON(!batchcount || batchcount > ac->avail);
3309 #endif
3310 	check_irq_off();
3311 	n = get_node(cachep, node);
3312 	spin_lock(&n->list_lock);
3313 	if (n->shared) {
3314 		struct array_cache *shared_array = n->shared;
3315 		int max = shared_array->limit - shared_array->avail;
3316 		if (max) {
3317 			if (batchcount > max)
3318 				batchcount = max;
3319 			memcpy(&(shared_array->entry[shared_array->avail]),
3320 			       ac->entry, sizeof(void *) * batchcount);
3321 			shared_array->avail += batchcount;
3322 			goto free_done;
3323 		}
3324 	}
3325 
3326 	free_block(cachep, ac->entry, batchcount, node, &list);
3327 free_done:
3328 #if STATS
3329 	{
3330 		int i = 0;
3331 		struct list_head *p;
3332 
3333 		p = n->slabs_free.next;
3334 		while (p != &(n->slabs_free)) {
3335 			struct page *page;
3336 
3337 			page = list_entry(p, struct page, lru);
3338 			BUG_ON(page->active);
3339 
3340 			i++;
3341 			p = p->next;
3342 		}
3343 		STATS_SET_FREEABLE(cachep, i);
3344 	}
3345 #endif
3346 	spin_unlock(&n->list_lock);
3347 	slabs_destroy(cachep, &list);
3348 	ac->avail -= batchcount;
3349 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3350 }
3351 
3352 /*
3353  * Release an obj back to its cache. If the obj has a constructed state, it must
3354  * be in this state _before_ it is released.  Called with disabled ints.
3355  */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3356 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3357 				unsigned long caller)
3358 {
3359 	struct array_cache *ac = cpu_cache_get(cachep);
3360 
3361 	check_irq_off();
3362 	kmemleak_free_recursive(objp, cachep->flags);
3363 	objp = cache_free_debugcheck(cachep, objp, caller);
3364 
3365 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3366 
3367 	/*
3368 	 * Skip calling cache_free_alien() when the platform is not numa.
3369 	 * This will avoid cache misses that happen while accessing slabp (which
3370 	 * is per page memory  reference) to get nodeid. Instead use a global
3371 	 * variable to skip the call, which is mostly likely to be present in
3372 	 * the cache.
3373 	 */
3374 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3375 		return;
3376 
3377 	if (ac->avail < ac->limit) {
3378 		STATS_INC_FREEHIT(cachep);
3379 	} else {
3380 		STATS_INC_FREEMISS(cachep);
3381 		cache_flusharray(cachep, ac);
3382 	}
3383 
3384 	ac_put_obj(cachep, ac, objp);
3385 }
3386 
3387 /**
3388  * kmem_cache_alloc - Allocate an object
3389  * @cachep: The cache to allocate from.
3390  * @flags: See kmalloc().
3391  *
3392  * Allocate an object from this cache.  The flags are only relevant
3393  * if the cache has no available objects.
3394  */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3395 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3396 {
3397 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3398 
3399 	trace_kmem_cache_alloc(_RET_IP_, ret,
3400 			       cachep->object_size, cachep->size, flags);
3401 
3402 	return ret;
3403 }
3404 EXPORT_SYMBOL(kmem_cache_alloc);
3405 
3406 #ifdef CONFIG_TRACING
3407 void *
kmem_cache_alloc_trace(struct kmem_cache * cachep,gfp_t flags,size_t size)3408 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3409 {
3410 	void *ret;
3411 
3412 	ret = slab_alloc(cachep, flags, _RET_IP_);
3413 
3414 	trace_kmalloc(_RET_IP_, ret,
3415 		      size, cachep->size, flags);
3416 	return ret;
3417 }
3418 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3419 #endif
3420 
3421 #ifdef CONFIG_NUMA
3422 /**
3423  * kmem_cache_alloc_node - Allocate an object on the specified node
3424  * @cachep: The cache to allocate from.
3425  * @flags: See kmalloc().
3426  * @nodeid: node number of the target node.
3427  *
3428  * Identical to kmem_cache_alloc but it will allocate memory on the given
3429  * node, which can improve the performance for cpu bound structures.
3430  *
3431  * Fallback to other node is possible if __GFP_THISNODE is not set.
3432  */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3433 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3434 {
3435 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3436 
3437 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3438 				    cachep->object_size, cachep->size,
3439 				    flags, nodeid);
3440 
3441 	return ret;
3442 }
3443 EXPORT_SYMBOL(kmem_cache_alloc_node);
3444 
3445 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t size)3446 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3447 				  gfp_t flags,
3448 				  int nodeid,
3449 				  size_t size)
3450 {
3451 	void *ret;
3452 
3453 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3454 
3455 	trace_kmalloc_node(_RET_IP_, ret,
3456 			   size, cachep->size,
3457 			   flags, nodeid);
3458 	return ret;
3459 }
3460 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3461 #endif
3462 
3463 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)3464 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3465 {
3466 	struct kmem_cache *cachep;
3467 
3468 	cachep = kmalloc_slab(size, flags);
3469 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3470 		return cachep;
3471 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3472 }
3473 
__kmalloc_node(size_t size,gfp_t flags,int node)3474 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3475 {
3476 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3477 }
3478 EXPORT_SYMBOL(__kmalloc_node);
3479 
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3480 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3481 		int node, unsigned long caller)
3482 {
3483 	return __do_kmalloc_node(size, flags, node, caller);
3484 }
3485 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3486 #endif /* CONFIG_NUMA */
3487 
3488 /**
3489  * __do_kmalloc - allocate memory
3490  * @size: how many bytes of memory are required.
3491  * @flags: the type of memory to allocate (see kmalloc).
3492  * @caller: function caller for debug tracking of the caller
3493  */
__do_kmalloc(size_t size,gfp_t flags,unsigned long caller)3494 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3495 					  unsigned long caller)
3496 {
3497 	struct kmem_cache *cachep;
3498 	void *ret;
3499 
3500 	cachep = kmalloc_slab(size, flags);
3501 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3502 		return cachep;
3503 	ret = slab_alloc(cachep, flags, caller);
3504 
3505 	trace_kmalloc(caller, ret,
3506 		      size, cachep->size, flags);
3507 
3508 	return ret;
3509 }
3510 
__kmalloc(size_t size,gfp_t flags)3511 void *__kmalloc(size_t size, gfp_t flags)
3512 {
3513 	return __do_kmalloc(size, flags, _RET_IP_);
3514 }
3515 EXPORT_SYMBOL(__kmalloc);
3516 
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3517 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3518 {
3519 	return __do_kmalloc(size, flags, caller);
3520 }
3521 EXPORT_SYMBOL(__kmalloc_track_caller);
3522 
3523 /**
3524  * kmem_cache_free - Deallocate an object
3525  * @cachep: The cache the allocation was from.
3526  * @objp: The previously allocated object.
3527  *
3528  * Free an object which was previously allocated from this
3529  * cache.
3530  */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3531 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3532 {
3533 	unsigned long flags;
3534 	cachep = cache_from_obj(cachep, objp);
3535 	if (!cachep)
3536 		return;
3537 
3538 	local_irq_save(flags);
3539 	debug_check_no_locks_freed(objp, cachep->object_size);
3540 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3541 		debug_check_no_obj_freed(objp, cachep->object_size);
3542 	__cache_free(cachep, objp, _RET_IP_);
3543 	local_irq_restore(flags);
3544 
3545 	trace_kmem_cache_free(_RET_IP_, objp);
3546 }
3547 EXPORT_SYMBOL(kmem_cache_free);
3548 
3549 /**
3550  * kfree - free previously allocated memory
3551  * @objp: pointer returned by kmalloc.
3552  *
3553  * If @objp is NULL, no operation is performed.
3554  *
3555  * Don't free memory not originally allocated by kmalloc()
3556  * or you will run into trouble.
3557  */
kfree(const void * objp)3558 void kfree(const void *objp)
3559 {
3560 	struct kmem_cache *c;
3561 	unsigned long flags;
3562 
3563 	trace_kfree(_RET_IP_, objp);
3564 
3565 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3566 		return;
3567 	local_irq_save(flags);
3568 	kfree_debugcheck(objp);
3569 	c = virt_to_cache(objp);
3570 	debug_check_no_locks_freed(objp, c->object_size);
3571 
3572 	debug_check_no_obj_freed(objp, c->object_size);
3573 	__cache_free(c, (void *)objp, _RET_IP_);
3574 	local_irq_restore(flags);
3575 }
3576 EXPORT_SYMBOL(kfree);
3577 
3578 /*
3579  * This initializes kmem_cache_node or resizes various caches for all nodes.
3580  */
alloc_kmem_cache_node(struct kmem_cache * cachep,gfp_t gfp)3581 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3582 {
3583 	int node;
3584 	struct kmem_cache_node *n;
3585 	struct array_cache *new_shared;
3586 	struct alien_cache **new_alien = NULL;
3587 
3588 	for_each_online_node(node) {
3589 
3590                 if (use_alien_caches) {
3591                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3592                         if (!new_alien)
3593                                 goto fail;
3594                 }
3595 
3596 		new_shared = NULL;
3597 		if (cachep->shared) {
3598 			new_shared = alloc_arraycache(node,
3599 				cachep->shared*cachep->batchcount,
3600 					0xbaadf00d, gfp);
3601 			if (!new_shared) {
3602 				free_alien_cache(new_alien);
3603 				goto fail;
3604 			}
3605 		}
3606 
3607 		n = get_node(cachep, node);
3608 		if (n) {
3609 			struct array_cache *shared = n->shared;
3610 			LIST_HEAD(list);
3611 
3612 			spin_lock_irq(&n->list_lock);
3613 
3614 			if (shared)
3615 				free_block(cachep, shared->entry,
3616 						shared->avail, node, &list);
3617 
3618 			n->shared = new_shared;
3619 			if (!n->alien) {
3620 				n->alien = new_alien;
3621 				new_alien = NULL;
3622 			}
3623 			n->free_limit = (1 + nr_cpus_node(node)) *
3624 					cachep->batchcount + cachep->num;
3625 			spin_unlock_irq(&n->list_lock);
3626 			slabs_destroy(cachep, &list);
3627 			kfree(shared);
3628 			free_alien_cache(new_alien);
3629 			continue;
3630 		}
3631 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3632 		if (!n) {
3633 			free_alien_cache(new_alien);
3634 			kfree(new_shared);
3635 			goto fail;
3636 		}
3637 
3638 		kmem_cache_node_init(n);
3639 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3640 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3641 		n->shared = new_shared;
3642 		n->alien = new_alien;
3643 		n->free_limit = (1 + nr_cpus_node(node)) *
3644 					cachep->batchcount + cachep->num;
3645 		cachep->node[node] = n;
3646 	}
3647 	return 0;
3648 
3649 fail:
3650 	if (!cachep->list.next) {
3651 		/* Cache is not active yet. Roll back what we did */
3652 		node--;
3653 		while (node >= 0) {
3654 			n = get_node(cachep, node);
3655 			if (n) {
3656 				kfree(n->shared);
3657 				free_alien_cache(n->alien);
3658 				kfree(n);
3659 				cachep->node[node] = NULL;
3660 			}
3661 			node--;
3662 		}
3663 	}
3664 	return -ENOMEM;
3665 }
3666 
3667 /* Always called with the slab_mutex held */
__do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3668 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3669 				int batchcount, int shared, gfp_t gfp)
3670 {
3671 	struct array_cache __percpu *cpu_cache, *prev;
3672 	int cpu;
3673 
3674 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3675 	if (!cpu_cache)
3676 		return -ENOMEM;
3677 
3678 	prev = cachep->cpu_cache;
3679 	cachep->cpu_cache = cpu_cache;
3680 	kick_all_cpus_sync();
3681 
3682 	check_irq_on();
3683 	cachep->batchcount = batchcount;
3684 	cachep->limit = limit;
3685 	cachep->shared = shared;
3686 
3687 	if (!prev)
3688 		goto alloc_node;
3689 
3690 	for_each_online_cpu(cpu) {
3691 		LIST_HEAD(list);
3692 		int node;
3693 		struct kmem_cache_node *n;
3694 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3695 
3696 		node = cpu_to_mem(cpu);
3697 		n = get_node(cachep, node);
3698 		spin_lock_irq(&n->list_lock);
3699 		free_block(cachep, ac->entry, ac->avail, node, &list);
3700 		spin_unlock_irq(&n->list_lock);
3701 		slabs_destroy(cachep, &list);
3702 	}
3703 	free_percpu(prev);
3704 
3705 alloc_node:
3706 	return alloc_kmem_cache_node(cachep, gfp);
3707 }
3708 
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3709 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3710 				int batchcount, int shared, gfp_t gfp)
3711 {
3712 	int ret;
3713 	struct kmem_cache *c = NULL;
3714 	int i = 0;
3715 
3716 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3717 
3718 	if (slab_state < FULL)
3719 		return ret;
3720 
3721 	if ((ret < 0) || !is_root_cache(cachep))
3722 		return ret;
3723 
3724 	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3725 	for_each_memcg_cache_index(i) {
3726 		c = cache_from_memcg_idx(cachep, i);
3727 		if (c)
3728 			/* return value determined by the parent cache only */
3729 			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3730 	}
3731 
3732 	return ret;
3733 }
3734 
3735 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3736 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3737 {
3738 	int err;
3739 	int limit = 0;
3740 	int shared = 0;
3741 	int batchcount = 0;
3742 
3743 	if (!is_root_cache(cachep)) {
3744 		struct kmem_cache *root = memcg_root_cache(cachep);
3745 		limit = root->limit;
3746 		shared = root->shared;
3747 		batchcount = root->batchcount;
3748 	}
3749 
3750 	if (limit && shared && batchcount)
3751 		goto skip_setup;
3752 	/*
3753 	 * The head array serves three purposes:
3754 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3755 	 * - reduce the number of spinlock operations.
3756 	 * - reduce the number of linked list operations on the slab and
3757 	 *   bufctl chains: array operations are cheaper.
3758 	 * The numbers are guessed, we should auto-tune as described by
3759 	 * Bonwick.
3760 	 */
3761 	if (cachep->size > 131072)
3762 		limit = 1;
3763 	else if (cachep->size > PAGE_SIZE)
3764 		limit = 8;
3765 	else if (cachep->size > 1024)
3766 		limit = 24;
3767 	else if (cachep->size > 256)
3768 		limit = 54;
3769 	else
3770 		limit = 120;
3771 
3772 	/*
3773 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3774 	 * allocation behaviour: Most allocs on one cpu, most free operations
3775 	 * on another cpu. For these cases, an efficient object passing between
3776 	 * cpus is necessary. This is provided by a shared array. The array
3777 	 * replaces Bonwick's magazine layer.
3778 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3779 	 * to a larger limit. Thus disabled by default.
3780 	 */
3781 	shared = 0;
3782 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3783 		shared = 8;
3784 
3785 #if DEBUG
3786 	/*
3787 	 * With debugging enabled, large batchcount lead to excessively long
3788 	 * periods with disabled local interrupts. Limit the batchcount
3789 	 */
3790 	if (limit > 32)
3791 		limit = 32;
3792 #endif
3793 	batchcount = (limit + 1) / 2;
3794 skip_setup:
3795 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3796 	if (err)
3797 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3798 		       cachep->name, -err);
3799 	return err;
3800 }
3801 
3802 /*
3803  * Drain an array if it contains any elements taking the node lock only if
3804  * necessary. Note that the node listlock also protects the array_cache
3805  * if drain_array() is used on the shared array.
3806  */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int force,int node)3807 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3808 			 struct array_cache *ac, int force, int node)
3809 {
3810 	LIST_HEAD(list);
3811 	int tofree;
3812 
3813 	if (!ac || !ac->avail)
3814 		return;
3815 	if (ac->touched && !force) {
3816 		ac->touched = 0;
3817 	} else {
3818 		spin_lock_irq(&n->list_lock);
3819 		if (ac->avail) {
3820 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3821 			if (tofree > ac->avail)
3822 				tofree = (ac->avail + 1) / 2;
3823 			free_block(cachep, ac->entry, tofree, node, &list);
3824 			ac->avail -= tofree;
3825 			memmove(ac->entry, &(ac->entry[tofree]),
3826 				sizeof(void *) * ac->avail);
3827 		}
3828 		spin_unlock_irq(&n->list_lock);
3829 		slabs_destroy(cachep, &list);
3830 	}
3831 }
3832 
3833 /**
3834  * cache_reap - Reclaim memory from caches.
3835  * @w: work descriptor
3836  *
3837  * Called from workqueue/eventd every few seconds.
3838  * Purpose:
3839  * - clear the per-cpu caches for this CPU.
3840  * - return freeable pages to the main free memory pool.
3841  *
3842  * If we cannot acquire the cache chain mutex then just give up - we'll try
3843  * again on the next iteration.
3844  */
cache_reap(struct work_struct * w)3845 static void cache_reap(struct work_struct *w)
3846 {
3847 	struct kmem_cache *searchp;
3848 	struct kmem_cache_node *n;
3849 	int node = numa_mem_id();
3850 	struct delayed_work *work = to_delayed_work(w);
3851 
3852 	if (!mutex_trylock(&slab_mutex))
3853 		/* Give up. Setup the next iteration. */
3854 		goto out;
3855 
3856 	list_for_each_entry(searchp, &slab_caches, list) {
3857 		check_irq_on();
3858 
3859 		/*
3860 		 * We only take the node lock if absolutely necessary and we
3861 		 * have established with reasonable certainty that
3862 		 * we can do some work if the lock was obtained.
3863 		 */
3864 		n = get_node(searchp, node);
3865 
3866 		reap_alien(searchp, n);
3867 
3868 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3869 
3870 		/*
3871 		 * These are racy checks but it does not matter
3872 		 * if we skip one check or scan twice.
3873 		 */
3874 		if (time_after(n->next_reap, jiffies))
3875 			goto next;
3876 
3877 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3878 
3879 		drain_array(searchp, n, n->shared, 0, node);
3880 
3881 		if (n->free_touched)
3882 			n->free_touched = 0;
3883 		else {
3884 			int freed;
3885 
3886 			freed = drain_freelist(searchp, n, (n->free_limit +
3887 				5 * searchp->num - 1) / (5 * searchp->num));
3888 			STATS_ADD_REAPED(searchp, freed);
3889 		}
3890 next:
3891 		cond_resched();
3892 	}
3893 	check_irq_on();
3894 	mutex_unlock(&slab_mutex);
3895 	next_reap_node();
3896 out:
3897 	/* Set up the next iteration */
3898 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3899 }
3900 
3901 #ifdef CONFIG_SLABINFO
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)3902 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3903 {
3904 	struct page *page;
3905 	unsigned long active_objs;
3906 	unsigned long num_objs;
3907 	unsigned long active_slabs = 0;
3908 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3909 	const char *name;
3910 	char *error = NULL;
3911 	int node;
3912 	struct kmem_cache_node *n;
3913 
3914 	active_objs = 0;
3915 	num_slabs = 0;
3916 	for_each_kmem_cache_node(cachep, node, n) {
3917 
3918 		check_irq_on();
3919 		spin_lock_irq(&n->list_lock);
3920 
3921 		list_for_each_entry(page, &n->slabs_full, lru) {
3922 			if (page->active != cachep->num && !error)
3923 				error = "slabs_full accounting error";
3924 			active_objs += cachep->num;
3925 			active_slabs++;
3926 		}
3927 		list_for_each_entry(page, &n->slabs_partial, lru) {
3928 			if (page->active == cachep->num && !error)
3929 				error = "slabs_partial accounting error";
3930 			if (!page->active && !error)
3931 				error = "slabs_partial accounting error";
3932 			active_objs += page->active;
3933 			active_slabs++;
3934 		}
3935 		list_for_each_entry(page, &n->slabs_free, lru) {
3936 			if (page->active && !error)
3937 				error = "slabs_free accounting error";
3938 			num_slabs++;
3939 		}
3940 		free_objects += n->free_objects;
3941 		if (n->shared)
3942 			shared_avail += n->shared->avail;
3943 
3944 		spin_unlock_irq(&n->list_lock);
3945 	}
3946 	num_slabs += active_slabs;
3947 	num_objs = num_slabs * cachep->num;
3948 	if (num_objs - active_objs != free_objects && !error)
3949 		error = "free_objects accounting error";
3950 
3951 	name = cachep->name;
3952 	if (error)
3953 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3954 
3955 	sinfo->active_objs = active_objs;
3956 	sinfo->num_objs = num_objs;
3957 	sinfo->active_slabs = active_slabs;
3958 	sinfo->num_slabs = num_slabs;
3959 	sinfo->shared_avail = shared_avail;
3960 	sinfo->limit = cachep->limit;
3961 	sinfo->batchcount = cachep->batchcount;
3962 	sinfo->shared = cachep->shared;
3963 	sinfo->objects_per_slab = cachep->num;
3964 	sinfo->cache_order = cachep->gfporder;
3965 }
3966 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)3967 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3968 {
3969 #if STATS
3970 	{			/* node stats */
3971 		unsigned long high = cachep->high_mark;
3972 		unsigned long allocs = cachep->num_allocations;
3973 		unsigned long grown = cachep->grown;
3974 		unsigned long reaped = cachep->reaped;
3975 		unsigned long errors = cachep->errors;
3976 		unsigned long max_freeable = cachep->max_freeable;
3977 		unsigned long node_allocs = cachep->node_allocs;
3978 		unsigned long node_frees = cachep->node_frees;
3979 		unsigned long overflows = cachep->node_overflow;
3980 
3981 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3982 			   "%4lu %4lu %4lu %4lu %4lu",
3983 			   allocs, high, grown,
3984 			   reaped, errors, max_freeable, node_allocs,
3985 			   node_frees, overflows);
3986 	}
3987 	/* cpu stats */
3988 	{
3989 		unsigned long allochit = atomic_read(&cachep->allochit);
3990 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3991 		unsigned long freehit = atomic_read(&cachep->freehit);
3992 		unsigned long freemiss = atomic_read(&cachep->freemiss);
3993 
3994 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3995 			   allochit, allocmiss, freehit, freemiss);
3996 	}
3997 #endif
3998 }
3999 
4000 #define MAX_SLABINFO_WRITE 128
4001 /**
4002  * slabinfo_write - Tuning for the slab allocator
4003  * @file: unused
4004  * @buffer: user buffer
4005  * @count: data length
4006  * @ppos: unused
4007  */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4008 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4009 		       size_t count, loff_t *ppos)
4010 {
4011 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4012 	int limit, batchcount, shared, res;
4013 	struct kmem_cache *cachep;
4014 
4015 	if (count > MAX_SLABINFO_WRITE)
4016 		return -EINVAL;
4017 	if (copy_from_user(&kbuf, buffer, count))
4018 		return -EFAULT;
4019 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4020 
4021 	tmp = strchr(kbuf, ' ');
4022 	if (!tmp)
4023 		return -EINVAL;
4024 	*tmp = '\0';
4025 	tmp++;
4026 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4027 		return -EINVAL;
4028 
4029 	/* Find the cache in the chain of caches. */
4030 	mutex_lock(&slab_mutex);
4031 	res = -EINVAL;
4032 	list_for_each_entry(cachep, &slab_caches, list) {
4033 		if (!strcmp(cachep->name, kbuf)) {
4034 			if (limit < 1 || batchcount < 1 ||
4035 					batchcount > limit || shared < 0) {
4036 				res = 0;
4037 			} else {
4038 				res = do_tune_cpucache(cachep, limit,
4039 						       batchcount, shared,
4040 						       GFP_KERNEL);
4041 			}
4042 			break;
4043 		}
4044 	}
4045 	mutex_unlock(&slab_mutex);
4046 	if (res >= 0)
4047 		res = count;
4048 	return res;
4049 }
4050 
4051 #ifdef CONFIG_DEBUG_SLAB_LEAK
4052 
leaks_start(struct seq_file * m,loff_t * pos)4053 static void *leaks_start(struct seq_file *m, loff_t *pos)
4054 {
4055 	mutex_lock(&slab_mutex);
4056 	return seq_list_start(&slab_caches, *pos);
4057 }
4058 
add_caller(unsigned long * n,unsigned long v)4059 static inline int add_caller(unsigned long *n, unsigned long v)
4060 {
4061 	unsigned long *p;
4062 	int l;
4063 	if (!v)
4064 		return 1;
4065 	l = n[1];
4066 	p = n + 2;
4067 	while (l) {
4068 		int i = l/2;
4069 		unsigned long *q = p + 2 * i;
4070 		if (*q == v) {
4071 			q[1]++;
4072 			return 1;
4073 		}
4074 		if (*q > v) {
4075 			l = i;
4076 		} else {
4077 			p = q + 2;
4078 			l -= i + 1;
4079 		}
4080 	}
4081 	if (++n[1] == n[0])
4082 		return 0;
4083 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4084 	p[0] = v;
4085 	p[1] = 1;
4086 	return 1;
4087 }
4088 
handle_slab(unsigned long * n,struct kmem_cache * c,struct page * page)4089 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4090 						struct page *page)
4091 {
4092 	void *p;
4093 	int i;
4094 
4095 	if (n[0] == n[1])
4096 		return;
4097 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4098 		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4099 			continue;
4100 
4101 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4102 			return;
4103 	}
4104 }
4105 
show_symbol(struct seq_file * m,unsigned long address)4106 static void show_symbol(struct seq_file *m, unsigned long address)
4107 {
4108 #ifdef CONFIG_KALLSYMS
4109 	unsigned long offset, size;
4110 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4111 
4112 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4113 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4114 		if (modname[0])
4115 			seq_printf(m, " [%s]", modname);
4116 		return;
4117 	}
4118 #endif
4119 	seq_printf(m, "%p", (void *)address);
4120 }
4121 
leaks_show(struct seq_file * m,void * p)4122 static int leaks_show(struct seq_file *m, void *p)
4123 {
4124 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4125 	struct page *page;
4126 	struct kmem_cache_node *n;
4127 	const char *name;
4128 	unsigned long *x = m->private;
4129 	int node;
4130 	int i;
4131 
4132 	if (!(cachep->flags & SLAB_STORE_USER))
4133 		return 0;
4134 	if (!(cachep->flags & SLAB_RED_ZONE))
4135 		return 0;
4136 
4137 	/* OK, we can do it */
4138 
4139 	x[1] = 0;
4140 
4141 	for_each_kmem_cache_node(cachep, node, n) {
4142 
4143 		check_irq_on();
4144 		spin_lock_irq(&n->list_lock);
4145 
4146 		list_for_each_entry(page, &n->slabs_full, lru)
4147 			handle_slab(x, cachep, page);
4148 		list_for_each_entry(page, &n->slabs_partial, lru)
4149 			handle_slab(x, cachep, page);
4150 		spin_unlock_irq(&n->list_lock);
4151 	}
4152 	name = cachep->name;
4153 	if (x[0] == x[1]) {
4154 		/* Increase the buffer size */
4155 		mutex_unlock(&slab_mutex);
4156 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4157 		if (!m->private) {
4158 			/* Too bad, we are really out */
4159 			m->private = x;
4160 			mutex_lock(&slab_mutex);
4161 			return -ENOMEM;
4162 		}
4163 		*(unsigned long *)m->private = x[0] * 2;
4164 		kfree(x);
4165 		mutex_lock(&slab_mutex);
4166 		/* Now make sure this entry will be retried */
4167 		m->count = m->size;
4168 		return 0;
4169 	}
4170 	for (i = 0; i < x[1]; i++) {
4171 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4172 		show_symbol(m, x[2*i+2]);
4173 		seq_putc(m, '\n');
4174 	}
4175 
4176 	return 0;
4177 }
4178 
4179 static const struct seq_operations slabstats_op = {
4180 	.start = leaks_start,
4181 	.next = slab_next,
4182 	.stop = slab_stop,
4183 	.show = leaks_show,
4184 };
4185 
slabstats_open(struct inode * inode,struct file * file)4186 static int slabstats_open(struct inode *inode, struct file *file)
4187 {
4188 	unsigned long *n;
4189 
4190 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4191 	if (!n)
4192 		return -ENOMEM;
4193 
4194 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4195 
4196 	return 0;
4197 }
4198 
4199 static const struct file_operations proc_slabstats_operations = {
4200 	.open		= slabstats_open,
4201 	.read		= seq_read,
4202 	.llseek		= seq_lseek,
4203 	.release	= seq_release_private,
4204 };
4205 #endif
4206 
slab_proc_init(void)4207 static int __init slab_proc_init(void)
4208 {
4209 #ifdef CONFIG_DEBUG_SLAB_LEAK
4210 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4211 #endif
4212 	return 0;
4213 }
4214 module_init(slab_proc_init);
4215 #endif
4216 
4217 #ifdef CONFIG_HARDENED_USERCOPY
4218 /*
4219  * Rejects objects that are incorrectly sized.
4220  *
4221  * Returns NULL if check passes, otherwise const char * to name of cache
4222  * to indicate an error.
4223  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page)4224 const char *__check_heap_object(const void *ptr, unsigned long n,
4225 				struct page *page)
4226 {
4227 	struct kmem_cache *cachep;
4228 	unsigned int objnr;
4229 	unsigned long offset;
4230 
4231 	/* Find and validate object. */
4232 	cachep = page->slab_cache;
4233 	objnr = obj_to_index(cachep, page, (void *)ptr);
4234 	BUG_ON(objnr >= cachep->num);
4235 
4236 	/* Find offset within object. */
4237 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4238 
4239 	/* Allow address range falling entirely within object size. */
4240 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4241 		return NULL;
4242 
4243 	return cachep->name;
4244 }
4245 #endif /* CONFIG_HARDENED_USERCOPY */
4246 
4247 /**
4248  * ksize - get the actual amount of memory allocated for a given object
4249  * @objp: Pointer to the object
4250  *
4251  * kmalloc may internally round up allocations and return more memory
4252  * than requested. ksize() can be used to determine the actual amount of
4253  * memory allocated. The caller may use this additional memory, even though
4254  * a smaller amount of memory was initially specified with the kmalloc call.
4255  * The caller must guarantee that objp points to a valid object previously
4256  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4257  * must not be freed during the duration of the call.
4258  */
ksize(const void * objp)4259 size_t ksize(const void *objp)
4260 {
4261 	BUG_ON(!objp);
4262 	if (unlikely(objp == ZERO_SIZE_PTR))
4263 		return 0;
4264 
4265 	return virt_to_cache(objp)->object_size;
4266 }
4267 EXPORT_SYMBOL(ksize);
4268