• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3  * Home page:
4  *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5  * This is from the implementation of CUBIC TCP in
6  * Sangtae Ha, Injong Rhee and Lisong Xu,
7  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8  *  in ACM SIGOPS Operating System Review, July 2008.
9  * Available from:
10  *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11  *
12  * CUBIC integrates a new slow start algorithm, called HyStart.
13  * The details of HyStart are presented in
14  *  Sangtae Ha and Injong Rhee,
15  *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16  * Available from:
17  *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18  *
19  * All testing results are available from:
20  * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21  *
22  * Unless CUBIC is enabled and congestion window is large
23  * this behaves the same as the original Reno.
24  */
25 
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30 
31 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
32 					 * max_cwnd = snd_cwnd * beta
33 					 */
34 #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
35 
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN	0x1
38 #define HYSTART_DELAY		0x2
39 
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES	8
42 #define HYSTART_DELAY_MIN	(4U<<3)
43 #define HYSTART_DELAY_MAX	(16U<<3)
44 #define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45 
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51 
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56 
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60 
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 		 " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81 
82 /* BIC TCP Parameters */
83 struct bictcp {
84 	u32	cnt;		/* increase cwnd by 1 after ACKs */
85 	u32	last_max_cwnd;	/* last maximum snd_cwnd */
86 	u32	loss_cwnd;	/* congestion window at last loss */
87 	u32	last_cwnd;	/* the last snd_cwnd */
88 	u32	last_time;	/* time when updated last_cwnd */
89 	u32	bic_origin_point;/* origin point of bic function */
90 	u32	bic_K;		/* time to origin point
91 				   from the beginning of the current epoch */
92 	u32	delay_min;	/* min delay (msec << 3) */
93 	u32	epoch_start;	/* beginning of an epoch */
94 	u32	ack_cnt;	/* number of acks */
95 	u32	tcp_cwnd;	/* estimated tcp cwnd */
96 #define ACK_RATIO_SHIFT	4
97 #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
98 	u16	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
99 	u8	sample_cnt;	/* number of samples to decide curr_rtt */
100 	u8	found;		/* the exit point is found? */
101 	u32	round_start;	/* beginning of each round */
102 	u32	end_seq;	/* end_seq of the round */
103 	u32	last_ack;	/* last time when the ACK spacing is close */
104 	u32	curr_rtt;	/* the minimum rtt of current round */
105 };
106 
bictcp_reset(struct bictcp * ca)107 static inline void bictcp_reset(struct bictcp *ca)
108 {
109 	ca->cnt = 0;
110 	ca->last_max_cwnd = 0;
111 	ca->last_cwnd = 0;
112 	ca->last_time = 0;
113 	ca->bic_origin_point = 0;
114 	ca->bic_K = 0;
115 	ca->delay_min = 0;
116 	ca->epoch_start = 0;
117 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118 	ca->ack_cnt = 0;
119 	ca->tcp_cwnd = 0;
120 	ca->found = 0;
121 }
122 
bictcp_clock(void)123 static inline u32 bictcp_clock(void)
124 {
125 #if HZ < 1000
126 	return ktime_to_ms(ktime_get_real());
127 #else
128 	return jiffies_to_msecs(jiffies);
129 #endif
130 }
131 
bictcp_hystart_reset(struct sock * sk)132 static inline void bictcp_hystart_reset(struct sock *sk)
133 {
134 	struct tcp_sock *tp = tcp_sk(sk);
135 	struct bictcp *ca = inet_csk_ca(sk);
136 
137 	ca->round_start = ca->last_ack = bictcp_clock();
138 	ca->end_seq = tp->snd_nxt;
139 	ca->curr_rtt = 0;
140 	ca->sample_cnt = 0;
141 }
142 
bictcp_init(struct sock * sk)143 static void bictcp_init(struct sock *sk)
144 {
145 	struct bictcp *ca = inet_csk_ca(sk);
146 
147 	bictcp_reset(ca);
148 	ca->loss_cwnd = 0;
149 
150 	if (hystart)
151 		bictcp_hystart_reset(sk);
152 
153 	if (!hystart && initial_ssthresh)
154 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
155 }
156 
bictcp_cwnd_event(struct sock * sk,enum tcp_ca_event event)157 static void bictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
158 {
159 	if (event == CA_EVENT_TX_START) {
160 		struct bictcp *ca = inet_csk_ca(sk);
161 		u32 now = tcp_time_stamp;
162 		s32 delta;
163 
164 		delta = now - tcp_sk(sk)->lsndtime;
165 
166 		/* We were application limited (idle) for a while.
167 		 * Shift epoch_start to keep cwnd growth to cubic curve.
168 		 */
169 		if (ca->epoch_start && delta > 0) {
170 			ca->epoch_start += delta;
171 			if (after(ca->epoch_start, now))
172 				ca->epoch_start = now;
173 		}
174 		return;
175 	}
176 }
177 
178 /* calculate the cubic root of x using a table lookup followed by one
179  * Newton-Raphson iteration.
180  * Avg err ~= 0.195%
181  */
cubic_root(u64 a)182 static u32 cubic_root(u64 a)
183 {
184 	u32 x, b, shift;
185 	/*
186 	 * cbrt(x) MSB values for x MSB values in [0..63].
187 	 * Precomputed then refined by hand - Willy Tarreau
188 	 *
189 	 * For x in [0..63],
190 	 *   v = cbrt(x << 18) - 1
191 	 *   cbrt(x) = (v[x] + 10) >> 6
192 	 */
193 	static const u8 v[] = {
194 		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
195 		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
196 		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
197 		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
198 		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
199 		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
200 		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
201 		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
202 	};
203 
204 	b = fls64(a);
205 	if (b < 7) {
206 		/* a in [0..63] */
207 		return ((u32)v[(u32)a] + 35) >> 6;
208 	}
209 
210 	b = ((b * 84) >> 8) - 1;
211 	shift = (a >> (b * 3));
212 
213 	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
214 
215 	/*
216 	 * Newton-Raphson iteration
217 	 *                         2
218 	 * x    = ( 2 * x  +  a / x  ) / 3
219 	 *  k+1          k         k
220 	 */
221 	x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
222 	x = ((x * 341) >> 10);
223 	return x;
224 }
225 
226 /*
227  * Compute congestion window to use.
228  */
bictcp_update(struct bictcp * ca,u32 cwnd)229 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
230 {
231 	u32 delta, bic_target, max_cnt;
232 	u64 offs, t;
233 
234 	ca->ack_cnt++;	/* count the number of ACKs */
235 
236 	if (ca->last_cwnd == cwnd &&
237 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
238 		return;
239 
240 	ca->last_cwnd = cwnd;
241 	ca->last_time = tcp_time_stamp;
242 
243 	if (ca->epoch_start == 0) {
244 		ca->epoch_start = tcp_time_stamp;	/* record beginning */
245 		ca->ack_cnt = 1;			/* start counting */
246 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
247 
248 		if (ca->last_max_cwnd <= cwnd) {
249 			ca->bic_K = 0;
250 			ca->bic_origin_point = cwnd;
251 		} else {
252 			/* Compute new K based on
253 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
254 			 */
255 			ca->bic_K = cubic_root(cube_factor
256 					       * (ca->last_max_cwnd - cwnd));
257 			ca->bic_origin_point = ca->last_max_cwnd;
258 		}
259 	}
260 
261 	/* cubic function - calc*/
262 	/* calculate c * time^3 / rtt,
263 	 *  while considering overflow in calculation of time^3
264 	 * (so time^3 is done by using 64 bit)
265 	 * and without the support of division of 64bit numbers
266 	 * (so all divisions are done by using 32 bit)
267 	 *  also NOTE the unit of those veriables
268 	 *	  time  = (t - K) / 2^bictcp_HZ
269 	 *	  c = bic_scale >> 10
270 	 * rtt  = (srtt >> 3) / HZ
271 	 * !!! The following code does not have overflow problems,
272 	 * if the cwnd < 1 million packets !!!
273 	 */
274 
275 	t = (s32)(tcp_time_stamp - ca->epoch_start);
276 	t += msecs_to_jiffies(ca->delay_min >> 3);
277 	/* change the unit from HZ to bictcp_HZ */
278 	t <<= BICTCP_HZ;
279 	do_div(t, HZ);
280 
281 	if (t < ca->bic_K)		/* t - K */
282 		offs = ca->bic_K - t;
283 	else
284 		offs = t - ca->bic_K;
285 
286 	/* c/rtt * (t-K)^3 */
287 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
288 	if (t < ca->bic_K)                            /* below origin*/
289 		bic_target = ca->bic_origin_point - delta;
290 	else                                          /* above origin*/
291 		bic_target = ca->bic_origin_point + delta;
292 
293 	/* cubic function - calc bictcp_cnt*/
294 	if (bic_target > cwnd) {
295 		ca->cnt = cwnd / (bic_target - cwnd);
296 	} else {
297 		ca->cnt = 100 * cwnd;              /* very small increment*/
298 	}
299 
300 	/*
301 	 * The initial growth of cubic function may be too conservative
302 	 * when the available bandwidth is still unknown.
303 	 */
304 	if (ca->last_max_cwnd == 0 && ca->cnt > 20)
305 		ca->cnt = 20;	/* increase cwnd 5% per RTT */
306 
307 	/* TCP Friendly */
308 	if (tcp_friendliness) {
309 		u32 scale = beta_scale;
310 
311 		delta = (cwnd * scale) >> 3;
312 		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
313 			ca->ack_cnt -= delta;
314 			ca->tcp_cwnd++;
315 		}
316 
317 		if (ca->tcp_cwnd > cwnd) {	/* if bic is slower than tcp */
318 			delta = ca->tcp_cwnd - cwnd;
319 			max_cnt = cwnd / delta;
320 			if (ca->cnt > max_cnt)
321 				ca->cnt = max_cnt;
322 		}
323 	}
324 
325 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
326 	if (ca->cnt == 0)			/* cannot be zero */
327 		ca->cnt = 1;
328 }
329 
bictcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)330 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	struct bictcp *ca = inet_csk_ca(sk);
334 
335 	if (!tcp_is_cwnd_limited(sk))
336 		return;
337 
338 	if (tp->snd_cwnd <= tp->snd_ssthresh) {
339 		if (hystart && after(ack, ca->end_seq))
340 			bictcp_hystart_reset(sk);
341 		tcp_slow_start(tp, acked);
342 	} else {
343 		bictcp_update(ca, tp->snd_cwnd);
344 		tcp_cong_avoid_ai(tp, ca->cnt);
345 	}
346 }
347 
bictcp_recalc_ssthresh(struct sock * sk)348 static u32 bictcp_recalc_ssthresh(struct sock *sk)
349 {
350 	const struct tcp_sock *tp = tcp_sk(sk);
351 	struct bictcp *ca = inet_csk_ca(sk);
352 
353 	ca->epoch_start = 0;	/* end of epoch */
354 
355 	/* Wmax and fast convergence */
356 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
357 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
358 			/ (2 * BICTCP_BETA_SCALE);
359 	else
360 		ca->last_max_cwnd = tp->snd_cwnd;
361 
362 	ca->loss_cwnd = tp->snd_cwnd;
363 
364 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
365 }
366 
bictcp_undo_cwnd(struct sock * sk)367 static u32 bictcp_undo_cwnd(struct sock *sk)
368 {
369 	struct bictcp *ca = inet_csk_ca(sk);
370 
371 	return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
372 }
373 
bictcp_state(struct sock * sk,u8 new_state)374 static void bictcp_state(struct sock *sk, u8 new_state)
375 {
376 	if (new_state == TCP_CA_Loss) {
377 		bictcp_reset(inet_csk_ca(sk));
378 		bictcp_hystart_reset(sk);
379 	}
380 }
381 
hystart_update(struct sock * sk,u32 delay)382 static void hystart_update(struct sock *sk, u32 delay)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct bictcp *ca = inet_csk_ca(sk);
386 
387 	if (!(ca->found & hystart_detect)) {
388 		u32 now = bictcp_clock();
389 
390 		/* first detection parameter - ack-train detection */
391 		if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
392 			ca->last_ack = now;
393 			if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
394 				ca->found |= HYSTART_ACK_TRAIN;
395 		}
396 
397 		/* obtain the minimum delay of more than sampling packets */
398 		if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
399 			if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
400 				ca->curr_rtt = delay;
401 
402 			ca->sample_cnt++;
403 		} else {
404 			if (ca->curr_rtt > ca->delay_min +
405 			    HYSTART_DELAY_THRESH(ca->delay_min>>4))
406 				ca->found |= HYSTART_DELAY;
407 		}
408 		/*
409 		 * Either one of two conditions are met,
410 		 * we exit from slow start immediately.
411 		 */
412 		if (ca->found & hystart_detect)
413 			tp->snd_ssthresh = tp->snd_cwnd;
414 	}
415 }
416 
417 /* Track delayed acknowledgment ratio using sliding window
418  * ratio = (15*ratio + sample) / 16
419  */
bictcp_acked(struct sock * sk,u32 cnt,s32 rtt_us)420 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
421 {
422 	const struct inet_connection_sock *icsk = inet_csk(sk);
423 	const struct tcp_sock *tp = tcp_sk(sk);
424 	struct bictcp *ca = inet_csk_ca(sk);
425 	u32 delay;
426 
427 	if (icsk->icsk_ca_state == TCP_CA_Open) {
428 		u32 ratio = ca->delayed_ack;
429 
430 		ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
431 		ratio += cnt;
432 
433 		ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
434 	}
435 
436 	/* Some calls are for duplicates without timetamps */
437 	if (rtt_us < 0)
438 		return;
439 
440 	/* Discard delay samples right after fast recovery */
441 	if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
442 		return;
443 
444 	delay = (rtt_us << 3) / USEC_PER_MSEC;
445 	if (delay == 0)
446 		delay = 1;
447 
448 	/* first time call or link delay decreases */
449 	if (ca->delay_min == 0 || ca->delay_min > delay)
450 		ca->delay_min = delay;
451 
452 	/* hystart triggers when cwnd is larger than some threshold */
453 	if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
454 	    tp->snd_cwnd >= hystart_low_window)
455 		hystart_update(sk, delay);
456 }
457 
458 static struct tcp_congestion_ops cubictcp __read_mostly = {
459 	.init		= bictcp_init,
460 	.ssthresh	= bictcp_recalc_ssthresh,
461 	.cong_avoid	= bictcp_cong_avoid,
462 	.set_state	= bictcp_state,
463 	.undo_cwnd	= bictcp_undo_cwnd,
464 	.cwnd_event	= bictcp_cwnd_event,
465 	.pkts_acked     = bictcp_acked,
466 	.owner		= THIS_MODULE,
467 	.name		= "cubic",
468 };
469 
cubictcp_register(void)470 static int __init cubictcp_register(void)
471 {
472 	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
473 
474 	/* Precompute a bunch of the scaling factors that are used per-packet
475 	 * based on SRTT of 100ms
476 	 */
477 
478 	beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
479 		/ (BICTCP_BETA_SCALE - beta);
480 
481 	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
482 
483 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
484 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
485 	 * the unit of K is bictcp_HZ=2^10, not HZ
486 	 *
487 	 *  c = bic_scale >> 10
488 	 *  rtt = 100ms
489 	 *
490 	 * the following code has been designed and tested for
491 	 * cwnd < 1 million packets
492 	 * RTT < 100 seconds
493 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
494 	 */
495 
496 	/* 1/c * 2^2*bictcp_HZ * srtt */
497 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
498 
499 	/* divide by bic_scale and by constant Srtt (100ms) */
500 	do_div(cube_factor, bic_scale * 10);
501 
502 	return tcp_register_congestion_control(&cubictcp);
503 }
504 
cubictcp_unregister(void)505 static void __exit cubictcp_unregister(void)
506 {
507 	tcp_unregister_congestion_control(&cubictcp);
508 }
509 
510 module_init(cubictcp_register);
511 module_exit(cubictcp_unregister);
512 
513 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
514 MODULE_LICENSE("GPL");
515 MODULE_DESCRIPTION("CUBIC TCP");
516 MODULE_VERSION("2.3");
517