1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38
39 #include "rds.h"
40 #include "ib.h"
41
42 static char *rds_ib_wc_status_strings[] = {
43 #define RDS_IB_WC_STATUS_STR(foo) \
44 [IB_WC_##foo] = __stringify(IB_WC_##foo)
45 RDS_IB_WC_STATUS_STR(SUCCESS),
46 RDS_IB_WC_STATUS_STR(LOC_LEN_ERR),
47 RDS_IB_WC_STATUS_STR(LOC_QP_OP_ERR),
48 RDS_IB_WC_STATUS_STR(LOC_EEC_OP_ERR),
49 RDS_IB_WC_STATUS_STR(LOC_PROT_ERR),
50 RDS_IB_WC_STATUS_STR(WR_FLUSH_ERR),
51 RDS_IB_WC_STATUS_STR(MW_BIND_ERR),
52 RDS_IB_WC_STATUS_STR(BAD_RESP_ERR),
53 RDS_IB_WC_STATUS_STR(LOC_ACCESS_ERR),
54 RDS_IB_WC_STATUS_STR(REM_INV_REQ_ERR),
55 RDS_IB_WC_STATUS_STR(REM_ACCESS_ERR),
56 RDS_IB_WC_STATUS_STR(REM_OP_ERR),
57 RDS_IB_WC_STATUS_STR(RETRY_EXC_ERR),
58 RDS_IB_WC_STATUS_STR(RNR_RETRY_EXC_ERR),
59 RDS_IB_WC_STATUS_STR(LOC_RDD_VIOL_ERR),
60 RDS_IB_WC_STATUS_STR(REM_INV_RD_REQ_ERR),
61 RDS_IB_WC_STATUS_STR(REM_ABORT_ERR),
62 RDS_IB_WC_STATUS_STR(INV_EECN_ERR),
63 RDS_IB_WC_STATUS_STR(INV_EEC_STATE_ERR),
64 RDS_IB_WC_STATUS_STR(FATAL_ERR),
65 RDS_IB_WC_STATUS_STR(RESP_TIMEOUT_ERR),
66 RDS_IB_WC_STATUS_STR(GENERAL_ERR),
67 #undef RDS_IB_WC_STATUS_STR
68 };
69
rds_ib_wc_status_str(enum ib_wc_status status)70 char *rds_ib_wc_status_str(enum ib_wc_status status)
71 {
72 return rds_str_array(rds_ib_wc_status_strings,
73 ARRAY_SIZE(rds_ib_wc_status_strings), status);
74 }
75
76 /*
77 * Convert IB-specific error message to RDS error message and call core
78 * completion handler.
79 */
rds_ib_send_complete(struct rds_message * rm,int wc_status,void (* complete)(struct rds_message * rm,int status))80 static void rds_ib_send_complete(struct rds_message *rm,
81 int wc_status,
82 void (*complete)(struct rds_message *rm, int status))
83 {
84 int notify_status;
85
86 switch (wc_status) {
87 case IB_WC_WR_FLUSH_ERR:
88 return;
89
90 case IB_WC_SUCCESS:
91 notify_status = RDS_RDMA_SUCCESS;
92 break;
93
94 case IB_WC_REM_ACCESS_ERR:
95 notify_status = RDS_RDMA_REMOTE_ERROR;
96 break;
97
98 default:
99 notify_status = RDS_RDMA_OTHER_ERROR;
100 break;
101 }
102 complete(rm, notify_status);
103 }
104
rds_ib_send_unmap_rdma(struct rds_ib_connection * ic,struct rm_rdma_op * op,int wc_status)105 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
106 struct rm_rdma_op *op,
107 int wc_status)
108 {
109 if (op->op_mapped) {
110 ib_dma_unmap_sg(ic->i_cm_id->device,
111 op->op_sg, op->op_nents,
112 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
113 op->op_mapped = 0;
114 }
115
116 /* If the user asked for a completion notification on this
117 * message, we can implement three different semantics:
118 * 1. Notify when we received the ACK on the RDS message
119 * that was queued with the RDMA. This provides reliable
120 * notification of RDMA status at the expense of a one-way
121 * packet delay.
122 * 2. Notify when the IB stack gives us the completion event for
123 * the RDMA operation.
124 * 3. Notify when the IB stack gives us the completion event for
125 * the accompanying RDS messages.
126 * Here, we implement approach #3. To implement approach #2,
127 * we would need to take an event for the rdma WR. To implement #1,
128 * don't call rds_rdma_send_complete at all, and fall back to the notify
129 * handling in the ACK processing code.
130 *
131 * Note: There's no need to explicitly sync any RDMA buffers using
132 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
133 * operation itself unmapped the RDMA buffers, which takes care
134 * of synching.
135 */
136 rds_ib_send_complete(container_of(op, struct rds_message, rdma),
137 wc_status, rds_rdma_send_complete);
138
139 if (op->op_write)
140 rds_stats_add(s_send_rdma_bytes, op->op_bytes);
141 else
142 rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
143 }
144
rds_ib_send_unmap_atomic(struct rds_ib_connection * ic,struct rm_atomic_op * op,int wc_status)145 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
146 struct rm_atomic_op *op,
147 int wc_status)
148 {
149 /* unmap atomic recvbuf */
150 if (op->op_mapped) {
151 ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
152 DMA_FROM_DEVICE);
153 op->op_mapped = 0;
154 }
155
156 rds_ib_send_complete(container_of(op, struct rds_message, atomic),
157 wc_status, rds_atomic_send_complete);
158
159 if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
160 rds_ib_stats_inc(s_ib_atomic_cswp);
161 else
162 rds_ib_stats_inc(s_ib_atomic_fadd);
163 }
164
rds_ib_send_unmap_data(struct rds_ib_connection * ic,struct rm_data_op * op,int wc_status)165 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
166 struct rm_data_op *op,
167 int wc_status)
168 {
169 struct rds_message *rm = container_of(op, struct rds_message, data);
170
171 if (op->op_nents)
172 ib_dma_unmap_sg(ic->i_cm_id->device,
173 op->op_sg, op->op_nents,
174 DMA_TO_DEVICE);
175
176 if (rm->rdma.op_active && rm->data.op_notify)
177 rds_ib_send_unmap_rdma(ic, &rm->rdma, wc_status);
178 }
179
180 /*
181 * Unmap the resources associated with a struct send_work.
182 *
183 * Returns the rm for no good reason other than it is unobtainable
184 * other than by switching on wr.opcode, currently, and the caller,
185 * the event handler, needs it.
186 */
rds_ib_send_unmap_op(struct rds_ib_connection * ic,struct rds_ib_send_work * send,int wc_status)187 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
188 struct rds_ib_send_work *send,
189 int wc_status)
190 {
191 struct rds_message *rm = NULL;
192
193 /* In the error case, wc.opcode sometimes contains garbage */
194 switch (send->s_wr.opcode) {
195 case IB_WR_SEND:
196 if (send->s_op) {
197 rm = container_of(send->s_op, struct rds_message, data);
198 rds_ib_send_unmap_data(ic, send->s_op, wc_status);
199 }
200 break;
201 case IB_WR_RDMA_WRITE:
202 case IB_WR_RDMA_READ:
203 if (send->s_op) {
204 rm = container_of(send->s_op, struct rds_message, rdma);
205 rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
206 }
207 break;
208 case IB_WR_ATOMIC_FETCH_AND_ADD:
209 case IB_WR_ATOMIC_CMP_AND_SWP:
210 if (send->s_op) {
211 rm = container_of(send->s_op, struct rds_message, atomic);
212 rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
213 }
214 break;
215 default:
216 printk_ratelimited(KERN_NOTICE
217 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
218 __func__, send->s_wr.opcode);
219 break;
220 }
221
222 send->s_wr.opcode = 0xdead;
223
224 return rm;
225 }
226
rds_ib_send_init_ring(struct rds_ib_connection * ic)227 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
228 {
229 struct rds_ib_send_work *send;
230 u32 i;
231
232 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
233 struct ib_sge *sge;
234
235 send->s_op = NULL;
236
237 send->s_wr.wr_id = i;
238 send->s_wr.sg_list = send->s_sge;
239 send->s_wr.ex.imm_data = 0;
240
241 sge = &send->s_sge[0];
242 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
243 sge->length = sizeof(struct rds_header);
244 sge->lkey = ic->i_mr->lkey;
245
246 send->s_sge[1].lkey = ic->i_mr->lkey;
247 }
248 }
249
rds_ib_send_clear_ring(struct rds_ib_connection * ic)250 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
251 {
252 struct rds_ib_send_work *send;
253 u32 i;
254
255 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
256 if (send->s_op && send->s_wr.opcode != 0xdead)
257 rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
258 }
259 }
260
261 /*
262 * The only fast path caller always has a non-zero nr, so we don't
263 * bother testing nr before performing the atomic sub.
264 */
rds_ib_sub_signaled(struct rds_ib_connection * ic,int nr)265 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
266 {
267 if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
268 waitqueue_active(&rds_ib_ring_empty_wait))
269 wake_up(&rds_ib_ring_empty_wait);
270 BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
271 }
272
273 /*
274 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
275 * operations performed in the send path. As the sender allocs and potentially
276 * unallocs the next free entry in the ring it doesn't alter which is
277 * the next to be freed, which is what this is concerned with.
278 */
rds_ib_send_cq_comp_handler(struct ib_cq * cq,void * context)279 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
280 {
281 struct rds_connection *conn = context;
282 struct rds_ib_connection *ic = conn->c_transport_data;
283 struct rds_message *rm = NULL;
284 struct ib_wc wc;
285 struct rds_ib_send_work *send;
286 u32 completed;
287 u32 oldest;
288 u32 i = 0;
289 int ret;
290 int nr_sig = 0;
291
292 rdsdebug("cq %p conn %p\n", cq, conn);
293 rds_ib_stats_inc(s_ib_tx_cq_call);
294 ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
295 if (ret)
296 rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
297
298 while (ib_poll_cq(cq, 1, &wc) > 0) {
299 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
300 (unsigned long long)wc.wr_id, wc.status,
301 rds_ib_wc_status_str(wc.status), wc.byte_len,
302 be32_to_cpu(wc.ex.imm_data));
303 rds_ib_stats_inc(s_ib_tx_cq_event);
304
305 if (wc.wr_id == RDS_IB_ACK_WR_ID) {
306 if (time_after(jiffies, ic->i_ack_queued + HZ/2))
307 rds_ib_stats_inc(s_ib_tx_stalled);
308 rds_ib_ack_send_complete(ic);
309 continue;
310 }
311
312 oldest = rds_ib_ring_oldest(&ic->i_send_ring);
313
314 completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
315
316 for (i = 0; i < completed; i++) {
317 send = &ic->i_sends[oldest];
318 if (send->s_wr.send_flags & IB_SEND_SIGNALED)
319 nr_sig++;
320
321 rm = rds_ib_send_unmap_op(ic, send, wc.status);
322
323 if (time_after(jiffies, send->s_queued + HZ/2))
324 rds_ib_stats_inc(s_ib_tx_stalled);
325
326 if (send->s_op) {
327 if (send->s_op == rm->m_final_op) {
328 /* If anyone waited for this message to get flushed out, wake
329 * them up now */
330 rds_message_unmapped(rm);
331 }
332 rds_message_put(rm);
333 send->s_op = NULL;
334 }
335
336 oldest = (oldest + 1) % ic->i_send_ring.w_nr;
337 }
338
339 rds_ib_ring_free(&ic->i_send_ring, completed);
340 rds_ib_sub_signaled(ic, nr_sig);
341 nr_sig = 0;
342
343 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
344 test_bit(0, &conn->c_map_queued))
345 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
346
347 /* We expect errors as the qp is drained during shutdown */
348 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
349 rds_ib_conn_error(conn, "send completion on %pI4 had status "
350 "%u (%s), disconnecting and reconnecting\n",
351 &conn->c_faddr, wc.status,
352 rds_ib_wc_status_str(wc.status));
353 }
354 }
355 }
356
357 /*
358 * This is the main function for allocating credits when sending
359 * messages.
360 *
361 * Conceptually, we have two counters:
362 * - send credits: this tells us how many WRs we're allowed
363 * to submit without overruning the receiver's queue. For
364 * each SEND WR we post, we decrement this by one.
365 *
366 * - posted credits: this tells us how many WRs we recently
367 * posted to the receive queue. This value is transferred
368 * to the peer as a "credit update" in a RDS header field.
369 * Every time we transmit credits to the peer, we subtract
370 * the amount of transferred credits from this counter.
371 *
372 * It is essential that we avoid situations where both sides have
373 * exhausted their send credits, and are unable to send new credits
374 * to the peer. We achieve this by requiring that we send at least
375 * one credit update to the peer before exhausting our credits.
376 * When new credits arrive, we subtract one credit that is withheld
377 * until we've posted new buffers and are ready to transmit these
378 * credits (see rds_ib_send_add_credits below).
379 *
380 * The RDS send code is essentially single-threaded; rds_send_xmit
381 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
382 * However, the ACK sending code is independent and can race with
383 * message SENDs.
384 *
385 * In the send path, we need to update the counters for send credits
386 * and the counter of posted buffers atomically - when we use the
387 * last available credit, we cannot allow another thread to race us
388 * and grab the posted credits counter. Hence, we have to use a
389 * spinlock to protect the credit counter, or use atomics.
390 *
391 * Spinlocks shared between the send and the receive path are bad,
392 * because they create unnecessary delays. An early implementation
393 * using a spinlock showed a 5% degradation in throughput at some
394 * loads.
395 *
396 * This implementation avoids spinlocks completely, putting both
397 * counters into a single atomic, and updating that atomic using
398 * atomic_add (in the receive path, when receiving fresh credits),
399 * and using atomic_cmpxchg when updating the two counters.
400 */
rds_ib_send_grab_credits(struct rds_ib_connection * ic,u32 wanted,u32 * adv_credits,int need_posted,int max_posted)401 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
402 u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
403 {
404 unsigned int avail, posted, got = 0, advertise;
405 long oldval, newval;
406
407 *adv_credits = 0;
408 if (!ic->i_flowctl)
409 return wanted;
410
411 try_again:
412 advertise = 0;
413 oldval = newval = atomic_read(&ic->i_credits);
414 posted = IB_GET_POST_CREDITS(oldval);
415 avail = IB_GET_SEND_CREDITS(oldval);
416
417 rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
418 wanted, avail, posted);
419
420 /* The last credit must be used to send a credit update. */
421 if (avail && !posted)
422 avail--;
423
424 if (avail < wanted) {
425 struct rds_connection *conn = ic->i_cm_id->context;
426
427 /* Oops, there aren't that many credits left! */
428 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
429 got = avail;
430 } else {
431 /* Sometimes you get what you want, lalala. */
432 got = wanted;
433 }
434 newval -= IB_SET_SEND_CREDITS(got);
435
436 /*
437 * If need_posted is non-zero, then the caller wants
438 * the posted regardless of whether any send credits are
439 * available.
440 */
441 if (posted && (got || need_posted)) {
442 advertise = min_t(unsigned int, posted, max_posted);
443 newval -= IB_SET_POST_CREDITS(advertise);
444 }
445
446 /* Finally bill everything */
447 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
448 goto try_again;
449
450 *adv_credits = advertise;
451 return got;
452 }
453
rds_ib_send_add_credits(struct rds_connection * conn,unsigned int credits)454 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
455 {
456 struct rds_ib_connection *ic = conn->c_transport_data;
457
458 if (credits == 0)
459 return;
460
461 rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
462 credits,
463 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
464 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
465
466 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
467 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
468 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
469
470 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
471
472 rds_ib_stats_inc(s_ib_rx_credit_updates);
473 }
474
rds_ib_advertise_credits(struct rds_connection * conn,unsigned int posted)475 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
476 {
477 struct rds_ib_connection *ic = conn->c_transport_data;
478
479 if (posted == 0)
480 return;
481
482 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
483
484 /* Decide whether to send an update to the peer now.
485 * If we would send a credit update for every single buffer we
486 * post, we would end up with an ACK storm (ACK arrives,
487 * consumes buffer, we refill the ring, send ACK to remote
488 * advertising the newly posted buffer... ad inf)
489 *
490 * Performance pretty much depends on how often we send
491 * credit updates - too frequent updates mean lots of ACKs.
492 * Too infrequent updates, and the peer will run out of
493 * credits and has to throttle.
494 * For the time being, 16 seems to be a good compromise.
495 */
496 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
497 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
498 }
499
rds_ib_set_wr_signal_state(struct rds_ib_connection * ic,struct rds_ib_send_work * send,bool notify)500 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
501 struct rds_ib_send_work *send,
502 bool notify)
503 {
504 /*
505 * We want to delay signaling completions just enough to get
506 * the batching benefits but not so much that we create dead time
507 * on the wire.
508 */
509 if (ic->i_unsignaled_wrs-- == 0 || notify) {
510 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
511 send->s_wr.send_flags |= IB_SEND_SIGNALED;
512 return 1;
513 }
514 return 0;
515 }
516
517 /*
518 * This can be called multiple times for a given message. The first time
519 * we see a message we map its scatterlist into the IB device so that
520 * we can provide that mapped address to the IB scatter gather entries
521 * in the IB work requests. We translate the scatterlist into a series
522 * of work requests that fragment the message. These work requests complete
523 * in order so we pass ownership of the message to the completion handler
524 * once we send the final fragment.
525 *
526 * The RDS core uses the c_send_lock to only enter this function once
527 * per connection. This makes sure that the tx ring alloc/unalloc pairs
528 * don't get out of sync and confuse the ring.
529 */
rds_ib_xmit(struct rds_connection * conn,struct rds_message * rm,unsigned int hdr_off,unsigned int sg,unsigned int off)530 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
531 unsigned int hdr_off, unsigned int sg, unsigned int off)
532 {
533 struct rds_ib_connection *ic = conn->c_transport_data;
534 struct ib_device *dev = ic->i_cm_id->device;
535 struct rds_ib_send_work *send = NULL;
536 struct rds_ib_send_work *first;
537 struct rds_ib_send_work *prev;
538 struct ib_send_wr *failed_wr;
539 struct scatterlist *scat;
540 u32 pos;
541 u32 i;
542 u32 work_alloc;
543 u32 credit_alloc = 0;
544 u32 posted;
545 u32 adv_credits = 0;
546 int send_flags = 0;
547 int bytes_sent = 0;
548 int ret;
549 int flow_controlled = 0;
550 int nr_sig = 0;
551
552 BUG_ON(off % RDS_FRAG_SIZE);
553 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
554
555 /* Do not send cong updates to IB loopback */
556 if (conn->c_loopback
557 && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
558 rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
559 scat = &rm->data.op_sg[sg];
560 ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
561 return sizeof(struct rds_header) + ret;
562 }
563
564 /* FIXME we may overallocate here */
565 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
566 i = 1;
567 else
568 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
569
570 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
571 if (work_alloc == 0) {
572 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
573 rds_ib_stats_inc(s_ib_tx_ring_full);
574 ret = -ENOMEM;
575 goto out;
576 }
577
578 if (ic->i_flowctl) {
579 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
580 adv_credits += posted;
581 if (credit_alloc < work_alloc) {
582 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
583 work_alloc = credit_alloc;
584 flow_controlled = 1;
585 }
586 if (work_alloc == 0) {
587 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
588 rds_ib_stats_inc(s_ib_tx_throttle);
589 ret = -ENOMEM;
590 goto out;
591 }
592 }
593
594 /* map the message the first time we see it */
595 if (!ic->i_data_op) {
596 if (rm->data.op_nents) {
597 rm->data.op_count = ib_dma_map_sg(dev,
598 rm->data.op_sg,
599 rm->data.op_nents,
600 DMA_TO_DEVICE);
601 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
602 if (rm->data.op_count == 0) {
603 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
604 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
605 ret = -ENOMEM; /* XXX ? */
606 goto out;
607 }
608 } else {
609 rm->data.op_count = 0;
610 }
611
612 rds_message_addref(rm);
613 ic->i_data_op = &rm->data;
614
615 /* Finalize the header */
616 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
617 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
618 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
619 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
620
621 /* If it has a RDMA op, tell the peer we did it. This is
622 * used by the peer to release use-once RDMA MRs. */
623 if (rm->rdma.op_active) {
624 struct rds_ext_header_rdma ext_hdr;
625
626 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
627 rds_message_add_extension(&rm->m_inc.i_hdr,
628 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
629 }
630 if (rm->m_rdma_cookie) {
631 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
632 rds_rdma_cookie_key(rm->m_rdma_cookie),
633 rds_rdma_cookie_offset(rm->m_rdma_cookie));
634 }
635
636 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
637 * we should not do this unless we have a chance of at least
638 * sticking the header into the send ring. Which is why we
639 * should call rds_ib_ring_alloc first. */
640 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
641 rds_message_make_checksum(&rm->m_inc.i_hdr);
642
643 /*
644 * Update adv_credits since we reset the ACK_REQUIRED bit.
645 */
646 if (ic->i_flowctl) {
647 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
648 adv_credits += posted;
649 BUG_ON(adv_credits > 255);
650 }
651 }
652
653 /* Sometimes you want to put a fence between an RDMA
654 * READ and the following SEND.
655 * We could either do this all the time
656 * or when requested by the user. Right now, we let
657 * the application choose.
658 */
659 if (rm->rdma.op_active && rm->rdma.op_fence)
660 send_flags = IB_SEND_FENCE;
661
662 /* Each frag gets a header. Msgs may be 0 bytes */
663 send = &ic->i_sends[pos];
664 first = send;
665 prev = NULL;
666 scat = &ic->i_data_op->op_sg[sg];
667 i = 0;
668 do {
669 unsigned int len = 0;
670
671 /* Set up the header */
672 send->s_wr.send_flags = send_flags;
673 send->s_wr.opcode = IB_WR_SEND;
674 send->s_wr.num_sge = 1;
675 send->s_wr.next = NULL;
676 send->s_queued = jiffies;
677 send->s_op = NULL;
678
679 send->s_sge[0].addr = ic->i_send_hdrs_dma
680 + (pos * sizeof(struct rds_header));
681 send->s_sge[0].length = sizeof(struct rds_header);
682
683 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
684
685 /* Set up the data, if present */
686 if (i < work_alloc
687 && scat != &rm->data.op_sg[rm->data.op_count]) {
688 len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
689 send->s_wr.num_sge = 2;
690
691 send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off;
692 send->s_sge[1].length = len;
693
694 bytes_sent += len;
695 off += len;
696 if (off == ib_sg_dma_len(dev, scat)) {
697 scat++;
698 off = 0;
699 }
700 }
701
702 rds_ib_set_wr_signal_state(ic, send, 0);
703
704 /*
705 * Always signal the last one if we're stopping due to flow control.
706 */
707 if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
708 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
709
710 if (send->s_wr.send_flags & IB_SEND_SIGNALED)
711 nr_sig++;
712
713 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
714 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
715
716 if (ic->i_flowctl && adv_credits) {
717 struct rds_header *hdr = &ic->i_send_hdrs[pos];
718
719 /* add credit and redo the header checksum */
720 hdr->h_credit = adv_credits;
721 rds_message_make_checksum(hdr);
722 adv_credits = 0;
723 rds_ib_stats_inc(s_ib_tx_credit_updates);
724 }
725
726 if (prev)
727 prev->s_wr.next = &send->s_wr;
728 prev = send;
729
730 pos = (pos + 1) % ic->i_send_ring.w_nr;
731 send = &ic->i_sends[pos];
732 i++;
733
734 } while (i < work_alloc
735 && scat != &rm->data.op_sg[rm->data.op_count]);
736
737 /* Account the RDS header in the number of bytes we sent, but just once.
738 * The caller has no concept of fragmentation. */
739 if (hdr_off == 0)
740 bytes_sent += sizeof(struct rds_header);
741
742 /* if we finished the message then send completion owns it */
743 if (scat == &rm->data.op_sg[rm->data.op_count]) {
744 prev->s_op = ic->i_data_op;
745 prev->s_wr.send_flags |= IB_SEND_SOLICITED;
746 ic->i_data_op = NULL;
747 }
748
749 /* Put back wrs & credits we didn't use */
750 if (i < work_alloc) {
751 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
752 work_alloc = i;
753 }
754 if (ic->i_flowctl && i < credit_alloc)
755 rds_ib_send_add_credits(conn, credit_alloc - i);
756
757 if (nr_sig)
758 atomic_add(nr_sig, &ic->i_signaled_sends);
759
760 /* XXX need to worry about failed_wr and partial sends. */
761 failed_wr = &first->s_wr;
762 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
763 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
764 first, &first->s_wr, ret, failed_wr);
765 BUG_ON(failed_wr != &first->s_wr);
766 if (ret) {
767 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
768 "returned %d\n", &conn->c_faddr, ret);
769 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
770 rds_ib_sub_signaled(ic, nr_sig);
771 if (prev->s_op) {
772 ic->i_data_op = prev->s_op;
773 prev->s_op = NULL;
774 }
775
776 rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
777 goto out;
778 }
779
780 ret = bytes_sent;
781 out:
782 BUG_ON(adv_credits);
783 return ret;
784 }
785
786 /*
787 * Issue atomic operation.
788 * A simplified version of the rdma case, we always map 1 SG, and
789 * only 8 bytes, for the return value from the atomic operation.
790 */
rds_ib_xmit_atomic(struct rds_connection * conn,struct rm_atomic_op * op)791 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
792 {
793 struct rds_ib_connection *ic = conn->c_transport_data;
794 struct rds_ib_send_work *send = NULL;
795 struct ib_send_wr *failed_wr;
796 struct rds_ib_device *rds_ibdev;
797 u32 pos;
798 u32 work_alloc;
799 int ret;
800 int nr_sig = 0;
801
802 rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
803
804 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
805 if (work_alloc != 1) {
806 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
807 rds_ib_stats_inc(s_ib_tx_ring_full);
808 ret = -ENOMEM;
809 goto out;
810 }
811
812 /* address of send request in ring */
813 send = &ic->i_sends[pos];
814 send->s_queued = jiffies;
815
816 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
817 send->s_wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
818 send->s_wr.wr.atomic.compare_add = op->op_m_cswp.compare;
819 send->s_wr.wr.atomic.swap = op->op_m_cswp.swap;
820 send->s_wr.wr.atomic.compare_add_mask = op->op_m_cswp.compare_mask;
821 send->s_wr.wr.atomic.swap_mask = op->op_m_cswp.swap_mask;
822 } else { /* FADD */
823 send->s_wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
824 send->s_wr.wr.atomic.compare_add = op->op_m_fadd.add;
825 send->s_wr.wr.atomic.swap = 0;
826 send->s_wr.wr.atomic.compare_add_mask = op->op_m_fadd.nocarry_mask;
827 send->s_wr.wr.atomic.swap_mask = 0;
828 }
829 nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
830 send->s_wr.num_sge = 1;
831 send->s_wr.next = NULL;
832 send->s_wr.wr.atomic.remote_addr = op->op_remote_addr;
833 send->s_wr.wr.atomic.rkey = op->op_rkey;
834 send->s_op = op;
835 rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
836
837 /* map 8 byte retval buffer to the device */
838 ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
839 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
840 if (ret != 1) {
841 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
842 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
843 ret = -ENOMEM; /* XXX ? */
844 goto out;
845 }
846
847 /* Convert our struct scatterlist to struct ib_sge */
848 send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
849 send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
850 send->s_sge[0].lkey = ic->i_mr->lkey;
851
852 rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
853 send->s_sge[0].addr, send->s_sge[0].length);
854
855 if (nr_sig)
856 atomic_add(nr_sig, &ic->i_signaled_sends);
857
858 failed_wr = &send->s_wr;
859 ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr);
860 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
861 send, &send->s_wr, ret, failed_wr);
862 BUG_ON(failed_wr != &send->s_wr);
863 if (ret) {
864 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
865 "returned %d\n", &conn->c_faddr, ret);
866 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
867 rds_ib_sub_signaled(ic, nr_sig);
868 goto out;
869 }
870
871 if (unlikely(failed_wr != &send->s_wr)) {
872 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
873 BUG_ON(failed_wr != &send->s_wr);
874 }
875
876 out:
877 return ret;
878 }
879
rds_ib_xmit_rdma(struct rds_connection * conn,struct rm_rdma_op * op)880 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
881 {
882 struct rds_ib_connection *ic = conn->c_transport_data;
883 struct rds_ib_send_work *send = NULL;
884 struct rds_ib_send_work *first;
885 struct rds_ib_send_work *prev;
886 struct ib_send_wr *failed_wr;
887 struct scatterlist *scat;
888 unsigned long len;
889 u64 remote_addr = op->op_remote_addr;
890 u32 max_sge = ic->rds_ibdev->max_sge;
891 u32 pos;
892 u32 work_alloc;
893 u32 i;
894 u32 j;
895 int sent;
896 int ret;
897 int num_sge;
898 int nr_sig = 0;
899
900 /* map the op the first time we see it */
901 if (!op->op_mapped) {
902 op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
903 op->op_sg, op->op_nents, (op->op_write) ?
904 DMA_TO_DEVICE : DMA_FROM_DEVICE);
905 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
906 if (op->op_count == 0) {
907 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
908 ret = -ENOMEM; /* XXX ? */
909 goto out;
910 }
911
912 op->op_mapped = 1;
913 }
914
915 /*
916 * Instead of knowing how to return a partial rdma read/write we insist that there
917 * be enough work requests to send the entire message.
918 */
919 i = ceil(op->op_count, max_sge);
920
921 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
922 if (work_alloc != i) {
923 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
924 rds_ib_stats_inc(s_ib_tx_ring_full);
925 ret = -ENOMEM;
926 goto out;
927 }
928
929 send = &ic->i_sends[pos];
930 first = send;
931 prev = NULL;
932 scat = &op->op_sg[0];
933 sent = 0;
934 num_sge = op->op_count;
935
936 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
937 send->s_wr.send_flags = 0;
938 send->s_queued = jiffies;
939 send->s_op = NULL;
940
941 nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify);
942
943 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
944 send->s_wr.wr.rdma.remote_addr = remote_addr;
945 send->s_wr.wr.rdma.rkey = op->op_rkey;
946
947 if (num_sge > max_sge) {
948 send->s_wr.num_sge = max_sge;
949 num_sge -= max_sge;
950 } else {
951 send->s_wr.num_sge = num_sge;
952 }
953
954 send->s_wr.next = NULL;
955
956 if (prev)
957 prev->s_wr.next = &send->s_wr;
958
959 for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
960 len = ib_sg_dma_len(ic->i_cm_id->device, scat);
961 send->s_sge[j].addr =
962 ib_sg_dma_address(ic->i_cm_id->device, scat);
963 send->s_sge[j].length = len;
964 send->s_sge[j].lkey = ic->i_mr->lkey;
965
966 sent += len;
967 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
968
969 remote_addr += len;
970 scat++;
971 }
972
973 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
974 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
975
976 prev = send;
977 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
978 send = ic->i_sends;
979 }
980
981 /* give a reference to the last op */
982 if (scat == &op->op_sg[op->op_count]) {
983 prev->s_op = op;
984 rds_message_addref(container_of(op, struct rds_message, rdma));
985 }
986
987 if (i < work_alloc) {
988 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
989 work_alloc = i;
990 }
991
992 if (nr_sig)
993 atomic_add(nr_sig, &ic->i_signaled_sends);
994
995 failed_wr = &first->s_wr;
996 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
997 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
998 first, &first->s_wr, ret, failed_wr);
999 BUG_ON(failed_wr != &first->s_wr);
1000 if (ret) {
1001 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
1002 "returned %d\n", &conn->c_faddr, ret);
1003 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
1004 rds_ib_sub_signaled(ic, nr_sig);
1005 goto out;
1006 }
1007
1008 if (unlikely(failed_wr != &first->s_wr)) {
1009 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
1010 BUG_ON(failed_wr != &first->s_wr);
1011 }
1012
1013
1014 out:
1015 return ret;
1016 }
1017
rds_ib_xmit_complete(struct rds_connection * conn)1018 void rds_ib_xmit_complete(struct rds_connection *conn)
1019 {
1020 struct rds_ib_connection *ic = conn->c_transport_data;
1021
1022 /* We may have a pending ACK or window update we were unable
1023 * to send previously (due to flow control). Try again. */
1024 rds_ib_attempt_ack(ic);
1025 }
1026