1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
swap_count(unsigned char ent)89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset)96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 swp_entry_t entry = swp_entry(si->type, offset);
99 struct page *page;
100 int ret = 0;
101
102 page = find_get_page(swap_address_space(entry), entry.val);
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118 }
119
120 /*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
discard_swap(struct swap_info_struct * si)124 static int discard_swap(struct swap_info_struct *si)
125 {
126 struct swap_extent *se;
127 sector_t start_block;
128 sector_t nr_blocks;
129 int err = 0;
130
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, 0);
138 if (err)
139 return err;
140 cond_resched();
141 }
142
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, 0);
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
174 sector_t nr_blocks = se->nr_pages - offset;
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
187 nr_blocks, GFP_NOIO, 0))
188 break;
189 }
190
191 lh = se->list.next;
192 se = list_entry(lh, struct swap_extent, list);
193 }
194 }
195
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
198
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200 unsigned int flag)
201 {
202 info->flags = flag;
203 }
204
cluster_count(struct swap_cluster_info * info)205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207 return info->data;
208 }
209
cluster_set_count(struct swap_cluster_info * info,unsigned int c)210 static inline void cluster_set_count(struct swap_cluster_info *info,
211 unsigned int c)
212 {
213 info->data = c;
214 }
215
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
218 {
219 info->flags = f;
220 info->data = c;
221 }
222
cluster_next(struct swap_cluster_info * info)223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225 return info->data;
226 }
227
cluster_set_next(struct swap_cluster_info * info,unsigned int n)228 static inline void cluster_set_next(struct swap_cluster_info *info,
229 unsigned int n)
230 {
231 info->data = n;
232 }
233
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
236 {
237 info->flags = f;
238 info->data = n;
239 }
240
cluster_is_free(struct swap_cluster_info * info)241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243 return info->flags & CLUSTER_FLAG_FREE;
244 }
245
cluster_is_null(struct swap_cluster_info * info)246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
cluster_set_null(struct swap_cluster_info * info)251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
254 info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 unsigned int idx)
260 {
261 /*
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
266 */
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
272 idx, 0);
273 cluster_set_next_flag(&si->discard_cluster_tail,
274 idx, 0);
275 } else {
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
279 idx, 0);
280 }
281
282 schedule_work(&si->discard_work);
283 }
284
285 /*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288 */
swap_do_scheduled_discard(struct swap_info_struct * si)289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291 struct swap_cluster_info *info;
292 unsigned int idx;
293
294 info = si->cluster_info;
295
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
298
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
304 }
305 spin_unlock(&si->lock);
306
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 SWAPFILE_CLUSTER);
309
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
314 idx, 0);
315 cluster_set_next_flag(&si->free_cluster_tail,
316 idx, 0);
317 } else {
318 unsigned int tail;
319
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
323 idx, 0);
324 }
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
327 }
328 }
329
swap_discard_work(struct work_struct * work)330 static void swap_discard_work(struct work_struct *work)
331 {
332 struct swap_info_struct *si;
333
334 si = container_of(work, struct swap_info_struct, discard_work);
335
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
339 }
340
341 /*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)345 static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350 if (!cluster_info)
351 return;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
359 }
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 }
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)373 static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378 if (!cluster_info)
379 return;
380
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
384
385 if (cluster_count(&cluster_info[idx]) == 0) {
386 /*
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
389 * after discard.
390 */
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393 swap_cluster_schedule_discard(p, idx);
394 return;
395 }
396
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 } else {
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 }
406 }
407 }
408
409 /*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
413 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415 unsigned long offset)
416 {
417 struct percpu_cluster *percpu_cluster;
418 bool conflict;
419
420 offset /= SWAPFILE_CLUSTER;
421 conflict = !cluster_is_null(&si->free_cluster_head) &&
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
424
425 if (!conflict)
426 return false;
427
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
430 return true;
431 }
432
433 /*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
439 {
440 struct percpu_cluster *cluster;
441 bool found_free;
442 unsigned long tmp;
443
444 new_cluster:
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
450 SWAPFILE_CLUSTER;
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452 /*
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
455 */
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
458 goto new_cluster;
459 } else
460 return;
461 }
462
463 found_free = false;
464
465 /*
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
468 */
469 tmp = cluster->next;
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 SWAPFILE_CLUSTER) {
472 if (!si->swap_map[tmp]) {
473 found_free = true;
474 break;
475 }
476 tmp++;
477 }
478 if (!found_free) {
479 cluster_set_null(&cluster->index);
480 goto new_cluster;
481 }
482 cluster->next = tmp + 1;
483 *offset = tmp;
484 *scan_base = tmp;
485 }
486
scan_swap_map(struct swap_info_struct * si,unsigned char usage)487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488 unsigned char usage)
489 {
490 unsigned long offset;
491 unsigned long scan_base;
492 unsigned long last_in_cluster = 0;
493 int latency_ration = LATENCY_LIMIT;
494
495 /*
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
504 */
505
506 si->flags += SWP_SCANNING;
507 scan_base = offset = si->cluster_next;
508
509 /* SSD algorithm */
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 goto checks;
513 }
514
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 goto checks;
519 }
520
521 spin_unlock(&si->lock);
522
523 /*
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
528 */
529 scan_base = offset = si->lowest_bit;
530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster <= si->highest_bit; offset++) {
534 if (si->swap_map[offset])
535 last_in_cluster = offset + SWAPFILE_CLUSTER;
536 else if (offset == last_in_cluster) {
537 spin_lock(&si->lock);
538 offset -= SWAPFILE_CLUSTER - 1;
539 si->cluster_next = offset;
540 si->cluster_nr = SWAPFILE_CLUSTER - 1;
541 goto checks;
542 }
543 if (unlikely(--latency_ration < 0)) {
544 cond_resched();
545 latency_ration = LATENCY_LIMIT;
546 }
547 }
548
549 offset = scan_base;
550 spin_lock(&si->lock);
551 si->cluster_nr = SWAPFILE_CLUSTER - 1;
552 }
553
554 checks:
555 if (si->cluster_info) {
556 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 }
559 if (!(si->flags & SWP_WRITEOK))
560 goto no_page;
561 if (!si->highest_bit)
562 goto no_page;
563 if (offset > si->highest_bit)
564 scan_base = offset = si->lowest_bit;
565
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568 int swap_was_freed;
569 spin_unlock(&si->lock);
570 swap_was_freed = __try_to_reclaim_swap(si, offset);
571 spin_lock(&si->lock);
572 /* entry was freed successfully, try to use this again */
573 if (swap_was_freed)
574 goto checks;
575 goto scan; /* check next one */
576 }
577
578 if (si->swap_map[offset])
579 goto scan;
580
581 if (offset == si->lowest_bit)
582 si->lowest_bit++;
583 if (offset == si->highest_bit)
584 si->highest_bit--;
585 si->inuse_pages++;
586 if (si->inuse_pages == si->pages) {
587 si->lowest_bit = si->max;
588 si->highest_bit = 0;
589 spin_lock(&swap_avail_lock);
590 plist_del(&si->avail_list, &swap_avail_head);
591 spin_unlock(&swap_avail_lock);
592 }
593 si->swap_map[offset] = usage;
594 inc_cluster_info_page(si, si->cluster_info, offset);
595 si->cluster_next = offset + 1;
596 si->flags -= SWP_SCANNING;
597
598 return offset;
599
600 scan:
601 spin_unlock(&si->lock);
602 while (++offset <= si->highest_bit) {
603 if (!si->swap_map[offset]) {
604 spin_lock(&si->lock);
605 goto checks;
606 }
607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608 spin_lock(&si->lock);
609 goto checks;
610 }
611 if (unlikely(--latency_ration < 0)) {
612 cond_resched();
613 latency_ration = LATENCY_LIMIT;
614 }
615 }
616 offset = si->lowest_bit;
617 while (offset < scan_base) {
618 if (!si->swap_map[offset]) {
619 spin_lock(&si->lock);
620 goto checks;
621 }
622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623 spin_lock(&si->lock);
624 goto checks;
625 }
626 if (unlikely(--latency_ration < 0)) {
627 cond_resched();
628 latency_ration = LATENCY_LIMIT;
629 }
630 offset++;
631 }
632 spin_lock(&si->lock);
633
634 no_page:
635 si->flags -= SWP_SCANNING;
636 return 0;
637 }
638
get_swap_page(void)639 swp_entry_t get_swap_page(void)
640 {
641 struct swap_info_struct *si, *next;
642 pgoff_t offset;
643
644 if (atomic_long_read(&nr_swap_pages) <= 0)
645 goto noswap;
646 atomic_long_dec(&nr_swap_pages);
647
648 spin_lock(&swap_avail_lock);
649
650 start_over:
651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si->avail_list, &swap_avail_head);
654 spin_unlock(&swap_avail_lock);
655 spin_lock(&si->lock);
656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657 spin_lock(&swap_avail_lock);
658 if (plist_node_empty(&si->avail_list)) {
659 spin_unlock(&si->lock);
660 goto nextsi;
661 }
662 WARN(!si->highest_bit,
663 "swap_info %d in list but !highest_bit\n",
664 si->type);
665 WARN(!(si->flags & SWP_WRITEOK),
666 "swap_info %d in list but !SWP_WRITEOK\n",
667 si->type);
668 plist_del(&si->avail_list, &swap_avail_head);
669 spin_unlock(&si->lock);
670 goto nextsi;
671 }
672
673 /* This is called for allocating swap entry for cache */
674 offset = scan_swap_map(si, SWAP_HAS_CACHE);
675 spin_unlock(&si->lock);
676 if (offset)
677 return swp_entry(si->type, offset);
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
679 si->type);
680 spin_lock(&swap_avail_lock);
681 nextsi:
682 /*
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
691 */
692 if (plist_node_empty(&next->avail_list))
693 goto start_over;
694 }
695
696 spin_unlock(&swap_avail_lock);
697
698 atomic_long_inc(&nr_swap_pages);
699 noswap:
700 return (swp_entry_t) {0};
701 }
702
703 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)704 swp_entry_t get_swap_page_of_type(int type)
705 {
706 struct swap_info_struct *si;
707 pgoff_t offset;
708
709 si = swap_info[type];
710 spin_lock(&si->lock);
711 if (si && (si->flags & SWP_WRITEOK)) {
712 atomic_long_dec(&nr_swap_pages);
713 /* This is called for allocating swap entry, not cache */
714 offset = scan_swap_map(si, 1);
715 if (offset) {
716 spin_unlock(&si->lock);
717 return swp_entry(type, offset);
718 }
719 atomic_long_inc(&nr_swap_pages);
720 }
721 spin_unlock(&si->lock);
722 return (swp_entry_t) {0};
723 }
724
swap_info_get(swp_entry_t entry)725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727 struct swap_info_struct *p;
728 unsigned long offset, type;
729
730 if (!entry.val)
731 goto out;
732 type = swp_type(entry);
733 if (type >= nr_swapfiles)
734 goto bad_nofile;
735 p = swap_info[type];
736 if (!(p->flags & SWP_USED))
737 goto bad_device;
738 offset = swp_offset(entry);
739 if (offset >= p->max)
740 goto bad_offset;
741 if (!p->swap_map[offset])
742 goto bad_free;
743 spin_lock(&p->lock);
744 return p;
745
746 bad_free:
747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748 goto out;
749 bad_offset:
750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751 goto out;
752 bad_device:
753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754 goto out;
755 bad_nofile:
756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758 return NULL;
759 }
760
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry,unsigned char usage)761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762 swp_entry_t entry, unsigned char usage)
763 {
764 unsigned long offset = swp_offset(entry);
765 unsigned char count;
766 unsigned char has_cache;
767
768 count = p->swap_map[offset];
769 has_cache = count & SWAP_HAS_CACHE;
770 count &= ~SWAP_HAS_CACHE;
771
772 if (usage == SWAP_HAS_CACHE) {
773 VM_BUG_ON(!has_cache);
774 has_cache = 0;
775 } else if (count == SWAP_MAP_SHMEM) {
776 /*
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 */
780 count = 0;
781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 if (count == COUNT_CONTINUED) {
783 if (swap_count_continued(p, offset, count))
784 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 else
786 count = SWAP_MAP_MAX;
787 } else
788 count--;
789 }
790
791 if (!count)
792 mem_cgroup_uncharge_swap(entry);
793
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
796
797 /* free if no reference */
798 if (!usage) {
799 dec_cluster_info_page(p, p->cluster_info, offset);
800 if (offset < p->lowest_bit)
801 p->lowest_bit = offset;
802 if (offset > p->highest_bit) {
803 bool was_full = !p->highest_bit;
804 p->highest_bit = offset;
805 if (was_full && (p->flags & SWP_WRITEOK)) {
806 spin_lock(&swap_avail_lock);
807 WARN_ON(!plist_node_empty(&p->avail_list));
808 if (plist_node_empty(&p->avail_list))
809 plist_add(&p->avail_list,
810 &swap_avail_head);
811 spin_unlock(&swap_avail_lock);
812 }
813 }
814 atomic_long_inc(&nr_swap_pages);
815 p->inuse_pages--;
816 frontswap_invalidate_page(p->type, offset);
817 if (p->flags & SWP_BLKDEV) {
818 struct gendisk *disk = p->bdev->bd_disk;
819 if (disk->fops->swap_slot_free_notify)
820 disk->fops->swap_slot_free_notify(p->bdev,
821 offset);
822 }
823 }
824
825 return usage;
826 }
827
828 /*
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
831 */
swap_free(swp_entry_t entry)832 void swap_free(swp_entry_t entry)
833 {
834 struct swap_info_struct *p;
835
836 p = swap_info_get(entry);
837 if (p) {
838 swap_entry_free(p, entry, 1);
839 spin_unlock(&p->lock);
840 }
841 }
842
843 /*
844 * Called after dropping swapcache to decrease refcnt to swap entries.
845 */
swapcache_free(swp_entry_t entry)846 void swapcache_free(swp_entry_t entry)
847 {
848 struct swap_info_struct *p;
849
850 p = swap_info_get(entry);
851 if (p) {
852 swap_entry_free(p, entry, SWAP_HAS_CACHE);
853 spin_unlock(&p->lock);
854 }
855 }
856
857 /*
858 * How many references to page are currently swapped out?
859 * This does not give an exact answer when swap count is continued,
860 * but does include the high COUNT_CONTINUED flag to allow for that.
861 */
page_swapcount(struct page * page)862 int page_swapcount(struct page *page)
863 {
864 int count = 0;
865 struct swap_info_struct *p;
866 swp_entry_t entry;
867
868 entry.val = page_private(page);
869 p = swap_info_get(entry);
870 if (p) {
871 count = swap_count(p->swap_map[swp_offset(entry)]);
872 spin_unlock(&p->lock);
873 }
874 return count;
875 }
876
877 /*
878 * How many references to @entry are currently swapped out?
879 * This considers COUNT_CONTINUED so it returns exact answer.
880 */
swp_swapcount(swp_entry_t entry)881 int swp_swapcount(swp_entry_t entry)
882 {
883 int count, tmp_count, n;
884 struct swap_info_struct *p;
885 struct page *page;
886 pgoff_t offset;
887 unsigned char *map;
888
889 p = swap_info_get(entry);
890 if (!p)
891 return 0;
892
893 count = swap_count(p->swap_map[swp_offset(entry)]);
894 if (!(count & COUNT_CONTINUED))
895 goto out;
896
897 count &= ~COUNT_CONTINUED;
898 n = SWAP_MAP_MAX + 1;
899
900 offset = swp_offset(entry);
901 page = vmalloc_to_page(p->swap_map + offset);
902 offset &= ~PAGE_MASK;
903 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
904
905 do {
906 page = list_entry(page->lru.next, struct page, lru);
907 map = kmap_atomic(page);
908 tmp_count = map[offset];
909 kunmap_atomic(map);
910
911 count += (tmp_count & ~COUNT_CONTINUED) * n;
912 n *= (SWAP_CONT_MAX + 1);
913 } while (tmp_count & COUNT_CONTINUED);
914 out:
915 spin_unlock(&p->lock);
916 return count;
917 }
918
919 /*
920 * We can write to an anon page without COW if there are no other references
921 * to it. And as a side-effect, free up its swap: because the old content
922 * on disk will never be read, and seeking back there to write new content
923 * later would only waste time away from clustering.
924 */
reuse_swap_page(struct page * page)925 int reuse_swap_page(struct page *page)
926 {
927 int count;
928
929 VM_BUG_ON_PAGE(!PageLocked(page), page);
930 if (unlikely(PageKsm(page)))
931 return 0;
932 count = page_mapcount(page);
933 if (count <= 1 && PageSwapCache(page)) {
934 count += page_swapcount(page);
935 if (count == 1 && !PageWriteback(page)) {
936 delete_from_swap_cache(page);
937 SetPageDirty(page);
938 }
939 }
940 return count <= 1;
941 }
942
943 /*
944 * If swap is getting full, or if there are no more mappings of this page,
945 * then try_to_free_swap is called to free its swap space.
946 */
try_to_free_swap(struct page * page)947 int try_to_free_swap(struct page *page)
948 {
949 VM_BUG_ON_PAGE(!PageLocked(page), page);
950
951 if (!PageSwapCache(page))
952 return 0;
953 if (PageWriteback(page))
954 return 0;
955 if (page_swapcount(page))
956 return 0;
957
958 /*
959 * Once hibernation has begun to create its image of memory,
960 * there's a danger that one of the calls to try_to_free_swap()
961 * - most probably a call from __try_to_reclaim_swap() while
962 * hibernation is allocating its own swap pages for the image,
963 * but conceivably even a call from memory reclaim - will free
964 * the swap from a page which has already been recorded in the
965 * image as a clean swapcache page, and then reuse its swap for
966 * another page of the image. On waking from hibernation, the
967 * original page might be freed under memory pressure, then
968 * later read back in from swap, now with the wrong data.
969 *
970 * Hibernation suspends storage while it is writing the image
971 * to disk so check that here.
972 */
973 if (pm_suspended_storage())
974 return 0;
975
976 delete_from_swap_cache(page);
977 SetPageDirty(page);
978 return 1;
979 }
980
981 /*
982 * Free the swap entry like above, but also try to
983 * free the page cache entry if it is the last user.
984 */
free_swap_and_cache(swp_entry_t entry)985 int free_swap_and_cache(swp_entry_t entry)
986 {
987 struct swap_info_struct *p;
988 struct page *page = NULL;
989
990 if (non_swap_entry(entry))
991 return 1;
992
993 p = swap_info_get(entry);
994 if (p) {
995 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
996 page = find_get_page(swap_address_space(entry),
997 entry.val);
998 if (page && !trylock_page(page)) {
999 page_cache_release(page);
1000 page = NULL;
1001 }
1002 }
1003 spin_unlock(&p->lock);
1004 }
1005 if (page) {
1006 /*
1007 * Not mapped elsewhere, or swap space full? Free it!
1008 * Also recheck PageSwapCache now page is locked (above).
1009 */
1010 if (PageSwapCache(page) && !PageWriteback(page) &&
1011 (!page_mapped(page) || vm_swap_full())) {
1012 delete_from_swap_cache(page);
1013 SetPageDirty(page);
1014 }
1015 unlock_page(page);
1016 page_cache_release(page);
1017 }
1018 return p != NULL;
1019 }
1020
1021 #ifdef CONFIG_HIBERNATION
1022 /*
1023 * Find the swap type that corresponds to given device (if any).
1024 *
1025 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026 * from 0, in which the swap header is expected to be located.
1027 *
1028 * This is needed for the suspend to disk (aka swsusp).
1029 */
swap_type_of(dev_t device,sector_t offset,struct block_device ** bdev_p)1030 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1031 {
1032 struct block_device *bdev = NULL;
1033 int type;
1034
1035 if (device)
1036 bdev = bdget(device);
1037
1038 spin_lock(&swap_lock);
1039 for (type = 0; type < nr_swapfiles; type++) {
1040 struct swap_info_struct *sis = swap_info[type];
1041
1042 if (!(sis->flags & SWP_WRITEOK))
1043 continue;
1044
1045 if (!bdev) {
1046 if (bdev_p)
1047 *bdev_p = bdgrab(sis->bdev);
1048
1049 spin_unlock(&swap_lock);
1050 return type;
1051 }
1052 if (bdev == sis->bdev) {
1053 struct swap_extent *se = &sis->first_swap_extent;
1054
1055 if (se->start_block == offset) {
1056 if (bdev_p)
1057 *bdev_p = bdgrab(sis->bdev);
1058
1059 spin_unlock(&swap_lock);
1060 bdput(bdev);
1061 return type;
1062 }
1063 }
1064 }
1065 spin_unlock(&swap_lock);
1066 if (bdev)
1067 bdput(bdev);
1068
1069 return -ENODEV;
1070 }
1071
1072 /*
1073 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074 * corresponding to given index in swap_info (swap type).
1075 */
swapdev_block(int type,pgoff_t offset)1076 sector_t swapdev_block(int type, pgoff_t offset)
1077 {
1078 struct block_device *bdev;
1079
1080 if ((unsigned int)type >= nr_swapfiles)
1081 return 0;
1082 if (!(swap_info[type]->flags & SWP_WRITEOK))
1083 return 0;
1084 return map_swap_entry(swp_entry(type, offset), &bdev);
1085 }
1086
1087 /*
1088 * Return either the total number of swap pages of given type, or the number
1089 * of free pages of that type (depending on @free)
1090 *
1091 * This is needed for software suspend
1092 */
count_swap_pages(int type,int free)1093 unsigned int count_swap_pages(int type, int free)
1094 {
1095 unsigned int n = 0;
1096
1097 spin_lock(&swap_lock);
1098 if ((unsigned int)type < nr_swapfiles) {
1099 struct swap_info_struct *sis = swap_info[type];
1100
1101 spin_lock(&sis->lock);
1102 if (sis->flags & SWP_WRITEOK) {
1103 n = sis->pages;
1104 if (free)
1105 n -= sis->inuse_pages;
1106 }
1107 spin_unlock(&sis->lock);
1108 }
1109 spin_unlock(&swap_lock);
1110 return n;
1111 }
1112 #endif /* CONFIG_HIBERNATION */
1113
maybe_same_pte(pte_t pte,pte_t swp_pte)1114 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1115 {
1116 #ifdef CONFIG_MEM_SOFT_DIRTY
1117 /*
1118 * When pte keeps soft dirty bit the pte generated
1119 * from swap entry does not has it, still it's same
1120 * pte from logical point of view.
1121 */
1122 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1123 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1124 #else
1125 return pte_same(pte, swp_pte);
1126 #endif
1127 }
1128
1129 /*
1130 * No need to decide whether this PTE shares the swap entry with others,
1131 * just let do_wp_page work it out if a write is requested later - to
1132 * force COW, vm_page_prot omits write permission from any private vma.
1133 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1134 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1135 unsigned long addr, swp_entry_t entry, struct page *page)
1136 {
1137 struct page *swapcache;
1138 struct mem_cgroup *memcg;
1139 spinlock_t *ptl;
1140 pte_t *pte;
1141 int ret = 1;
1142
1143 swapcache = page;
1144 page = ksm_might_need_to_copy(page, vma, addr);
1145 if (unlikely(!page))
1146 return -ENOMEM;
1147
1148 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1149 ret = -ENOMEM;
1150 goto out_nolock;
1151 }
1152
1153 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1154 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1155 mem_cgroup_cancel_charge(page, memcg);
1156 ret = 0;
1157 goto out;
1158 }
1159
1160 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1161 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1162 get_page(page);
1163 set_pte_at(vma->vm_mm, addr, pte,
1164 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1165 if (page == swapcache) {
1166 page_add_anon_rmap(page, vma, addr);
1167 mem_cgroup_commit_charge(page, memcg, true);
1168 } else { /* ksm created a completely new copy */
1169 page_add_new_anon_rmap(page, vma, addr);
1170 mem_cgroup_commit_charge(page, memcg, false);
1171 lru_cache_add_active_or_unevictable(page, vma);
1172 }
1173 swap_free(entry);
1174 /*
1175 * Move the page to the active list so it is not
1176 * immediately swapped out again after swapon.
1177 */
1178 activate_page(page);
1179 out:
1180 pte_unmap_unlock(pte, ptl);
1181 out_nolock:
1182 if (page != swapcache) {
1183 unlock_page(page);
1184 put_page(page);
1185 }
1186 return ret;
1187 }
1188
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1189 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1190 unsigned long addr, unsigned long end,
1191 swp_entry_t entry, struct page *page)
1192 {
1193 pte_t swp_pte = swp_entry_to_pte(entry);
1194 pte_t *pte;
1195 int ret = 0;
1196
1197 /*
1198 * We don't actually need pte lock while scanning for swp_pte: since
1199 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1200 * page table while we're scanning; though it could get zapped, and on
1201 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1202 * of unmatched parts which look like swp_pte, so unuse_pte must
1203 * recheck under pte lock. Scanning without pte lock lets it be
1204 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1205 */
1206 pte = pte_offset_map(pmd, addr);
1207 do {
1208 /*
1209 * swapoff spends a _lot_ of time in this loop!
1210 * Test inline before going to call unuse_pte.
1211 */
1212 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1213 pte_unmap(pte);
1214 ret = unuse_pte(vma, pmd, addr, entry, page);
1215 if (ret)
1216 goto out;
1217 pte = pte_offset_map(pmd, addr);
1218 }
1219 } while (pte++, addr += PAGE_SIZE, addr != end);
1220 pte_unmap(pte - 1);
1221 out:
1222 return ret;
1223 }
1224
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1225 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 swp_entry_t entry, struct page *page)
1228 {
1229 pmd_t *pmd;
1230 unsigned long next;
1231 int ret;
1232
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1236 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1237 continue;
1238 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1239 if (ret)
1240 return ret;
1241 } while (pmd++, addr = next, addr != end);
1242 return 0;
1243 }
1244
unuse_pud_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1245 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1246 unsigned long addr, unsigned long end,
1247 swp_entry_t entry, struct page *page)
1248 {
1249 pud_t *pud;
1250 unsigned long next;
1251 int ret;
1252
1253 pud = pud_offset(pgd, addr);
1254 do {
1255 next = pud_addr_end(addr, end);
1256 if (pud_none_or_clear_bad(pud))
1257 continue;
1258 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1259 if (ret)
1260 return ret;
1261 } while (pud++, addr = next, addr != end);
1262 return 0;
1263 }
1264
unuse_vma(struct vm_area_struct * vma,swp_entry_t entry,struct page * page)1265 static int unuse_vma(struct vm_area_struct *vma,
1266 swp_entry_t entry, struct page *page)
1267 {
1268 pgd_t *pgd;
1269 unsigned long addr, end, next;
1270 int ret;
1271
1272 if (page_anon_vma(page)) {
1273 addr = page_address_in_vma(page, vma);
1274 if (addr == -EFAULT)
1275 return 0;
1276 else
1277 end = addr + PAGE_SIZE;
1278 } else {
1279 addr = vma->vm_start;
1280 end = vma->vm_end;
1281 }
1282
1283 pgd = pgd_offset(vma->vm_mm, addr);
1284 do {
1285 next = pgd_addr_end(addr, end);
1286 if (pgd_none_or_clear_bad(pgd))
1287 continue;
1288 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1289 if (ret)
1290 return ret;
1291 } while (pgd++, addr = next, addr != end);
1292 return 0;
1293 }
1294
unuse_mm(struct mm_struct * mm,swp_entry_t entry,struct page * page)1295 static int unuse_mm(struct mm_struct *mm,
1296 swp_entry_t entry, struct page *page)
1297 {
1298 struct vm_area_struct *vma;
1299 int ret = 0;
1300
1301 if (!down_read_trylock(&mm->mmap_sem)) {
1302 /*
1303 * Activate page so shrink_inactive_list is unlikely to unmap
1304 * its ptes while lock is dropped, so swapoff can make progress.
1305 */
1306 activate_page(page);
1307 unlock_page(page);
1308 down_read(&mm->mmap_sem);
1309 lock_page(page);
1310 }
1311 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1312 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1313 break;
1314 }
1315 up_read(&mm->mmap_sem);
1316 return (ret < 0)? ret: 0;
1317 }
1318
1319 /*
1320 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1321 * from current position to next entry still in use.
1322 * Recycle to start on reaching the end, returning 0 when empty.
1323 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)1324 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1325 unsigned int prev, bool frontswap)
1326 {
1327 unsigned int max = si->max;
1328 unsigned int i = prev;
1329 unsigned char count;
1330
1331 /*
1332 * No need for swap_lock here: we're just looking
1333 * for whether an entry is in use, not modifying it; false
1334 * hits are okay, and sys_swapoff() has already prevented new
1335 * allocations from this area (while holding swap_lock).
1336 */
1337 for (;;) {
1338 if (++i >= max) {
1339 if (!prev) {
1340 i = 0;
1341 break;
1342 }
1343 /*
1344 * No entries in use at top of swap_map,
1345 * loop back to start and recheck there.
1346 */
1347 max = prev + 1;
1348 prev = 0;
1349 i = 1;
1350 }
1351 if (frontswap) {
1352 if (frontswap_test(si, i))
1353 break;
1354 else
1355 continue;
1356 }
1357 count = ACCESS_ONCE(si->swap_map[i]);
1358 if (count && swap_count(count) != SWAP_MAP_BAD)
1359 break;
1360 }
1361 return i;
1362 }
1363
1364 /*
1365 * We completely avoid races by reading each swap page in advance,
1366 * and then search for the process using it. All the necessary
1367 * page table adjustments can then be made atomically.
1368 *
1369 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1370 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1371 */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)1372 int try_to_unuse(unsigned int type, bool frontswap,
1373 unsigned long pages_to_unuse)
1374 {
1375 struct swap_info_struct *si = swap_info[type];
1376 struct mm_struct *start_mm;
1377 volatile unsigned char *swap_map; /* swap_map is accessed without
1378 * locking. Mark it as volatile
1379 * to prevent compiler doing
1380 * something odd.
1381 */
1382 unsigned char swcount;
1383 struct page *page;
1384 swp_entry_t entry;
1385 unsigned int i = 0;
1386 int retval = 0;
1387
1388 /*
1389 * When searching mms for an entry, a good strategy is to
1390 * start at the first mm we freed the previous entry from
1391 * (though actually we don't notice whether we or coincidence
1392 * freed the entry). Initialize this start_mm with a hold.
1393 *
1394 * A simpler strategy would be to start at the last mm we
1395 * freed the previous entry from; but that would take less
1396 * advantage of mmlist ordering, which clusters forked mms
1397 * together, child after parent. If we race with dup_mmap(), we
1398 * prefer to resolve parent before child, lest we miss entries
1399 * duplicated after we scanned child: using last mm would invert
1400 * that.
1401 */
1402 start_mm = &init_mm;
1403 atomic_inc(&init_mm.mm_users);
1404
1405 /*
1406 * Keep on scanning until all entries have gone. Usually,
1407 * one pass through swap_map is enough, but not necessarily:
1408 * there are races when an instance of an entry might be missed.
1409 */
1410 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1411 if (signal_pending(current)) {
1412 retval = -EINTR;
1413 break;
1414 }
1415
1416 /*
1417 * Get a page for the entry, using the existing swap
1418 * cache page if there is one. Otherwise, get a clean
1419 * page and read the swap into it.
1420 */
1421 swap_map = &si->swap_map[i];
1422 entry = swp_entry(type, i);
1423 page = read_swap_cache_async(entry,
1424 GFP_HIGHUSER_MOVABLE, NULL, 0);
1425 if (!page) {
1426 /*
1427 * Either swap_duplicate() failed because entry
1428 * has been freed independently, and will not be
1429 * reused since sys_swapoff() already disabled
1430 * allocation from here, or alloc_page() failed.
1431 */
1432 swcount = *swap_map;
1433 /*
1434 * We don't hold lock here, so the swap entry could be
1435 * SWAP_MAP_BAD (when the cluster is discarding).
1436 * Instead of fail out, We can just skip the swap
1437 * entry because swapoff will wait for discarding
1438 * finish anyway.
1439 */
1440 if (!swcount || swcount == SWAP_MAP_BAD)
1441 continue;
1442 retval = -ENOMEM;
1443 break;
1444 }
1445
1446 /*
1447 * Don't hold on to start_mm if it looks like exiting.
1448 */
1449 if (atomic_read(&start_mm->mm_users) == 1) {
1450 mmput(start_mm);
1451 start_mm = &init_mm;
1452 atomic_inc(&init_mm.mm_users);
1453 }
1454
1455 /*
1456 * Wait for and lock page. When do_swap_page races with
1457 * try_to_unuse, do_swap_page can handle the fault much
1458 * faster than try_to_unuse can locate the entry. This
1459 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1460 * defer to do_swap_page in such a case - in some tests,
1461 * do_swap_page and try_to_unuse repeatedly compete.
1462 */
1463 wait_on_page_locked(page);
1464 wait_on_page_writeback(page);
1465 lock_page(page);
1466 wait_on_page_writeback(page);
1467
1468 /*
1469 * Remove all references to entry.
1470 */
1471 swcount = *swap_map;
1472 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1473 retval = shmem_unuse(entry, page);
1474 /* page has already been unlocked and released */
1475 if (retval < 0)
1476 break;
1477 continue;
1478 }
1479 if (swap_count(swcount) && start_mm != &init_mm)
1480 retval = unuse_mm(start_mm, entry, page);
1481
1482 if (swap_count(*swap_map)) {
1483 int set_start_mm = (*swap_map >= swcount);
1484 struct list_head *p = &start_mm->mmlist;
1485 struct mm_struct *new_start_mm = start_mm;
1486 struct mm_struct *prev_mm = start_mm;
1487 struct mm_struct *mm;
1488
1489 atomic_inc(&new_start_mm->mm_users);
1490 atomic_inc(&prev_mm->mm_users);
1491 spin_lock(&mmlist_lock);
1492 while (swap_count(*swap_map) && !retval &&
1493 (p = p->next) != &start_mm->mmlist) {
1494 mm = list_entry(p, struct mm_struct, mmlist);
1495 if (!atomic_inc_not_zero(&mm->mm_users))
1496 continue;
1497 spin_unlock(&mmlist_lock);
1498 mmput(prev_mm);
1499 prev_mm = mm;
1500
1501 cond_resched();
1502
1503 swcount = *swap_map;
1504 if (!swap_count(swcount)) /* any usage ? */
1505 ;
1506 else if (mm == &init_mm)
1507 set_start_mm = 1;
1508 else
1509 retval = unuse_mm(mm, entry, page);
1510
1511 if (set_start_mm && *swap_map < swcount) {
1512 mmput(new_start_mm);
1513 atomic_inc(&mm->mm_users);
1514 new_start_mm = mm;
1515 set_start_mm = 0;
1516 }
1517 spin_lock(&mmlist_lock);
1518 }
1519 spin_unlock(&mmlist_lock);
1520 mmput(prev_mm);
1521 mmput(start_mm);
1522 start_mm = new_start_mm;
1523 }
1524 if (retval) {
1525 unlock_page(page);
1526 page_cache_release(page);
1527 break;
1528 }
1529
1530 /*
1531 * If a reference remains (rare), we would like to leave
1532 * the page in the swap cache; but try_to_unmap could
1533 * then re-duplicate the entry once we drop page lock,
1534 * so we might loop indefinitely; also, that page could
1535 * not be swapped out to other storage meanwhile. So:
1536 * delete from cache even if there's another reference,
1537 * after ensuring that the data has been saved to disk -
1538 * since if the reference remains (rarer), it will be
1539 * read from disk into another page. Splitting into two
1540 * pages would be incorrect if swap supported "shared
1541 * private" pages, but they are handled by tmpfs files.
1542 *
1543 * Given how unuse_vma() targets one particular offset
1544 * in an anon_vma, once the anon_vma has been determined,
1545 * this splitting happens to be just what is needed to
1546 * handle where KSM pages have been swapped out: re-reading
1547 * is unnecessarily slow, but we can fix that later on.
1548 */
1549 if (swap_count(*swap_map) &&
1550 PageDirty(page) && PageSwapCache(page)) {
1551 struct writeback_control wbc = {
1552 .sync_mode = WB_SYNC_NONE,
1553 };
1554
1555 swap_writepage(page, &wbc);
1556 lock_page(page);
1557 wait_on_page_writeback(page);
1558 }
1559
1560 /*
1561 * It is conceivable that a racing task removed this page from
1562 * swap cache just before we acquired the page lock at the top,
1563 * or while we dropped it in unuse_mm(). The page might even
1564 * be back in swap cache on another swap area: that we must not
1565 * delete, since it may not have been written out to swap yet.
1566 */
1567 if (PageSwapCache(page) &&
1568 likely(page_private(page) == entry.val))
1569 delete_from_swap_cache(page);
1570
1571 /*
1572 * So we could skip searching mms once swap count went
1573 * to 1, we did not mark any present ptes as dirty: must
1574 * mark page dirty so shrink_page_list will preserve it.
1575 */
1576 SetPageDirty(page);
1577 unlock_page(page);
1578 page_cache_release(page);
1579
1580 /*
1581 * Make sure that we aren't completely killing
1582 * interactive performance.
1583 */
1584 cond_resched();
1585 if (frontswap && pages_to_unuse > 0) {
1586 if (!--pages_to_unuse)
1587 break;
1588 }
1589 }
1590
1591 mmput(start_mm);
1592 return retval;
1593 }
1594
1595 /*
1596 * After a successful try_to_unuse, if no swap is now in use, we know
1597 * we can empty the mmlist. swap_lock must be held on entry and exit.
1598 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1599 * added to the mmlist just after page_duplicate - before would be racy.
1600 */
drain_mmlist(void)1601 static void drain_mmlist(void)
1602 {
1603 struct list_head *p, *next;
1604 unsigned int type;
1605
1606 for (type = 0; type < nr_swapfiles; type++)
1607 if (swap_info[type]->inuse_pages)
1608 return;
1609 spin_lock(&mmlist_lock);
1610 list_for_each_safe(p, next, &init_mm.mmlist)
1611 list_del_init(p);
1612 spin_unlock(&mmlist_lock);
1613 }
1614
1615 /*
1616 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1617 * corresponds to page offset for the specified swap entry.
1618 * Note that the type of this function is sector_t, but it returns page offset
1619 * into the bdev, not sector offset.
1620 */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)1621 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1622 {
1623 struct swap_info_struct *sis;
1624 struct swap_extent *start_se;
1625 struct swap_extent *se;
1626 pgoff_t offset;
1627
1628 sis = swap_info[swp_type(entry)];
1629 *bdev = sis->bdev;
1630
1631 offset = swp_offset(entry);
1632 start_se = sis->curr_swap_extent;
1633 se = start_se;
1634
1635 for ( ; ; ) {
1636 struct list_head *lh;
1637
1638 if (se->start_page <= offset &&
1639 offset < (se->start_page + se->nr_pages)) {
1640 return se->start_block + (offset - se->start_page);
1641 }
1642 lh = se->list.next;
1643 se = list_entry(lh, struct swap_extent, list);
1644 sis->curr_swap_extent = se;
1645 BUG_ON(se == start_se); /* It *must* be present */
1646 }
1647 }
1648
1649 /*
1650 * Returns the page offset into bdev for the specified page's swap entry.
1651 */
map_swap_page(struct page * page,struct block_device ** bdev)1652 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1653 {
1654 swp_entry_t entry;
1655 entry.val = page_private(page);
1656 return map_swap_entry(entry, bdev);
1657 }
1658
1659 /*
1660 * Free all of a swapdev's extent information
1661 */
destroy_swap_extents(struct swap_info_struct * sis)1662 static void destroy_swap_extents(struct swap_info_struct *sis)
1663 {
1664 while (!list_empty(&sis->first_swap_extent.list)) {
1665 struct swap_extent *se;
1666
1667 se = list_entry(sis->first_swap_extent.list.next,
1668 struct swap_extent, list);
1669 list_del(&se->list);
1670 kfree(se);
1671 }
1672
1673 if (sis->flags & SWP_FILE) {
1674 struct file *swap_file = sis->swap_file;
1675 struct address_space *mapping = swap_file->f_mapping;
1676
1677 sis->flags &= ~SWP_FILE;
1678 mapping->a_ops->swap_deactivate(swap_file);
1679 }
1680 }
1681
1682 /*
1683 * Add a block range (and the corresponding page range) into this swapdev's
1684 * extent list. The extent list is kept sorted in page order.
1685 *
1686 * This function rather assumes that it is called in ascending page order.
1687 */
1688 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)1689 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1690 unsigned long nr_pages, sector_t start_block)
1691 {
1692 struct swap_extent *se;
1693 struct swap_extent *new_se;
1694 struct list_head *lh;
1695
1696 if (start_page == 0) {
1697 se = &sis->first_swap_extent;
1698 sis->curr_swap_extent = se;
1699 se->start_page = 0;
1700 se->nr_pages = nr_pages;
1701 se->start_block = start_block;
1702 return 1;
1703 } else {
1704 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1705 se = list_entry(lh, struct swap_extent, list);
1706 BUG_ON(se->start_page + se->nr_pages != start_page);
1707 if (se->start_block + se->nr_pages == start_block) {
1708 /* Merge it */
1709 se->nr_pages += nr_pages;
1710 return 0;
1711 }
1712 }
1713
1714 /*
1715 * No merge. Insert a new extent, preserving ordering.
1716 */
1717 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1718 if (new_se == NULL)
1719 return -ENOMEM;
1720 new_se->start_page = start_page;
1721 new_se->nr_pages = nr_pages;
1722 new_se->start_block = start_block;
1723
1724 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1725 return 1;
1726 }
1727
1728 /*
1729 * A `swap extent' is a simple thing which maps a contiguous range of pages
1730 * onto a contiguous range of disk blocks. An ordered list of swap extents
1731 * is built at swapon time and is then used at swap_writepage/swap_readpage
1732 * time for locating where on disk a page belongs.
1733 *
1734 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1735 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1736 * swap files identically.
1737 *
1738 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1739 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1740 * swapfiles are handled *identically* after swapon time.
1741 *
1742 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1743 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1744 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1745 * requirements, they are simply tossed out - we will never use those blocks
1746 * for swapping.
1747 *
1748 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1749 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1750 * which will scribble on the fs.
1751 *
1752 * The amount of disk space which a single swap extent represents varies.
1753 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1754 * extents in the list. To avoid much list walking, we cache the previous
1755 * search location in `curr_swap_extent', and start new searches from there.
1756 * This is extremely effective. The average number of iterations in
1757 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1758 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)1759 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1760 {
1761 struct file *swap_file = sis->swap_file;
1762 struct address_space *mapping = swap_file->f_mapping;
1763 struct inode *inode = mapping->host;
1764 int ret;
1765
1766 if (S_ISBLK(inode->i_mode)) {
1767 ret = add_swap_extent(sis, 0, sis->max, 0);
1768 *span = sis->pages;
1769 return ret;
1770 }
1771
1772 if (mapping->a_ops->swap_activate) {
1773 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1774 if (!ret) {
1775 sis->flags |= SWP_FILE;
1776 ret = add_swap_extent(sis, 0, sis->max, 0);
1777 *span = sis->pages;
1778 }
1779 return ret;
1780 }
1781
1782 return generic_swapfile_activate(sis, swap_file, span);
1783 }
1784
_enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)1785 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1786 unsigned char *swap_map,
1787 struct swap_cluster_info *cluster_info)
1788 {
1789 if (prio >= 0)
1790 p->prio = prio;
1791 else
1792 p->prio = --least_priority;
1793 /*
1794 * the plist prio is negated because plist ordering is
1795 * low-to-high, while swap ordering is high-to-low
1796 */
1797 p->list.prio = -p->prio;
1798 p->avail_list.prio = -p->prio;
1799 p->swap_map = swap_map;
1800 p->cluster_info = cluster_info;
1801 p->flags |= SWP_WRITEOK;
1802 atomic_long_add(p->pages, &nr_swap_pages);
1803 total_swap_pages += p->pages;
1804
1805 assert_spin_locked(&swap_lock);
1806 /*
1807 * both lists are plists, and thus priority ordered.
1808 * swap_active_head needs to be priority ordered for swapoff(),
1809 * which on removal of any swap_info_struct with an auto-assigned
1810 * (i.e. negative) priority increments the auto-assigned priority
1811 * of any lower-priority swap_info_structs.
1812 * swap_avail_head needs to be priority ordered for get_swap_page(),
1813 * which allocates swap pages from the highest available priority
1814 * swap_info_struct.
1815 */
1816 plist_add(&p->list, &swap_active_head);
1817 spin_lock(&swap_avail_lock);
1818 plist_add(&p->avail_list, &swap_avail_head);
1819 spin_unlock(&swap_avail_lock);
1820 }
1821
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)1822 static void enable_swap_info(struct swap_info_struct *p, int prio,
1823 unsigned char *swap_map,
1824 struct swap_cluster_info *cluster_info,
1825 unsigned long *frontswap_map)
1826 {
1827 frontswap_init(p->type, frontswap_map);
1828 spin_lock(&swap_lock);
1829 spin_lock(&p->lock);
1830 _enable_swap_info(p, prio, swap_map, cluster_info);
1831 spin_unlock(&p->lock);
1832 spin_unlock(&swap_lock);
1833 }
1834
reinsert_swap_info(struct swap_info_struct * p)1835 static void reinsert_swap_info(struct swap_info_struct *p)
1836 {
1837 spin_lock(&swap_lock);
1838 spin_lock(&p->lock);
1839 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1840 spin_unlock(&p->lock);
1841 spin_unlock(&swap_lock);
1842 }
1843
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)1844 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1845 {
1846 struct swap_info_struct *p = NULL;
1847 unsigned char *swap_map;
1848 struct swap_cluster_info *cluster_info;
1849 unsigned long *frontswap_map;
1850 struct file *swap_file, *victim;
1851 struct address_space *mapping;
1852 struct inode *inode;
1853 struct filename *pathname;
1854 int err, found = 0;
1855 unsigned int old_block_size;
1856
1857 if (!capable(CAP_SYS_ADMIN))
1858 return -EPERM;
1859
1860 BUG_ON(!current->mm);
1861
1862 pathname = getname(specialfile);
1863 if (IS_ERR(pathname))
1864 return PTR_ERR(pathname);
1865
1866 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1867 err = PTR_ERR(victim);
1868 if (IS_ERR(victim))
1869 goto out;
1870
1871 mapping = victim->f_mapping;
1872 spin_lock(&swap_lock);
1873 plist_for_each_entry(p, &swap_active_head, list) {
1874 if (p->flags & SWP_WRITEOK) {
1875 if (p->swap_file->f_mapping == mapping) {
1876 found = 1;
1877 break;
1878 }
1879 }
1880 }
1881 if (!found) {
1882 err = -EINVAL;
1883 spin_unlock(&swap_lock);
1884 goto out_dput;
1885 }
1886 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1887 vm_unacct_memory(p->pages);
1888 else {
1889 err = -ENOMEM;
1890 spin_unlock(&swap_lock);
1891 goto out_dput;
1892 }
1893 spin_lock(&swap_avail_lock);
1894 plist_del(&p->avail_list, &swap_avail_head);
1895 spin_unlock(&swap_avail_lock);
1896 spin_lock(&p->lock);
1897 if (p->prio < 0) {
1898 struct swap_info_struct *si = p;
1899
1900 plist_for_each_entry_continue(si, &swap_active_head, list) {
1901 si->prio++;
1902 si->list.prio--;
1903 si->avail_list.prio--;
1904 }
1905 least_priority++;
1906 }
1907 plist_del(&p->list, &swap_active_head);
1908 atomic_long_sub(p->pages, &nr_swap_pages);
1909 total_swap_pages -= p->pages;
1910 p->flags &= ~SWP_WRITEOK;
1911 spin_unlock(&p->lock);
1912 spin_unlock(&swap_lock);
1913
1914 set_current_oom_origin();
1915 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1916 clear_current_oom_origin();
1917
1918 if (err) {
1919 /* re-insert swap space back into swap_list */
1920 reinsert_swap_info(p);
1921 goto out_dput;
1922 }
1923
1924 flush_work(&p->discard_work);
1925
1926 destroy_swap_extents(p);
1927 if (p->flags & SWP_CONTINUED)
1928 free_swap_count_continuations(p);
1929
1930 mutex_lock(&swapon_mutex);
1931 spin_lock(&swap_lock);
1932 spin_lock(&p->lock);
1933 drain_mmlist();
1934
1935 /* wait for anyone still in scan_swap_map */
1936 p->highest_bit = 0; /* cuts scans short */
1937 while (p->flags >= SWP_SCANNING) {
1938 spin_unlock(&p->lock);
1939 spin_unlock(&swap_lock);
1940 schedule_timeout_uninterruptible(1);
1941 spin_lock(&swap_lock);
1942 spin_lock(&p->lock);
1943 }
1944
1945 swap_file = p->swap_file;
1946 old_block_size = p->old_block_size;
1947 p->swap_file = NULL;
1948 p->max = 0;
1949 swap_map = p->swap_map;
1950 p->swap_map = NULL;
1951 cluster_info = p->cluster_info;
1952 p->cluster_info = NULL;
1953 frontswap_map = frontswap_map_get(p);
1954 spin_unlock(&p->lock);
1955 spin_unlock(&swap_lock);
1956 frontswap_invalidate_area(p->type);
1957 frontswap_map_set(p, NULL);
1958 mutex_unlock(&swapon_mutex);
1959 free_percpu(p->percpu_cluster);
1960 p->percpu_cluster = NULL;
1961 vfree(swap_map);
1962 vfree(cluster_info);
1963 vfree(frontswap_map);
1964 /* Destroy swap account information */
1965 swap_cgroup_swapoff(p->type);
1966
1967 inode = mapping->host;
1968 if (S_ISBLK(inode->i_mode)) {
1969 struct block_device *bdev = I_BDEV(inode);
1970 set_blocksize(bdev, old_block_size);
1971 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1972 } else {
1973 mutex_lock(&inode->i_mutex);
1974 inode->i_flags &= ~S_SWAPFILE;
1975 mutex_unlock(&inode->i_mutex);
1976 }
1977 filp_close(swap_file, NULL);
1978
1979 /*
1980 * Clear the SWP_USED flag after all resources are freed so that swapon
1981 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1982 * not hold p->lock after we cleared its SWP_WRITEOK.
1983 */
1984 spin_lock(&swap_lock);
1985 p->flags = 0;
1986 spin_unlock(&swap_lock);
1987
1988 err = 0;
1989 atomic_inc(&proc_poll_event);
1990 wake_up_interruptible(&proc_poll_wait);
1991
1992 out_dput:
1993 filp_close(victim, NULL);
1994 out:
1995 putname(pathname);
1996 return err;
1997 }
1998
1999 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2000 static unsigned swaps_poll(struct file *file, poll_table *wait)
2001 {
2002 struct seq_file *seq = file->private_data;
2003
2004 poll_wait(file, &proc_poll_wait, wait);
2005
2006 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2007 seq->poll_event = atomic_read(&proc_poll_event);
2008 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2009 }
2010
2011 return POLLIN | POLLRDNORM;
2012 }
2013
2014 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2015 static void *swap_start(struct seq_file *swap, loff_t *pos)
2016 {
2017 struct swap_info_struct *si;
2018 int type;
2019 loff_t l = *pos;
2020
2021 mutex_lock(&swapon_mutex);
2022
2023 if (!l)
2024 return SEQ_START_TOKEN;
2025
2026 for (type = 0; type < nr_swapfiles; type++) {
2027 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2028 si = swap_info[type];
2029 if (!(si->flags & SWP_USED) || !si->swap_map)
2030 continue;
2031 if (!--l)
2032 return si;
2033 }
2034
2035 return NULL;
2036 }
2037
swap_next(struct seq_file * swap,void * v,loff_t * pos)2038 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2039 {
2040 struct swap_info_struct *si = v;
2041 int type;
2042
2043 if (v == SEQ_START_TOKEN)
2044 type = 0;
2045 else
2046 type = si->type + 1;
2047
2048 for (; type < nr_swapfiles; type++) {
2049 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2050 si = swap_info[type];
2051 if (!(si->flags & SWP_USED) || !si->swap_map)
2052 continue;
2053 ++*pos;
2054 return si;
2055 }
2056
2057 return NULL;
2058 }
2059
swap_stop(struct seq_file * swap,void * v)2060 static void swap_stop(struct seq_file *swap, void *v)
2061 {
2062 mutex_unlock(&swapon_mutex);
2063 }
2064
swap_show(struct seq_file * swap,void * v)2065 static int swap_show(struct seq_file *swap, void *v)
2066 {
2067 struct swap_info_struct *si = v;
2068 struct file *file;
2069 int len;
2070
2071 if (si == SEQ_START_TOKEN) {
2072 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2073 return 0;
2074 }
2075
2076 file = si->swap_file;
2077 len = seq_path(swap, &file->f_path, " \t\n\\");
2078 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2079 len < 40 ? 40 - len : 1, " ",
2080 S_ISBLK(file_inode(file)->i_mode) ?
2081 "partition" : "file\t",
2082 si->pages << (PAGE_SHIFT - 10),
2083 si->inuse_pages << (PAGE_SHIFT - 10),
2084 si->prio);
2085 return 0;
2086 }
2087
2088 static const struct seq_operations swaps_op = {
2089 .start = swap_start,
2090 .next = swap_next,
2091 .stop = swap_stop,
2092 .show = swap_show
2093 };
2094
swaps_open(struct inode * inode,struct file * file)2095 static int swaps_open(struct inode *inode, struct file *file)
2096 {
2097 struct seq_file *seq;
2098 int ret;
2099
2100 ret = seq_open(file, &swaps_op);
2101 if (ret)
2102 return ret;
2103
2104 seq = file->private_data;
2105 seq->poll_event = atomic_read(&proc_poll_event);
2106 return 0;
2107 }
2108
2109 static const struct file_operations proc_swaps_operations = {
2110 .open = swaps_open,
2111 .read = seq_read,
2112 .llseek = seq_lseek,
2113 .release = seq_release,
2114 .poll = swaps_poll,
2115 };
2116
procswaps_init(void)2117 static int __init procswaps_init(void)
2118 {
2119 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2120 return 0;
2121 }
2122 __initcall(procswaps_init);
2123 #endif /* CONFIG_PROC_FS */
2124
2125 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2126 static int __init max_swapfiles_check(void)
2127 {
2128 MAX_SWAPFILES_CHECK();
2129 return 0;
2130 }
2131 late_initcall(max_swapfiles_check);
2132 #endif
2133
alloc_swap_info(void)2134 static struct swap_info_struct *alloc_swap_info(void)
2135 {
2136 struct swap_info_struct *p;
2137 unsigned int type;
2138
2139 p = kzalloc(sizeof(*p), GFP_KERNEL);
2140 if (!p)
2141 return ERR_PTR(-ENOMEM);
2142
2143 spin_lock(&swap_lock);
2144 for (type = 0; type < nr_swapfiles; type++) {
2145 if (!(swap_info[type]->flags & SWP_USED))
2146 break;
2147 }
2148 if (type >= MAX_SWAPFILES) {
2149 spin_unlock(&swap_lock);
2150 kfree(p);
2151 return ERR_PTR(-EPERM);
2152 }
2153 if (type >= nr_swapfiles) {
2154 p->type = type;
2155 swap_info[type] = p;
2156 /*
2157 * Write swap_info[type] before nr_swapfiles, in case a
2158 * racing procfs swap_start() or swap_next() is reading them.
2159 * (We never shrink nr_swapfiles, we never free this entry.)
2160 */
2161 smp_wmb();
2162 nr_swapfiles++;
2163 } else {
2164 kfree(p);
2165 p = swap_info[type];
2166 /*
2167 * Do not memset this entry: a racing procfs swap_next()
2168 * would be relying on p->type to remain valid.
2169 */
2170 }
2171 INIT_LIST_HEAD(&p->first_swap_extent.list);
2172 plist_node_init(&p->list, 0);
2173 plist_node_init(&p->avail_list, 0);
2174 p->flags = SWP_USED;
2175 spin_unlock(&swap_lock);
2176 spin_lock_init(&p->lock);
2177
2178 return p;
2179 }
2180
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2181 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2182 {
2183 int error;
2184
2185 if (S_ISBLK(inode->i_mode)) {
2186 p->bdev = bdgrab(I_BDEV(inode));
2187 error = blkdev_get(p->bdev,
2188 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2189 sys_swapon);
2190 if (error < 0) {
2191 p->bdev = NULL;
2192 return -EINVAL;
2193 }
2194 p->old_block_size = block_size(p->bdev);
2195 error = set_blocksize(p->bdev, PAGE_SIZE);
2196 if (error < 0)
2197 return error;
2198 p->flags |= SWP_BLKDEV;
2199 } else if (S_ISREG(inode->i_mode)) {
2200 p->bdev = inode->i_sb->s_bdev;
2201 mutex_lock(&inode->i_mutex);
2202 if (IS_SWAPFILE(inode))
2203 return -EBUSY;
2204 } else
2205 return -EINVAL;
2206
2207 return 0;
2208 }
2209
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2210 static unsigned long read_swap_header(struct swap_info_struct *p,
2211 union swap_header *swap_header,
2212 struct inode *inode)
2213 {
2214 int i;
2215 unsigned long maxpages;
2216 unsigned long swapfilepages;
2217 unsigned long last_page;
2218
2219 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2220 pr_err("Unable to find swap-space signature\n");
2221 return 0;
2222 }
2223
2224 /* swap partition endianess hack... */
2225 if (swab32(swap_header->info.version) == 1) {
2226 swab32s(&swap_header->info.version);
2227 swab32s(&swap_header->info.last_page);
2228 swab32s(&swap_header->info.nr_badpages);
2229 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2230 return 0;
2231 for (i = 0; i < swap_header->info.nr_badpages; i++)
2232 swab32s(&swap_header->info.badpages[i]);
2233 }
2234 /* Check the swap header's sub-version */
2235 if (swap_header->info.version != 1) {
2236 pr_warn("Unable to handle swap header version %d\n",
2237 swap_header->info.version);
2238 return 0;
2239 }
2240
2241 p->lowest_bit = 1;
2242 p->cluster_next = 1;
2243 p->cluster_nr = 0;
2244
2245 /*
2246 * Find out how many pages are allowed for a single swap
2247 * device. There are two limiting factors: 1) the number
2248 * of bits for the swap offset in the swp_entry_t type, and
2249 * 2) the number of bits in the swap pte as defined by the
2250 * different architectures. In order to find the
2251 * largest possible bit mask, a swap entry with swap type 0
2252 * and swap offset ~0UL is created, encoded to a swap pte,
2253 * decoded to a swp_entry_t again, and finally the swap
2254 * offset is extracted. This will mask all the bits from
2255 * the initial ~0UL mask that can't be encoded in either
2256 * the swp_entry_t or the architecture definition of a
2257 * swap pte.
2258 */
2259 maxpages = swp_offset(pte_to_swp_entry(
2260 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2261 last_page = swap_header->info.last_page;
2262 if (last_page > maxpages) {
2263 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2264 maxpages << (PAGE_SHIFT - 10),
2265 last_page << (PAGE_SHIFT - 10));
2266 }
2267 if (maxpages > last_page) {
2268 maxpages = last_page + 1;
2269 /* p->max is an unsigned int: don't overflow it */
2270 if ((unsigned int)maxpages == 0)
2271 maxpages = UINT_MAX;
2272 }
2273 p->highest_bit = maxpages - 1;
2274
2275 if (!maxpages)
2276 return 0;
2277 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2278 if (swapfilepages && maxpages > swapfilepages) {
2279 pr_warn("Swap area shorter than signature indicates\n");
2280 return 0;
2281 }
2282 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2283 return 0;
2284 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2285 return 0;
2286
2287 return maxpages;
2288 }
2289
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)2290 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2291 union swap_header *swap_header,
2292 unsigned char *swap_map,
2293 struct swap_cluster_info *cluster_info,
2294 unsigned long maxpages,
2295 sector_t *span)
2296 {
2297 int i;
2298 unsigned int nr_good_pages;
2299 int nr_extents;
2300 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2301 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2302
2303 nr_good_pages = maxpages - 1; /* omit header page */
2304
2305 cluster_set_null(&p->free_cluster_head);
2306 cluster_set_null(&p->free_cluster_tail);
2307 cluster_set_null(&p->discard_cluster_head);
2308 cluster_set_null(&p->discard_cluster_tail);
2309
2310 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2311 unsigned int page_nr = swap_header->info.badpages[i];
2312 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2313 return -EINVAL;
2314 if (page_nr < maxpages) {
2315 swap_map[page_nr] = SWAP_MAP_BAD;
2316 nr_good_pages--;
2317 /*
2318 * Haven't marked the cluster free yet, no list
2319 * operation involved
2320 */
2321 inc_cluster_info_page(p, cluster_info, page_nr);
2322 }
2323 }
2324
2325 /* Haven't marked the cluster free yet, no list operation involved */
2326 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2327 inc_cluster_info_page(p, cluster_info, i);
2328
2329 if (nr_good_pages) {
2330 swap_map[0] = SWAP_MAP_BAD;
2331 /*
2332 * Not mark the cluster free yet, no list
2333 * operation involved
2334 */
2335 inc_cluster_info_page(p, cluster_info, 0);
2336 p->max = maxpages;
2337 p->pages = nr_good_pages;
2338 nr_extents = setup_swap_extents(p, span);
2339 if (nr_extents < 0)
2340 return nr_extents;
2341 nr_good_pages = p->pages;
2342 }
2343 if (!nr_good_pages) {
2344 pr_warn("Empty swap-file\n");
2345 return -EINVAL;
2346 }
2347
2348 if (!cluster_info)
2349 return nr_extents;
2350
2351 for (i = 0; i < nr_clusters; i++) {
2352 if (!cluster_count(&cluster_info[idx])) {
2353 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2354 if (cluster_is_null(&p->free_cluster_head)) {
2355 cluster_set_next_flag(&p->free_cluster_head,
2356 idx, 0);
2357 cluster_set_next_flag(&p->free_cluster_tail,
2358 idx, 0);
2359 } else {
2360 unsigned int tail;
2361
2362 tail = cluster_next(&p->free_cluster_tail);
2363 cluster_set_next(&cluster_info[tail], idx);
2364 cluster_set_next_flag(&p->free_cluster_tail,
2365 idx, 0);
2366 }
2367 }
2368 idx++;
2369 if (idx == nr_clusters)
2370 idx = 0;
2371 }
2372 return nr_extents;
2373 }
2374
2375 /*
2376 * Helper to sys_swapon determining if a given swap
2377 * backing device queue supports DISCARD operations.
2378 */
swap_discardable(struct swap_info_struct * si)2379 static bool swap_discardable(struct swap_info_struct *si)
2380 {
2381 struct request_queue *q = bdev_get_queue(si->bdev);
2382
2383 if (!q || !blk_queue_discard(q))
2384 return false;
2385
2386 return true;
2387 }
2388
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)2389 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2390 {
2391 struct swap_info_struct *p;
2392 struct filename *name;
2393 struct file *swap_file = NULL;
2394 struct address_space *mapping;
2395 int i;
2396 int prio;
2397 int error;
2398 union swap_header *swap_header;
2399 int nr_extents;
2400 sector_t span;
2401 unsigned long maxpages;
2402 unsigned char *swap_map = NULL;
2403 struct swap_cluster_info *cluster_info = NULL;
2404 unsigned long *frontswap_map = NULL;
2405 struct page *page = NULL;
2406 struct inode *inode = NULL;
2407
2408 if (swap_flags & ~SWAP_FLAGS_VALID)
2409 return -EINVAL;
2410
2411 if (!capable(CAP_SYS_ADMIN))
2412 return -EPERM;
2413
2414 p = alloc_swap_info();
2415 if (IS_ERR(p))
2416 return PTR_ERR(p);
2417
2418 INIT_WORK(&p->discard_work, swap_discard_work);
2419
2420 name = getname(specialfile);
2421 if (IS_ERR(name)) {
2422 error = PTR_ERR(name);
2423 name = NULL;
2424 goto bad_swap;
2425 }
2426 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2427 if (IS_ERR(swap_file)) {
2428 error = PTR_ERR(swap_file);
2429 swap_file = NULL;
2430 goto bad_swap;
2431 }
2432
2433 p->swap_file = swap_file;
2434 mapping = swap_file->f_mapping;
2435
2436 for (i = 0; i < nr_swapfiles; i++) {
2437 struct swap_info_struct *q = swap_info[i];
2438
2439 if (q == p || !q->swap_file)
2440 continue;
2441 if (mapping == q->swap_file->f_mapping) {
2442 error = -EBUSY;
2443 goto bad_swap;
2444 }
2445 }
2446
2447 inode = mapping->host;
2448 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2449 error = claim_swapfile(p, inode);
2450 if (unlikely(error))
2451 goto bad_swap;
2452
2453 /*
2454 * Read the swap header.
2455 */
2456 if (!mapping->a_ops->readpage) {
2457 error = -EINVAL;
2458 goto bad_swap;
2459 }
2460 page = read_mapping_page(mapping, 0, swap_file);
2461 if (IS_ERR(page)) {
2462 error = PTR_ERR(page);
2463 goto bad_swap;
2464 }
2465 swap_header = kmap(page);
2466
2467 maxpages = read_swap_header(p, swap_header, inode);
2468 if (unlikely(!maxpages)) {
2469 error = -EINVAL;
2470 goto bad_swap;
2471 }
2472
2473 /* OK, set up the swap map and apply the bad block list */
2474 swap_map = vzalloc(maxpages);
2475 if (!swap_map) {
2476 error = -ENOMEM;
2477 goto bad_swap;
2478 }
2479 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2480 p->flags |= SWP_SOLIDSTATE;
2481 /*
2482 * select a random position to start with to help wear leveling
2483 * SSD
2484 */
2485 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2486
2487 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2488 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2489 if (!cluster_info) {
2490 error = -ENOMEM;
2491 goto bad_swap;
2492 }
2493 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2494 if (!p->percpu_cluster) {
2495 error = -ENOMEM;
2496 goto bad_swap;
2497 }
2498 for_each_possible_cpu(i) {
2499 struct percpu_cluster *cluster;
2500 cluster = per_cpu_ptr(p->percpu_cluster, i);
2501 cluster_set_null(&cluster->index);
2502 }
2503 }
2504
2505 error = swap_cgroup_swapon(p->type, maxpages);
2506 if (error)
2507 goto bad_swap;
2508
2509 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2510 cluster_info, maxpages, &span);
2511 if (unlikely(nr_extents < 0)) {
2512 error = nr_extents;
2513 goto bad_swap;
2514 }
2515 /* frontswap enabled? set up bit-per-page map for frontswap */
2516 if (frontswap_enabled)
2517 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2518
2519 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2520 /*
2521 * When discard is enabled for swap with no particular
2522 * policy flagged, we set all swap discard flags here in
2523 * order to sustain backward compatibility with older
2524 * swapon(8) releases.
2525 */
2526 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2527 SWP_PAGE_DISCARD);
2528
2529 /*
2530 * By flagging sys_swapon, a sysadmin can tell us to
2531 * either do single-time area discards only, or to just
2532 * perform discards for released swap page-clusters.
2533 * Now it's time to adjust the p->flags accordingly.
2534 */
2535 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2536 p->flags &= ~SWP_PAGE_DISCARD;
2537 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2538 p->flags &= ~SWP_AREA_DISCARD;
2539
2540 /* issue a swapon-time discard if it's still required */
2541 if (p->flags & SWP_AREA_DISCARD) {
2542 int err = discard_swap(p);
2543 if (unlikely(err))
2544 pr_err("swapon: discard_swap(%p): %d\n",
2545 p, err);
2546 }
2547 }
2548
2549 mutex_lock(&swapon_mutex);
2550 prio = -1;
2551 if (swap_flags & SWAP_FLAG_PREFER)
2552 prio =
2553 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2554 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2555
2556 pr_info("Adding %uk swap on %s. "
2557 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2558 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2559 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2560 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2561 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2562 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2563 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2564 (frontswap_map) ? "FS" : "");
2565
2566 mutex_unlock(&swapon_mutex);
2567 atomic_inc(&proc_poll_event);
2568 wake_up_interruptible(&proc_poll_wait);
2569
2570 if (S_ISREG(inode->i_mode))
2571 inode->i_flags |= S_SWAPFILE;
2572 error = 0;
2573 goto out;
2574 bad_swap:
2575 free_percpu(p->percpu_cluster);
2576 p->percpu_cluster = NULL;
2577 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2578 set_blocksize(p->bdev, p->old_block_size);
2579 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2580 }
2581 destroy_swap_extents(p);
2582 swap_cgroup_swapoff(p->type);
2583 spin_lock(&swap_lock);
2584 p->swap_file = NULL;
2585 p->flags = 0;
2586 spin_unlock(&swap_lock);
2587 vfree(swap_map);
2588 vfree(cluster_info);
2589 if (swap_file) {
2590 if (inode && S_ISREG(inode->i_mode)) {
2591 mutex_unlock(&inode->i_mutex);
2592 inode = NULL;
2593 }
2594 filp_close(swap_file, NULL);
2595 }
2596 out:
2597 if (page && !IS_ERR(page)) {
2598 kunmap(page);
2599 page_cache_release(page);
2600 }
2601 if (name)
2602 putname(name);
2603 if (inode && S_ISREG(inode->i_mode))
2604 mutex_unlock(&inode->i_mutex);
2605 return error;
2606 }
2607
si_swapinfo(struct sysinfo * val)2608 void si_swapinfo(struct sysinfo *val)
2609 {
2610 unsigned int type;
2611 unsigned long nr_to_be_unused = 0;
2612
2613 spin_lock(&swap_lock);
2614 for (type = 0; type < nr_swapfiles; type++) {
2615 struct swap_info_struct *si = swap_info[type];
2616
2617 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2618 nr_to_be_unused += si->inuse_pages;
2619 }
2620 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2621 val->totalswap = total_swap_pages + nr_to_be_unused;
2622 spin_unlock(&swap_lock);
2623 }
2624
2625 /*
2626 * Verify that a swap entry is valid and increment its swap map count.
2627 *
2628 * Returns error code in following case.
2629 * - success -> 0
2630 * - swp_entry is invalid -> EINVAL
2631 * - swp_entry is migration entry -> EINVAL
2632 * - swap-cache reference is requested but there is already one. -> EEXIST
2633 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2634 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2635 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)2636 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2637 {
2638 struct swap_info_struct *p;
2639 unsigned long offset, type;
2640 unsigned char count;
2641 unsigned char has_cache;
2642 int err = -EINVAL;
2643
2644 if (non_swap_entry(entry))
2645 goto out;
2646
2647 type = swp_type(entry);
2648 if (type >= nr_swapfiles)
2649 goto bad_file;
2650 p = swap_info[type];
2651 offset = swp_offset(entry);
2652
2653 spin_lock(&p->lock);
2654 if (unlikely(offset >= p->max))
2655 goto unlock_out;
2656
2657 count = p->swap_map[offset];
2658
2659 /*
2660 * swapin_readahead() doesn't check if a swap entry is valid, so the
2661 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2662 */
2663 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2664 err = -ENOENT;
2665 goto unlock_out;
2666 }
2667
2668 has_cache = count & SWAP_HAS_CACHE;
2669 count &= ~SWAP_HAS_CACHE;
2670 err = 0;
2671
2672 if (usage == SWAP_HAS_CACHE) {
2673
2674 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2675 if (!has_cache && count)
2676 has_cache = SWAP_HAS_CACHE;
2677 else if (has_cache) /* someone else added cache */
2678 err = -EEXIST;
2679 else /* no users remaining */
2680 err = -ENOENT;
2681
2682 } else if (count || has_cache) {
2683
2684 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2685 count += usage;
2686 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2687 err = -EINVAL;
2688 else if (swap_count_continued(p, offset, count))
2689 count = COUNT_CONTINUED;
2690 else
2691 err = -ENOMEM;
2692 } else
2693 err = -ENOENT; /* unused swap entry */
2694
2695 p->swap_map[offset] = count | has_cache;
2696
2697 unlock_out:
2698 spin_unlock(&p->lock);
2699 out:
2700 return err;
2701
2702 bad_file:
2703 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2704 goto out;
2705 }
2706
2707 /*
2708 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2709 * (in which case its reference count is never incremented).
2710 */
swap_shmem_alloc(swp_entry_t entry)2711 void swap_shmem_alloc(swp_entry_t entry)
2712 {
2713 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2714 }
2715
2716 /*
2717 * Increase reference count of swap entry by 1.
2718 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2719 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2720 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2721 * might occur if a page table entry has got corrupted.
2722 */
swap_duplicate(swp_entry_t entry)2723 int swap_duplicate(swp_entry_t entry)
2724 {
2725 int err = 0;
2726
2727 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2728 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2729 return err;
2730 }
2731
2732 /*
2733 * @entry: swap entry for which we allocate swap cache.
2734 *
2735 * Called when allocating swap cache for existing swap entry,
2736 * This can return error codes. Returns 0 at success.
2737 * -EBUSY means there is a swap cache.
2738 * Note: return code is different from swap_duplicate().
2739 */
swapcache_prepare(swp_entry_t entry)2740 int swapcache_prepare(swp_entry_t entry)
2741 {
2742 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2743 }
2744
page_swap_info(struct page * page)2745 struct swap_info_struct *page_swap_info(struct page *page)
2746 {
2747 swp_entry_t swap = { .val = page_private(page) };
2748 BUG_ON(!PageSwapCache(page));
2749 return swap_info[swp_type(swap)];
2750 }
2751
2752 /*
2753 * out-of-line __page_file_ methods to avoid include hell.
2754 */
__page_file_mapping(struct page * page)2755 struct address_space *__page_file_mapping(struct page *page)
2756 {
2757 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2758 return page_swap_info(page)->swap_file->f_mapping;
2759 }
2760 EXPORT_SYMBOL_GPL(__page_file_mapping);
2761
__page_file_index(struct page * page)2762 pgoff_t __page_file_index(struct page *page)
2763 {
2764 swp_entry_t swap = { .val = page_private(page) };
2765 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2766 return swp_offset(swap);
2767 }
2768 EXPORT_SYMBOL_GPL(__page_file_index);
2769
2770 /*
2771 * add_swap_count_continuation - called when a swap count is duplicated
2772 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2773 * page of the original vmalloc'ed swap_map, to hold the continuation count
2774 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2775 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2776 *
2777 * These continuation pages are seldom referenced: the common paths all work
2778 * on the original swap_map, only referring to a continuation page when the
2779 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2780 *
2781 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2782 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2783 * can be called after dropping locks.
2784 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)2785 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2786 {
2787 struct swap_info_struct *si;
2788 struct page *head;
2789 struct page *page;
2790 struct page *list_page;
2791 pgoff_t offset;
2792 unsigned char count;
2793
2794 /*
2795 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2796 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2797 */
2798 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2799
2800 si = swap_info_get(entry);
2801 if (!si) {
2802 /*
2803 * An acceptable race has occurred since the failing
2804 * __swap_duplicate(): the swap entry has been freed,
2805 * perhaps even the whole swap_map cleared for swapoff.
2806 */
2807 goto outer;
2808 }
2809
2810 offset = swp_offset(entry);
2811 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2812
2813 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2814 /*
2815 * The higher the swap count, the more likely it is that tasks
2816 * will race to add swap count continuation: we need to avoid
2817 * over-provisioning.
2818 */
2819 goto out;
2820 }
2821
2822 if (!page) {
2823 spin_unlock(&si->lock);
2824 return -ENOMEM;
2825 }
2826
2827 /*
2828 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2829 * no architecture is using highmem pages for kernel page tables: so it
2830 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2831 */
2832 head = vmalloc_to_page(si->swap_map + offset);
2833 offset &= ~PAGE_MASK;
2834
2835 /*
2836 * Page allocation does not initialize the page's lru field,
2837 * but it does always reset its private field.
2838 */
2839 if (!page_private(head)) {
2840 BUG_ON(count & COUNT_CONTINUED);
2841 INIT_LIST_HEAD(&head->lru);
2842 set_page_private(head, SWP_CONTINUED);
2843 si->flags |= SWP_CONTINUED;
2844 }
2845
2846 list_for_each_entry(list_page, &head->lru, lru) {
2847 unsigned char *map;
2848
2849 /*
2850 * If the previous map said no continuation, but we've found
2851 * a continuation page, free our allocation and use this one.
2852 */
2853 if (!(count & COUNT_CONTINUED))
2854 goto out;
2855
2856 map = kmap_atomic(list_page) + offset;
2857 count = *map;
2858 kunmap_atomic(map);
2859
2860 /*
2861 * If this continuation count now has some space in it,
2862 * free our allocation and use this one.
2863 */
2864 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2865 goto out;
2866 }
2867
2868 list_add_tail(&page->lru, &head->lru);
2869 page = NULL; /* now it's attached, don't free it */
2870 out:
2871 spin_unlock(&si->lock);
2872 outer:
2873 if (page)
2874 __free_page(page);
2875 return 0;
2876 }
2877
2878 /*
2879 * swap_count_continued - when the original swap_map count is incremented
2880 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2881 * into, carry if so, or else fail until a new continuation page is allocated;
2882 * when the original swap_map count is decremented from 0 with continuation,
2883 * borrow from the continuation and report whether it still holds more.
2884 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2885 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)2886 static bool swap_count_continued(struct swap_info_struct *si,
2887 pgoff_t offset, unsigned char count)
2888 {
2889 struct page *head;
2890 struct page *page;
2891 unsigned char *map;
2892
2893 head = vmalloc_to_page(si->swap_map + offset);
2894 if (page_private(head) != SWP_CONTINUED) {
2895 BUG_ON(count & COUNT_CONTINUED);
2896 return false; /* need to add count continuation */
2897 }
2898
2899 offset &= ~PAGE_MASK;
2900 page = list_entry(head->lru.next, struct page, lru);
2901 map = kmap_atomic(page) + offset;
2902
2903 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2904 goto init_map; /* jump over SWAP_CONT_MAX checks */
2905
2906 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2907 /*
2908 * Think of how you add 1 to 999
2909 */
2910 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2911 kunmap_atomic(map);
2912 page = list_entry(page->lru.next, struct page, lru);
2913 BUG_ON(page == head);
2914 map = kmap_atomic(page) + offset;
2915 }
2916 if (*map == SWAP_CONT_MAX) {
2917 kunmap_atomic(map);
2918 page = list_entry(page->lru.next, struct page, lru);
2919 if (page == head)
2920 return false; /* add count continuation */
2921 map = kmap_atomic(page) + offset;
2922 init_map: *map = 0; /* we didn't zero the page */
2923 }
2924 *map += 1;
2925 kunmap_atomic(map);
2926 page = list_entry(page->lru.prev, struct page, lru);
2927 while (page != head) {
2928 map = kmap_atomic(page) + offset;
2929 *map = COUNT_CONTINUED;
2930 kunmap_atomic(map);
2931 page = list_entry(page->lru.prev, struct page, lru);
2932 }
2933 return true; /* incremented */
2934
2935 } else { /* decrementing */
2936 /*
2937 * Think of how you subtract 1 from 1000
2938 */
2939 BUG_ON(count != COUNT_CONTINUED);
2940 while (*map == COUNT_CONTINUED) {
2941 kunmap_atomic(map);
2942 page = list_entry(page->lru.next, struct page, lru);
2943 BUG_ON(page == head);
2944 map = kmap_atomic(page) + offset;
2945 }
2946 BUG_ON(*map == 0);
2947 *map -= 1;
2948 if (*map == 0)
2949 count = 0;
2950 kunmap_atomic(map);
2951 page = list_entry(page->lru.prev, struct page, lru);
2952 while (page != head) {
2953 map = kmap_atomic(page) + offset;
2954 *map = SWAP_CONT_MAX | count;
2955 count = COUNT_CONTINUED;
2956 kunmap_atomic(map);
2957 page = list_entry(page->lru.prev, struct page, lru);
2958 }
2959 return count == COUNT_CONTINUED;
2960 }
2961 }
2962
2963 /*
2964 * free_swap_count_continuations - swapoff free all the continuation pages
2965 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2966 */
free_swap_count_continuations(struct swap_info_struct * si)2967 static void free_swap_count_continuations(struct swap_info_struct *si)
2968 {
2969 pgoff_t offset;
2970
2971 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2972 struct page *head;
2973 head = vmalloc_to_page(si->swap_map + offset);
2974 if (page_private(head)) {
2975 struct list_head *this, *next;
2976 list_for_each_safe(this, next, &head->lru) {
2977 struct page *page;
2978 page = list_entry(this, struct page, lru);
2979 list_del(this);
2980 __free_page(page);
2981 }
2982 }
2983 }
2984 }
2985