• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
kmem_cache_debug(struct kmem_cache * s)117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
fixup_red_left(struct kmem_cache * s,void * p)126 static inline void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
kmem_cache_has_cpu_partial(struct kmem_cache * s)134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * Debugging flags that require metadata to be stored in the slab.  These get
175  * disabled when slub_debug=O is used and a cache's min order increases with
176  * metadata.
177  */
178 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
179 
180 #define OO_SHIFT	16
181 #define OO_MASK		((1 << OO_SHIFT) - 1)
182 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
183 
184 /* Internal SLUB flags */
185 #define __OBJECT_POISON		0x80000000UL /* Poison object */
186 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
187 
188 #ifdef CONFIG_SMP
189 static struct notifier_block slab_notifier;
190 #endif
191 
192 /*
193  * Tracking user of a slab.
194  */
195 #define TRACK_ADDRS_COUNT 16
196 struct track {
197 	unsigned long addr;	/* Called from address */
198 #ifdef CONFIG_STACKTRACE
199 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
200 #endif
201 	int cpu;		/* Was running on cpu */
202 	int pid;		/* Pid context */
203 	unsigned long when;	/* When did the operation occur */
204 };
205 
206 enum track_item { TRACK_ALLOC, TRACK_FREE };
207 
208 #ifdef CONFIG_SYSFS
209 static int sysfs_slab_add(struct kmem_cache *);
210 static int sysfs_slab_alias(struct kmem_cache *, const char *);
211 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
212 #else
sysfs_slab_add(struct kmem_cache * s)213 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)214 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215 							{ return 0; }
memcg_propagate_slab_attrs(struct kmem_cache * s)216 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
217 #endif
218 
stat(const struct kmem_cache * s,enum stat_item si)219 static inline void stat(const struct kmem_cache *s, enum stat_item si)
220 {
221 #ifdef CONFIG_SLUB_STATS
222 	/*
223 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
224 	 * avoid this_cpu_add()'s irq-disable overhead.
225 	 */
226 	raw_cpu_inc(s->cpu_slab->stat[si]);
227 #endif
228 }
229 
230 /********************************************************************
231  * 			Core slab cache functions
232  *******************************************************************/
233 
get_freepointer(struct kmem_cache * s,void * object)234 static inline void *get_freepointer(struct kmem_cache *s, void *object)
235 {
236 	return *(void **)(object + s->offset);
237 }
238 
prefetch_freepointer(const struct kmem_cache * s,void * object)239 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
240 {
241 	prefetch(object + s->offset);
242 }
243 
get_freepointer_safe(struct kmem_cache * s,void * object)244 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
245 {
246 	void *p;
247 
248 #ifdef CONFIG_DEBUG_PAGEALLOC
249 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
250 #else
251 	p = get_freepointer(s, object);
252 #endif
253 	return p;
254 }
255 
set_freepointer(struct kmem_cache * s,void * object,void * fp)256 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
257 {
258 	*(void **)(object + s->offset) = fp;
259 }
260 
261 /* Loop over all objects in a slab */
262 #define for_each_object(__p, __s, __addr, __objects) \
263 	for (__p = fixup_red_left(__s, __addr); \
264 		__p < (__addr) + (__objects) * (__s)->size; \
265 		__p += (__s)->size)
266 
267 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
268 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
269 		__idx <= __objects; \
270 		__p += (__s)->size, __idx++)
271 
272 /* Determine object index from a given position */
slab_index(void * p,struct kmem_cache * s,void * addr)273 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
274 {
275 	return (p - addr) / s->size;
276 }
277 
slab_ksize(const struct kmem_cache * s)278 static inline size_t slab_ksize(const struct kmem_cache *s)
279 {
280 #ifdef CONFIG_SLUB_DEBUG
281 	/*
282 	 * Debugging requires use of the padding between object
283 	 * and whatever may come after it.
284 	 */
285 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
286 		return s->object_size;
287 
288 #endif
289 	/*
290 	 * If we have the need to store the freelist pointer
291 	 * back there or track user information then we can
292 	 * only use the space before that information.
293 	 */
294 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
295 		return s->inuse;
296 	/*
297 	 * Else we can use all the padding etc for the allocation
298 	 */
299 	return s->size;
300 }
301 
order_objects(int order,unsigned long size,int reserved)302 static inline int order_objects(int order, unsigned long size, int reserved)
303 {
304 	return ((PAGE_SIZE << order) - reserved) / size;
305 }
306 
oo_make(int order,unsigned long size,int reserved)307 static inline struct kmem_cache_order_objects oo_make(int order,
308 		unsigned long size, int reserved)
309 {
310 	struct kmem_cache_order_objects x = {
311 		(order << OO_SHIFT) + order_objects(order, size, reserved)
312 	};
313 
314 	return x;
315 }
316 
oo_order(struct kmem_cache_order_objects x)317 static inline int oo_order(struct kmem_cache_order_objects x)
318 {
319 	return x.x >> OO_SHIFT;
320 }
321 
oo_objects(struct kmem_cache_order_objects x)322 static inline int oo_objects(struct kmem_cache_order_objects x)
323 {
324 	return x.x & OO_MASK;
325 }
326 
327 /*
328  * Per slab locking using the pagelock
329  */
slab_lock(struct page * page)330 static __always_inline void slab_lock(struct page *page)
331 {
332 	bit_spin_lock(PG_locked, &page->flags);
333 }
334 
slab_unlock(struct page * page)335 static __always_inline void slab_unlock(struct page *page)
336 {
337 	__bit_spin_unlock(PG_locked, &page->flags);
338 }
339 
set_page_slub_counters(struct page * page,unsigned long counters_new)340 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
341 {
342 	struct page tmp;
343 	tmp.counters = counters_new;
344 	/*
345 	 * page->counters can cover frozen/inuse/objects as well
346 	 * as page->_count.  If we assign to ->counters directly
347 	 * we run the risk of losing updates to page->_count, so
348 	 * be careful and only assign to the fields we need.
349 	 */
350 	page->frozen  = tmp.frozen;
351 	page->inuse   = tmp.inuse;
352 	page->objects = tmp.objects;
353 }
354 
355 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 		void *freelist_old, unsigned long counters_old,
358 		void *freelist_new, unsigned long counters_new,
359 		const char *n)
360 {
361 	VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 	if (s->flags & __CMPXCHG_DOUBLE) {
365 		if (cmpxchg_double(&page->freelist, &page->counters,
366 				   freelist_old, counters_old,
367 				   freelist_new, counters_new))
368 			return 1;
369 	} else
370 #endif
371 	{
372 		slab_lock(page);
373 		if (page->freelist == freelist_old &&
374 					page->counters == counters_old) {
375 			page->freelist = freelist_new;
376 			set_page_slub_counters(page, counters_new);
377 			slab_unlock(page);
378 			return 1;
379 		}
380 		slab_unlock(page);
381 	}
382 
383 	cpu_relax();
384 	stat(s, CMPXCHG_DOUBLE_FAIL);
385 
386 #ifdef SLUB_DEBUG_CMPXCHG
387 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
388 #endif
389 
390 	return 0;
391 }
392 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)393 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
394 		void *freelist_old, unsigned long counters_old,
395 		void *freelist_new, unsigned long counters_new,
396 		const char *n)
397 {
398 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
399     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
400 	if (s->flags & __CMPXCHG_DOUBLE) {
401 		if (cmpxchg_double(&page->freelist, &page->counters,
402 				   freelist_old, counters_old,
403 				   freelist_new, counters_new))
404 			return 1;
405 	} else
406 #endif
407 	{
408 		unsigned long flags;
409 
410 		local_irq_save(flags);
411 		slab_lock(page);
412 		if (page->freelist == freelist_old &&
413 					page->counters == counters_old) {
414 			page->freelist = freelist_new;
415 			set_page_slub_counters(page, counters_new);
416 			slab_unlock(page);
417 			local_irq_restore(flags);
418 			return 1;
419 		}
420 		slab_unlock(page);
421 		local_irq_restore(flags);
422 	}
423 
424 	cpu_relax();
425 	stat(s, CMPXCHG_DOUBLE_FAIL);
426 
427 #ifdef SLUB_DEBUG_CMPXCHG
428 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
429 #endif
430 
431 	return 0;
432 }
433 
434 #ifdef CONFIG_SLUB_DEBUG
435 /*
436  * Determine a map of object in use on a page.
437  *
438  * Node listlock must be held to guarantee that the page does
439  * not vanish from under us.
440  */
get_map(struct kmem_cache * s,struct page * page,unsigned long * map)441 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
442 {
443 	void *p;
444 	void *addr = page_address(page);
445 
446 	for (p = page->freelist; p; p = get_freepointer(s, p))
447 		set_bit(slab_index(p, s, addr), map);
448 }
449 
size_from_object(struct kmem_cache * s)450 static inline int size_from_object(struct kmem_cache *s)
451 {
452 	if (s->flags & SLAB_RED_ZONE)
453 		return s->size - s->red_left_pad;
454 
455 	return s->size;
456 }
457 
restore_red_left(struct kmem_cache * s,void * p)458 static inline void *restore_red_left(struct kmem_cache *s, void *p)
459 {
460 	if (s->flags & SLAB_RED_ZONE)
461 		p -= s->red_left_pad;
462 
463 	return p;
464 }
465 
466 /*
467  * Debug settings:
468  */
469 #ifdef CONFIG_SLUB_DEBUG_ON
470 static int slub_debug = DEBUG_DEFAULT_FLAGS;
471 #else
472 static int slub_debug;
473 #endif
474 
475 static char *slub_debug_slabs;
476 static int disable_higher_order_debug;
477 
478 /*
479  * Object debugging
480  */
481 
482 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)483 static inline int check_valid_pointer(struct kmem_cache *s,
484 				struct page *page, void *object)
485 {
486 	void *base;
487 
488 	if (!object)
489 		return 1;
490 
491 	base = page_address(page);
492 	object = restore_red_left(s, object);
493 	if (object < base || object >= base + page->objects * s->size ||
494 		(object - base) % s->size) {
495 		return 0;
496 	}
497 
498 	return 1;
499 }
500 
print_section(char * text,u8 * addr,unsigned int length)501 static void print_section(char *text, u8 *addr, unsigned int length)
502 {
503 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
504 			length, 1);
505 }
506 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)507 static struct track *get_track(struct kmem_cache *s, void *object,
508 	enum track_item alloc)
509 {
510 	struct track *p;
511 
512 	if (s->offset)
513 		p = object + s->offset + sizeof(void *);
514 	else
515 		p = object + s->inuse;
516 
517 	return p + alloc;
518 }
519 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)520 static void set_track(struct kmem_cache *s, void *object,
521 			enum track_item alloc, unsigned long addr)
522 {
523 	struct track *p = get_track(s, object, alloc);
524 
525 	if (addr) {
526 #ifdef CONFIG_STACKTRACE
527 		struct stack_trace trace;
528 		int i;
529 
530 		trace.nr_entries = 0;
531 		trace.max_entries = TRACK_ADDRS_COUNT;
532 		trace.entries = p->addrs;
533 		trace.skip = 3;
534 		save_stack_trace(&trace);
535 
536 		/* See rant in lockdep.c */
537 		if (trace.nr_entries != 0 &&
538 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
539 			trace.nr_entries--;
540 
541 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
542 			p->addrs[i] = 0;
543 #endif
544 		p->addr = addr;
545 		p->cpu = smp_processor_id();
546 		p->pid = current->pid;
547 		p->when = jiffies;
548 	} else
549 		memset(p, 0, sizeof(struct track));
550 }
551 
init_tracking(struct kmem_cache * s,void * object)552 static void init_tracking(struct kmem_cache *s, void *object)
553 {
554 	if (!(s->flags & SLAB_STORE_USER))
555 		return;
556 
557 	set_track(s, object, TRACK_FREE, 0UL);
558 	set_track(s, object, TRACK_ALLOC, 0UL);
559 }
560 
print_track(const char * s,struct track * t)561 static void print_track(const char *s, struct track *t)
562 {
563 	if (!t->addr)
564 		return;
565 
566 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
567 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
568 #ifdef CONFIG_STACKTRACE
569 	{
570 		int i;
571 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
572 			if (t->addrs[i])
573 				pr_err("\t%pS\n", (void *)t->addrs[i]);
574 			else
575 				break;
576 	}
577 #endif
578 }
579 
print_tracking(struct kmem_cache * s,void * object)580 static void print_tracking(struct kmem_cache *s, void *object)
581 {
582 	if (!(s->flags & SLAB_STORE_USER))
583 		return;
584 
585 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
586 	print_track("Freed", get_track(s, object, TRACK_FREE));
587 }
588 
print_page_info(struct page * page)589 static void print_page_info(struct page *page)
590 {
591 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
592 	       page, page->objects, page->inuse, page->freelist, page->flags);
593 
594 }
595 
slab_bug(struct kmem_cache * s,char * fmt,...)596 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
597 {
598 	struct va_format vaf;
599 	va_list args;
600 
601 	va_start(args, fmt);
602 	vaf.fmt = fmt;
603 	vaf.va = &args;
604 	pr_err("=============================================================================\n");
605 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
606 	pr_err("-----------------------------------------------------------------------------\n\n");
607 
608 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
609 	va_end(args);
610 }
611 
slab_fix(struct kmem_cache * s,char * fmt,...)612 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
613 {
614 	struct va_format vaf;
615 	va_list args;
616 
617 	va_start(args, fmt);
618 	vaf.fmt = fmt;
619 	vaf.va = &args;
620 	pr_err("FIX %s: %pV\n", s->name, &vaf);
621 	va_end(args);
622 }
623 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)624 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
625 {
626 	unsigned int off;	/* Offset of last byte */
627 	u8 *addr = page_address(page);
628 
629 	print_tracking(s, p);
630 
631 	print_page_info(page);
632 
633 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
634 	       p, p - addr, get_freepointer(s, p));
635 
636 	if (s->flags & SLAB_RED_ZONE)
637 		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
638 	else if (p > addr + 16)
639 		print_section("Bytes b4 ", p - 16, 16);
640 
641 	print_section("Object ", p, min_t(unsigned long, s->object_size,
642 				PAGE_SIZE));
643 	if (s->flags & SLAB_RED_ZONE)
644 		print_section("Redzone ", p + s->object_size,
645 			s->inuse - s->object_size);
646 
647 	if (s->offset)
648 		off = s->offset + sizeof(void *);
649 	else
650 		off = s->inuse;
651 
652 	if (s->flags & SLAB_STORE_USER)
653 		off += 2 * sizeof(struct track);
654 
655 	if (off != size_from_object(s))
656 		/* Beginning of the filler is the free pointer */
657 		print_section("Padding ", p + off, size_from_object(s) - off);
658 
659 	dump_stack();
660 }
661 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)662 static void object_err(struct kmem_cache *s, struct page *page,
663 			u8 *object, char *reason)
664 {
665 	slab_bug(s, "%s", reason);
666 	print_trailer(s, page, object);
667 }
668 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)669 static void slab_err(struct kmem_cache *s, struct page *page,
670 			const char *fmt, ...)
671 {
672 	va_list args;
673 	char buf[100];
674 
675 	va_start(args, fmt);
676 	vsnprintf(buf, sizeof(buf), fmt, args);
677 	va_end(args);
678 	slab_bug(s, "%s", buf);
679 	print_page_info(page);
680 	dump_stack();
681 }
682 
init_object(struct kmem_cache * s,void * object,u8 val)683 static void init_object(struct kmem_cache *s, void *object, u8 val)
684 {
685 	u8 *p = object;
686 
687 	if (s->flags & SLAB_RED_ZONE)
688 		memset(p - s->red_left_pad, val, s->red_left_pad);
689 
690 	if (s->flags & __OBJECT_POISON) {
691 		memset(p, POISON_FREE, s->object_size - 1);
692 		p[s->object_size - 1] = POISON_END;
693 	}
694 
695 	if (s->flags & SLAB_RED_ZONE)
696 		memset(p + s->object_size, val, s->inuse - s->object_size);
697 }
698 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)699 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
700 						void *from, void *to)
701 {
702 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
703 	memset(from, data, to - from);
704 }
705 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)706 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
707 			u8 *object, char *what,
708 			u8 *start, unsigned int value, unsigned int bytes)
709 {
710 	u8 *fault;
711 	u8 *end;
712 
713 	fault = memchr_inv(start, value, bytes);
714 	if (!fault)
715 		return 1;
716 
717 	end = start + bytes;
718 	while (end > fault && end[-1] == value)
719 		end--;
720 
721 	slab_bug(s, "%s overwritten", what);
722 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
723 					fault, end - 1, fault[0], value);
724 	print_trailer(s, page, object);
725 
726 	restore_bytes(s, what, value, fault, end);
727 	return 0;
728 }
729 
730 /*
731  * Object layout:
732  *
733  * object address
734  * 	Bytes of the object to be managed.
735  * 	If the freepointer may overlay the object then the free
736  * 	pointer is the first word of the object.
737  *
738  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
739  * 	0xa5 (POISON_END)
740  *
741  * object + s->object_size
742  * 	Padding to reach word boundary. This is also used for Redzoning.
743  * 	Padding is extended by another word if Redzoning is enabled and
744  * 	object_size == inuse.
745  *
746  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
747  * 	0xcc (RED_ACTIVE) for objects in use.
748  *
749  * object + s->inuse
750  * 	Meta data starts here.
751  *
752  * 	A. Free pointer (if we cannot overwrite object on free)
753  * 	B. Tracking data for SLAB_STORE_USER
754  * 	C. Padding to reach required alignment boundary or at mininum
755  * 		one word if debugging is on to be able to detect writes
756  * 		before the word boundary.
757  *
758  *	Padding is done using 0x5a (POISON_INUSE)
759  *
760  * object + s->size
761  * 	Nothing is used beyond s->size.
762  *
763  * If slabcaches are merged then the object_size and inuse boundaries are mostly
764  * ignored. And therefore no slab options that rely on these boundaries
765  * may be used with merged slabcaches.
766  */
767 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)768 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
769 {
770 	unsigned long off = s->inuse;	/* The end of info */
771 
772 	if (s->offset)
773 		/* Freepointer is placed after the object. */
774 		off += sizeof(void *);
775 
776 	if (s->flags & SLAB_STORE_USER)
777 		/* We also have user information there */
778 		off += 2 * sizeof(struct track);
779 
780 	if (size_from_object(s) == off)
781 		return 1;
782 
783 	return check_bytes_and_report(s, page, p, "Object padding",
784 			p + off, POISON_INUSE, size_from_object(s) - off);
785 }
786 
787 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)788 static int slab_pad_check(struct kmem_cache *s, struct page *page)
789 {
790 	u8 *start;
791 	u8 *fault;
792 	u8 *end;
793 	int length;
794 	int remainder;
795 
796 	if (!(s->flags & SLAB_POISON))
797 		return 1;
798 
799 	start = page_address(page);
800 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
801 	end = start + length;
802 	remainder = length % s->size;
803 	if (!remainder)
804 		return 1;
805 
806 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
807 	if (!fault)
808 		return 1;
809 	while (end > fault && end[-1] == POISON_INUSE)
810 		end--;
811 
812 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
813 	print_section("Padding ", end - remainder, remainder);
814 
815 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
816 	return 0;
817 }
818 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)819 static int check_object(struct kmem_cache *s, struct page *page,
820 					void *object, u8 val)
821 {
822 	u8 *p = object;
823 	u8 *endobject = object + s->object_size;
824 
825 	if (s->flags & SLAB_RED_ZONE) {
826 		if (!check_bytes_and_report(s, page, object, "Redzone",
827 			object - s->red_left_pad, val, s->red_left_pad))
828 			return 0;
829 
830 		if (!check_bytes_and_report(s, page, object, "Redzone",
831 			endobject, val, s->inuse - s->object_size))
832 			return 0;
833 	} else {
834 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
835 			check_bytes_and_report(s, page, p, "Alignment padding",
836 				endobject, POISON_INUSE,
837 				s->inuse - s->object_size);
838 		}
839 	}
840 
841 	if (s->flags & SLAB_POISON) {
842 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
843 			(!check_bytes_and_report(s, page, p, "Poison", p,
844 					POISON_FREE, s->object_size - 1) ||
845 			 !check_bytes_and_report(s, page, p, "Poison",
846 				p + s->object_size - 1, POISON_END, 1)))
847 			return 0;
848 		/*
849 		 * check_pad_bytes cleans up on its own.
850 		 */
851 		check_pad_bytes(s, page, p);
852 	}
853 
854 	if (!s->offset && val == SLUB_RED_ACTIVE)
855 		/*
856 		 * Object and freepointer overlap. Cannot check
857 		 * freepointer while object is allocated.
858 		 */
859 		return 1;
860 
861 	/* Check free pointer validity */
862 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
863 		object_err(s, page, p, "Freepointer corrupt");
864 		/*
865 		 * No choice but to zap it and thus lose the remainder
866 		 * of the free objects in this slab. May cause
867 		 * another error because the object count is now wrong.
868 		 */
869 		set_freepointer(s, p, NULL);
870 		return 0;
871 	}
872 	return 1;
873 }
874 
check_slab(struct kmem_cache * s,struct page * page)875 static int check_slab(struct kmem_cache *s, struct page *page)
876 {
877 	int maxobj;
878 
879 	VM_BUG_ON(!irqs_disabled());
880 
881 	if (!PageSlab(page)) {
882 		slab_err(s, page, "Not a valid slab page");
883 		return 0;
884 	}
885 
886 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
887 	if (page->objects > maxobj) {
888 		slab_err(s, page, "objects %u > max %u",
889 			s->name, page->objects, maxobj);
890 		return 0;
891 	}
892 	if (page->inuse > page->objects) {
893 		slab_err(s, page, "inuse %u > max %u",
894 			s->name, page->inuse, page->objects);
895 		return 0;
896 	}
897 	/* Slab_pad_check fixes things up after itself */
898 	slab_pad_check(s, page);
899 	return 1;
900 }
901 
902 /*
903  * Determine if a certain object on a page is on the freelist. Must hold the
904  * slab lock to guarantee that the chains are in a consistent state.
905  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)906 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
907 {
908 	int nr = 0;
909 	void *fp;
910 	void *object = NULL;
911 	unsigned long max_objects;
912 
913 	fp = page->freelist;
914 	while (fp && nr <= page->objects) {
915 		if (fp == search)
916 			return 1;
917 		if (!check_valid_pointer(s, page, fp)) {
918 			if (object) {
919 				object_err(s, page, object,
920 					"Freechain corrupt");
921 				set_freepointer(s, object, NULL);
922 			} else {
923 				slab_err(s, page, "Freepointer corrupt");
924 				page->freelist = NULL;
925 				page->inuse = page->objects;
926 				slab_fix(s, "Freelist cleared");
927 				return 0;
928 			}
929 			break;
930 		}
931 		object = fp;
932 		fp = get_freepointer(s, object);
933 		nr++;
934 	}
935 
936 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
937 	if (max_objects > MAX_OBJS_PER_PAGE)
938 		max_objects = MAX_OBJS_PER_PAGE;
939 
940 	if (page->objects != max_objects) {
941 		slab_err(s, page, "Wrong number of objects. Found %d but "
942 			"should be %d", page->objects, max_objects);
943 		page->objects = max_objects;
944 		slab_fix(s, "Number of objects adjusted.");
945 	}
946 	if (page->inuse != page->objects - nr) {
947 		slab_err(s, page, "Wrong object count. Counter is %d but "
948 			"counted were %d", page->inuse, page->objects - nr);
949 		page->inuse = page->objects - nr;
950 		slab_fix(s, "Object count adjusted.");
951 	}
952 	return search == NULL;
953 }
954 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)955 static void trace(struct kmem_cache *s, struct page *page, void *object,
956 								int alloc)
957 {
958 	if (s->flags & SLAB_TRACE) {
959 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
960 			s->name,
961 			alloc ? "alloc" : "free",
962 			object, page->inuse,
963 			page->freelist);
964 
965 		if (!alloc)
966 			print_section("Object ", (void *)object,
967 					s->object_size);
968 
969 		dump_stack();
970 	}
971 }
972 
973 /*
974  * Tracking of fully allocated slabs for debugging purposes.
975  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)976 static void add_full(struct kmem_cache *s,
977 	struct kmem_cache_node *n, struct page *page)
978 {
979 	if (!(s->flags & SLAB_STORE_USER))
980 		return;
981 
982 	lockdep_assert_held(&n->list_lock);
983 	list_add(&page->lru, &n->full);
984 }
985 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)986 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
987 {
988 	if (!(s->flags & SLAB_STORE_USER))
989 		return;
990 
991 	lockdep_assert_held(&n->list_lock);
992 	list_del(&page->lru);
993 }
994 
995 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	return atomic_long_read(&n->nr_slabs);
1001 }
1002 
node_nr_slabs(struct kmem_cache_node * n)1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 	return atomic_long_read(&n->nr_slabs);
1006 }
1007 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 	struct kmem_cache_node *n = get_node(s, node);
1011 
1012 	/*
1013 	 * May be called early in order to allocate a slab for the
1014 	 * kmem_cache_node structure. Solve the chicken-egg
1015 	 * dilemma by deferring the increment of the count during
1016 	 * bootstrap (see early_kmem_cache_node_alloc).
1017 	 */
1018 	if (likely(n)) {
1019 		atomic_long_inc(&n->nr_slabs);
1020 		atomic_long_add(objects, &n->total_objects);
1021 	}
1022 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 	struct kmem_cache_node *n = get_node(s, node);
1026 
1027 	atomic_long_dec(&n->nr_slabs);
1028 	atomic_long_sub(objects, &n->total_objects);
1029 }
1030 
1031 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 								void *object)
1034 {
1035 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 		return;
1037 
1038 	init_object(s, object, SLUB_RED_INACTIVE);
1039 	init_tracking(s, object);
1040 }
1041 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1042 static noinline int alloc_debug_processing(struct kmem_cache *s,
1043 					struct page *page,
1044 					void *object, unsigned long addr)
1045 {
1046 	if (!check_slab(s, page))
1047 		goto bad;
1048 
1049 	if (!check_valid_pointer(s, page, object)) {
1050 		object_err(s, page, object, "Freelist Pointer check fails");
1051 		goto bad;
1052 	}
1053 
1054 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1055 		goto bad;
1056 
1057 	/* Success perform special debug activities for allocs */
1058 	if (s->flags & SLAB_STORE_USER)
1059 		set_track(s, object, TRACK_ALLOC, addr);
1060 	trace(s, page, object, 1);
1061 	init_object(s, object, SLUB_RED_ACTIVE);
1062 	return 1;
1063 
1064 bad:
1065 	if (PageSlab(page)) {
1066 		/*
1067 		 * If this is a slab page then lets do the best we can
1068 		 * to avoid issues in the future. Marking all objects
1069 		 * as used avoids touching the remaining objects.
1070 		 */
1071 		slab_fix(s, "Marking all objects used");
1072 		page->inuse = page->objects;
1073 		page->freelist = NULL;
1074 	}
1075 	return 0;
1076 }
1077 
free_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr,unsigned long * flags)1078 static noinline struct kmem_cache_node *free_debug_processing(
1079 	struct kmem_cache *s, struct page *page, void *object,
1080 	unsigned long addr, unsigned long *flags)
1081 {
1082 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1083 
1084 	spin_lock_irqsave(&n->list_lock, *flags);
1085 	slab_lock(page);
1086 
1087 	if (!check_slab(s, page))
1088 		goto fail;
1089 
1090 	if (!check_valid_pointer(s, page, object)) {
1091 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1092 		goto fail;
1093 	}
1094 
1095 	if (on_freelist(s, page, object)) {
1096 		object_err(s, page, object, "Object already free");
1097 		goto fail;
1098 	}
1099 
1100 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1101 		goto out;
1102 
1103 	if (unlikely(s != page->slab_cache)) {
1104 		if (!PageSlab(page)) {
1105 			slab_err(s, page, "Attempt to free object(0x%p) "
1106 				"outside of slab", object);
1107 		} else if (!page->slab_cache) {
1108 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1109 			       object);
1110 			dump_stack();
1111 		} else
1112 			object_err(s, page, object,
1113 					"page slab pointer corrupt.");
1114 		goto fail;
1115 	}
1116 
1117 	if (s->flags & SLAB_STORE_USER)
1118 		set_track(s, object, TRACK_FREE, addr);
1119 	trace(s, page, object, 0);
1120 	init_object(s, object, SLUB_RED_INACTIVE);
1121 out:
1122 	slab_unlock(page);
1123 	/*
1124 	 * Keep node_lock to preserve integrity
1125 	 * until the object is actually freed
1126 	 */
1127 	return n;
1128 
1129 fail:
1130 	slab_unlock(page);
1131 	spin_unlock_irqrestore(&n->list_lock, *flags);
1132 	slab_fix(s, "Object at 0x%p not freed", object);
1133 	return NULL;
1134 }
1135 
setup_slub_debug(char * str)1136 static int __init setup_slub_debug(char *str)
1137 {
1138 	slub_debug = DEBUG_DEFAULT_FLAGS;
1139 	if (*str++ != '=' || !*str)
1140 		/*
1141 		 * No options specified. Switch on full debugging.
1142 		 */
1143 		goto out;
1144 
1145 	if (*str == ',')
1146 		/*
1147 		 * No options but restriction on slabs. This means full
1148 		 * debugging for slabs matching a pattern.
1149 		 */
1150 		goto check_slabs;
1151 
1152 	if (tolower(*str) == 'o') {
1153 		/*
1154 		 * Avoid enabling debugging on caches if its minimum order
1155 		 * would increase as a result.
1156 		 */
1157 		disable_higher_order_debug = 1;
1158 		goto out;
1159 	}
1160 
1161 	slub_debug = 0;
1162 	if (*str == '-')
1163 		/*
1164 		 * Switch off all debugging measures.
1165 		 */
1166 		goto out;
1167 
1168 	/*
1169 	 * Determine which debug features should be switched on
1170 	 */
1171 	for (; *str && *str != ','; str++) {
1172 		switch (tolower(*str)) {
1173 		case 'f':
1174 			slub_debug |= SLAB_DEBUG_FREE;
1175 			break;
1176 		case 'z':
1177 			slub_debug |= SLAB_RED_ZONE;
1178 			break;
1179 		case 'p':
1180 			slub_debug |= SLAB_POISON;
1181 			break;
1182 		case 'u':
1183 			slub_debug |= SLAB_STORE_USER;
1184 			break;
1185 		case 't':
1186 			slub_debug |= SLAB_TRACE;
1187 			break;
1188 		case 'a':
1189 			slub_debug |= SLAB_FAILSLAB;
1190 			break;
1191 		default:
1192 			pr_err("slub_debug option '%c' unknown. skipped\n",
1193 			       *str);
1194 		}
1195 	}
1196 
1197 check_slabs:
1198 	if (*str == ',')
1199 		slub_debug_slabs = str + 1;
1200 out:
1201 	return 1;
1202 }
1203 
1204 __setup("slub_debug", setup_slub_debug);
1205 
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))1206 unsigned long kmem_cache_flags(unsigned long object_size,
1207 	unsigned long flags, const char *name,
1208 	void (*ctor)(void *))
1209 {
1210 	/*
1211 	 * Enable debugging if selected on the kernel commandline.
1212 	 */
1213 	if (slub_debug && (!slub_debug_slabs || (name &&
1214 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1215 		flags |= slub_debug;
1216 
1217 	return flags;
1218 }
1219 #else
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1220 static inline void setup_object_debug(struct kmem_cache *s,
1221 			struct page *page, void *object) {}
1222 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1223 static inline int alloc_debug_processing(struct kmem_cache *s,
1224 	struct page *page, void *object, unsigned long addr) { return 0; }
1225 
free_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr,unsigned long * flags)1226 static inline struct kmem_cache_node *free_debug_processing(
1227 	struct kmem_cache *s, struct page *page, void *object,
1228 	unsigned long addr, unsigned long *flags) { return NULL; }
1229 
slab_pad_check(struct kmem_cache * s,struct page * page)1230 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1231 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1232 static inline int check_object(struct kmem_cache *s, struct page *page,
1233 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1234 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1235 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1236 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1237 					struct page *page) {}
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))1238 unsigned long kmem_cache_flags(unsigned long object_size,
1239 	unsigned long flags, const char *name,
1240 	void (*ctor)(void *))
1241 {
1242 	return flags;
1243 }
1244 #define slub_debug 0
1245 
1246 #define disable_higher_order_debug 0
1247 
slabs_node(struct kmem_cache * s,int node)1248 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1249 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1250 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1251 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1252 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1253 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1254 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1255 							int objects) {}
1256 
1257 #endif /* CONFIG_SLUB_DEBUG */
1258 
1259 /*
1260  * Hooks for other subsystems that check memory allocations. In a typical
1261  * production configuration these hooks all should produce no code at all.
1262  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1263 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1264 {
1265 	kmemleak_alloc(ptr, size, 1, flags);
1266 }
1267 
kfree_hook(const void * x)1268 static inline void kfree_hook(const void *x)
1269 {
1270 	kmemleak_free(x);
1271 }
1272 
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)1273 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1274 {
1275 	flags &= gfp_allowed_mask;
1276 	lockdep_trace_alloc(flags);
1277 	might_sleep_if(flags & __GFP_WAIT);
1278 
1279 	return should_failslab(s->object_size, flags, s->flags);
1280 }
1281 
slab_post_alloc_hook(struct kmem_cache * s,gfp_t flags,void * object)1282 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1283 					gfp_t flags, void *object)
1284 {
1285 	flags &= gfp_allowed_mask;
1286 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1287 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1288 }
1289 
slab_free_hook(struct kmem_cache * s,void * x)1290 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1291 {
1292 	kmemleak_free_recursive(x, s->flags);
1293 
1294 	/*
1295 	 * Trouble is that we may no longer disable interrupts in the fast path
1296 	 * So in order to make the debug calls that expect irqs to be
1297 	 * disabled we need to disable interrupts temporarily.
1298 	 */
1299 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1300 	{
1301 		unsigned long flags;
1302 
1303 		local_irq_save(flags);
1304 		kmemcheck_slab_free(s, x, s->object_size);
1305 		debug_check_no_locks_freed(x, s->object_size);
1306 		local_irq_restore(flags);
1307 	}
1308 #endif
1309 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1310 		debug_check_no_obj_freed(x, s->object_size);
1311 }
1312 
1313 /*
1314  * Slab allocation and freeing
1315  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1316 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1317 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1318 {
1319 	struct page *page;
1320 	int order = oo_order(oo);
1321 
1322 	flags |= __GFP_NOTRACK;
1323 
1324 	if (memcg_charge_slab(s, flags, order))
1325 		return NULL;
1326 
1327 	if (node == NUMA_NO_NODE)
1328 		page = alloc_pages(flags, order);
1329 	else
1330 		page = alloc_pages_exact_node(node, flags, order);
1331 
1332 	if (!page)
1333 		memcg_uncharge_slab(s, order);
1334 
1335 	return page;
1336 }
1337 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1338 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1339 {
1340 	struct page *page;
1341 	struct kmem_cache_order_objects oo = s->oo;
1342 	gfp_t alloc_gfp;
1343 
1344 	flags &= gfp_allowed_mask;
1345 
1346 	if (flags & __GFP_WAIT)
1347 		local_irq_enable();
1348 
1349 	flags |= s->allocflags;
1350 
1351 	/*
1352 	 * Let the initial higher-order allocation fail under memory pressure
1353 	 * so we fall-back to the minimum order allocation.
1354 	 */
1355 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1356 
1357 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1358 	if (unlikely(!page)) {
1359 		oo = s->min;
1360 		alloc_gfp = flags;
1361 		/*
1362 		 * Allocation may have failed due to fragmentation.
1363 		 * Try a lower order alloc if possible
1364 		 */
1365 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1366 
1367 		if (page)
1368 			stat(s, ORDER_FALLBACK);
1369 	}
1370 
1371 	if (kmemcheck_enabled && page
1372 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1373 		int pages = 1 << oo_order(oo);
1374 
1375 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1376 
1377 		/*
1378 		 * Objects from caches that have a constructor don't get
1379 		 * cleared when they're allocated, so we need to do it here.
1380 		 */
1381 		if (s->ctor)
1382 			kmemcheck_mark_uninitialized_pages(page, pages);
1383 		else
1384 			kmemcheck_mark_unallocated_pages(page, pages);
1385 	}
1386 
1387 	if (flags & __GFP_WAIT)
1388 		local_irq_disable();
1389 	if (!page)
1390 		return NULL;
1391 
1392 	page->objects = oo_objects(oo);
1393 	mod_zone_page_state(page_zone(page),
1394 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1395 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1396 		1 << oo_order(oo));
1397 
1398 	return page;
1399 }
1400 
setup_object(struct kmem_cache * s,struct page * page,void * object)1401 static void setup_object(struct kmem_cache *s, struct page *page,
1402 				void *object)
1403 {
1404 	setup_object_debug(s, page, object);
1405 	if (unlikely(s->ctor))
1406 		s->ctor(object);
1407 }
1408 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1409 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1410 {
1411 	struct page *page;
1412 	void *start;
1413 	void *p;
1414 	int order;
1415 	int idx;
1416 
1417 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1418 
1419 	page = allocate_slab(s,
1420 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1421 	if (!page)
1422 		goto out;
1423 
1424 	order = compound_order(page);
1425 	inc_slabs_node(s, page_to_nid(page), page->objects);
1426 	page->slab_cache = s;
1427 	__SetPageSlab(page);
1428 	if (page->pfmemalloc)
1429 		SetPageSlabPfmemalloc(page);
1430 
1431 	start = page_address(page);
1432 
1433 	if (unlikely(s->flags & SLAB_POISON))
1434 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1435 
1436 	for_each_object_idx(p, idx, s, start, page->objects) {
1437 		setup_object(s, page, p);
1438 		if (likely(idx < page->objects))
1439 			set_freepointer(s, p, p + s->size);
1440 		else
1441 			set_freepointer(s, p, NULL);
1442 	}
1443 
1444 	page->freelist = fixup_red_left(s, start);
1445 	page->inuse = page->objects;
1446 	page->frozen = 1;
1447 out:
1448 	return page;
1449 }
1450 
__free_slab(struct kmem_cache * s,struct page * page)1451 static void __free_slab(struct kmem_cache *s, struct page *page)
1452 {
1453 	int order = compound_order(page);
1454 	int pages = 1 << order;
1455 
1456 	if (kmem_cache_debug(s)) {
1457 		void *p;
1458 
1459 		slab_pad_check(s, page);
1460 		for_each_object(p, s, page_address(page),
1461 						page->objects)
1462 			check_object(s, page, p, SLUB_RED_INACTIVE);
1463 	}
1464 
1465 	kmemcheck_free_shadow(page, compound_order(page));
1466 
1467 	mod_zone_page_state(page_zone(page),
1468 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1469 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1470 		-pages);
1471 
1472 	__ClearPageSlabPfmemalloc(page);
1473 	__ClearPageSlab(page);
1474 
1475 	page_mapcount_reset(page);
1476 	if (current->reclaim_state)
1477 		current->reclaim_state->reclaimed_slab += pages;
1478 	__free_pages(page, order);
1479 	memcg_uncharge_slab(s, order);
1480 }
1481 
1482 #define need_reserve_slab_rcu						\
1483 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1484 
rcu_free_slab(struct rcu_head * h)1485 static void rcu_free_slab(struct rcu_head *h)
1486 {
1487 	struct page *page;
1488 
1489 	if (need_reserve_slab_rcu)
1490 		page = virt_to_head_page(h);
1491 	else
1492 		page = container_of((struct list_head *)h, struct page, lru);
1493 
1494 	__free_slab(page->slab_cache, page);
1495 }
1496 
free_slab(struct kmem_cache * s,struct page * page)1497 static void free_slab(struct kmem_cache *s, struct page *page)
1498 {
1499 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1500 		struct rcu_head *head;
1501 
1502 		if (need_reserve_slab_rcu) {
1503 			int order = compound_order(page);
1504 			int offset = (PAGE_SIZE << order) - s->reserved;
1505 
1506 			VM_BUG_ON(s->reserved != sizeof(*head));
1507 			head = page_address(page) + offset;
1508 		} else {
1509 			/*
1510 			 * RCU free overloads the RCU head over the LRU
1511 			 */
1512 			head = (void *)&page->lru;
1513 		}
1514 
1515 		call_rcu(head, rcu_free_slab);
1516 	} else
1517 		__free_slab(s, page);
1518 }
1519 
discard_slab(struct kmem_cache * s,struct page * page)1520 static void discard_slab(struct kmem_cache *s, struct page *page)
1521 {
1522 	dec_slabs_node(s, page_to_nid(page), page->objects);
1523 	free_slab(s, page);
1524 }
1525 
1526 /*
1527  * Management of partially allocated slabs.
1528  */
1529 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1530 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1531 {
1532 	n->nr_partial++;
1533 	if (tail == DEACTIVATE_TO_TAIL)
1534 		list_add_tail(&page->lru, &n->partial);
1535 	else
1536 		list_add(&page->lru, &n->partial);
1537 }
1538 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1539 static inline void add_partial(struct kmem_cache_node *n,
1540 				struct page *page, int tail)
1541 {
1542 	lockdep_assert_held(&n->list_lock);
1543 	__add_partial(n, page, tail);
1544 }
1545 
1546 static inline void
__remove_partial(struct kmem_cache_node * n,struct page * page)1547 __remove_partial(struct kmem_cache_node *n, struct page *page)
1548 {
1549 	list_del(&page->lru);
1550 	n->nr_partial--;
1551 }
1552 
remove_partial(struct kmem_cache_node * n,struct page * page)1553 static inline void remove_partial(struct kmem_cache_node *n,
1554 					struct page *page)
1555 {
1556 	lockdep_assert_held(&n->list_lock);
1557 	__remove_partial(n, page);
1558 }
1559 
1560 /*
1561  * Remove slab from the partial list, freeze it and
1562  * return the pointer to the freelist.
1563  *
1564  * Returns a list of objects or NULL if it fails.
1565  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1566 static inline void *acquire_slab(struct kmem_cache *s,
1567 		struct kmem_cache_node *n, struct page *page,
1568 		int mode, int *objects)
1569 {
1570 	void *freelist;
1571 	unsigned long counters;
1572 	struct page new;
1573 
1574 	lockdep_assert_held(&n->list_lock);
1575 
1576 	/*
1577 	 * Zap the freelist and set the frozen bit.
1578 	 * The old freelist is the list of objects for the
1579 	 * per cpu allocation list.
1580 	 */
1581 	freelist = page->freelist;
1582 	counters = page->counters;
1583 	new.counters = counters;
1584 	*objects = new.objects - new.inuse;
1585 	if (mode) {
1586 		new.inuse = page->objects;
1587 		new.freelist = NULL;
1588 	} else {
1589 		new.freelist = freelist;
1590 	}
1591 
1592 	VM_BUG_ON(new.frozen);
1593 	new.frozen = 1;
1594 
1595 	if (!__cmpxchg_double_slab(s, page,
1596 			freelist, counters,
1597 			new.freelist, new.counters,
1598 			"acquire_slab"))
1599 		return NULL;
1600 
1601 	remove_partial(n, page);
1602 	WARN_ON(!freelist);
1603 	return freelist;
1604 }
1605 
1606 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1607 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1608 
1609 /*
1610  * Try to allocate a partial slab from a specific node.
1611  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)1612 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1613 				struct kmem_cache_cpu *c, gfp_t flags)
1614 {
1615 	struct page *page, *page2;
1616 	void *object = NULL;
1617 	int available = 0;
1618 	int objects;
1619 
1620 	/*
1621 	 * Racy check. If we mistakenly see no partial slabs then we
1622 	 * just allocate an empty slab. If we mistakenly try to get a
1623 	 * partial slab and there is none available then get_partials()
1624 	 * will return NULL.
1625 	 */
1626 	if (!n || !n->nr_partial)
1627 		return NULL;
1628 
1629 	spin_lock(&n->list_lock);
1630 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1631 		void *t;
1632 
1633 		if (!pfmemalloc_match(page, flags))
1634 			continue;
1635 
1636 		t = acquire_slab(s, n, page, object == NULL, &objects);
1637 		if (!t)
1638 			break;
1639 
1640 		available += objects;
1641 		if (!object) {
1642 			c->page = page;
1643 			stat(s, ALLOC_FROM_PARTIAL);
1644 			object = t;
1645 		} else {
1646 			put_cpu_partial(s, page, 0);
1647 			stat(s, CPU_PARTIAL_NODE);
1648 		}
1649 		if (!kmem_cache_has_cpu_partial(s)
1650 			|| available > s->cpu_partial / 2)
1651 			break;
1652 
1653 	}
1654 	spin_unlock(&n->list_lock);
1655 	return object;
1656 }
1657 
1658 /*
1659  * Get a page from somewhere. Search in increasing NUMA distances.
1660  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)1661 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1662 		struct kmem_cache_cpu *c)
1663 {
1664 #ifdef CONFIG_NUMA
1665 	struct zonelist *zonelist;
1666 	struct zoneref *z;
1667 	struct zone *zone;
1668 	enum zone_type high_zoneidx = gfp_zone(flags);
1669 	void *object;
1670 	unsigned int cpuset_mems_cookie;
1671 
1672 	/*
1673 	 * The defrag ratio allows a configuration of the tradeoffs between
1674 	 * inter node defragmentation and node local allocations. A lower
1675 	 * defrag_ratio increases the tendency to do local allocations
1676 	 * instead of attempting to obtain partial slabs from other nodes.
1677 	 *
1678 	 * If the defrag_ratio is set to 0 then kmalloc() always
1679 	 * returns node local objects. If the ratio is higher then kmalloc()
1680 	 * may return off node objects because partial slabs are obtained
1681 	 * from other nodes and filled up.
1682 	 *
1683 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1684 	 * defrag_ratio = 1000) then every (well almost) allocation will
1685 	 * first attempt to defrag slab caches on other nodes. This means
1686 	 * scanning over all nodes to look for partial slabs which may be
1687 	 * expensive if we do it every time we are trying to find a slab
1688 	 * with available objects.
1689 	 */
1690 	if (!s->remote_node_defrag_ratio ||
1691 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1692 		return NULL;
1693 
1694 	do {
1695 		cpuset_mems_cookie = read_mems_allowed_begin();
1696 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1697 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1698 			struct kmem_cache_node *n;
1699 
1700 			n = get_node(s, zone_to_nid(zone));
1701 
1702 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1703 					n->nr_partial > s->min_partial) {
1704 				object = get_partial_node(s, n, c, flags);
1705 				if (object) {
1706 					/*
1707 					 * Don't check read_mems_allowed_retry()
1708 					 * here - if mems_allowed was updated in
1709 					 * parallel, that was a harmless race
1710 					 * between allocation and the cpuset
1711 					 * update
1712 					 */
1713 					return object;
1714 				}
1715 			}
1716 		}
1717 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1718 #endif
1719 	return NULL;
1720 }
1721 
1722 /*
1723  * Get a partial page, lock it and return it.
1724  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)1725 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1726 		struct kmem_cache_cpu *c)
1727 {
1728 	void *object;
1729 	int searchnode = node;
1730 
1731 	if (node == NUMA_NO_NODE)
1732 		searchnode = numa_mem_id();
1733 	else if (!node_present_pages(node))
1734 		searchnode = node_to_mem_node(node);
1735 
1736 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1737 	if (object || node != NUMA_NO_NODE)
1738 		return object;
1739 
1740 	return get_any_partial(s, flags, c);
1741 }
1742 
1743 #ifdef CONFIG_PREEMPT
1744 /*
1745  * Calculate the next globally unique transaction for disambiguiation
1746  * during cmpxchg. The transactions start with the cpu number and are then
1747  * incremented by CONFIG_NR_CPUS.
1748  */
1749 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1750 #else
1751 /*
1752  * No preemption supported therefore also no need to check for
1753  * different cpus.
1754  */
1755 #define TID_STEP 1
1756 #endif
1757 
next_tid(unsigned long tid)1758 static inline unsigned long next_tid(unsigned long tid)
1759 {
1760 	return tid + TID_STEP;
1761 }
1762 
tid_to_cpu(unsigned long tid)1763 static inline unsigned int tid_to_cpu(unsigned long tid)
1764 {
1765 	return tid % TID_STEP;
1766 }
1767 
tid_to_event(unsigned long tid)1768 static inline unsigned long tid_to_event(unsigned long tid)
1769 {
1770 	return tid / TID_STEP;
1771 }
1772 
init_tid(int cpu)1773 static inline unsigned int init_tid(int cpu)
1774 {
1775 	return cpu;
1776 }
1777 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)1778 static inline void note_cmpxchg_failure(const char *n,
1779 		const struct kmem_cache *s, unsigned long tid)
1780 {
1781 #ifdef SLUB_DEBUG_CMPXCHG
1782 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1783 
1784 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1785 
1786 #ifdef CONFIG_PREEMPT
1787 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1788 		pr_warn("due to cpu change %d -> %d\n",
1789 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1790 	else
1791 #endif
1792 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1793 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1794 			tid_to_event(tid), tid_to_event(actual_tid));
1795 	else
1796 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1797 			actual_tid, tid, next_tid(tid));
1798 #endif
1799 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1800 }
1801 
init_kmem_cache_cpus(struct kmem_cache * s)1802 static void init_kmem_cache_cpus(struct kmem_cache *s)
1803 {
1804 	int cpu;
1805 
1806 	for_each_possible_cpu(cpu)
1807 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1808 }
1809 
1810 /*
1811  * Remove the cpu slab
1812  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist)1813 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1814 				void *freelist)
1815 {
1816 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1817 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1818 	int lock = 0;
1819 	enum slab_modes l = M_NONE, m = M_NONE;
1820 	void *nextfree;
1821 	int tail = DEACTIVATE_TO_HEAD;
1822 	struct page new;
1823 	struct page old;
1824 
1825 	if (page->freelist) {
1826 		stat(s, DEACTIVATE_REMOTE_FREES);
1827 		tail = DEACTIVATE_TO_TAIL;
1828 	}
1829 
1830 	/*
1831 	 * Stage one: Free all available per cpu objects back
1832 	 * to the page freelist while it is still frozen. Leave the
1833 	 * last one.
1834 	 *
1835 	 * There is no need to take the list->lock because the page
1836 	 * is still frozen.
1837 	 */
1838 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1839 		void *prior;
1840 		unsigned long counters;
1841 
1842 		do {
1843 			prior = page->freelist;
1844 			counters = page->counters;
1845 			set_freepointer(s, freelist, prior);
1846 			new.counters = counters;
1847 			new.inuse--;
1848 			VM_BUG_ON(!new.frozen);
1849 
1850 		} while (!__cmpxchg_double_slab(s, page,
1851 			prior, counters,
1852 			freelist, new.counters,
1853 			"drain percpu freelist"));
1854 
1855 		freelist = nextfree;
1856 	}
1857 
1858 	/*
1859 	 * Stage two: Ensure that the page is unfrozen while the
1860 	 * list presence reflects the actual number of objects
1861 	 * during unfreeze.
1862 	 *
1863 	 * We setup the list membership and then perform a cmpxchg
1864 	 * with the count. If there is a mismatch then the page
1865 	 * is not unfrozen but the page is on the wrong list.
1866 	 *
1867 	 * Then we restart the process which may have to remove
1868 	 * the page from the list that we just put it on again
1869 	 * because the number of objects in the slab may have
1870 	 * changed.
1871 	 */
1872 redo:
1873 
1874 	old.freelist = page->freelist;
1875 	old.counters = page->counters;
1876 	VM_BUG_ON(!old.frozen);
1877 
1878 	/* Determine target state of the slab */
1879 	new.counters = old.counters;
1880 	if (freelist) {
1881 		new.inuse--;
1882 		set_freepointer(s, freelist, old.freelist);
1883 		new.freelist = freelist;
1884 	} else
1885 		new.freelist = old.freelist;
1886 
1887 	new.frozen = 0;
1888 
1889 	if (!new.inuse && n->nr_partial >= s->min_partial)
1890 		m = M_FREE;
1891 	else if (new.freelist) {
1892 		m = M_PARTIAL;
1893 		if (!lock) {
1894 			lock = 1;
1895 			/*
1896 			 * Taking the spinlock removes the possiblity
1897 			 * that acquire_slab() will see a slab page that
1898 			 * is frozen
1899 			 */
1900 			spin_lock(&n->list_lock);
1901 		}
1902 	} else {
1903 		m = M_FULL;
1904 		if (kmem_cache_debug(s) && !lock) {
1905 			lock = 1;
1906 			/*
1907 			 * This also ensures that the scanning of full
1908 			 * slabs from diagnostic functions will not see
1909 			 * any frozen slabs.
1910 			 */
1911 			spin_lock(&n->list_lock);
1912 		}
1913 	}
1914 
1915 	if (l != m) {
1916 
1917 		if (l == M_PARTIAL)
1918 
1919 			remove_partial(n, page);
1920 
1921 		else if (l == M_FULL)
1922 
1923 			remove_full(s, n, page);
1924 
1925 		if (m == M_PARTIAL) {
1926 
1927 			add_partial(n, page, tail);
1928 			stat(s, tail);
1929 
1930 		} else if (m == M_FULL) {
1931 
1932 			stat(s, DEACTIVATE_FULL);
1933 			add_full(s, n, page);
1934 
1935 		}
1936 	}
1937 
1938 	l = m;
1939 	if (!__cmpxchg_double_slab(s, page,
1940 				old.freelist, old.counters,
1941 				new.freelist, new.counters,
1942 				"unfreezing slab"))
1943 		goto redo;
1944 
1945 	if (lock)
1946 		spin_unlock(&n->list_lock);
1947 
1948 	if (m == M_FREE) {
1949 		stat(s, DEACTIVATE_EMPTY);
1950 		discard_slab(s, page);
1951 		stat(s, FREE_SLAB);
1952 	}
1953 }
1954 
1955 /*
1956  * Unfreeze all the cpu partial slabs.
1957  *
1958  * This function must be called with interrupts disabled
1959  * for the cpu using c (or some other guarantee must be there
1960  * to guarantee no concurrent accesses).
1961  */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)1962 static void unfreeze_partials(struct kmem_cache *s,
1963 		struct kmem_cache_cpu *c)
1964 {
1965 #ifdef CONFIG_SLUB_CPU_PARTIAL
1966 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1967 	struct page *page, *discard_page = NULL;
1968 
1969 	while ((page = c->partial)) {
1970 		struct page new;
1971 		struct page old;
1972 
1973 		c->partial = page->next;
1974 
1975 		n2 = get_node(s, page_to_nid(page));
1976 		if (n != n2) {
1977 			if (n)
1978 				spin_unlock(&n->list_lock);
1979 
1980 			n = n2;
1981 			spin_lock(&n->list_lock);
1982 		}
1983 
1984 		do {
1985 
1986 			old.freelist = page->freelist;
1987 			old.counters = page->counters;
1988 			VM_BUG_ON(!old.frozen);
1989 
1990 			new.counters = old.counters;
1991 			new.freelist = old.freelist;
1992 
1993 			new.frozen = 0;
1994 
1995 		} while (!__cmpxchg_double_slab(s, page,
1996 				old.freelist, old.counters,
1997 				new.freelist, new.counters,
1998 				"unfreezing slab"));
1999 
2000 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2001 			page->next = discard_page;
2002 			discard_page = page;
2003 		} else {
2004 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2005 			stat(s, FREE_ADD_PARTIAL);
2006 		}
2007 	}
2008 
2009 	if (n)
2010 		spin_unlock(&n->list_lock);
2011 
2012 	while (discard_page) {
2013 		page = discard_page;
2014 		discard_page = discard_page->next;
2015 
2016 		stat(s, DEACTIVATE_EMPTY);
2017 		discard_slab(s, page);
2018 		stat(s, FREE_SLAB);
2019 	}
2020 #endif
2021 }
2022 
2023 /*
2024  * Put a page that was just frozen (in __slab_free) into a partial page
2025  * slot if available. This is done without interrupts disabled and without
2026  * preemption disabled. The cmpxchg is racy and may put the partial page
2027  * onto a random cpus partial slot.
2028  *
2029  * If we did not find a slot then simply move all the partials to the
2030  * per node partial list.
2031  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2032 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2033 {
2034 #ifdef CONFIG_SLUB_CPU_PARTIAL
2035 	struct page *oldpage;
2036 	int pages;
2037 	int pobjects;
2038 
2039 	do {
2040 		pages = 0;
2041 		pobjects = 0;
2042 		oldpage = this_cpu_read(s->cpu_slab->partial);
2043 
2044 		if (oldpage) {
2045 			pobjects = oldpage->pobjects;
2046 			pages = oldpage->pages;
2047 			if (drain && pobjects > s->cpu_partial) {
2048 				unsigned long flags;
2049 				/*
2050 				 * partial array is full. Move the existing
2051 				 * set to the per node partial list.
2052 				 */
2053 				local_irq_save(flags);
2054 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2055 				local_irq_restore(flags);
2056 				oldpage = NULL;
2057 				pobjects = 0;
2058 				pages = 0;
2059 				stat(s, CPU_PARTIAL_DRAIN);
2060 			}
2061 		}
2062 
2063 		pages++;
2064 		pobjects += page->objects - page->inuse;
2065 
2066 		page->pages = pages;
2067 		page->pobjects = pobjects;
2068 		page->next = oldpage;
2069 
2070 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2071 								!= oldpage);
2072 #endif
2073 }
2074 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2075 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2076 {
2077 	stat(s, CPUSLAB_FLUSH);
2078 	deactivate_slab(s, c->page, c->freelist);
2079 
2080 	c->tid = next_tid(c->tid);
2081 	c->page = NULL;
2082 	c->freelist = NULL;
2083 }
2084 
2085 /*
2086  * Flush cpu slab.
2087  *
2088  * Called from IPI handler with interrupts disabled.
2089  */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2090 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2091 {
2092 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2093 
2094 	if (likely(c)) {
2095 		if (c->page)
2096 			flush_slab(s, c);
2097 
2098 		unfreeze_partials(s, c);
2099 	}
2100 }
2101 
flush_cpu_slab(void * d)2102 static void flush_cpu_slab(void *d)
2103 {
2104 	struct kmem_cache *s = d;
2105 
2106 	__flush_cpu_slab(s, smp_processor_id());
2107 }
2108 
has_cpu_slab(int cpu,void * info)2109 static bool has_cpu_slab(int cpu, void *info)
2110 {
2111 	struct kmem_cache *s = info;
2112 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2113 
2114 	return c->page || c->partial;
2115 }
2116 
flush_all(struct kmem_cache * s)2117 static void flush_all(struct kmem_cache *s)
2118 {
2119 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2120 }
2121 
2122 /*
2123  * Check if the objects in a per cpu structure fit numa
2124  * locality expectations.
2125  */
node_match(struct page * page,int node)2126 static inline int node_match(struct page *page, int node)
2127 {
2128 #ifdef CONFIG_NUMA
2129 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2130 		return 0;
2131 #endif
2132 	return 1;
2133 }
2134 
2135 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2136 static int count_free(struct page *page)
2137 {
2138 	return page->objects - page->inuse;
2139 }
2140 
node_nr_objs(struct kmem_cache_node * n)2141 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2142 {
2143 	return atomic_long_read(&n->total_objects);
2144 }
2145 #endif /* CONFIG_SLUB_DEBUG */
2146 
2147 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2148 static unsigned long count_partial(struct kmem_cache_node *n,
2149 					int (*get_count)(struct page *))
2150 {
2151 	unsigned long flags;
2152 	unsigned long x = 0;
2153 	struct page *page;
2154 
2155 	spin_lock_irqsave(&n->list_lock, flags);
2156 	list_for_each_entry(page, &n->partial, lru)
2157 		x += get_count(page);
2158 	spin_unlock_irqrestore(&n->list_lock, flags);
2159 	return x;
2160 }
2161 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2162 
2163 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2164 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2165 {
2166 #ifdef CONFIG_SLUB_DEBUG
2167 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2168 				      DEFAULT_RATELIMIT_BURST);
2169 	int node;
2170 	struct kmem_cache_node *n;
2171 
2172 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2173 		return;
2174 
2175 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2176 		nid, gfpflags);
2177 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2178 		s->name, s->object_size, s->size, oo_order(s->oo),
2179 		oo_order(s->min));
2180 
2181 	if (oo_order(s->min) > get_order(s->object_size))
2182 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2183 			s->name);
2184 
2185 	for_each_kmem_cache_node(s, node, n) {
2186 		unsigned long nr_slabs;
2187 		unsigned long nr_objs;
2188 		unsigned long nr_free;
2189 
2190 		nr_free  = count_partial(n, count_free);
2191 		nr_slabs = node_nr_slabs(n);
2192 		nr_objs  = node_nr_objs(n);
2193 
2194 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2195 			node, nr_slabs, nr_objs, nr_free);
2196 	}
2197 #endif
2198 }
2199 
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2200 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2201 			int node, struct kmem_cache_cpu **pc)
2202 {
2203 	void *freelist;
2204 	struct kmem_cache_cpu *c = *pc;
2205 	struct page *page;
2206 
2207 	freelist = get_partial(s, flags, node, c);
2208 
2209 	if (freelist)
2210 		return freelist;
2211 
2212 	page = new_slab(s, flags, node);
2213 	if (page) {
2214 		c = raw_cpu_ptr(s->cpu_slab);
2215 		if (c->page)
2216 			flush_slab(s, c);
2217 
2218 		/*
2219 		 * No other reference to the page yet so we can
2220 		 * muck around with it freely without cmpxchg
2221 		 */
2222 		freelist = page->freelist;
2223 		page->freelist = NULL;
2224 
2225 		stat(s, ALLOC_SLAB);
2226 		c->page = page;
2227 		*pc = c;
2228 	} else
2229 		freelist = NULL;
2230 
2231 	return freelist;
2232 }
2233 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2234 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2235 {
2236 	if (unlikely(PageSlabPfmemalloc(page)))
2237 		return gfp_pfmemalloc_allowed(gfpflags);
2238 
2239 	return true;
2240 }
2241 
2242 /*
2243  * Check the page->freelist of a page and either transfer the freelist to the
2244  * per cpu freelist or deactivate the page.
2245  *
2246  * The page is still frozen if the return value is not NULL.
2247  *
2248  * If this function returns NULL then the page has been unfrozen.
2249  *
2250  * This function must be called with interrupt disabled.
2251  */
get_freelist(struct kmem_cache * s,struct page * page)2252 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2253 {
2254 	struct page new;
2255 	unsigned long counters;
2256 	void *freelist;
2257 
2258 	do {
2259 		freelist = page->freelist;
2260 		counters = page->counters;
2261 
2262 		new.counters = counters;
2263 		VM_BUG_ON(!new.frozen);
2264 
2265 		new.inuse = page->objects;
2266 		new.frozen = freelist != NULL;
2267 
2268 	} while (!__cmpxchg_double_slab(s, page,
2269 		freelist, counters,
2270 		NULL, new.counters,
2271 		"get_freelist"));
2272 
2273 	return freelist;
2274 }
2275 
2276 /*
2277  * Slow path. The lockless freelist is empty or we need to perform
2278  * debugging duties.
2279  *
2280  * Processing is still very fast if new objects have been freed to the
2281  * regular freelist. In that case we simply take over the regular freelist
2282  * as the lockless freelist and zap the regular freelist.
2283  *
2284  * If that is not working then we fall back to the partial lists. We take the
2285  * first element of the freelist as the object to allocate now and move the
2286  * rest of the freelist to the lockless freelist.
2287  *
2288  * And if we were unable to get a new slab from the partial slab lists then
2289  * we need to allocate a new slab. This is the slowest path since it involves
2290  * a call to the page allocator and the setup of a new slab.
2291  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2292 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2293 			  unsigned long addr, struct kmem_cache_cpu *c)
2294 {
2295 	void *freelist;
2296 	struct page *page;
2297 	unsigned long flags;
2298 
2299 	local_irq_save(flags);
2300 #ifdef CONFIG_PREEMPT
2301 	/*
2302 	 * We may have been preempted and rescheduled on a different
2303 	 * cpu before disabling interrupts. Need to reload cpu area
2304 	 * pointer.
2305 	 */
2306 	c = this_cpu_ptr(s->cpu_slab);
2307 #endif
2308 
2309 	page = c->page;
2310 	if (!page)
2311 		goto new_slab;
2312 redo:
2313 
2314 	if (unlikely(!node_match(page, node))) {
2315 		int searchnode = node;
2316 
2317 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2318 			searchnode = node_to_mem_node(node);
2319 
2320 		if (unlikely(!node_match(page, searchnode))) {
2321 			stat(s, ALLOC_NODE_MISMATCH);
2322 			deactivate_slab(s, page, c->freelist);
2323 			c->page = NULL;
2324 			c->freelist = NULL;
2325 			goto new_slab;
2326 		}
2327 	}
2328 
2329 	/*
2330 	 * By rights, we should be searching for a slab page that was
2331 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2332 	 * information when the page leaves the per-cpu allocator
2333 	 */
2334 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2335 		deactivate_slab(s, page, c->freelist);
2336 		c->page = NULL;
2337 		c->freelist = NULL;
2338 		goto new_slab;
2339 	}
2340 
2341 	/* must check again c->freelist in case of cpu migration or IRQ */
2342 	freelist = c->freelist;
2343 	if (freelist)
2344 		goto load_freelist;
2345 
2346 	freelist = get_freelist(s, page);
2347 
2348 	if (!freelist) {
2349 		c->page = NULL;
2350 		stat(s, DEACTIVATE_BYPASS);
2351 		goto new_slab;
2352 	}
2353 
2354 	stat(s, ALLOC_REFILL);
2355 
2356 load_freelist:
2357 	/*
2358 	 * freelist is pointing to the list of objects to be used.
2359 	 * page is pointing to the page from which the objects are obtained.
2360 	 * That page must be frozen for per cpu allocations to work.
2361 	 */
2362 	VM_BUG_ON(!c->page->frozen);
2363 	c->freelist = get_freepointer(s, freelist);
2364 	c->tid = next_tid(c->tid);
2365 	local_irq_restore(flags);
2366 	return freelist;
2367 
2368 new_slab:
2369 
2370 	if (c->partial) {
2371 		page = c->page = c->partial;
2372 		c->partial = page->next;
2373 		stat(s, CPU_PARTIAL_ALLOC);
2374 		c->freelist = NULL;
2375 		goto redo;
2376 	}
2377 
2378 	freelist = new_slab_objects(s, gfpflags, node, &c);
2379 
2380 	if (unlikely(!freelist)) {
2381 		slab_out_of_memory(s, gfpflags, node);
2382 		local_irq_restore(flags);
2383 		return NULL;
2384 	}
2385 
2386 	page = c->page;
2387 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2388 		goto load_freelist;
2389 
2390 	/* Only entered in the debug case */
2391 	if (kmem_cache_debug(s) &&
2392 			!alloc_debug_processing(s, page, freelist, addr))
2393 		goto new_slab;	/* Slab failed checks. Next slab needed */
2394 
2395 	deactivate_slab(s, page, get_freepointer(s, freelist));
2396 	c->page = NULL;
2397 	c->freelist = NULL;
2398 	local_irq_restore(flags);
2399 	return freelist;
2400 }
2401 
2402 /*
2403  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2404  * have the fastpath folded into their functions. So no function call
2405  * overhead for requests that can be satisfied on the fastpath.
2406  *
2407  * The fastpath works by first checking if the lockless freelist can be used.
2408  * If not then __slab_alloc is called for slow processing.
2409  *
2410  * Otherwise we can simply pick the next object from the lockless free list.
2411  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr)2412 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2413 		gfp_t gfpflags, int node, unsigned long addr)
2414 {
2415 	void **object;
2416 	struct kmem_cache_cpu *c;
2417 	struct page *page;
2418 	unsigned long tid;
2419 
2420 	if (slab_pre_alloc_hook(s, gfpflags))
2421 		return NULL;
2422 
2423 	s = memcg_kmem_get_cache(s, gfpflags);
2424 redo:
2425 	/*
2426 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2427 	 * enabled. We may switch back and forth between cpus while
2428 	 * reading from one cpu area. That does not matter as long
2429 	 * as we end up on the original cpu again when doing the cmpxchg.
2430 	 *
2431 	 * Preemption is disabled for the retrieval of the tid because that
2432 	 * must occur from the current processor. We cannot allow rescheduling
2433 	 * on a different processor between the determination of the pointer
2434 	 * and the retrieval of the tid.
2435 	 */
2436 	preempt_disable();
2437 	c = this_cpu_ptr(s->cpu_slab);
2438 
2439 	/*
2440 	 * The transaction ids are globally unique per cpu and per operation on
2441 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2442 	 * occurs on the right processor and that there was no operation on the
2443 	 * linked list in between.
2444 	 */
2445 	tid = c->tid;
2446 	preempt_enable();
2447 
2448 	object = c->freelist;
2449 	page = c->page;
2450 	if (unlikely(!object || !node_match(page, node))) {
2451 		object = __slab_alloc(s, gfpflags, node, addr, c);
2452 		stat(s, ALLOC_SLOWPATH);
2453 	} else {
2454 		void *next_object = get_freepointer_safe(s, object);
2455 
2456 		/*
2457 		 * The cmpxchg will only match if there was no additional
2458 		 * operation and if we are on the right processor.
2459 		 *
2460 		 * The cmpxchg does the following atomically (without lock
2461 		 * semantics!)
2462 		 * 1. Relocate first pointer to the current per cpu area.
2463 		 * 2. Verify that tid and freelist have not been changed
2464 		 * 3. If they were not changed replace tid and freelist
2465 		 *
2466 		 * Since this is without lock semantics the protection is only
2467 		 * against code executing on this cpu *not* from access by
2468 		 * other cpus.
2469 		 */
2470 		if (unlikely(!this_cpu_cmpxchg_double(
2471 				s->cpu_slab->freelist, s->cpu_slab->tid,
2472 				object, tid,
2473 				next_object, next_tid(tid)))) {
2474 
2475 			note_cmpxchg_failure("slab_alloc", s, tid);
2476 			goto redo;
2477 		}
2478 		prefetch_freepointer(s, next_object);
2479 		stat(s, ALLOC_FASTPATH);
2480 	}
2481 
2482 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2483 		memset(object, 0, s->object_size);
2484 
2485 	slab_post_alloc_hook(s, gfpflags, object);
2486 
2487 	return object;
2488 }
2489 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr)2490 static __always_inline void *slab_alloc(struct kmem_cache *s,
2491 		gfp_t gfpflags, unsigned long addr)
2492 {
2493 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2494 }
2495 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2496 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2497 {
2498 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2499 
2500 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2501 				s->size, gfpflags);
2502 
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL(kmem_cache_alloc);
2506 
2507 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2508 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2509 {
2510 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2511 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2512 	return ret;
2513 }
2514 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2515 #endif
2516 
2517 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2518 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2519 {
2520 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2521 
2522 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2523 				    s->object_size, s->size, gfpflags, node);
2524 
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL(kmem_cache_alloc_node);
2528 
2529 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)2530 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2531 				    gfp_t gfpflags,
2532 				    int node, size_t size)
2533 {
2534 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2535 
2536 	trace_kmalloc_node(_RET_IP_, ret,
2537 			   size, s->size, gfpflags, node);
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2541 #endif
2542 #endif
2543 
2544 /*
2545  * Slow patch handling. This may still be called frequently since objects
2546  * have a longer lifetime than the cpu slabs in most processing loads.
2547  *
2548  * So we still attempt to reduce cache line usage. Just take the slab
2549  * lock and free the item. If there is no additional partial page
2550  * handling required then we can return immediately.
2551  */
__slab_free(struct kmem_cache * s,struct page * page,void * x,unsigned long addr)2552 static void __slab_free(struct kmem_cache *s, struct page *page,
2553 			void *x, unsigned long addr)
2554 {
2555 	void *prior;
2556 	void **object = (void *)x;
2557 	int was_frozen;
2558 	struct page new;
2559 	unsigned long counters;
2560 	struct kmem_cache_node *n = NULL;
2561 	unsigned long uninitialized_var(flags);
2562 
2563 	stat(s, FREE_SLOWPATH);
2564 
2565 	if (kmem_cache_debug(s) &&
2566 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2567 		return;
2568 
2569 	do {
2570 		if (unlikely(n)) {
2571 			spin_unlock_irqrestore(&n->list_lock, flags);
2572 			n = NULL;
2573 		}
2574 		prior = page->freelist;
2575 		counters = page->counters;
2576 		set_freepointer(s, object, prior);
2577 		new.counters = counters;
2578 		was_frozen = new.frozen;
2579 		new.inuse--;
2580 		if ((!new.inuse || !prior) && !was_frozen) {
2581 
2582 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2583 
2584 				/*
2585 				 * Slab was on no list before and will be
2586 				 * partially empty
2587 				 * We can defer the list move and instead
2588 				 * freeze it.
2589 				 */
2590 				new.frozen = 1;
2591 
2592 			} else { /* Needs to be taken off a list */
2593 
2594 	                        n = get_node(s, page_to_nid(page));
2595 				/*
2596 				 * Speculatively acquire the list_lock.
2597 				 * If the cmpxchg does not succeed then we may
2598 				 * drop the list_lock without any processing.
2599 				 *
2600 				 * Otherwise the list_lock will synchronize with
2601 				 * other processors updating the list of slabs.
2602 				 */
2603 				spin_lock_irqsave(&n->list_lock, flags);
2604 
2605 			}
2606 		}
2607 
2608 	} while (!cmpxchg_double_slab(s, page,
2609 		prior, counters,
2610 		object, new.counters,
2611 		"__slab_free"));
2612 
2613 	if (likely(!n)) {
2614 
2615 		/*
2616 		 * If we just froze the page then put it onto the
2617 		 * per cpu partial list.
2618 		 */
2619 		if (new.frozen && !was_frozen) {
2620 			put_cpu_partial(s, page, 1);
2621 			stat(s, CPU_PARTIAL_FREE);
2622 		}
2623 		/*
2624 		 * The list lock was not taken therefore no list
2625 		 * activity can be necessary.
2626 		 */
2627                 if (was_frozen)
2628                         stat(s, FREE_FROZEN);
2629                 return;
2630         }
2631 
2632 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2633 		goto slab_empty;
2634 
2635 	/*
2636 	 * Objects left in the slab. If it was not on the partial list before
2637 	 * then add it.
2638 	 */
2639 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2640 		if (kmem_cache_debug(s))
2641 			remove_full(s, n, page);
2642 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2643 		stat(s, FREE_ADD_PARTIAL);
2644 	}
2645 	spin_unlock_irqrestore(&n->list_lock, flags);
2646 	return;
2647 
2648 slab_empty:
2649 	if (prior) {
2650 		/*
2651 		 * Slab on the partial list.
2652 		 */
2653 		remove_partial(n, page);
2654 		stat(s, FREE_REMOVE_PARTIAL);
2655 	} else {
2656 		/* Slab must be on the full list */
2657 		remove_full(s, n, page);
2658 	}
2659 
2660 	spin_unlock_irqrestore(&n->list_lock, flags);
2661 	stat(s, FREE_SLAB);
2662 	discard_slab(s, page);
2663 }
2664 
2665 /*
2666  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2667  * can perform fastpath freeing without additional function calls.
2668  *
2669  * The fastpath is only possible if we are freeing to the current cpu slab
2670  * of this processor. This typically the case if we have just allocated
2671  * the item before.
2672  *
2673  * If fastpath is not possible then fall back to __slab_free where we deal
2674  * with all sorts of special processing.
2675  */
slab_free(struct kmem_cache * s,struct page * page,void * x,unsigned long addr)2676 static __always_inline void slab_free(struct kmem_cache *s,
2677 			struct page *page, void *x, unsigned long addr)
2678 {
2679 	void **object = (void *)x;
2680 	struct kmem_cache_cpu *c;
2681 	unsigned long tid;
2682 
2683 	slab_free_hook(s, x);
2684 
2685 redo:
2686 	/*
2687 	 * Determine the currently cpus per cpu slab.
2688 	 * The cpu may change afterward. However that does not matter since
2689 	 * data is retrieved via this pointer. If we are on the same cpu
2690 	 * during the cmpxchg then the free will succedd.
2691 	 */
2692 	preempt_disable();
2693 	c = this_cpu_ptr(s->cpu_slab);
2694 
2695 	tid = c->tid;
2696 	preempt_enable();
2697 
2698 	if (likely(page == c->page)) {
2699 		set_freepointer(s, object, c->freelist);
2700 
2701 		if (unlikely(!this_cpu_cmpxchg_double(
2702 				s->cpu_slab->freelist, s->cpu_slab->tid,
2703 				c->freelist, tid,
2704 				object, next_tid(tid)))) {
2705 
2706 			note_cmpxchg_failure("slab_free", s, tid);
2707 			goto redo;
2708 		}
2709 		stat(s, FREE_FASTPATH);
2710 	} else
2711 		__slab_free(s, page, x, addr);
2712 
2713 }
2714 
kmem_cache_free(struct kmem_cache * s,void * x)2715 void kmem_cache_free(struct kmem_cache *s, void *x)
2716 {
2717 	s = cache_from_obj(s, x);
2718 	if (!s)
2719 		return;
2720 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2721 	trace_kmem_cache_free(_RET_IP_, x);
2722 }
2723 EXPORT_SYMBOL(kmem_cache_free);
2724 
2725 /*
2726  * Object placement in a slab is made very easy because we always start at
2727  * offset 0. If we tune the size of the object to the alignment then we can
2728  * get the required alignment by putting one properly sized object after
2729  * another.
2730  *
2731  * Notice that the allocation order determines the sizes of the per cpu
2732  * caches. Each processor has always one slab available for allocations.
2733  * Increasing the allocation order reduces the number of times that slabs
2734  * must be moved on and off the partial lists and is therefore a factor in
2735  * locking overhead.
2736  */
2737 
2738 /*
2739  * Mininum / Maximum order of slab pages. This influences locking overhead
2740  * and slab fragmentation. A higher order reduces the number of partial slabs
2741  * and increases the number of allocations possible without having to
2742  * take the list_lock.
2743  */
2744 static int slub_min_order;
2745 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2746 static int slub_min_objects;
2747 
2748 /*
2749  * Calculate the order of allocation given an slab object size.
2750  *
2751  * The order of allocation has significant impact on performance and other
2752  * system components. Generally order 0 allocations should be preferred since
2753  * order 0 does not cause fragmentation in the page allocator. Larger objects
2754  * be problematic to put into order 0 slabs because there may be too much
2755  * unused space left. We go to a higher order if more than 1/16th of the slab
2756  * would be wasted.
2757  *
2758  * In order to reach satisfactory performance we must ensure that a minimum
2759  * number of objects is in one slab. Otherwise we may generate too much
2760  * activity on the partial lists which requires taking the list_lock. This is
2761  * less a concern for large slabs though which are rarely used.
2762  *
2763  * slub_max_order specifies the order where we begin to stop considering the
2764  * number of objects in a slab as critical. If we reach slub_max_order then
2765  * we try to keep the page order as low as possible. So we accept more waste
2766  * of space in favor of a small page order.
2767  *
2768  * Higher order allocations also allow the placement of more objects in a
2769  * slab and thereby reduce object handling overhead. If the user has
2770  * requested a higher mininum order then we start with that one instead of
2771  * the smallest order which will fit the object.
2772  */
slab_order(int size,int min_objects,int max_order,int fract_leftover,int reserved)2773 static inline int slab_order(int size, int min_objects,
2774 				int max_order, int fract_leftover, int reserved)
2775 {
2776 	int order;
2777 	int rem;
2778 	int min_order = slub_min_order;
2779 
2780 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2781 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2782 
2783 	for (order = max(min_order,
2784 				fls(min_objects * size - 1) - PAGE_SHIFT);
2785 			order <= max_order; order++) {
2786 
2787 		unsigned long slab_size = PAGE_SIZE << order;
2788 
2789 		if (slab_size < min_objects * size + reserved)
2790 			continue;
2791 
2792 		rem = (slab_size - reserved) % size;
2793 
2794 		if (rem <= slab_size / fract_leftover)
2795 			break;
2796 
2797 	}
2798 
2799 	return order;
2800 }
2801 
calculate_order(int size,int reserved)2802 static inline int calculate_order(int size, int reserved)
2803 {
2804 	int order;
2805 	int min_objects;
2806 	int fraction;
2807 	int max_objects;
2808 
2809 	/*
2810 	 * Attempt to find best configuration for a slab. This
2811 	 * works by first attempting to generate a layout with
2812 	 * the best configuration and backing off gradually.
2813 	 *
2814 	 * First we reduce the acceptable waste in a slab. Then
2815 	 * we reduce the minimum objects required in a slab.
2816 	 */
2817 	min_objects = slub_min_objects;
2818 	if (!min_objects)
2819 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2820 	max_objects = order_objects(slub_max_order, size, reserved);
2821 	min_objects = min(min_objects, max_objects);
2822 
2823 	while (min_objects > 1) {
2824 		fraction = 16;
2825 		while (fraction >= 4) {
2826 			order = slab_order(size, min_objects,
2827 					slub_max_order, fraction, reserved);
2828 			if (order <= slub_max_order)
2829 				return order;
2830 			fraction /= 2;
2831 		}
2832 		min_objects--;
2833 	}
2834 
2835 	/*
2836 	 * We were unable to place multiple objects in a slab. Now
2837 	 * lets see if we can place a single object there.
2838 	 */
2839 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2840 	if (order <= slub_max_order)
2841 		return order;
2842 
2843 	/*
2844 	 * Doh this slab cannot be placed using slub_max_order.
2845 	 */
2846 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2847 	if (order < MAX_ORDER)
2848 		return order;
2849 	return -ENOSYS;
2850 }
2851 
2852 static void
init_kmem_cache_node(struct kmem_cache_node * n)2853 init_kmem_cache_node(struct kmem_cache_node *n)
2854 {
2855 	n->nr_partial = 0;
2856 	spin_lock_init(&n->list_lock);
2857 	INIT_LIST_HEAD(&n->partial);
2858 #ifdef CONFIG_SLUB_DEBUG
2859 	atomic_long_set(&n->nr_slabs, 0);
2860 	atomic_long_set(&n->total_objects, 0);
2861 	INIT_LIST_HEAD(&n->full);
2862 #endif
2863 }
2864 
alloc_kmem_cache_cpus(struct kmem_cache * s)2865 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2866 {
2867 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2868 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2869 
2870 	/*
2871 	 * Must align to double word boundary for the double cmpxchg
2872 	 * instructions to work; see __pcpu_double_call_return_bool().
2873 	 */
2874 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2875 				     2 * sizeof(void *));
2876 
2877 	if (!s->cpu_slab)
2878 		return 0;
2879 
2880 	init_kmem_cache_cpus(s);
2881 
2882 	return 1;
2883 }
2884 
2885 static struct kmem_cache *kmem_cache_node;
2886 
2887 /*
2888  * No kmalloc_node yet so do it by hand. We know that this is the first
2889  * slab on the node for this slabcache. There are no concurrent accesses
2890  * possible.
2891  *
2892  * Note that this function only works on the kmem_cache_node
2893  * when allocating for the kmem_cache_node. This is used for bootstrapping
2894  * memory on a fresh node that has no slab structures yet.
2895  */
early_kmem_cache_node_alloc(int node)2896 static void early_kmem_cache_node_alloc(int node)
2897 {
2898 	struct page *page;
2899 	struct kmem_cache_node *n;
2900 
2901 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2902 
2903 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2904 
2905 	BUG_ON(!page);
2906 	if (page_to_nid(page) != node) {
2907 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2908 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2909 	}
2910 
2911 	n = page->freelist;
2912 	BUG_ON(!n);
2913 	page->freelist = get_freepointer(kmem_cache_node, n);
2914 	page->inuse = 1;
2915 	page->frozen = 0;
2916 	kmem_cache_node->node[node] = n;
2917 #ifdef CONFIG_SLUB_DEBUG
2918 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2919 	init_tracking(kmem_cache_node, n);
2920 #endif
2921 	init_kmem_cache_node(n);
2922 	inc_slabs_node(kmem_cache_node, node, page->objects);
2923 
2924 	/*
2925 	 * No locks need to be taken here as it has just been
2926 	 * initialized and there is no concurrent access.
2927 	 */
2928 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2929 }
2930 
free_kmem_cache_nodes(struct kmem_cache * s)2931 static void free_kmem_cache_nodes(struct kmem_cache *s)
2932 {
2933 	int node;
2934 	struct kmem_cache_node *n;
2935 
2936 	for_each_kmem_cache_node(s, node, n) {
2937 		kmem_cache_free(kmem_cache_node, n);
2938 		s->node[node] = NULL;
2939 	}
2940 }
2941 
init_kmem_cache_nodes(struct kmem_cache * s)2942 static int init_kmem_cache_nodes(struct kmem_cache *s)
2943 {
2944 	int node;
2945 
2946 	for_each_node_state(node, N_NORMAL_MEMORY) {
2947 		struct kmem_cache_node *n;
2948 
2949 		if (slab_state == DOWN) {
2950 			early_kmem_cache_node_alloc(node);
2951 			continue;
2952 		}
2953 		n = kmem_cache_alloc_node(kmem_cache_node,
2954 						GFP_KERNEL, node);
2955 
2956 		if (!n) {
2957 			free_kmem_cache_nodes(s);
2958 			return 0;
2959 		}
2960 
2961 		s->node[node] = n;
2962 		init_kmem_cache_node(n);
2963 	}
2964 	return 1;
2965 }
2966 
set_min_partial(struct kmem_cache * s,unsigned long min)2967 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2968 {
2969 	if (min < MIN_PARTIAL)
2970 		min = MIN_PARTIAL;
2971 	else if (min > MAX_PARTIAL)
2972 		min = MAX_PARTIAL;
2973 	s->min_partial = min;
2974 }
2975 
2976 /*
2977  * calculate_sizes() determines the order and the distribution of data within
2978  * a slab object.
2979  */
calculate_sizes(struct kmem_cache * s,int forced_order)2980 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2981 {
2982 	unsigned long flags = s->flags;
2983 	unsigned long size = s->object_size;
2984 	int order;
2985 
2986 	/*
2987 	 * Round up object size to the next word boundary. We can only
2988 	 * place the free pointer at word boundaries and this determines
2989 	 * the possible location of the free pointer.
2990 	 */
2991 	size = ALIGN(size, sizeof(void *));
2992 
2993 #ifdef CONFIG_SLUB_DEBUG
2994 	/*
2995 	 * Determine if we can poison the object itself. If the user of
2996 	 * the slab may touch the object after free or before allocation
2997 	 * then we should never poison the object itself.
2998 	 */
2999 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3000 			!s->ctor)
3001 		s->flags |= __OBJECT_POISON;
3002 	else
3003 		s->flags &= ~__OBJECT_POISON;
3004 
3005 
3006 	/*
3007 	 * If we are Redzoning then check if there is some space between the
3008 	 * end of the object and the free pointer. If not then add an
3009 	 * additional word to have some bytes to store Redzone information.
3010 	 */
3011 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3012 		size += sizeof(void *);
3013 #endif
3014 
3015 	/*
3016 	 * With that we have determined the number of bytes in actual use
3017 	 * by the object. This is the potential offset to the free pointer.
3018 	 */
3019 	s->inuse = size;
3020 
3021 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3022 		s->ctor)) {
3023 		/*
3024 		 * Relocate free pointer after the object if it is not
3025 		 * permitted to overwrite the first word of the object on
3026 		 * kmem_cache_free.
3027 		 *
3028 		 * This is the case if we do RCU, have a constructor or
3029 		 * destructor or are poisoning the objects.
3030 		 */
3031 		s->offset = size;
3032 		size += sizeof(void *);
3033 	}
3034 
3035 #ifdef CONFIG_SLUB_DEBUG
3036 	if (flags & SLAB_STORE_USER)
3037 		/*
3038 		 * Need to store information about allocs and frees after
3039 		 * the object.
3040 		 */
3041 		size += 2 * sizeof(struct track);
3042 
3043 	if (flags & SLAB_RED_ZONE) {
3044 		/*
3045 		 * Add some empty padding so that we can catch
3046 		 * overwrites from earlier objects rather than let
3047 		 * tracking information or the free pointer be
3048 		 * corrupted if a user writes before the start
3049 		 * of the object.
3050 		 */
3051 		size += sizeof(void *);
3052 
3053 		s->red_left_pad = sizeof(void *);
3054 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3055 		size += s->red_left_pad;
3056 	}
3057 #endif
3058 
3059 	/*
3060 	 * SLUB stores one object immediately after another beginning from
3061 	 * offset 0. In order to align the objects we have to simply size
3062 	 * each object to conform to the alignment.
3063 	 */
3064 	size = ALIGN(size, s->align);
3065 	s->size = size;
3066 	if (forced_order >= 0)
3067 		order = forced_order;
3068 	else
3069 		order = calculate_order(size, s->reserved);
3070 
3071 	if (order < 0)
3072 		return 0;
3073 
3074 	s->allocflags = 0;
3075 	if (order)
3076 		s->allocflags |= __GFP_COMP;
3077 
3078 	if (s->flags & SLAB_CACHE_DMA)
3079 		s->allocflags |= GFP_DMA;
3080 
3081 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3082 		s->allocflags |= __GFP_RECLAIMABLE;
3083 
3084 	/*
3085 	 * Determine the number of objects per slab
3086 	 */
3087 	s->oo = oo_make(order, size, s->reserved);
3088 	s->min = oo_make(get_order(size), size, s->reserved);
3089 	if (oo_objects(s->oo) > oo_objects(s->max))
3090 		s->max = s->oo;
3091 
3092 	return !!oo_objects(s->oo);
3093 }
3094 
kmem_cache_open(struct kmem_cache * s,unsigned long flags)3095 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3096 {
3097 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3098 	s->reserved = 0;
3099 
3100 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3101 		s->reserved = sizeof(struct rcu_head);
3102 
3103 	if (!calculate_sizes(s, -1))
3104 		goto error;
3105 	if (disable_higher_order_debug) {
3106 		/*
3107 		 * Disable debugging flags that store metadata if the min slab
3108 		 * order increased.
3109 		 */
3110 		if (get_order(s->size) > get_order(s->object_size)) {
3111 			s->flags &= ~DEBUG_METADATA_FLAGS;
3112 			s->offset = 0;
3113 			if (!calculate_sizes(s, -1))
3114 				goto error;
3115 		}
3116 	}
3117 
3118 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3119     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3120 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3121 		/* Enable fast mode */
3122 		s->flags |= __CMPXCHG_DOUBLE;
3123 #endif
3124 
3125 	/*
3126 	 * The larger the object size is, the more pages we want on the partial
3127 	 * list to avoid pounding the page allocator excessively.
3128 	 */
3129 	set_min_partial(s, ilog2(s->size) / 2);
3130 
3131 	/*
3132 	 * cpu_partial determined the maximum number of objects kept in the
3133 	 * per cpu partial lists of a processor.
3134 	 *
3135 	 * Per cpu partial lists mainly contain slabs that just have one
3136 	 * object freed. If they are used for allocation then they can be
3137 	 * filled up again with minimal effort. The slab will never hit the
3138 	 * per node partial lists and therefore no locking will be required.
3139 	 *
3140 	 * This setting also determines
3141 	 *
3142 	 * A) The number of objects from per cpu partial slabs dumped to the
3143 	 *    per node list when we reach the limit.
3144 	 * B) The number of objects in cpu partial slabs to extract from the
3145 	 *    per node list when we run out of per cpu objects. We only fetch
3146 	 *    50% to keep some capacity around for frees.
3147 	 */
3148 	if (!kmem_cache_has_cpu_partial(s))
3149 		s->cpu_partial = 0;
3150 	else if (s->size >= PAGE_SIZE)
3151 		s->cpu_partial = 2;
3152 	else if (s->size >= 1024)
3153 		s->cpu_partial = 6;
3154 	else if (s->size >= 256)
3155 		s->cpu_partial = 13;
3156 	else
3157 		s->cpu_partial = 30;
3158 
3159 #ifdef CONFIG_NUMA
3160 	s->remote_node_defrag_ratio = 1000;
3161 #endif
3162 	if (!init_kmem_cache_nodes(s))
3163 		goto error;
3164 
3165 	if (alloc_kmem_cache_cpus(s))
3166 		return 0;
3167 
3168 	free_kmem_cache_nodes(s);
3169 error:
3170 	if (flags & SLAB_PANIC)
3171 		panic("Cannot create slab %s size=%lu realsize=%u "
3172 			"order=%u offset=%u flags=%lx\n",
3173 			s->name, (unsigned long)s->size, s->size,
3174 			oo_order(s->oo), s->offset, flags);
3175 	return -EINVAL;
3176 }
3177 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3178 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3179 							const char *text)
3180 {
3181 #ifdef CONFIG_SLUB_DEBUG
3182 	void *addr = page_address(page);
3183 	void *p;
3184 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3185 				     sizeof(long), GFP_ATOMIC);
3186 	if (!map)
3187 		return;
3188 	slab_err(s, page, text, s->name);
3189 	slab_lock(page);
3190 
3191 	get_map(s, page, map);
3192 	for_each_object(p, s, addr, page->objects) {
3193 
3194 		if (!test_bit(slab_index(p, s, addr), map)) {
3195 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3196 			print_tracking(s, p);
3197 		}
3198 	}
3199 	slab_unlock(page);
3200 	kfree(map);
3201 #endif
3202 }
3203 
3204 /*
3205  * Attempt to free all partial slabs on a node.
3206  * This is called from kmem_cache_close(). We must be the last thread
3207  * using the cache and therefore we do not need to lock anymore.
3208  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3209 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3210 {
3211 	struct page *page, *h;
3212 
3213 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3214 		if (!page->inuse) {
3215 			__remove_partial(n, page);
3216 			discard_slab(s, page);
3217 		} else {
3218 			list_slab_objects(s, page,
3219 			"Objects remaining in %s on kmem_cache_close()");
3220 		}
3221 	}
3222 }
3223 
3224 /*
3225  * Release all resources used by a slab cache.
3226  */
kmem_cache_close(struct kmem_cache * s)3227 static inline int kmem_cache_close(struct kmem_cache *s)
3228 {
3229 	int node;
3230 	struct kmem_cache_node *n;
3231 
3232 	flush_all(s);
3233 	/* Attempt to free all objects */
3234 	for_each_kmem_cache_node(s, node, n) {
3235 		free_partial(s, n);
3236 		if (n->nr_partial || slabs_node(s, node))
3237 			return 1;
3238 	}
3239 	free_percpu(s->cpu_slab);
3240 	free_kmem_cache_nodes(s);
3241 	return 0;
3242 }
3243 
__kmem_cache_shutdown(struct kmem_cache * s)3244 int __kmem_cache_shutdown(struct kmem_cache *s)
3245 {
3246 	return kmem_cache_close(s);
3247 }
3248 
3249 /********************************************************************
3250  *		Kmalloc subsystem
3251  *******************************************************************/
3252 
setup_slub_min_order(char * str)3253 static int __init setup_slub_min_order(char *str)
3254 {
3255 	get_option(&str, &slub_min_order);
3256 
3257 	return 1;
3258 }
3259 
3260 __setup("slub_min_order=", setup_slub_min_order);
3261 
setup_slub_max_order(char * str)3262 static int __init setup_slub_max_order(char *str)
3263 {
3264 	get_option(&str, &slub_max_order);
3265 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3266 
3267 	return 1;
3268 }
3269 
3270 __setup("slub_max_order=", setup_slub_max_order);
3271 
setup_slub_min_objects(char * str)3272 static int __init setup_slub_min_objects(char *str)
3273 {
3274 	get_option(&str, &slub_min_objects);
3275 
3276 	return 1;
3277 }
3278 
3279 __setup("slub_min_objects=", setup_slub_min_objects);
3280 
__kmalloc(size_t size,gfp_t flags)3281 void *__kmalloc(size_t size, gfp_t flags)
3282 {
3283 	struct kmem_cache *s;
3284 	void *ret;
3285 
3286 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287 		return kmalloc_large(size, flags);
3288 
3289 	s = kmalloc_slab(size, flags);
3290 
3291 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3292 		return s;
3293 
3294 	ret = slab_alloc(s, flags, _RET_IP_);
3295 
3296 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3297 
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(__kmalloc);
3301 
3302 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)3303 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3304 {
3305 	struct page *page;
3306 	void *ptr = NULL;
3307 
3308 	flags |= __GFP_COMP | __GFP_NOTRACK;
3309 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3310 	if (page)
3311 		ptr = page_address(page);
3312 
3313 	kmalloc_large_node_hook(ptr, size, flags);
3314 	return ptr;
3315 }
3316 
__kmalloc_node(size_t size,gfp_t flags,int node)3317 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3318 {
3319 	struct kmem_cache *s;
3320 	void *ret;
3321 
3322 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3323 		ret = kmalloc_large_node(size, flags, node);
3324 
3325 		trace_kmalloc_node(_RET_IP_, ret,
3326 				   size, PAGE_SIZE << get_order(size),
3327 				   flags, node);
3328 
3329 		return ret;
3330 	}
3331 
3332 	s = kmalloc_slab(size, flags);
3333 
3334 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 		return s;
3336 
3337 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3338 
3339 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3340 
3341 	return ret;
3342 }
3343 EXPORT_SYMBOL(__kmalloc_node);
3344 #endif
3345 
3346 #ifdef CONFIG_HARDENED_USERCOPY
3347 /*
3348  * Rejects objects that are incorrectly sized.
3349  *
3350  * Returns NULL if check passes, otherwise const char * to name of cache
3351  * to indicate an error.
3352  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page)3353 const char *__check_heap_object(const void *ptr, unsigned long n,
3354 				struct page *page)
3355 {
3356 	struct kmem_cache *s;
3357 	unsigned long offset;
3358 	size_t object_size;
3359 
3360 	/* Find object and usable object size. */
3361 	s = page->slab_cache;
3362 	object_size = slab_ksize(s);
3363 
3364 	/* Reject impossible pointers. */
3365 	if (ptr < page_address(page))
3366 		return s->name;
3367 
3368 	/* Find offset within object. */
3369 	offset = (ptr - page_address(page)) % s->size;
3370 
3371 	/* Adjust for redzone and reject if within the redzone. */
3372 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3373 		if (offset < s->red_left_pad)
3374 			return s->name;
3375 		offset -= s->red_left_pad;
3376 	}
3377 
3378 	/* Allow address range falling entirely within object size. */
3379 	if (offset <= object_size && n <= object_size - offset)
3380 		return NULL;
3381 
3382 	return s->name;
3383 }
3384 #endif /* CONFIG_HARDENED_USERCOPY */
3385 
ksize(const void * object)3386 size_t ksize(const void *object)
3387 {
3388 	struct page *page;
3389 
3390 	if (unlikely(object == ZERO_SIZE_PTR))
3391 		return 0;
3392 
3393 	page = virt_to_head_page(object);
3394 
3395 	if (unlikely(!PageSlab(page))) {
3396 		WARN_ON(!PageCompound(page));
3397 		return PAGE_SIZE << compound_order(page);
3398 	}
3399 
3400 	return slab_ksize(page->slab_cache);
3401 }
3402 EXPORT_SYMBOL(ksize);
3403 
kfree(const void * x)3404 void kfree(const void *x)
3405 {
3406 	struct page *page;
3407 	void *object = (void *)x;
3408 
3409 	trace_kfree(_RET_IP_, x);
3410 
3411 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3412 		return;
3413 
3414 	page = virt_to_head_page(x);
3415 	if (unlikely(!PageSlab(page))) {
3416 		BUG_ON(!PageCompound(page));
3417 		kfree_hook(x);
3418 		__free_kmem_pages(page, compound_order(page));
3419 		return;
3420 	}
3421 	slab_free(page->slab_cache, page, object, _RET_IP_);
3422 }
3423 EXPORT_SYMBOL(kfree);
3424 
3425 /*
3426  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3427  * the remaining slabs by the number of items in use. The slabs with the
3428  * most items in use come first. New allocations will then fill those up
3429  * and thus they can be removed from the partial lists.
3430  *
3431  * The slabs with the least items are placed last. This results in them
3432  * being allocated from last increasing the chance that the last objects
3433  * are freed in them.
3434  */
__kmem_cache_shrink(struct kmem_cache * s)3435 int __kmem_cache_shrink(struct kmem_cache *s)
3436 {
3437 	int node;
3438 	int i;
3439 	struct kmem_cache_node *n;
3440 	struct page *page;
3441 	struct page *t;
3442 	int objects = oo_objects(s->max);
3443 	struct list_head *slabs_by_inuse =
3444 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3445 	unsigned long flags;
3446 
3447 	if (!slabs_by_inuse)
3448 		return -ENOMEM;
3449 
3450 	flush_all(s);
3451 	for_each_kmem_cache_node(s, node, n) {
3452 		if (!n->nr_partial)
3453 			continue;
3454 
3455 		for (i = 0; i < objects; i++)
3456 			INIT_LIST_HEAD(slabs_by_inuse + i);
3457 
3458 		spin_lock_irqsave(&n->list_lock, flags);
3459 
3460 		/*
3461 		 * Build lists indexed by the items in use in each slab.
3462 		 *
3463 		 * Note that concurrent frees may occur while we hold the
3464 		 * list_lock. page->inuse here is the upper limit.
3465 		 */
3466 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3467 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3468 			if (!page->inuse)
3469 				n->nr_partial--;
3470 		}
3471 
3472 		/*
3473 		 * Rebuild the partial list with the slabs filled up most
3474 		 * first and the least used slabs at the end.
3475 		 */
3476 		for (i = objects - 1; i > 0; i--)
3477 			list_splice(slabs_by_inuse + i, n->partial.prev);
3478 
3479 		spin_unlock_irqrestore(&n->list_lock, flags);
3480 
3481 		/* Release empty slabs */
3482 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3483 			discard_slab(s, page);
3484 	}
3485 
3486 	kfree(slabs_by_inuse);
3487 	return 0;
3488 }
3489 
slab_mem_going_offline_callback(void * arg)3490 static int slab_mem_going_offline_callback(void *arg)
3491 {
3492 	struct kmem_cache *s;
3493 
3494 	mutex_lock(&slab_mutex);
3495 	list_for_each_entry(s, &slab_caches, list)
3496 		__kmem_cache_shrink(s);
3497 	mutex_unlock(&slab_mutex);
3498 
3499 	return 0;
3500 }
3501 
slab_mem_offline_callback(void * arg)3502 static void slab_mem_offline_callback(void *arg)
3503 {
3504 	struct kmem_cache_node *n;
3505 	struct kmem_cache *s;
3506 	struct memory_notify *marg = arg;
3507 	int offline_node;
3508 
3509 	offline_node = marg->status_change_nid_normal;
3510 
3511 	/*
3512 	 * If the node still has available memory. we need kmem_cache_node
3513 	 * for it yet.
3514 	 */
3515 	if (offline_node < 0)
3516 		return;
3517 
3518 	mutex_lock(&slab_mutex);
3519 	list_for_each_entry(s, &slab_caches, list) {
3520 		n = get_node(s, offline_node);
3521 		if (n) {
3522 			/*
3523 			 * if n->nr_slabs > 0, slabs still exist on the node
3524 			 * that is going down. We were unable to free them,
3525 			 * and offline_pages() function shouldn't call this
3526 			 * callback. So, we must fail.
3527 			 */
3528 			BUG_ON(slabs_node(s, offline_node));
3529 
3530 			s->node[offline_node] = NULL;
3531 			kmem_cache_free(kmem_cache_node, n);
3532 		}
3533 	}
3534 	mutex_unlock(&slab_mutex);
3535 }
3536 
slab_mem_going_online_callback(void * arg)3537 static int slab_mem_going_online_callback(void *arg)
3538 {
3539 	struct kmem_cache_node *n;
3540 	struct kmem_cache *s;
3541 	struct memory_notify *marg = arg;
3542 	int nid = marg->status_change_nid_normal;
3543 	int ret = 0;
3544 
3545 	/*
3546 	 * If the node's memory is already available, then kmem_cache_node is
3547 	 * already created. Nothing to do.
3548 	 */
3549 	if (nid < 0)
3550 		return 0;
3551 
3552 	/*
3553 	 * We are bringing a node online. No memory is available yet. We must
3554 	 * allocate a kmem_cache_node structure in order to bring the node
3555 	 * online.
3556 	 */
3557 	mutex_lock(&slab_mutex);
3558 	list_for_each_entry(s, &slab_caches, list) {
3559 		/*
3560 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3561 		 *      since memory is not yet available from the node that
3562 		 *      is brought up.
3563 		 */
3564 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3565 		if (!n) {
3566 			ret = -ENOMEM;
3567 			goto out;
3568 		}
3569 		init_kmem_cache_node(n);
3570 		s->node[nid] = n;
3571 	}
3572 out:
3573 	mutex_unlock(&slab_mutex);
3574 	return ret;
3575 }
3576 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3577 static int slab_memory_callback(struct notifier_block *self,
3578 				unsigned long action, void *arg)
3579 {
3580 	int ret = 0;
3581 
3582 	switch (action) {
3583 	case MEM_GOING_ONLINE:
3584 		ret = slab_mem_going_online_callback(arg);
3585 		break;
3586 	case MEM_GOING_OFFLINE:
3587 		ret = slab_mem_going_offline_callback(arg);
3588 		break;
3589 	case MEM_OFFLINE:
3590 	case MEM_CANCEL_ONLINE:
3591 		slab_mem_offline_callback(arg);
3592 		break;
3593 	case MEM_ONLINE:
3594 	case MEM_CANCEL_OFFLINE:
3595 		break;
3596 	}
3597 	if (ret)
3598 		ret = notifier_from_errno(ret);
3599 	else
3600 		ret = NOTIFY_OK;
3601 	return ret;
3602 }
3603 
3604 static struct notifier_block slab_memory_callback_nb = {
3605 	.notifier_call = slab_memory_callback,
3606 	.priority = SLAB_CALLBACK_PRI,
3607 };
3608 
3609 /********************************************************************
3610  *			Basic setup of slabs
3611  *******************************************************************/
3612 
3613 /*
3614  * Used for early kmem_cache structures that were allocated using
3615  * the page allocator. Allocate them properly then fix up the pointers
3616  * that may be pointing to the wrong kmem_cache structure.
3617  */
3618 
bootstrap(struct kmem_cache * static_cache)3619 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3620 {
3621 	int node;
3622 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3623 	struct kmem_cache_node *n;
3624 
3625 	memcpy(s, static_cache, kmem_cache->object_size);
3626 
3627 	/*
3628 	 * This runs very early, and only the boot processor is supposed to be
3629 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3630 	 * IPIs around.
3631 	 */
3632 	__flush_cpu_slab(s, smp_processor_id());
3633 	for_each_kmem_cache_node(s, node, n) {
3634 		struct page *p;
3635 
3636 		list_for_each_entry(p, &n->partial, lru)
3637 			p->slab_cache = s;
3638 
3639 #ifdef CONFIG_SLUB_DEBUG
3640 		list_for_each_entry(p, &n->full, lru)
3641 			p->slab_cache = s;
3642 #endif
3643 	}
3644 	list_add(&s->list, &slab_caches);
3645 	return s;
3646 }
3647 
kmem_cache_init(void)3648 void __init kmem_cache_init(void)
3649 {
3650 	static __initdata struct kmem_cache boot_kmem_cache,
3651 		boot_kmem_cache_node;
3652 
3653 	if (debug_guardpage_minorder())
3654 		slub_max_order = 0;
3655 
3656 	kmem_cache_node = &boot_kmem_cache_node;
3657 	kmem_cache = &boot_kmem_cache;
3658 
3659 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3660 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3661 
3662 	register_hotmemory_notifier(&slab_memory_callback_nb);
3663 
3664 	/* Able to allocate the per node structures */
3665 	slab_state = PARTIAL;
3666 
3667 	create_boot_cache(kmem_cache, "kmem_cache",
3668 			offsetof(struct kmem_cache, node) +
3669 				nr_node_ids * sizeof(struct kmem_cache_node *),
3670 		       SLAB_HWCACHE_ALIGN);
3671 
3672 	kmem_cache = bootstrap(&boot_kmem_cache);
3673 
3674 	/*
3675 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3676 	 * kmem_cache_node is separately allocated so no need to
3677 	 * update any list pointers.
3678 	 */
3679 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3680 
3681 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3682 	create_kmalloc_caches(0);
3683 
3684 #ifdef CONFIG_SMP
3685 	register_cpu_notifier(&slab_notifier);
3686 #endif
3687 
3688 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3689 		cache_line_size(),
3690 		slub_min_order, slub_max_order, slub_min_objects,
3691 		nr_cpu_ids, nr_node_ids);
3692 }
3693 
kmem_cache_init_late(void)3694 void __init kmem_cache_init_late(void)
3695 {
3696 }
3697 
3698 struct kmem_cache *
__kmem_cache_alias(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))3699 __kmem_cache_alias(const char *name, size_t size, size_t align,
3700 		   unsigned long flags, void (*ctor)(void *))
3701 {
3702 	struct kmem_cache *s;
3703 
3704 	s = find_mergeable(size, align, flags, name, ctor);
3705 	if (s) {
3706 		int i;
3707 		struct kmem_cache *c;
3708 
3709 		s->refcount++;
3710 
3711 		/*
3712 		 * Adjust the object sizes so that we clear
3713 		 * the complete object on kzalloc.
3714 		 */
3715 		s->object_size = max(s->object_size, (int)size);
3716 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3717 
3718 		for_each_memcg_cache_index(i) {
3719 			c = cache_from_memcg_idx(s, i);
3720 			if (!c)
3721 				continue;
3722 			c->object_size = s->object_size;
3723 			c->inuse = max_t(int, c->inuse,
3724 					 ALIGN(size, sizeof(void *)));
3725 		}
3726 
3727 		if (sysfs_slab_alias(s, name)) {
3728 			s->refcount--;
3729 			s = NULL;
3730 		}
3731 	}
3732 
3733 	return s;
3734 }
3735 
__kmem_cache_create(struct kmem_cache * s,unsigned long flags)3736 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3737 {
3738 	int err;
3739 
3740 	err = kmem_cache_open(s, flags);
3741 	if (err)
3742 		return err;
3743 
3744 	/* Mutex is not taken during early boot */
3745 	if (slab_state <= UP)
3746 		return 0;
3747 
3748 	memcg_propagate_slab_attrs(s);
3749 	err = sysfs_slab_add(s);
3750 	if (err)
3751 		kmem_cache_close(s);
3752 
3753 	return err;
3754 }
3755 
3756 #ifdef CONFIG_SMP
3757 /*
3758  * Use the cpu notifier to insure that the cpu slabs are flushed when
3759  * necessary.
3760  */
slab_cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3761 static int slab_cpuup_callback(struct notifier_block *nfb,
3762 		unsigned long action, void *hcpu)
3763 {
3764 	long cpu = (long)hcpu;
3765 	struct kmem_cache *s;
3766 	unsigned long flags;
3767 
3768 	switch (action) {
3769 	case CPU_UP_CANCELED:
3770 	case CPU_UP_CANCELED_FROZEN:
3771 	case CPU_DEAD:
3772 	case CPU_DEAD_FROZEN:
3773 		mutex_lock(&slab_mutex);
3774 		list_for_each_entry(s, &slab_caches, list) {
3775 			local_irq_save(flags);
3776 			__flush_cpu_slab(s, cpu);
3777 			local_irq_restore(flags);
3778 		}
3779 		mutex_unlock(&slab_mutex);
3780 		break;
3781 	default:
3782 		break;
3783 	}
3784 	return NOTIFY_OK;
3785 }
3786 
3787 static struct notifier_block slab_notifier = {
3788 	.notifier_call = slab_cpuup_callback
3789 };
3790 
3791 #endif
3792 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)3793 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3794 {
3795 	struct kmem_cache *s;
3796 	void *ret;
3797 
3798 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3799 		return kmalloc_large(size, gfpflags);
3800 
3801 	s = kmalloc_slab(size, gfpflags);
3802 
3803 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3804 		return s;
3805 
3806 	ret = slab_alloc(s, gfpflags, caller);
3807 
3808 	/* Honor the call site pointer we received. */
3809 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3810 
3811 	return ret;
3812 }
3813 
3814 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)3815 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3816 					int node, unsigned long caller)
3817 {
3818 	struct kmem_cache *s;
3819 	void *ret;
3820 
3821 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3822 		ret = kmalloc_large_node(size, gfpflags, node);
3823 
3824 		trace_kmalloc_node(caller, ret,
3825 				   size, PAGE_SIZE << get_order(size),
3826 				   gfpflags, node);
3827 
3828 		return ret;
3829 	}
3830 
3831 	s = kmalloc_slab(size, gfpflags);
3832 
3833 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834 		return s;
3835 
3836 	ret = slab_alloc_node(s, gfpflags, node, caller);
3837 
3838 	/* Honor the call site pointer we received. */
3839 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3840 
3841 	return ret;
3842 }
3843 #endif
3844 
3845 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)3846 static int count_inuse(struct page *page)
3847 {
3848 	return page->inuse;
3849 }
3850 
count_total(struct page * page)3851 static int count_total(struct page *page)
3852 {
3853 	return page->objects;
3854 }
3855 #endif
3856 
3857 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page,unsigned long * map)3858 static int validate_slab(struct kmem_cache *s, struct page *page,
3859 						unsigned long *map)
3860 {
3861 	void *p;
3862 	void *addr = page_address(page);
3863 
3864 	if (!check_slab(s, page) ||
3865 			!on_freelist(s, page, NULL))
3866 		return 0;
3867 
3868 	/* Now we know that a valid freelist exists */
3869 	bitmap_zero(map, page->objects);
3870 
3871 	get_map(s, page, map);
3872 	for_each_object(p, s, addr, page->objects) {
3873 		if (test_bit(slab_index(p, s, addr), map))
3874 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3875 				return 0;
3876 	}
3877 
3878 	for_each_object(p, s, addr, page->objects)
3879 		if (!test_bit(slab_index(p, s, addr), map))
3880 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3881 				return 0;
3882 	return 1;
3883 }
3884 
validate_slab_slab(struct kmem_cache * s,struct page * page,unsigned long * map)3885 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3886 						unsigned long *map)
3887 {
3888 	slab_lock(page);
3889 	validate_slab(s, page, map);
3890 	slab_unlock(page);
3891 }
3892 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * map)3893 static int validate_slab_node(struct kmem_cache *s,
3894 		struct kmem_cache_node *n, unsigned long *map)
3895 {
3896 	unsigned long count = 0;
3897 	struct page *page;
3898 	unsigned long flags;
3899 
3900 	spin_lock_irqsave(&n->list_lock, flags);
3901 
3902 	list_for_each_entry(page, &n->partial, lru) {
3903 		validate_slab_slab(s, page, map);
3904 		count++;
3905 	}
3906 	if (count != n->nr_partial)
3907 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3908 		       s->name, count, n->nr_partial);
3909 
3910 	if (!(s->flags & SLAB_STORE_USER))
3911 		goto out;
3912 
3913 	list_for_each_entry(page, &n->full, lru) {
3914 		validate_slab_slab(s, page, map);
3915 		count++;
3916 	}
3917 	if (count != atomic_long_read(&n->nr_slabs))
3918 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3919 		       s->name, count, atomic_long_read(&n->nr_slabs));
3920 
3921 out:
3922 	spin_unlock_irqrestore(&n->list_lock, flags);
3923 	return count;
3924 }
3925 
validate_slab_cache(struct kmem_cache * s)3926 static long validate_slab_cache(struct kmem_cache *s)
3927 {
3928 	int node;
3929 	unsigned long count = 0;
3930 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3931 				sizeof(unsigned long), GFP_KERNEL);
3932 	struct kmem_cache_node *n;
3933 
3934 	if (!map)
3935 		return -ENOMEM;
3936 
3937 	flush_all(s);
3938 	for_each_kmem_cache_node(s, node, n)
3939 		count += validate_slab_node(s, n, map);
3940 	kfree(map);
3941 	return count;
3942 }
3943 /*
3944  * Generate lists of code addresses where slabcache objects are allocated
3945  * and freed.
3946  */
3947 
3948 struct location {
3949 	unsigned long count;
3950 	unsigned long addr;
3951 	long long sum_time;
3952 	long min_time;
3953 	long max_time;
3954 	long min_pid;
3955 	long max_pid;
3956 	DECLARE_BITMAP(cpus, NR_CPUS);
3957 	nodemask_t nodes;
3958 };
3959 
3960 struct loc_track {
3961 	unsigned long max;
3962 	unsigned long count;
3963 	struct location *loc;
3964 };
3965 
free_loc_track(struct loc_track * t)3966 static void free_loc_track(struct loc_track *t)
3967 {
3968 	if (t->max)
3969 		free_pages((unsigned long)t->loc,
3970 			get_order(sizeof(struct location) * t->max));
3971 }
3972 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)3973 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3974 {
3975 	struct location *l;
3976 	int order;
3977 
3978 	order = get_order(sizeof(struct location) * max);
3979 
3980 	l = (void *)__get_free_pages(flags, order);
3981 	if (!l)
3982 		return 0;
3983 
3984 	if (t->count) {
3985 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3986 		free_loc_track(t);
3987 	}
3988 	t->max = max;
3989 	t->loc = l;
3990 	return 1;
3991 }
3992 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)3993 static int add_location(struct loc_track *t, struct kmem_cache *s,
3994 				const struct track *track)
3995 {
3996 	long start, end, pos;
3997 	struct location *l;
3998 	unsigned long caddr;
3999 	unsigned long age = jiffies - track->when;
4000 
4001 	start = -1;
4002 	end = t->count;
4003 
4004 	for ( ; ; ) {
4005 		pos = start + (end - start + 1) / 2;
4006 
4007 		/*
4008 		 * There is nothing at "end". If we end up there
4009 		 * we need to add something to before end.
4010 		 */
4011 		if (pos == end)
4012 			break;
4013 
4014 		caddr = t->loc[pos].addr;
4015 		if (track->addr == caddr) {
4016 
4017 			l = &t->loc[pos];
4018 			l->count++;
4019 			if (track->when) {
4020 				l->sum_time += age;
4021 				if (age < l->min_time)
4022 					l->min_time = age;
4023 				if (age > l->max_time)
4024 					l->max_time = age;
4025 
4026 				if (track->pid < l->min_pid)
4027 					l->min_pid = track->pid;
4028 				if (track->pid > l->max_pid)
4029 					l->max_pid = track->pid;
4030 
4031 				cpumask_set_cpu(track->cpu,
4032 						to_cpumask(l->cpus));
4033 			}
4034 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4035 			return 1;
4036 		}
4037 
4038 		if (track->addr < caddr)
4039 			end = pos;
4040 		else
4041 			start = pos;
4042 	}
4043 
4044 	/*
4045 	 * Not found. Insert new tracking element.
4046 	 */
4047 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4048 		return 0;
4049 
4050 	l = t->loc + pos;
4051 	if (pos < t->count)
4052 		memmove(l + 1, l,
4053 			(t->count - pos) * sizeof(struct location));
4054 	t->count++;
4055 	l->count = 1;
4056 	l->addr = track->addr;
4057 	l->sum_time = age;
4058 	l->min_time = age;
4059 	l->max_time = age;
4060 	l->min_pid = track->pid;
4061 	l->max_pid = track->pid;
4062 	cpumask_clear(to_cpumask(l->cpus));
4063 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4064 	nodes_clear(l->nodes);
4065 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4066 	return 1;
4067 }
4068 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * map)4069 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4070 		struct page *page, enum track_item alloc,
4071 		unsigned long *map)
4072 {
4073 	void *addr = page_address(page);
4074 	void *p;
4075 
4076 	bitmap_zero(map, page->objects);
4077 	get_map(s, page, map);
4078 
4079 	for_each_object(p, s, addr, page->objects)
4080 		if (!test_bit(slab_index(p, s, addr), map))
4081 			add_location(t, s, get_track(s, p, alloc));
4082 }
4083 
list_locations(struct kmem_cache * s,char * buf,enum track_item alloc)4084 static int list_locations(struct kmem_cache *s, char *buf,
4085 					enum track_item alloc)
4086 {
4087 	int len = 0;
4088 	unsigned long i;
4089 	struct loc_track t = { 0, 0, NULL };
4090 	int node;
4091 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4092 				     sizeof(unsigned long), GFP_KERNEL);
4093 	struct kmem_cache_node *n;
4094 
4095 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4096 				     GFP_TEMPORARY)) {
4097 		kfree(map);
4098 		return sprintf(buf, "Out of memory\n");
4099 	}
4100 	/* Push back cpu slabs */
4101 	flush_all(s);
4102 
4103 	for_each_kmem_cache_node(s, node, n) {
4104 		unsigned long flags;
4105 		struct page *page;
4106 
4107 		if (!atomic_long_read(&n->nr_slabs))
4108 			continue;
4109 
4110 		spin_lock_irqsave(&n->list_lock, flags);
4111 		list_for_each_entry(page, &n->partial, lru)
4112 			process_slab(&t, s, page, alloc, map);
4113 		list_for_each_entry(page, &n->full, lru)
4114 			process_slab(&t, s, page, alloc, map);
4115 		spin_unlock_irqrestore(&n->list_lock, flags);
4116 	}
4117 
4118 	for (i = 0; i < t.count; i++) {
4119 		struct location *l = &t.loc[i];
4120 
4121 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4122 			break;
4123 		len += sprintf(buf + len, "%7ld ", l->count);
4124 
4125 		if (l->addr)
4126 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4127 		else
4128 			len += sprintf(buf + len, "<not-available>");
4129 
4130 		if (l->sum_time != l->min_time) {
4131 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4132 				l->min_time,
4133 				(long)div_u64(l->sum_time, l->count),
4134 				l->max_time);
4135 		} else
4136 			len += sprintf(buf + len, " age=%ld",
4137 				l->min_time);
4138 
4139 		if (l->min_pid != l->max_pid)
4140 			len += sprintf(buf + len, " pid=%ld-%ld",
4141 				l->min_pid, l->max_pid);
4142 		else
4143 			len += sprintf(buf + len, " pid=%ld",
4144 				l->min_pid);
4145 
4146 		if (num_online_cpus() > 1 &&
4147 				!cpumask_empty(to_cpumask(l->cpus)) &&
4148 				len < PAGE_SIZE - 60) {
4149 			len += sprintf(buf + len, " cpus=");
4150 			len += cpulist_scnprintf(buf + len,
4151 						 PAGE_SIZE - len - 50,
4152 						 to_cpumask(l->cpus));
4153 		}
4154 
4155 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4156 				len < PAGE_SIZE - 60) {
4157 			len += sprintf(buf + len, " nodes=");
4158 			len += nodelist_scnprintf(buf + len,
4159 						  PAGE_SIZE - len - 50,
4160 						  l->nodes);
4161 		}
4162 
4163 		len += sprintf(buf + len, "\n");
4164 	}
4165 
4166 	free_loc_track(&t);
4167 	kfree(map);
4168 	if (!t.count)
4169 		len += sprintf(buf, "No data\n");
4170 	return len;
4171 }
4172 #endif
4173 
4174 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4175 static void __init resiliency_test(void)
4176 {
4177 	u8 *p;
4178 
4179 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4180 
4181 	pr_err("SLUB resiliency testing\n");
4182 	pr_err("-----------------------\n");
4183 	pr_err("A. Corruption after allocation\n");
4184 
4185 	p = kzalloc(16, GFP_KERNEL);
4186 	p[16] = 0x12;
4187 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4188 	       p + 16);
4189 
4190 	validate_slab_cache(kmalloc_caches[4]);
4191 
4192 	/* Hmmm... The next two are dangerous */
4193 	p = kzalloc(32, GFP_KERNEL);
4194 	p[32 + sizeof(void *)] = 0x34;
4195 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4196 	       p);
4197 	pr_err("If allocated object is overwritten then not detectable\n\n");
4198 
4199 	validate_slab_cache(kmalloc_caches[5]);
4200 	p = kzalloc(64, GFP_KERNEL);
4201 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4202 	*p = 0x56;
4203 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4204 	       p);
4205 	pr_err("If allocated object is overwritten then not detectable\n\n");
4206 	validate_slab_cache(kmalloc_caches[6]);
4207 
4208 	pr_err("\nB. Corruption after free\n");
4209 	p = kzalloc(128, GFP_KERNEL);
4210 	kfree(p);
4211 	*p = 0x78;
4212 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4213 	validate_slab_cache(kmalloc_caches[7]);
4214 
4215 	p = kzalloc(256, GFP_KERNEL);
4216 	kfree(p);
4217 	p[50] = 0x9a;
4218 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4219 	validate_slab_cache(kmalloc_caches[8]);
4220 
4221 	p = kzalloc(512, GFP_KERNEL);
4222 	kfree(p);
4223 	p[512] = 0xab;
4224 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4225 	validate_slab_cache(kmalloc_caches[9]);
4226 }
4227 #else
4228 #ifdef CONFIG_SYSFS
resiliency_test(void)4229 static void resiliency_test(void) {};
4230 #endif
4231 #endif
4232 
4233 #ifdef CONFIG_SYSFS
4234 enum slab_stat_type {
4235 	SL_ALL,			/* All slabs */
4236 	SL_PARTIAL,		/* Only partially allocated slabs */
4237 	SL_CPU,			/* Only slabs used for cpu caches */
4238 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4239 	SL_TOTAL		/* Determine object capacity not slabs */
4240 };
4241 
4242 #define SO_ALL		(1 << SL_ALL)
4243 #define SO_PARTIAL	(1 << SL_PARTIAL)
4244 #define SO_CPU		(1 << SL_CPU)
4245 #define SO_OBJECTS	(1 << SL_OBJECTS)
4246 #define SO_TOTAL	(1 << SL_TOTAL)
4247 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4248 static ssize_t show_slab_objects(struct kmem_cache *s,
4249 			    char *buf, unsigned long flags)
4250 {
4251 	unsigned long total = 0;
4252 	int node;
4253 	int x;
4254 	unsigned long *nodes;
4255 
4256 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4257 	if (!nodes)
4258 		return -ENOMEM;
4259 
4260 	if (flags & SO_CPU) {
4261 		int cpu;
4262 
4263 		for_each_possible_cpu(cpu) {
4264 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4265 							       cpu);
4266 			int node;
4267 			struct page *page;
4268 
4269 			page = ACCESS_ONCE(c->page);
4270 			if (!page)
4271 				continue;
4272 
4273 			node = page_to_nid(page);
4274 			if (flags & SO_TOTAL)
4275 				x = page->objects;
4276 			else if (flags & SO_OBJECTS)
4277 				x = page->inuse;
4278 			else
4279 				x = 1;
4280 
4281 			total += x;
4282 			nodes[node] += x;
4283 
4284 			page = ACCESS_ONCE(c->partial);
4285 			if (page) {
4286 				node = page_to_nid(page);
4287 				if (flags & SO_TOTAL)
4288 					WARN_ON_ONCE(1);
4289 				else if (flags & SO_OBJECTS)
4290 					WARN_ON_ONCE(1);
4291 				else
4292 					x = page->pages;
4293 				total += x;
4294 				nodes[node] += x;
4295 			}
4296 		}
4297 	}
4298 
4299 	get_online_mems();
4300 #ifdef CONFIG_SLUB_DEBUG
4301 	if (flags & SO_ALL) {
4302 		struct kmem_cache_node *n;
4303 
4304 		for_each_kmem_cache_node(s, node, n) {
4305 
4306 			if (flags & SO_TOTAL)
4307 				x = atomic_long_read(&n->total_objects);
4308 			else if (flags & SO_OBJECTS)
4309 				x = atomic_long_read(&n->total_objects) -
4310 					count_partial(n, count_free);
4311 			else
4312 				x = atomic_long_read(&n->nr_slabs);
4313 			total += x;
4314 			nodes[node] += x;
4315 		}
4316 
4317 	} else
4318 #endif
4319 	if (flags & SO_PARTIAL) {
4320 		struct kmem_cache_node *n;
4321 
4322 		for_each_kmem_cache_node(s, node, n) {
4323 			if (flags & SO_TOTAL)
4324 				x = count_partial(n, count_total);
4325 			else if (flags & SO_OBJECTS)
4326 				x = count_partial(n, count_inuse);
4327 			else
4328 				x = n->nr_partial;
4329 			total += x;
4330 			nodes[node] += x;
4331 		}
4332 	}
4333 	x = sprintf(buf, "%lu", total);
4334 #ifdef CONFIG_NUMA
4335 	for (node = 0; node < nr_node_ids; node++)
4336 		if (nodes[node])
4337 			x += sprintf(buf + x, " N%d=%lu",
4338 					node, nodes[node]);
4339 #endif
4340 	put_online_mems();
4341 	kfree(nodes);
4342 	return x + sprintf(buf + x, "\n");
4343 }
4344 
4345 #ifdef CONFIG_SLUB_DEBUG
any_slab_objects(struct kmem_cache * s)4346 static int any_slab_objects(struct kmem_cache *s)
4347 {
4348 	int node;
4349 	struct kmem_cache_node *n;
4350 
4351 	for_each_kmem_cache_node(s, node, n)
4352 		if (atomic_long_read(&n->total_objects))
4353 			return 1;
4354 
4355 	return 0;
4356 }
4357 #endif
4358 
4359 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4360 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4361 
4362 struct slab_attribute {
4363 	struct attribute attr;
4364 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4365 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4366 };
4367 
4368 #define SLAB_ATTR_RO(_name) \
4369 	static struct slab_attribute _name##_attr = \
4370 	__ATTR(_name, 0400, _name##_show, NULL)
4371 
4372 #define SLAB_ATTR(_name) \
4373 	static struct slab_attribute _name##_attr =  \
4374 	__ATTR(_name, 0600, _name##_show, _name##_store)
4375 
slab_size_show(struct kmem_cache * s,char * buf)4376 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4377 {
4378 	return sprintf(buf, "%d\n", s->size);
4379 }
4380 SLAB_ATTR_RO(slab_size);
4381 
align_show(struct kmem_cache * s,char * buf)4382 static ssize_t align_show(struct kmem_cache *s, char *buf)
4383 {
4384 	return sprintf(buf, "%d\n", s->align);
4385 }
4386 SLAB_ATTR_RO(align);
4387 
object_size_show(struct kmem_cache * s,char * buf)4388 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4389 {
4390 	return sprintf(buf, "%d\n", s->object_size);
4391 }
4392 SLAB_ATTR_RO(object_size);
4393 
objs_per_slab_show(struct kmem_cache * s,char * buf)4394 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4395 {
4396 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4397 }
4398 SLAB_ATTR_RO(objs_per_slab);
4399 
order_store(struct kmem_cache * s,const char * buf,size_t length)4400 static ssize_t order_store(struct kmem_cache *s,
4401 				const char *buf, size_t length)
4402 {
4403 	unsigned long order;
4404 	int err;
4405 
4406 	err = kstrtoul(buf, 10, &order);
4407 	if (err)
4408 		return err;
4409 
4410 	if (order > slub_max_order || order < slub_min_order)
4411 		return -EINVAL;
4412 
4413 	calculate_sizes(s, order);
4414 	return length;
4415 }
4416 
order_show(struct kmem_cache * s,char * buf)4417 static ssize_t order_show(struct kmem_cache *s, char *buf)
4418 {
4419 	return sprintf(buf, "%d\n", oo_order(s->oo));
4420 }
4421 SLAB_ATTR(order);
4422 
min_partial_show(struct kmem_cache * s,char * buf)4423 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4424 {
4425 	return sprintf(buf, "%lu\n", s->min_partial);
4426 }
4427 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)4428 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4429 				 size_t length)
4430 {
4431 	unsigned long min;
4432 	int err;
4433 
4434 	err = kstrtoul(buf, 10, &min);
4435 	if (err)
4436 		return err;
4437 
4438 	set_min_partial(s, min);
4439 	return length;
4440 }
4441 SLAB_ATTR(min_partial);
4442 
cpu_partial_show(struct kmem_cache * s,char * buf)4443 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4444 {
4445 	return sprintf(buf, "%u\n", s->cpu_partial);
4446 }
4447 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)4448 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4449 				 size_t length)
4450 {
4451 	unsigned long objects;
4452 	int err;
4453 
4454 	err = kstrtoul(buf, 10, &objects);
4455 	if (err)
4456 		return err;
4457 	if (objects && !kmem_cache_has_cpu_partial(s))
4458 		return -EINVAL;
4459 
4460 	s->cpu_partial = objects;
4461 	flush_all(s);
4462 	return length;
4463 }
4464 SLAB_ATTR(cpu_partial);
4465 
ctor_show(struct kmem_cache * s,char * buf)4466 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4467 {
4468 	if (!s->ctor)
4469 		return 0;
4470 	return sprintf(buf, "%pS\n", s->ctor);
4471 }
4472 SLAB_ATTR_RO(ctor);
4473 
aliases_show(struct kmem_cache * s,char * buf)4474 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4475 {
4476 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4477 }
4478 SLAB_ATTR_RO(aliases);
4479 
partial_show(struct kmem_cache * s,char * buf)4480 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4481 {
4482 	return show_slab_objects(s, buf, SO_PARTIAL);
4483 }
4484 SLAB_ATTR_RO(partial);
4485 
cpu_slabs_show(struct kmem_cache * s,char * buf)4486 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4487 {
4488 	return show_slab_objects(s, buf, SO_CPU);
4489 }
4490 SLAB_ATTR_RO(cpu_slabs);
4491 
objects_show(struct kmem_cache * s,char * buf)4492 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4493 {
4494 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4495 }
4496 SLAB_ATTR_RO(objects);
4497 
objects_partial_show(struct kmem_cache * s,char * buf)4498 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4499 {
4500 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4501 }
4502 SLAB_ATTR_RO(objects_partial);
4503 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)4504 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4505 {
4506 	int objects = 0;
4507 	int pages = 0;
4508 	int cpu;
4509 	int len;
4510 
4511 	for_each_online_cpu(cpu) {
4512 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4513 
4514 		if (page) {
4515 			pages += page->pages;
4516 			objects += page->pobjects;
4517 		}
4518 	}
4519 
4520 	len = sprintf(buf, "%d(%d)", objects, pages);
4521 
4522 #ifdef CONFIG_SMP
4523 	for_each_online_cpu(cpu) {
4524 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4525 
4526 		if (page && len < PAGE_SIZE - 20)
4527 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4528 				page->pobjects, page->pages);
4529 	}
4530 #endif
4531 	return len + sprintf(buf + len, "\n");
4532 }
4533 SLAB_ATTR_RO(slabs_cpu_partial);
4534 
reclaim_account_show(struct kmem_cache * s,char * buf)4535 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4536 {
4537 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4538 }
4539 
reclaim_account_store(struct kmem_cache * s,const char * buf,size_t length)4540 static ssize_t reclaim_account_store(struct kmem_cache *s,
4541 				const char *buf, size_t length)
4542 {
4543 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4544 	if (buf[0] == '1')
4545 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4546 	return length;
4547 }
4548 SLAB_ATTR(reclaim_account);
4549 
hwcache_align_show(struct kmem_cache * s,char * buf)4550 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4551 {
4552 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4553 }
4554 SLAB_ATTR_RO(hwcache_align);
4555 
4556 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)4557 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4558 {
4559 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4560 }
4561 SLAB_ATTR_RO(cache_dma);
4562 #endif
4563 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)4564 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4565 {
4566 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4567 }
4568 SLAB_ATTR_RO(destroy_by_rcu);
4569 
reserved_show(struct kmem_cache * s,char * buf)4570 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4571 {
4572 	return sprintf(buf, "%d\n", s->reserved);
4573 }
4574 SLAB_ATTR_RO(reserved);
4575 
4576 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)4577 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4578 {
4579 	return show_slab_objects(s, buf, SO_ALL);
4580 }
4581 SLAB_ATTR_RO(slabs);
4582 
total_objects_show(struct kmem_cache * s,char * buf)4583 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4584 {
4585 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4586 }
4587 SLAB_ATTR_RO(total_objects);
4588 
sanity_checks_show(struct kmem_cache * s,char * buf)4589 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4590 {
4591 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4592 }
4593 
sanity_checks_store(struct kmem_cache * s,const char * buf,size_t length)4594 static ssize_t sanity_checks_store(struct kmem_cache *s,
4595 				const char *buf, size_t length)
4596 {
4597 	s->flags &= ~SLAB_DEBUG_FREE;
4598 	if (buf[0] == '1') {
4599 		s->flags &= ~__CMPXCHG_DOUBLE;
4600 		s->flags |= SLAB_DEBUG_FREE;
4601 	}
4602 	return length;
4603 }
4604 SLAB_ATTR(sanity_checks);
4605 
trace_show(struct kmem_cache * s,char * buf)4606 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4609 }
4610 
trace_store(struct kmem_cache * s,const char * buf,size_t length)4611 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4612 							size_t length)
4613 {
4614 	/*
4615 	 * Tracing a merged cache is going to give confusing results
4616 	 * as well as cause other issues like converting a mergeable
4617 	 * cache into an umergeable one.
4618 	 */
4619 	if (s->refcount > 1)
4620 		return -EINVAL;
4621 
4622 	s->flags &= ~SLAB_TRACE;
4623 	if (buf[0] == '1') {
4624 		s->flags &= ~__CMPXCHG_DOUBLE;
4625 		s->flags |= SLAB_TRACE;
4626 	}
4627 	return length;
4628 }
4629 SLAB_ATTR(trace);
4630 
red_zone_show(struct kmem_cache * s,char * buf)4631 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4632 {
4633 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4634 }
4635 
red_zone_store(struct kmem_cache * s,const char * buf,size_t length)4636 static ssize_t red_zone_store(struct kmem_cache *s,
4637 				const char *buf, size_t length)
4638 {
4639 	if (any_slab_objects(s))
4640 		return -EBUSY;
4641 
4642 	s->flags &= ~SLAB_RED_ZONE;
4643 	if (buf[0] == '1') {
4644 		s->flags &= ~__CMPXCHG_DOUBLE;
4645 		s->flags |= SLAB_RED_ZONE;
4646 	}
4647 	calculate_sizes(s, -1);
4648 	return length;
4649 }
4650 SLAB_ATTR(red_zone);
4651 
poison_show(struct kmem_cache * s,char * buf)4652 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4653 {
4654 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4655 }
4656 
poison_store(struct kmem_cache * s,const char * buf,size_t length)4657 static ssize_t poison_store(struct kmem_cache *s,
4658 				const char *buf, size_t length)
4659 {
4660 	if (any_slab_objects(s))
4661 		return -EBUSY;
4662 
4663 	s->flags &= ~SLAB_POISON;
4664 	if (buf[0] == '1') {
4665 		s->flags &= ~__CMPXCHG_DOUBLE;
4666 		s->flags |= SLAB_POISON;
4667 	}
4668 	calculate_sizes(s, -1);
4669 	return length;
4670 }
4671 SLAB_ATTR(poison);
4672 
store_user_show(struct kmem_cache * s,char * buf)4673 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4674 {
4675 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4676 }
4677 
store_user_store(struct kmem_cache * s,const char * buf,size_t length)4678 static ssize_t store_user_store(struct kmem_cache *s,
4679 				const char *buf, size_t length)
4680 {
4681 	if (any_slab_objects(s))
4682 		return -EBUSY;
4683 
4684 	s->flags &= ~SLAB_STORE_USER;
4685 	if (buf[0] == '1') {
4686 		s->flags &= ~__CMPXCHG_DOUBLE;
4687 		s->flags |= SLAB_STORE_USER;
4688 	}
4689 	calculate_sizes(s, -1);
4690 	return length;
4691 }
4692 SLAB_ATTR(store_user);
4693 
validate_show(struct kmem_cache * s,char * buf)4694 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4695 {
4696 	return 0;
4697 }
4698 
validate_store(struct kmem_cache * s,const char * buf,size_t length)4699 static ssize_t validate_store(struct kmem_cache *s,
4700 			const char *buf, size_t length)
4701 {
4702 	int ret = -EINVAL;
4703 
4704 	if (buf[0] == '1') {
4705 		ret = validate_slab_cache(s);
4706 		if (ret >= 0)
4707 			ret = length;
4708 	}
4709 	return ret;
4710 }
4711 SLAB_ATTR(validate);
4712 
alloc_calls_show(struct kmem_cache * s,char * buf)4713 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4714 {
4715 	if (!(s->flags & SLAB_STORE_USER))
4716 		return -ENOSYS;
4717 	return list_locations(s, buf, TRACK_ALLOC);
4718 }
4719 SLAB_ATTR_RO(alloc_calls);
4720 
free_calls_show(struct kmem_cache * s,char * buf)4721 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4722 {
4723 	if (!(s->flags & SLAB_STORE_USER))
4724 		return -ENOSYS;
4725 	return list_locations(s, buf, TRACK_FREE);
4726 }
4727 SLAB_ATTR_RO(free_calls);
4728 #endif /* CONFIG_SLUB_DEBUG */
4729 
4730 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)4731 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4732 {
4733 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4734 }
4735 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)4736 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4737 							size_t length)
4738 {
4739 	if (s->refcount > 1)
4740 		return -EINVAL;
4741 
4742 	s->flags &= ~SLAB_FAILSLAB;
4743 	if (buf[0] == '1')
4744 		s->flags |= SLAB_FAILSLAB;
4745 	return length;
4746 }
4747 SLAB_ATTR(failslab);
4748 #endif
4749 
shrink_show(struct kmem_cache * s,char * buf)4750 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4751 {
4752 	return 0;
4753 }
4754 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)4755 static ssize_t shrink_store(struct kmem_cache *s,
4756 			const char *buf, size_t length)
4757 {
4758 	if (buf[0] == '1') {
4759 		int rc = kmem_cache_shrink(s);
4760 
4761 		if (rc)
4762 			return rc;
4763 	} else
4764 		return -EINVAL;
4765 	return length;
4766 }
4767 SLAB_ATTR(shrink);
4768 
4769 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)4770 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4771 {
4772 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4773 }
4774 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)4775 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4776 				const char *buf, size_t length)
4777 {
4778 	unsigned long ratio;
4779 	int err;
4780 
4781 	err = kstrtoul(buf, 10, &ratio);
4782 	if (err)
4783 		return err;
4784 
4785 	if (ratio <= 100)
4786 		s->remote_node_defrag_ratio = ratio * 10;
4787 
4788 	return length;
4789 }
4790 SLAB_ATTR(remote_node_defrag_ratio);
4791 #endif
4792 
4793 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)4794 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4795 {
4796 	unsigned long sum  = 0;
4797 	int cpu;
4798 	int len;
4799 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4800 
4801 	if (!data)
4802 		return -ENOMEM;
4803 
4804 	for_each_online_cpu(cpu) {
4805 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4806 
4807 		data[cpu] = x;
4808 		sum += x;
4809 	}
4810 
4811 	len = sprintf(buf, "%lu", sum);
4812 
4813 #ifdef CONFIG_SMP
4814 	for_each_online_cpu(cpu) {
4815 		if (data[cpu] && len < PAGE_SIZE - 20)
4816 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4817 	}
4818 #endif
4819 	kfree(data);
4820 	return len + sprintf(buf + len, "\n");
4821 }
4822 
clear_stat(struct kmem_cache * s,enum stat_item si)4823 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4824 {
4825 	int cpu;
4826 
4827 	for_each_online_cpu(cpu)
4828 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4829 }
4830 
4831 #define STAT_ATTR(si, text) 					\
4832 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4833 {								\
4834 	return show_stat(s, buf, si);				\
4835 }								\
4836 static ssize_t text##_store(struct kmem_cache *s,		\
4837 				const char *buf, size_t length)	\
4838 {								\
4839 	if (buf[0] != '0')					\
4840 		return -EINVAL;					\
4841 	clear_stat(s, si);					\
4842 	return length;						\
4843 }								\
4844 SLAB_ATTR(text);						\
4845 
4846 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4847 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4848 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4849 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4850 STAT_ATTR(FREE_FROZEN, free_frozen);
4851 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4852 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4853 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4854 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4855 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4856 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4857 STAT_ATTR(FREE_SLAB, free_slab);
4858 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4859 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4860 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4861 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4862 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4863 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4864 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4865 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4866 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4867 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4868 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4869 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4870 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4871 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4872 #endif
4873 
4874 static struct attribute *slab_attrs[] = {
4875 	&slab_size_attr.attr,
4876 	&object_size_attr.attr,
4877 	&objs_per_slab_attr.attr,
4878 	&order_attr.attr,
4879 	&min_partial_attr.attr,
4880 	&cpu_partial_attr.attr,
4881 	&objects_attr.attr,
4882 	&objects_partial_attr.attr,
4883 	&partial_attr.attr,
4884 	&cpu_slabs_attr.attr,
4885 	&ctor_attr.attr,
4886 	&aliases_attr.attr,
4887 	&align_attr.attr,
4888 	&hwcache_align_attr.attr,
4889 	&reclaim_account_attr.attr,
4890 	&destroy_by_rcu_attr.attr,
4891 	&shrink_attr.attr,
4892 	&reserved_attr.attr,
4893 	&slabs_cpu_partial_attr.attr,
4894 #ifdef CONFIG_SLUB_DEBUG
4895 	&total_objects_attr.attr,
4896 	&slabs_attr.attr,
4897 	&sanity_checks_attr.attr,
4898 	&trace_attr.attr,
4899 	&red_zone_attr.attr,
4900 	&poison_attr.attr,
4901 	&store_user_attr.attr,
4902 	&validate_attr.attr,
4903 	&alloc_calls_attr.attr,
4904 	&free_calls_attr.attr,
4905 #endif
4906 #ifdef CONFIG_ZONE_DMA
4907 	&cache_dma_attr.attr,
4908 #endif
4909 #ifdef CONFIG_NUMA
4910 	&remote_node_defrag_ratio_attr.attr,
4911 #endif
4912 #ifdef CONFIG_SLUB_STATS
4913 	&alloc_fastpath_attr.attr,
4914 	&alloc_slowpath_attr.attr,
4915 	&free_fastpath_attr.attr,
4916 	&free_slowpath_attr.attr,
4917 	&free_frozen_attr.attr,
4918 	&free_add_partial_attr.attr,
4919 	&free_remove_partial_attr.attr,
4920 	&alloc_from_partial_attr.attr,
4921 	&alloc_slab_attr.attr,
4922 	&alloc_refill_attr.attr,
4923 	&alloc_node_mismatch_attr.attr,
4924 	&free_slab_attr.attr,
4925 	&cpuslab_flush_attr.attr,
4926 	&deactivate_full_attr.attr,
4927 	&deactivate_empty_attr.attr,
4928 	&deactivate_to_head_attr.attr,
4929 	&deactivate_to_tail_attr.attr,
4930 	&deactivate_remote_frees_attr.attr,
4931 	&deactivate_bypass_attr.attr,
4932 	&order_fallback_attr.attr,
4933 	&cmpxchg_double_fail_attr.attr,
4934 	&cmpxchg_double_cpu_fail_attr.attr,
4935 	&cpu_partial_alloc_attr.attr,
4936 	&cpu_partial_free_attr.attr,
4937 	&cpu_partial_node_attr.attr,
4938 	&cpu_partial_drain_attr.attr,
4939 #endif
4940 #ifdef CONFIG_FAILSLAB
4941 	&failslab_attr.attr,
4942 #endif
4943 
4944 	NULL
4945 };
4946 
4947 static struct attribute_group slab_attr_group = {
4948 	.attrs = slab_attrs,
4949 };
4950 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)4951 static ssize_t slab_attr_show(struct kobject *kobj,
4952 				struct attribute *attr,
4953 				char *buf)
4954 {
4955 	struct slab_attribute *attribute;
4956 	struct kmem_cache *s;
4957 	int err;
4958 
4959 	attribute = to_slab_attr(attr);
4960 	s = to_slab(kobj);
4961 
4962 	if (!attribute->show)
4963 		return -EIO;
4964 
4965 	err = attribute->show(s, buf);
4966 
4967 	return err;
4968 }
4969 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)4970 static ssize_t slab_attr_store(struct kobject *kobj,
4971 				struct attribute *attr,
4972 				const char *buf, size_t len)
4973 {
4974 	struct slab_attribute *attribute;
4975 	struct kmem_cache *s;
4976 	int err;
4977 
4978 	attribute = to_slab_attr(attr);
4979 	s = to_slab(kobj);
4980 
4981 	if (!attribute->store)
4982 		return -EIO;
4983 
4984 	err = attribute->store(s, buf, len);
4985 #ifdef CONFIG_MEMCG_KMEM
4986 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4987 		int i;
4988 
4989 		mutex_lock(&slab_mutex);
4990 		if (s->max_attr_size < len)
4991 			s->max_attr_size = len;
4992 
4993 		/*
4994 		 * This is a best effort propagation, so this function's return
4995 		 * value will be determined by the parent cache only. This is
4996 		 * basically because not all attributes will have a well
4997 		 * defined semantics for rollbacks - most of the actions will
4998 		 * have permanent effects.
4999 		 *
5000 		 * Returning the error value of any of the children that fail
5001 		 * is not 100 % defined, in the sense that users seeing the
5002 		 * error code won't be able to know anything about the state of
5003 		 * the cache.
5004 		 *
5005 		 * Only returning the error code for the parent cache at least
5006 		 * has well defined semantics. The cache being written to
5007 		 * directly either failed or succeeded, in which case we loop
5008 		 * through the descendants with best-effort propagation.
5009 		 */
5010 		for_each_memcg_cache_index(i) {
5011 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5012 			if (c)
5013 				attribute->store(c, buf, len);
5014 		}
5015 		mutex_unlock(&slab_mutex);
5016 	}
5017 #endif
5018 	return err;
5019 }
5020 
memcg_propagate_slab_attrs(struct kmem_cache * s)5021 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5022 {
5023 #ifdef CONFIG_MEMCG_KMEM
5024 	int i;
5025 	char *buffer = NULL;
5026 	struct kmem_cache *root_cache;
5027 
5028 	if (is_root_cache(s))
5029 		return;
5030 
5031 	root_cache = s->memcg_params->root_cache;
5032 
5033 	/*
5034 	 * This mean this cache had no attribute written. Therefore, no point
5035 	 * in copying default values around
5036 	 */
5037 	if (!root_cache->max_attr_size)
5038 		return;
5039 
5040 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5041 		char mbuf[64];
5042 		char *buf;
5043 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5044 		ssize_t len;
5045 
5046 		if (!attr || !attr->store || !attr->show)
5047 			continue;
5048 
5049 		/*
5050 		 * It is really bad that we have to allocate here, so we will
5051 		 * do it only as a fallback. If we actually allocate, though,
5052 		 * we can just use the allocated buffer until the end.
5053 		 *
5054 		 * Most of the slub attributes will tend to be very small in
5055 		 * size, but sysfs allows buffers up to a page, so they can
5056 		 * theoretically happen.
5057 		 */
5058 		if (buffer)
5059 			buf = buffer;
5060 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5061 			buf = mbuf;
5062 		else {
5063 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5064 			if (WARN_ON(!buffer))
5065 				continue;
5066 			buf = buffer;
5067 		}
5068 
5069 		len = attr->show(root_cache, buf);
5070 		if (len > 0)
5071 			attr->store(s, buf, len);
5072 	}
5073 
5074 	if (buffer)
5075 		free_page((unsigned long)buffer);
5076 #endif
5077 }
5078 
kmem_cache_release(struct kobject * k)5079 static void kmem_cache_release(struct kobject *k)
5080 {
5081 	slab_kmem_cache_release(to_slab(k));
5082 }
5083 
5084 static const struct sysfs_ops slab_sysfs_ops = {
5085 	.show = slab_attr_show,
5086 	.store = slab_attr_store,
5087 };
5088 
5089 static struct kobj_type slab_ktype = {
5090 	.sysfs_ops = &slab_sysfs_ops,
5091 	.release = kmem_cache_release,
5092 };
5093 
uevent_filter(struct kset * kset,struct kobject * kobj)5094 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5095 {
5096 	struct kobj_type *ktype = get_ktype(kobj);
5097 
5098 	if (ktype == &slab_ktype)
5099 		return 1;
5100 	return 0;
5101 }
5102 
5103 static const struct kset_uevent_ops slab_uevent_ops = {
5104 	.filter = uevent_filter,
5105 };
5106 
5107 static struct kset *slab_kset;
5108 
cache_kset(struct kmem_cache * s)5109 static inline struct kset *cache_kset(struct kmem_cache *s)
5110 {
5111 #ifdef CONFIG_MEMCG_KMEM
5112 	if (!is_root_cache(s))
5113 		return s->memcg_params->root_cache->memcg_kset;
5114 #endif
5115 	return slab_kset;
5116 }
5117 
5118 #define ID_STR_LENGTH 64
5119 
5120 /* Create a unique string id for a slab cache:
5121  *
5122  * Format	:[flags-]size
5123  */
create_unique_id(struct kmem_cache * s)5124 static char *create_unique_id(struct kmem_cache *s)
5125 {
5126 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5127 	char *p = name;
5128 
5129 	BUG_ON(!name);
5130 
5131 	*p++ = ':';
5132 	/*
5133 	 * First flags affecting slabcache operations. We will only
5134 	 * get here for aliasable slabs so we do not need to support
5135 	 * too many flags. The flags here must cover all flags that
5136 	 * are matched during merging to guarantee that the id is
5137 	 * unique.
5138 	 */
5139 	if (s->flags & SLAB_CACHE_DMA)
5140 		*p++ = 'd';
5141 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5142 		*p++ = 'a';
5143 	if (s->flags & SLAB_DEBUG_FREE)
5144 		*p++ = 'F';
5145 	if (!(s->flags & SLAB_NOTRACK))
5146 		*p++ = 't';
5147 	if (p != name + 1)
5148 		*p++ = '-';
5149 	p += sprintf(p, "%07d", s->size);
5150 
5151 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5152 	return name;
5153 }
5154 
sysfs_slab_add(struct kmem_cache * s)5155 static int sysfs_slab_add(struct kmem_cache *s)
5156 {
5157 	int err;
5158 	const char *name;
5159 	int unmergeable = slab_unmergeable(s);
5160 
5161 	if (unmergeable) {
5162 		/*
5163 		 * Slabcache can never be merged so we can use the name proper.
5164 		 * This is typically the case for debug situations. In that
5165 		 * case we can catch duplicate names easily.
5166 		 */
5167 		sysfs_remove_link(&slab_kset->kobj, s->name);
5168 		name = s->name;
5169 	} else {
5170 		/*
5171 		 * Create a unique name for the slab as a target
5172 		 * for the symlinks.
5173 		 */
5174 		name = create_unique_id(s);
5175 	}
5176 
5177 	s->kobj.kset = cache_kset(s);
5178 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5179 	if (err)
5180 		goto out_put_kobj;
5181 
5182 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5183 	if (err)
5184 		goto out_del_kobj;
5185 
5186 #ifdef CONFIG_MEMCG_KMEM
5187 	if (is_root_cache(s)) {
5188 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5189 		if (!s->memcg_kset) {
5190 			err = -ENOMEM;
5191 			goto out_del_kobj;
5192 		}
5193 	}
5194 #endif
5195 
5196 	kobject_uevent(&s->kobj, KOBJ_ADD);
5197 	if (!unmergeable) {
5198 		/* Setup first alias */
5199 		sysfs_slab_alias(s, s->name);
5200 	}
5201 out:
5202 	if (!unmergeable)
5203 		kfree(name);
5204 	return err;
5205 out_del_kobj:
5206 	kobject_del(&s->kobj);
5207 out_put_kobj:
5208 	kobject_put(&s->kobj);
5209 	goto out;
5210 }
5211 
sysfs_slab_remove(struct kmem_cache * s)5212 void sysfs_slab_remove(struct kmem_cache *s)
5213 {
5214 	if (slab_state < FULL)
5215 		/*
5216 		 * Sysfs has not been setup yet so no need to remove the
5217 		 * cache from sysfs.
5218 		 */
5219 		return;
5220 
5221 #ifdef CONFIG_MEMCG_KMEM
5222 	kset_unregister(s->memcg_kset);
5223 #endif
5224 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5225 	kobject_del(&s->kobj);
5226 	kobject_put(&s->kobj);
5227 }
5228 
5229 /*
5230  * Need to buffer aliases during bootup until sysfs becomes
5231  * available lest we lose that information.
5232  */
5233 struct saved_alias {
5234 	struct kmem_cache *s;
5235 	const char *name;
5236 	struct saved_alias *next;
5237 };
5238 
5239 static struct saved_alias *alias_list;
5240 
sysfs_slab_alias(struct kmem_cache * s,const char * name)5241 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5242 {
5243 	struct saved_alias *al;
5244 
5245 	if (slab_state == FULL) {
5246 		/*
5247 		 * If we have a leftover link then remove it.
5248 		 */
5249 		sysfs_remove_link(&slab_kset->kobj, name);
5250 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5251 	}
5252 
5253 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5254 	if (!al)
5255 		return -ENOMEM;
5256 
5257 	al->s = s;
5258 	al->name = name;
5259 	al->next = alias_list;
5260 	alias_list = al;
5261 	return 0;
5262 }
5263 
slab_sysfs_init(void)5264 static int __init slab_sysfs_init(void)
5265 {
5266 	struct kmem_cache *s;
5267 	int err;
5268 
5269 	mutex_lock(&slab_mutex);
5270 
5271 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5272 	if (!slab_kset) {
5273 		mutex_unlock(&slab_mutex);
5274 		pr_err("Cannot register slab subsystem.\n");
5275 		return -ENOSYS;
5276 	}
5277 
5278 	slab_state = FULL;
5279 
5280 	list_for_each_entry(s, &slab_caches, list) {
5281 		err = sysfs_slab_add(s);
5282 		if (err)
5283 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5284 			       s->name);
5285 	}
5286 
5287 	while (alias_list) {
5288 		struct saved_alias *al = alias_list;
5289 
5290 		alias_list = alias_list->next;
5291 		err = sysfs_slab_alias(al->s, al->name);
5292 		if (err)
5293 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5294 			       al->name);
5295 		kfree(al);
5296 	}
5297 
5298 	mutex_unlock(&slab_mutex);
5299 	resiliency_test();
5300 	return 0;
5301 }
5302 
5303 __initcall(slab_sysfs_init);
5304 #endif /* CONFIG_SYSFS */
5305 
5306 /*
5307  * The /proc/slabinfo ABI
5308  */
5309 #ifdef CONFIG_SLABINFO
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5310 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5311 {
5312 	unsigned long nr_slabs = 0;
5313 	unsigned long nr_objs = 0;
5314 	unsigned long nr_free = 0;
5315 	int node;
5316 	struct kmem_cache_node *n;
5317 
5318 	for_each_kmem_cache_node(s, node, n) {
5319 		nr_slabs += node_nr_slabs(n);
5320 		nr_objs += node_nr_objs(n);
5321 		nr_free += count_partial(n, count_free);
5322 	}
5323 
5324 	sinfo->active_objs = nr_objs - nr_free;
5325 	sinfo->num_objs = nr_objs;
5326 	sinfo->active_slabs = nr_slabs;
5327 	sinfo->num_slabs = nr_slabs;
5328 	sinfo->objects_per_slab = oo_objects(s->oo);
5329 	sinfo->cache_order = oo_order(s->oo);
5330 }
5331 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5332 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5333 {
5334 }
5335 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)5336 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5337 		       size_t count, loff_t *ppos)
5338 {
5339 	return -EIO;
5340 }
5341 #endif /* CONFIG_SLABINFO */
5342