1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25
clear_exceptional_entry(struct address_space * mapping,pgoff_t index,void * entry)26 static void clear_exceptional_entry(struct address_space *mapping,
27 pgoff_t index, void *entry)
28 {
29 struct radix_tree_node *node;
30 void **slot;
31
32 /* Handled by shmem itself */
33 if (shmem_mapping(mapping))
34 return;
35
36 spin_lock_irq(&mapping->tree_lock);
37 /*
38 * Regular page slots are stabilized by the page lock even
39 * without the tree itself locked. These unlocked entries
40 * need verification under the tree lock.
41 */
42 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
43 goto unlock;
44 if (*slot != entry)
45 goto unlock;
46 radix_tree_replace_slot(slot, NULL);
47 mapping->nrshadows--;
48 if (!node)
49 goto unlock;
50 workingset_node_shadows_dec(node);
51 /*
52 * Don't track node without shadow entries.
53 *
54 * Avoid acquiring the list_lru lock if already untracked.
55 * The list_empty() test is safe as node->private_list is
56 * protected by mapping->tree_lock.
57 */
58 if (!workingset_node_shadows(node) &&
59 !list_empty(&node->private_list))
60 list_lru_del(&workingset_shadow_nodes, &node->private_list);
61 __radix_tree_delete_node(&mapping->page_tree, node);
62 unlock:
63 spin_unlock_irq(&mapping->tree_lock);
64 }
65
66 /**
67 * do_invalidatepage - invalidate part or all of a page
68 * @page: the page which is affected
69 * @offset: start of the range to invalidate
70 * @length: length of the range to invalidate
71 *
72 * do_invalidatepage() is called when all or part of the page has become
73 * invalidated by a truncate operation.
74 *
75 * do_invalidatepage() does not have to release all buffers, but it must
76 * ensure that no dirty buffer is left outside @offset and that no I/O
77 * is underway against any of the blocks which are outside the truncation
78 * point. Because the caller is about to free (and possibly reuse) those
79 * blocks on-disk.
80 */
do_invalidatepage(struct page * page,unsigned int offset,unsigned int length)81 void do_invalidatepage(struct page *page, unsigned int offset,
82 unsigned int length)
83 {
84 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
85
86 invalidatepage = page->mapping->a_ops->invalidatepage;
87 #ifdef CONFIG_BLOCK
88 if (!invalidatepage)
89 invalidatepage = block_invalidatepage;
90 #endif
91 if (invalidatepage)
92 (*invalidatepage)(page, offset, length);
93 }
94
95 /*
96 * This cancels just the dirty bit on the kernel page itself, it
97 * does NOT actually remove dirty bits on any mmap's that may be
98 * around. It also leaves the page tagged dirty, so any sync
99 * activity will still find it on the dirty lists, and in particular,
100 * clear_page_dirty_for_io() will still look at the dirty bits in
101 * the VM.
102 *
103 * Doing this should *normally* only ever be done when a page
104 * is truncated, and is not actually mapped anywhere at all. However,
105 * fs/buffer.c does this when it notices that somebody has cleaned
106 * out all the buffers on a page without actually doing it through
107 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
108 */
cancel_dirty_page(struct page * page,unsigned int account_size)109 void cancel_dirty_page(struct page *page, unsigned int account_size)
110 {
111 if (TestClearPageDirty(page)) {
112 struct address_space *mapping = page->mapping;
113 if (mapping && mapping_cap_account_dirty(mapping)) {
114 dec_zone_page_state(page, NR_FILE_DIRTY);
115 dec_bdi_stat(mapping->backing_dev_info,
116 BDI_RECLAIMABLE);
117 if (account_size)
118 task_io_account_cancelled_write(account_size);
119 }
120 }
121 }
122 EXPORT_SYMBOL(cancel_dirty_page);
123
124 /*
125 * If truncate cannot remove the fs-private metadata from the page, the page
126 * becomes orphaned. It will be left on the LRU and may even be mapped into
127 * user pagetables if we're racing with filemap_fault().
128 *
129 * We need to bale out if page->mapping is no longer equal to the original
130 * mapping. This happens a) when the VM reclaimed the page while we waited on
131 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
132 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
133 */
134 static int
truncate_complete_page(struct address_space * mapping,struct page * page)135 truncate_complete_page(struct address_space *mapping, struct page *page)
136 {
137 if (page->mapping != mapping)
138 return -EIO;
139
140 if (page_has_private(page))
141 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
142
143 cancel_dirty_page(page, PAGE_CACHE_SIZE);
144
145 ClearPageMappedToDisk(page);
146 delete_from_page_cache(page);
147 return 0;
148 }
149
150 /*
151 * This is for invalidate_mapping_pages(). That function can be called at
152 * any time, and is not supposed to throw away dirty pages. But pages can
153 * be marked dirty at any time too, so use remove_mapping which safely
154 * discards clean, unused pages.
155 *
156 * Returns non-zero if the page was successfully invalidated.
157 */
158 static int
invalidate_complete_page(struct address_space * mapping,struct page * page)159 invalidate_complete_page(struct address_space *mapping, struct page *page)
160 {
161 int ret;
162
163 if (page->mapping != mapping)
164 return 0;
165
166 if (page_has_private(page) && !try_to_release_page(page, 0))
167 return 0;
168
169 ret = remove_mapping(mapping, page);
170
171 return ret;
172 }
173
truncate_inode_page(struct address_space * mapping,struct page * page)174 int truncate_inode_page(struct address_space *mapping, struct page *page)
175 {
176 if (page_mapped(page)) {
177 unmap_mapping_range(mapping,
178 (loff_t)page->index << PAGE_CACHE_SHIFT,
179 PAGE_CACHE_SIZE, 0);
180 }
181 return truncate_complete_page(mapping, page);
182 }
183
184 /*
185 * Used to get rid of pages on hardware memory corruption.
186 */
generic_error_remove_page(struct address_space * mapping,struct page * page)187 int generic_error_remove_page(struct address_space *mapping, struct page *page)
188 {
189 if (!mapping)
190 return -EINVAL;
191 /*
192 * Only punch for normal data pages for now.
193 * Handling other types like directories would need more auditing.
194 */
195 if (!S_ISREG(mapping->host->i_mode))
196 return -EIO;
197 return truncate_inode_page(mapping, page);
198 }
199 EXPORT_SYMBOL(generic_error_remove_page);
200
201 /*
202 * Safely invalidate one page from its pagecache mapping.
203 * It only drops clean, unused pages. The page must be locked.
204 *
205 * Returns 1 if the page is successfully invalidated, otherwise 0.
206 */
invalidate_inode_page(struct page * page)207 int invalidate_inode_page(struct page *page)
208 {
209 struct address_space *mapping = page_mapping(page);
210 if (!mapping)
211 return 0;
212 if (PageDirty(page) || PageWriteback(page))
213 return 0;
214 if (page_mapped(page))
215 return 0;
216 return invalidate_complete_page(mapping, page);
217 }
218
219 /**
220 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
221 * @mapping: mapping to truncate
222 * @lstart: offset from which to truncate
223 * @lend: offset to which to truncate (inclusive)
224 *
225 * Truncate the page cache, removing the pages that are between
226 * specified offsets (and zeroing out partial pages
227 * if lstart or lend + 1 is not page aligned).
228 *
229 * Truncate takes two passes - the first pass is nonblocking. It will not
230 * block on page locks and it will not block on writeback. The second pass
231 * will wait. This is to prevent as much IO as possible in the affected region.
232 * The first pass will remove most pages, so the search cost of the second pass
233 * is low.
234 *
235 * We pass down the cache-hot hint to the page freeing code. Even if the
236 * mapping is large, it is probably the case that the final pages are the most
237 * recently touched, and freeing happens in ascending file offset order.
238 *
239 * Note that since ->invalidatepage() accepts range to invalidate
240 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
241 * page aligned properly.
242 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)243 void truncate_inode_pages_range(struct address_space *mapping,
244 loff_t lstart, loff_t lend)
245 {
246 pgoff_t start; /* inclusive */
247 pgoff_t end; /* exclusive */
248 unsigned int partial_start; /* inclusive */
249 unsigned int partial_end; /* exclusive */
250 struct pagevec pvec;
251 pgoff_t indices[PAGEVEC_SIZE];
252 pgoff_t index;
253 int i;
254
255 cleancache_invalidate_inode(mapping);
256 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
257 return;
258
259 /* Offsets within partial pages */
260 partial_start = lstart & (PAGE_CACHE_SIZE - 1);
261 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
262
263 /*
264 * 'start' and 'end' always covers the range of pages to be fully
265 * truncated. Partial pages are covered with 'partial_start' at the
266 * start of the range and 'partial_end' at the end of the range.
267 * Note that 'end' is exclusive while 'lend' is inclusive.
268 */
269 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
270 if (lend == -1)
271 /*
272 * lend == -1 indicates end-of-file so we have to set 'end'
273 * to the highest possible pgoff_t and since the type is
274 * unsigned we're using -1.
275 */
276 end = -1;
277 else
278 end = (lend + 1) >> PAGE_CACHE_SHIFT;
279
280 pagevec_init(&pvec, 0);
281 index = start;
282 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE),
284 indices)) {
285 for (i = 0; i < pagevec_count(&pvec); i++) {
286 struct page *page = pvec.pages[i];
287
288 /* We rely upon deletion not changing page->index */
289 index = indices[i];
290 if (index >= end)
291 break;
292
293 if (radix_tree_exceptional_entry(page)) {
294 clear_exceptional_entry(mapping, index, page);
295 continue;
296 }
297
298 if (!trylock_page(page))
299 continue;
300 WARN_ON(page->index != index);
301 if (PageWriteback(page)) {
302 unlock_page(page);
303 continue;
304 }
305 truncate_inode_page(mapping, page);
306 unlock_page(page);
307 }
308 pagevec_remove_exceptionals(&pvec);
309 pagevec_release(&pvec);
310 cond_resched();
311 index++;
312 }
313
314 if (partial_start) {
315 struct page *page = find_lock_page(mapping, start - 1);
316 if (page) {
317 unsigned int top = PAGE_CACHE_SIZE;
318 if (start > end) {
319 /* Truncation within a single page */
320 top = partial_end;
321 partial_end = 0;
322 }
323 wait_on_page_writeback(page);
324 zero_user_segment(page, partial_start, top);
325 cleancache_invalidate_page(mapping, page);
326 if (page_has_private(page))
327 do_invalidatepage(page, partial_start,
328 top - partial_start);
329 unlock_page(page);
330 page_cache_release(page);
331 }
332 }
333 if (partial_end) {
334 struct page *page = find_lock_page(mapping, end);
335 if (page) {
336 wait_on_page_writeback(page);
337 zero_user_segment(page, 0, partial_end);
338 cleancache_invalidate_page(mapping, page);
339 if (page_has_private(page))
340 do_invalidatepage(page, 0,
341 partial_end);
342 unlock_page(page);
343 page_cache_release(page);
344 }
345 }
346 /*
347 * If the truncation happened within a single page no pages
348 * will be released, just zeroed, so we can bail out now.
349 */
350 if (start >= end)
351 return;
352
353 index = start;
354 for ( ; ; ) {
355 cond_resched();
356 if (!pagevec_lookup_entries(&pvec, mapping, index,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
358 /* If all gone from start onwards, we're done */
359 if (index == start)
360 break;
361 /* Otherwise restart to make sure all gone */
362 index = start;
363 continue;
364 }
365 if (index == start && indices[0] >= end) {
366 /* All gone out of hole to be punched, we're done */
367 pagevec_remove_exceptionals(&pvec);
368 pagevec_release(&pvec);
369 break;
370 }
371 for (i = 0; i < pagevec_count(&pvec); i++) {
372 struct page *page = pvec.pages[i];
373
374 /* We rely upon deletion not changing page->index */
375 index = indices[i];
376 if (index >= end) {
377 /* Restart punch to make sure all gone */
378 index = start - 1;
379 break;
380 }
381
382 if (radix_tree_exceptional_entry(page)) {
383 clear_exceptional_entry(mapping, index, page);
384 continue;
385 }
386
387 lock_page(page);
388 WARN_ON(page->index != index);
389 wait_on_page_writeback(page);
390 truncate_inode_page(mapping, page);
391 unlock_page(page);
392 }
393 pagevec_remove_exceptionals(&pvec);
394 pagevec_release(&pvec);
395 index++;
396 }
397 cleancache_invalidate_inode(mapping);
398 }
399 EXPORT_SYMBOL(truncate_inode_pages_range);
400
401 /**
402 * truncate_inode_pages - truncate *all* the pages from an offset
403 * @mapping: mapping to truncate
404 * @lstart: offset from which to truncate
405 *
406 * Called under (and serialised by) inode->i_mutex.
407 *
408 * Note: When this function returns, there can be a page in the process of
409 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
410 * mapping->nrpages can be non-zero when this function returns even after
411 * truncation of the whole mapping.
412 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)413 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
414 {
415 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
416 }
417 EXPORT_SYMBOL(truncate_inode_pages);
418
419 /**
420 * truncate_inode_pages_final - truncate *all* pages before inode dies
421 * @mapping: mapping to truncate
422 *
423 * Called under (and serialized by) inode->i_mutex.
424 *
425 * Filesystems have to use this in the .evict_inode path to inform the
426 * VM that this is the final truncate and the inode is going away.
427 */
truncate_inode_pages_final(struct address_space * mapping)428 void truncate_inode_pages_final(struct address_space *mapping)
429 {
430 unsigned long nrshadows;
431 unsigned long nrpages;
432
433 /*
434 * Page reclaim can not participate in regular inode lifetime
435 * management (can't call iput()) and thus can race with the
436 * inode teardown. Tell it when the address space is exiting,
437 * so that it does not install eviction information after the
438 * final truncate has begun.
439 */
440 mapping_set_exiting(mapping);
441
442 /*
443 * When reclaim installs eviction entries, it increases
444 * nrshadows first, then decreases nrpages. Make sure we see
445 * this in the right order or we might miss an entry.
446 */
447 nrpages = mapping->nrpages;
448 smp_rmb();
449 nrshadows = mapping->nrshadows;
450
451 if (nrpages || nrshadows) {
452 /*
453 * As truncation uses a lockless tree lookup, cycle
454 * the tree lock to make sure any ongoing tree
455 * modification that does not see AS_EXITING is
456 * completed before starting the final truncate.
457 */
458 spin_lock_irq(&mapping->tree_lock);
459 spin_unlock_irq(&mapping->tree_lock);
460
461 truncate_inode_pages(mapping, 0);
462 }
463 }
464 EXPORT_SYMBOL(truncate_inode_pages_final);
465
466 /**
467 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
468 * @mapping: the address_space which holds the pages to invalidate
469 * @start: the offset 'from' which to invalidate
470 * @end: the offset 'to' which to invalidate (inclusive)
471 *
472 * This function only removes the unlocked pages, if you want to
473 * remove all the pages of one inode, you must call truncate_inode_pages.
474 *
475 * invalidate_mapping_pages() will not block on IO activity. It will not
476 * invalidate pages which are dirty, locked, under writeback or mapped into
477 * pagetables.
478 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)479 unsigned long invalidate_mapping_pages(struct address_space *mapping,
480 pgoff_t start, pgoff_t end)
481 {
482 pgoff_t indices[PAGEVEC_SIZE];
483 struct pagevec pvec;
484 pgoff_t index = start;
485 unsigned long ret;
486 unsigned long count = 0;
487 int i;
488
489 pagevec_init(&pvec, 0);
490 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
491 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
492 indices)) {
493 for (i = 0; i < pagevec_count(&pvec); i++) {
494 struct page *page = pvec.pages[i];
495
496 /* We rely upon deletion not changing page->index */
497 index = indices[i];
498 if (index > end)
499 break;
500
501 if (radix_tree_exceptional_entry(page)) {
502 clear_exceptional_entry(mapping, index, page);
503 continue;
504 }
505
506 if (!trylock_page(page))
507 continue;
508 WARN_ON(page->index != index);
509 ret = invalidate_inode_page(page);
510 unlock_page(page);
511 /*
512 * Invalidation is a hint that the page is no longer
513 * of interest and try to speed up its reclaim.
514 */
515 if (!ret)
516 deactivate_file_page(page);
517 count += ret;
518 }
519 pagevec_remove_exceptionals(&pvec);
520 pagevec_release(&pvec);
521 cond_resched();
522 index++;
523 }
524 return count;
525 }
526 EXPORT_SYMBOL(invalidate_mapping_pages);
527
528 /*
529 * This is like invalidate_complete_page(), except it ignores the page's
530 * refcount. We do this because invalidate_inode_pages2() needs stronger
531 * invalidation guarantees, and cannot afford to leave pages behind because
532 * shrink_page_list() has a temp ref on them, or because they're transiently
533 * sitting in the lru_cache_add() pagevecs.
534 */
535 static int
invalidate_complete_page2(struct address_space * mapping,struct page * page)536 invalidate_complete_page2(struct address_space *mapping, struct page *page)
537 {
538 if (page->mapping != mapping)
539 return 0;
540
541 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
542 return 0;
543
544 spin_lock_irq(&mapping->tree_lock);
545 if (PageDirty(page))
546 goto failed;
547
548 BUG_ON(page_has_private(page));
549 __delete_from_page_cache(page, NULL);
550 spin_unlock_irq(&mapping->tree_lock);
551
552 if (mapping->a_ops->freepage)
553 mapping->a_ops->freepage(page);
554
555 page_cache_release(page); /* pagecache ref */
556 return 1;
557 failed:
558 spin_unlock_irq(&mapping->tree_lock);
559 return 0;
560 }
561
do_launder_page(struct address_space * mapping,struct page * page)562 static int do_launder_page(struct address_space *mapping, struct page *page)
563 {
564 if (!PageDirty(page))
565 return 0;
566 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
567 return 0;
568 return mapping->a_ops->launder_page(page);
569 }
570
571 /**
572 * invalidate_inode_pages2_range - remove range of pages from an address_space
573 * @mapping: the address_space
574 * @start: the page offset 'from' which to invalidate
575 * @end: the page offset 'to' which to invalidate (inclusive)
576 *
577 * Any pages which are found to be mapped into pagetables are unmapped prior to
578 * invalidation.
579 *
580 * Returns -EBUSY if any pages could not be invalidated.
581 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)582 int invalidate_inode_pages2_range(struct address_space *mapping,
583 pgoff_t start, pgoff_t end)
584 {
585 pgoff_t indices[PAGEVEC_SIZE];
586 struct pagevec pvec;
587 pgoff_t index;
588 int i;
589 int ret = 0;
590 int ret2 = 0;
591 int did_range_unmap = 0;
592
593 cleancache_invalidate_inode(mapping);
594 pagevec_init(&pvec, 0);
595 index = start;
596 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
597 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
598 indices)) {
599 for (i = 0; i < pagevec_count(&pvec); i++) {
600 struct page *page = pvec.pages[i];
601
602 /* We rely upon deletion not changing page->index */
603 index = indices[i];
604 if (index > end)
605 break;
606
607 if (radix_tree_exceptional_entry(page)) {
608 clear_exceptional_entry(mapping, index, page);
609 continue;
610 }
611
612 lock_page(page);
613 WARN_ON(page->index != index);
614 if (page->mapping != mapping) {
615 unlock_page(page);
616 continue;
617 }
618 wait_on_page_writeback(page);
619 if (page_mapped(page)) {
620 if (!did_range_unmap) {
621 /*
622 * Zap the rest of the file in one hit.
623 */
624 unmap_mapping_range(mapping,
625 (loff_t)index << PAGE_CACHE_SHIFT,
626 (loff_t)(1 + end - index)
627 << PAGE_CACHE_SHIFT,
628 0);
629 did_range_unmap = 1;
630 } else {
631 /*
632 * Just zap this page
633 */
634 unmap_mapping_range(mapping,
635 (loff_t)index << PAGE_CACHE_SHIFT,
636 PAGE_CACHE_SIZE, 0);
637 }
638 }
639 BUG_ON(page_mapped(page));
640 ret2 = do_launder_page(mapping, page);
641 if (ret2 == 0) {
642 if (!invalidate_complete_page2(mapping, page))
643 ret2 = -EBUSY;
644 }
645 if (ret2 < 0)
646 ret = ret2;
647 unlock_page(page);
648 }
649 pagevec_remove_exceptionals(&pvec);
650 pagevec_release(&pvec);
651 cond_resched();
652 index++;
653 }
654 cleancache_invalidate_inode(mapping);
655 return ret;
656 }
657 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
658
659 /**
660 * invalidate_inode_pages2 - remove all pages from an address_space
661 * @mapping: the address_space
662 *
663 * Any pages which are found to be mapped into pagetables are unmapped prior to
664 * invalidation.
665 *
666 * Returns -EBUSY if any pages could not be invalidated.
667 */
invalidate_inode_pages2(struct address_space * mapping)668 int invalidate_inode_pages2(struct address_space *mapping)
669 {
670 return invalidate_inode_pages2_range(mapping, 0, -1);
671 }
672 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
673
674 /**
675 * truncate_pagecache - unmap and remove pagecache that has been truncated
676 * @inode: inode
677 * @newsize: new file size
678 *
679 * inode's new i_size must already be written before truncate_pagecache
680 * is called.
681 *
682 * This function should typically be called before the filesystem
683 * releases resources associated with the freed range (eg. deallocates
684 * blocks). This way, pagecache will always stay logically coherent
685 * with on-disk format, and the filesystem would not have to deal with
686 * situations such as writepage being called for a page that has already
687 * had its underlying blocks deallocated.
688 */
truncate_pagecache(struct inode * inode,loff_t newsize)689 void truncate_pagecache(struct inode *inode, loff_t newsize)
690 {
691 struct address_space *mapping = inode->i_mapping;
692 loff_t holebegin = round_up(newsize, PAGE_SIZE);
693
694 /*
695 * unmap_mapping_range is called twice, first simply for
696 * efficiency so that truncate_inode_pages does fewer
697 * single-page unmaps. However after this first call, and
698 * before truncate_inode_pages finishes, it is possible for
699 * private pages to be COWed, which remain after
700 * truncate_inode_pages finishes, hence the second
701 * unmap_mapping_range call must be made for correctness.
702 */
703 unmap_mapping_range(mapping, holebegin, 0, 1);
704 truncate_inode_pages(mapping, newsize);
705 unmap_mapping_range(mapping, holebegin, 0, 1);
706 }
707 EXPORT_SYMBOL(truncate_pagecache);
708
709 /**
710 * truncate_setsize - update inode and pagecache for a new file size
711 * @inode: inode
712 * @newsize: new file size
713 *
714 * truncate_setsize updates i_size and performs pagecache truncation (if
715 * necessary) to @newsize. It will be typically be called from the filesystem's
716 * setattr function when ATTR_SIZE is passed in.
717 *
718 * Must be called with a lock serializing truncates and writes (generally
719 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
720 * specific block truncation has been performed.
721 */
truncate_setsize(struct inode * inode,loff_t newsize)722 void truncate_setsize(struct inode *inode, loff_t newsize)
723 {
724 loff_t oldsize = inode->i_size;
725
726 i_size_write(inode, newsize);
727 if (newsize > oldsize)
728 pagecache_isize_extended(inode, oldsize, newsize);
729 truncate_pagecache(inode, newsize);
730 }
731 EXPORT_SYMBOL(truncate_setsize);
732
733 /**
734 * pagecache_isize_extended - update pagecache after extension of i_size
735 * @inode: inode for which i_size was extended
736 * @from: original inode size
737 * @to: new inode size
738 *
739 * Handle extension of inode size either caused by extending truncate or by
740 * write starting after current i_size. We mark the page straddling current
741 * i_size RO so that page_mkwrite() is called on the nearest write access to
742 * the page. This way filesystem can be sure that page_mkwrite() is called on
743 * the page before user writes to the page via mmap after the i_size has been
744 * changed.
745 *
746 * The function must be called after i_size is updated so that page fault
747 * coming after we unlock the page will already see the new i_size.
748 * The function must be called while we still hold i_mutex - this not only
749 * makes sure i_size is stable but also that userspace cannot observe new
750 * i_size value before we are prepared to store mmap writes at new inode size.
751 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)752 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
753 {
754 int bsize = 1 << inode->i_blkbits;
755 loff_t rounded_from;
756 struct page *page;
757 pgoff_t index;
758
759 WARN_ON(to > inode->i_size);
760
761 if (from >= to || bsize == PAGE_CACHE_SIZE)
762 return;
763 /* Page straddling @from will not have any hole block created? */
764 rounded_from = round_up(from, bsize);
765 if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
766 return;
767
768 index = from >> PAGE_CACHE_SHIFT;
769 page = find_lock_page(inode->i_mapping, index);
770 /* Page not cached? Nothing to do */
771 if (!page)
772 return;
773 /*
774 * See clear_page_dirty_for_io() for details why set_page_dirty()
775 * is needed.
776 */
777 if (page_mkclean(page))
778 set_page_dirty(page);
779 unlock_page(page);
780 page_cache_release(page);
781 }
782 EXPORT_SYMBOL(pagecache_isize_extended);
783
784 /**
785 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
786 * @inode: inode
787 * @lstart: offset of beginning of hole
788 * @lend: offset of last byte of hole
789 *
790 * This function should typically be called before the filesystem
791 * releases resources associated with the freed range (eg. deallocates
792 * blocks). This way, pagecache will always stay logically coherent
793 * with on-disk format, and the filesystem would not have to deal with
794 * situations such as writepage being called for a page that has already
795 * had its underlying blocks deallocated.
796 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)797 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
798 {
799 struct address_space *mapping = inode->i_mapping;
800 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
801 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
802 /*
803 * This rounding is currently just for example: unmap_mapping_range
804 * expands its hole outwards, whereas we want it to contract the hole
805 * inwards. However, existing callers of truncate_pagecache_range are
806 * doing their own page rounding first. Note that unmap_mapping_range
807 * allows holelen 0 for all, and we allow lend -1 for end of file.
808 */
809
810 /*
811 * Unlike in truncate_pagecache, unmap_mapping_range is called only
812 * once (before truncating pagecache), and without "even_cows" flag:
813 * hole-punching should not remove private COWed pages from the hole.
814 */
815 if ((u64)unmap_end > (u64)unmap_start)
816 unmap_mapping_range(mapping, unmap_start,
817 1 + unmap_end - unmap_start, 0);
818 truncate_inode_pages_range(mapping, lstart, lend);
819 }
820 EXPORT_SYMBOL(truncate_pagecache_range);
821