• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 
42 #include "rds.h"
43 
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45  * time to time and briefly release the CPU. Otherwise the softlock watchdog
46  * will kick our shin.
47  * Also, it seems fairer to not let one busy connection stall all the
48  * others.
49  *
50  * send_batch_count is the number of times we'll loop in send_xmit. Setting
51  * it to 0 will restore the old behavior (where we looped until we had
52  * drained the queue).
53  */
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57 
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59 
60 /*
61  * Reset the send state.  Callers must ensure that this doesn't race with
62  * rds_send_xmit().
63  */
rds_send_reset(struct rds_connection * conn)64 void rds_send_reset(struct rds_connection *conn)
65 {
66 	struct rds_message *rm, *tmp;
67 	unsigned long flags;
68 
69 	if (conn->c_xmit_rm) {
70 		rm = conn->c_xmit_rm;
71 		conn->c_xmit_rm = NULL;
72 		/* Tell the user the RDMA op is no longer mapped by the
73 		 * transport. This isn't entirely true (it's flushed out
74 		 * independently) but as the connection is down, there's
75 		 * no ongoing RDMA to/from that memory */
76 		rds_message_unmapped(rm);
77 		rds_message_put(rm);
78 	}
79 
80 	conn->c_xmit_sg = 0;
81 	conn->c_xmit_hdr_off = 0;
82 	conn->c_xmit_data_off = 0;
83 	conn->c_xmit_atomic_sent = 0;
84 	conn->c_xmit_rdma_sent = 0;
85 	conn->c_xmit_data_sent = 0;
86 
87 	conn->c_map_queued = 0;
88 
89 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91 
92 	/* Mark messages as retransmissions, and move them to the send q */
93 	spin_lock_irqsave(&conn->c_lock, flags);
94 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 	}
98 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 	spin_unlock_irqrestore(&conn->c_lock, flags);
100 }
101 
acquire_in_xmit(struct rds_connection * conn)102 static int acquire_in_xmit(struct rds_connection *conn)
103 {
104 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 }
106 
release_in_xmit(struct rds_connection * conn)107 static void release_in_xmit(struct rds_connection *conn)
108 {
109 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 	smp_mb__after_atomic();
111 	/*
112 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 	 * hot path and finding waiters is very rare.  We don't want to walk
114 	 * the system-wide hashed waitqueue buckets in the fast path only to
115 	 * almost never find waiters.
116 	 */
117 	if (waitqueue_active(&conn->c_waitq))
118 		wake_up_all(&conn->c_waitq);
119 }
120 
121 /*
122  * We're making the conscious trade-off here to only send one message
123  * down the connection at a time.
124  *   Pro:
125  *      - tx queueing is a simple fifo list
126  *   	- reassembly is optional and easily done by transports per conn
127  *      - no per flow rx lookup at all, straight to the socket
128  *   	- less per-frag memory and wire overhead
129  *   Con:
130  *      - queued acks can be delayed behind large messages
131  *   Depends:
132  *      - small message latency is higher behind queued large messages
133  *      - large message latency isn't starved by intervening small sends
134  */
rds_send_xmit(struct rds_connection * conn)135 int rds_send_xmit(struct rds_connection *conn)
136 {
137 	struct rds_message *rm;
138 	unsigned long flags;
139 	unsigned int tmp;
140 	struct scatterlist *sg;
141 	int ret = 0;
142 	LIST_HEAD(to_be_dropped);
143 
144 restart:
145 
146 	/*
147 	 * sendmsg calls here after having queued its message on the send
148 	 * queue.  We only have one task feeding the connection at a time.  If
149 	 * another thread is already feeding the queue then we back off.  This
150 	 * avoids blocking the caller and trading per-connection data between
151 	 * caches per message.
152 	 */
153 	if (!acquire_in_xmit(conn)) {
154 		rds_stats_inc(s_send_lock_contention);
155 		ret = -ENOMEM;
156 		goto out;
157 	}
158 
159 	/*
160 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
161 	 * we do the opposite to avoid races.
162 	 */
163 	if (!rds_conn_up(conn)) {
164 		release_in_xmit(conn);
165 		ret = 0;
166 		goto out;
167 	}
168 
169 	if (conn->c_trans->xmit_prepare)
170 		conn->c_trans->xmit_prepare(conn);
171 
172 	/*
173 	 * spin trying to push headers and data down the connection until
174 	 * the connection doesn't make forward progress.
175 	 */
176 	while (1) {
177 
178 		rm = conn->c_xmit_rm;
179 
180 		/*
181 		 * If between sending messages, we can send a pending congestion
182 		 * map update.
183 		 */
184 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
185 			rm = rds_cong_update_alloc(conn);
186 			if (IS_ERR(rm)) {
187 				ret = PTR_ERR(rm);
188 				break;
189 			}
190 			rm->data.op_active = 1;
191 
192 			conn->c_xmit_rm = rm;
193 		}
194 
195 		/*
196 		 * If not already working on one, grab the next message.
197 		 *
198 		 * c_xmit_rm holds a ref while we're sending this message down
199 		 * the connction.  We can use this ref while holding the
200 		 * send_sem.. rds_send_reset() is serialized with it.
201 		 */
202 		if (!rm) {
203 			unsigned int len;
204 
205 			spin_lock_irqsave(&conn->c_lock, flags);
206 
207 			if (!list_empty(&conn->c_send_queue)) {
208 				rm = list_entry(conn->c_send_queue.next,
209 						struct rds_message,
210 						m_conn_item);
211 				rds_message_addref(rm);
212 
213 				/*
214 				 * Move the message from the send queue to the retransmit
215 				 * list right away.
216 				 */
217 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
218 			}
219 
220 			spin_unlock_irqrestore(&conn->c_lock, flags);
221 
222 			if (!rm)
223 				break;
224 
225 			/* Unfortunately, the way Infiniband deals with
226 			 * RDMA to a bad MR key is by moving the entire
227 			 * queue pair to error state. We cold possibly
228 			 * recover from that, but right now we drop the
229 			 * connection.
230 			 * Therefore, we never retransmit messages with RDMA ops.
231 			 */
232 			if (rm->rdma.op_active &&
233 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
234 				spin_lock_irqsave(&conn->c_lock, flags);
235 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
236 					list_move(&rm->m_conn_item, &to_be_dropped);
237 				spin_unlock_irqrestore(&conn->c_lock, flags);
238 				continue;
239 			}
240 
241 			/* Require an ACK every once in a while */
242 			len = ntohl(rm->m_inc.i_hdr.h_len);
243 			if (conn->c_unacked_packets == 0 ||
244 			    conn->c_unacked_bytes < len) {
245 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
246 
247 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
248 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
249 				rds_stats_inc(s_send_ack_required);
250 			} else {
251 				conn->c_unacked_bytes -= len;
252 				conn->c_unacked_packets--;
253 			}
254 
255 			conn->c_xmit_rm = rm;
256 		}
257 
258 		/* The transport either sends the whole rdma or none of it */
259 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
260 			rm->m_final_op = &rm->rdma;
261 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
262 			if (ret)
263 				break;
264 			conn->c_xmit_rdma_sent = 1;
265 
266 			/* The transport owns the mapped memory for now.
267 			 * You can't unmap it while it's on the send queue */
268 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
269 		}
270 
271 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
272 			rm->m_final_op = &rm->atomic;
273 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
274 			if (ret)
275 				break;
276 			conn->c_xmit_atomic_sent = 1;
277 
278 			/* The transport owns the mapped memory for now.
279 			 * You can't unmap it while it's on the send queue */
280 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
281 		}
282 
283 		/*
284 		 * A number of cases require an RDS header to be sent
285 		 * even if there is no data.
286 		 * We permit 0-byte sends; rds-ping depends on this.
287 		 * However, if there are exclusively attached silent ops,
288 		 * we skip the hdr/data send, to enable silent operation.
289 		 */
290 		if (rm->data.op_nents == 0) {
291 			int ops_present;
292 			int all_ops_are_silent = 1;
293 
294 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
295 			if (rm->atomic.op_active && !rm->atomic.op_silent)
296 				all_ops_are_silent = 0;
297 			if (rm->rdma.op_active && !rm->rdma.op_silent)
298 				all_ops_are_silent = 0;
299 
300 			if (ops_present && all_ops_are_silent
301 			    && !rm->m_rdma_cookie)
302 				rm->data.op_active = 0;
303 		}
304 
305 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
306 			rm->m_final_op = &rm->data;
307 			ret = conn->c_trans->xmit(conn, rm,
308 						  conn->c_xmit_hdr_off,
309 						  conn->c_xmit_sg,
310 						  conn->c_xmit_data_off);
311 			if (ret <= 0)
312 				break;
313 
314 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
315 				tmp = min_t(int, ret,
316 					    sizeof(struct rds_header) -
317 					    conn->c_xmit_hdr_off);
318 				conn->c_xmit_hdr_off += tmp;
319 				ret -= tmp;
320 			}
321 
322 			sg = &rm->data.op_sg[conn->c_xmit_sg];
323 			while (ret) {
324 				tmp = min_t(int, ret, sg->length -
325 						      conn->c_xmit_data_off);
326 				conn->c_xmit_data_off += tmp;
327 				ret -= tmp;
328 				if (conn->c_xmit_data_off == sg->length) {
329 					conn->c_xmit_data_off = 0;
330 					sg++;
331 					conn->c_xmit_sg++;
332 					BUG_ON(ret != 0 &&
333 					       conn->c_xmit_sg == rm->data.op_nents);
334 				}
335 			}
336 
337 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
338 			    (conn->c_xmit_sg == rm->data.op_nents))
339 				conn->c_xmit_data_sent = 1;
340 		}
341 
342 		/*
343 		 * A rm will only take multiple times through this loop
344 		 * if there is a data op. Thus, if the data is sent (or there was
345 		 * none), then we're done with the rm.
346 		 */
347 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
348 			conn->c_xmit_rm = NULL;
349 			conn->c_xmit_sg = 0;
350 			conn->c_xmit_hdr_off = 0;
351 			conn->c_xmit_data_off = 0;
352 			conn->c_xmit_rdma_sent = 0;
353 			conn->c_xmit_atomic_sent = 0;
354 			conn->c_xmit_data_sent = 0;
355 
356 			rds_message_put(rm);
357 		}
358 	}
359 
360 	if (conn->c_trans->xmit_complete)
361 		conn->c_trans->xmit_complete(conn);
362 
363 	release_in_xmit(conn);
364 
365 	/* Nuke any messages we decided not to retransmit. */
366 	if (!list_empty(&to_be_dropped)) {
367 		/* irqs on here, so we can put(), unlike above */
368 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
369 			rds_message_put(rm);
370 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
371 	}
372 
373 	/*
374 	 * Other senders can queue a message after we last test the send queue
375 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
376 	 * not try and send their newly queued message.  We need to check the
377 	 * send queue after having cleared RDS_IN_XMIT so that their message
378 	 * doesn't get stuck on the send queue.
379 	 *
380 	 * If the transport cannot continue (i.e ret != 0), then it must
381 	 * call us when more room is available, such as from the tx
382 	 * completion handler.
383 	 */
384 	if (ret == 0) {
385 		smp_mb();
386 		if (!list_empty(&conn->c_send_queue)) {
387 			rds_stats_inc(s_send_lock_queue_raced);
388 			goto restart;
389 		}
390 	}
391 out:
392 	return ret;
393 }
394 
rds_send_sndbuf_remove(struct rds_sock * rs,struct rds_message * rm)395 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
396 {
397 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
398 
399 	assert_spin_locked(&rs->rs_lock);
400 
401 	BUG_ON(rs->rs_snd_bytes < len);
402 	rs->rs_snd_bytes -= len;
403 
404 	if (rs->rs_snd_bytes == 0)
405 		rds_stats_inc(s_send_queue_empty);
406 }
407 
rds_send_is_acked(struct rds_message * rm,u64 ack,is_acked_func is_acked)408 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
409 				    is_acked_func is_acked)
410 {
411 	if (is_acked)
412 		return is_acked(rm, ack);
413 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
414 }
415 
416 /*
417  * This is pretty similar to what happens below in the ACK
418  * handling code - except that we call here as soon as we get
419  * the IB send completion on the RDMA op and the accompanying
420  * message.
421  */
rds_rdma_send_complete(struct rds_message * rm,int status)422 void rds_rdma_send_complete(struct rds_message *rm, int status)
423 {
424 	struct rds_sock *rs = NULL;
425 	struct rm_rdma_op *ro;
426 	struct rds_notifier *notifier;
427 	unsigned long flags;
428 	unsigned int notify = 0;
429 
430 	spin_lock_irqsave(&rm->m_rs_lock, flags);
431 
432 	notify =  rm->rdma.op_notify | rm->data.op_notify;
433 	ro = &rm->rdma;
434 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
435 	    ro->op_active && notify && ro->op_notifier) {
436 		notifier = ro->op_notifier;
437 		rs = rm->m_rs;
438 		sock_hold(rds_rs_to_sk(rs));
439 
440 		notifier->n_status = status;
441 		spin_lock(&rs->rs_lock);
442 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
443 		spin_unlock(&rs->rs_lock);
444 
445 		ro->op_notifier = NULL;
446 	}
447 
448 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
449 
450 	if (rs) {
451 		rds_wake_sk_sleep(rs);
452 		sock_put(rds_rs_to_sk(rs));
453 	}
454 }
455 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
456 
457 /*
458  * Just like above, except looks at atomic op
459  */
rds_atomic_send_complete(struct rds_message * rm,int status)460 void rds_atomic_send_complete(struct rds_message *rm, int status)
461 {
462 	struct rds_sock *rs = NULL;
463 	struct rm_atomic_op *ao;
464 	struct rds_notifier *notifier;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&rm->m_rs_lock, flags);
468 
469 	ao = &rm->atomic;
470 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
471 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
472 		notifier = ao->op_notifier;
473 		rs = rm->m_rs;
474 		sock_hold(rds_rs_to_sk(rs));
475 
476 		notifier->n_status = status;
477 		spin_lock(&rs->rs_lock);
478 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
479 		spin_unlock(&rs->rs_lock);
480 
481 		ao->op_notifier = NULL;
482 	}
483 
484 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
485 
486 	if (rs) {
487 		rds_wake_sk_sleep(rs);
488 		sock_put(rds_rs_to_sk(rs));
489 	}
490 }
491 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
492 
493 /*
494  * This is the same as rds_rdma_send_complete except we
495  * don't do any locking - we have all the ingredients (message,
496  * socket, socket lock) and can just move the notifier.
497  */
498 static inline void
__rds_send_complete(struct rds_sock * rs,struct rds_message * rm,int status)499 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
500 {
501 	struct rm_rdma_op *ro;
502 	struct rm_atomic_op *ao;
503 
504 	ro = &rm->rdma;
505 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
506 		ro->op_notifier->n_status = status;
507 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
508 		ro->op_notifier = NULL;
509 	}
510 
511 	ao = &rm->atomic;
512 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
513 		ao->op_notifier->n_status = status;
514 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
515 		ao->op_notifier = NULL;
516 	}
517 
518 	/* No need to wake the app - caller does this */
519 }
520 
521 /*
522  * This is called from the IB send completion when we detect
523  * a RDMA operation that failed with remote access error.
524  * So speed is not an issue here.
525  */
rds_send_get_message(struct rds_connection * conn,struct rm_rdma_op * op)526 struct rds_message *rds_send_get_message(struct rds_connection *conn,
527 					 struct rm_rdma_op *op)
528 {
529 	struct rds_message *rm, *tmp, *found = NULL;
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&conn->c_lock, flags);
533 
534 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
535 		if (&rm->rdma == op) {
536 			atomic_inc(&rm->m_refcount);
537 			found = rm;
538 			goto out;
539 		}
540 	}
541 
542 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
543 		if (&rm->rdma == op) {
544 			atomic_inc(&rm->m_refcount);
545 			found = rm;
546 			break;
547 		}
548 	}
549 
550 out:
551 	spin_unlock_irqrestore(&conn->c_lock, flags);
552 
553 	return found;
554 }
555 EXPORT_SYMBOL_GPL(rds_send_get_message);
556 
557 /*
558  * This removes messages from the socket's list if they're on it.  The list
559  * argument must be private to the caller, we must be able to modify it
560  * without locks.  The messages must have a reference held for their
561  * position on the list.  This function will drop that reference after
562  * removing the messages from the 'messages' list regardless of if it found
563  * the messages on the socket list or not.
564  */
rds_send_remove_from_sock(struct list_head * messages,int status)565 static void rds_send_remove_from_sock(struct list_head *messages, int status)
566 {
567 	unsigned long flags;
568 	struct rds_sock *rs = NULL;
569 	struct rds_message *rm;
570 
571 	while (!list_empty(messages)) {
572 		int was_on_sock = 0;
573 
574 		rm = list_entry(messages->next, struct rds_message,
575 				m_conn_item);
576 		list_del_init(&rm->m_conn_item);
577 
578 		/*
579 		 * If we see this flag cleared then we're *sure* that someone
580 		 * else beat us to removing it from the sock.  If we race
581 		 * with their flag update we'll get the lock and then really
582 		 * see that the flag has been cleared.
583 		 *
584 		 * The message spinlock makes sure nobody clears rm->m_rs
585 		 * while we're messing with it. It does not prevent the
586 		 * message from being removed from the socket, though.
587 		 */
588 		spin_lock_irqsave(&rm->m_rs_lock, flags);
589 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
590 			goto unlock_and_drop;
591 
592 		if (rs != rm->m_rs) {
593 			if (rs) {
594 				rds_wake_sk_sleep(rs);
595 				sock_put(rds_rs_to_sk(rs));
596 			}
597 			rs = rm->m_rs;
598 			if (rs)
599 				sock_hold(rds_rs_to_sk(rs));
600 		}
601 		if (!rs)
602 			goto unlock_and_drop;
603 		spin_lock(&rs->rs_lock);
604 
605 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
606 			struct rm_rdma_op *ro = &rm->rdma;
607 			struct rds_notifier *notifier;
608 
609 			list_del_init(&rm->m_sock_item);
610 			rds_send_sndbuf_remove(rs, rm);
611 
612 			if (ro->op_active && ro->op_notifier &&
613 			       (ro->op_notify || (ro->op_recverr && status))) {
614 				notifier = ro->op_notifier;
615 				list_add_tail(&notifier->n_list,
616 						&rs->rs_notify_queue);
617 				if (!notifier->n_status)
618 					notifier->n_status = status;
619 				rm->rdma.op_notifier = NULL;
620 			}
621 			was_on_sock = 1;
622 			rm->m_rs = NULL;
623 		}
624 		spin_unlock(&rs->rs_lock);
625 
626 unlock_and_drop:
627 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
628 		rds_message_put(rm);
629 		if (was_on_sock)
630 			rds_message_put(rm);
631 	}
632 
633 	if (rs) {
634 		rds_wake_sk_sleep(rs);
635 		sock_put(rds_rs_to_sk(rs));
636 	}
637 }
638 
639 /*
640  * Transports call here when they've determined that the receiver queued
641  * messages up to, and including, the given sequence number.  Messages are
642  * moved to the retrans queue when rds_send_xmit picks them off the send
643  * queue. This means that in the TCP case, the message may not have been
644  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
645  * checks the RDS_MSG_HAS_ACK_SEQ bit.
646  */
rds_send_drop_acked(struct rds_connection * conn,u64 ack,is_acked_func is_acked)647 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
648 			 is_acked_func is_acked)
649 {
650 	struct rds_message *rm, *tmp;
651 	unsigned long flags;
652 	LIST_HEAD(list);
653 
654 	spin_lock_irqsave(&conn->c_lock, flags);
655 
656 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
657 		if (!rds_send_is_acked(rm, ack, is_acked))
658 			break;
659 
660 		list_move(&rm->m_conn_item, &list);
661 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
662 	}
663 
664 	/* order flag updates with spin locks */
665 	if (!list_empty(&list))
666 		smp_mb__after_atomic();
667 
668 	spin_unlock_irqrestore(&conn->c_lock, flags);
669 
670 	/* now remove the messages from the sock list as needed */
671 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
672 }
673 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
674 
rds_send_drop_to(struct rds_sock * rs,struct sockaddr_in * dest)675 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
676 {
677 	struct rds_message *rm, *tmp;
678 	struct rds_connection *conn;
679 	unsigned long flags;
680 	LIST_HEAD(list);
681 
682 	/* get all the messages we're dropping under the rs lock */
683 	spin_lock_irqsave(&rs->rs_lock, flags);
684 
685 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
686 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
687 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
688 			continue;
689 
690 		list_move(&rm->m_sock_item, &list);
691 		rds_send_sndbuf_remove(rs, rm);
692 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
693 	}
694 
695 	/* order flag updates with the rs lock */
696 	smp_mb__after_atomic();
697 
698 	spin_unlock_irqrestore(&rs->rs_lock, flags);
699 
700 	if (list_empty(&list))
701 		return;
702 
703 	/* Remove the messages from the conn */
704 	list_for_each_entry(rm, &list, m_sock_item) {
705 
706 		conn = rm->m_inc.i_conn;
707 
708 		spin_lock_irqsave(&conn->c_lock, flags);
709 		/*
710 		 * Maybe someone else beat us to removing rm from the conn.
711 		 * If we race with their flag update we'll get the lock and
712 		 * then really see that the flag has been cleared.
713 		 */
714 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
715 			spin_unlock_irqrestore(&conn->c_lock, flags);
716 			spin_lock_irqsave(&rm->m_rs_lock, flags);
717 			rm->m_rs = NULL;
718 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
719 			continue;
720 		}
721 		list_del_init(&rm->m_conn_item);
722 		spin_unlock_irqrestore(&conn->c_lock, flags);
723 
724 		/*
725 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
726 		 * but we can now.
727 		 */
728 		spin_lock_irqsave(&rm->m_rs_lock, flags);
729 
730 		spin_lock(&rs->rs_lock);
731 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
732 		spin_unlock(&rs->rs_lock);
733 
734 		rm->m_rs = NULL;
735 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
736 
737 		rds_message_put(rm);
738 	}
739 
740 	rds_wake_sk_sleep(rs);
741 
742 	while (!list_empty(&list)) {
743 		rm = list_entry(list.next, struct rds_message, m_sock_item);
744 		list_del_init(&rm->m_sock_item);
745 
746 		rds_message_wait(rm);
747 		rds_message_put(rm);
748 	}
749 }
750 
751 /*
752  * we only want this to fire once so we use the callers 'queued'.  It's
753  * possible that another thread can race with us and remove the
754  * message from the flow with RDS_CANCEL_SENT_TO.
755  */
rds_send_queue_rm(struct rds_sock * rs,struct rds_connection * conn,struct rds_message * rm,__be16 sport,__be16 dport,int * queued)756 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
757 			     struct rds_message *rm, __be16 sport,
758 			     __be16 dport, int *queued)
759 {
760 	unsigned long flags;
761 	u32 len;
762 
763 	if (*queued)
764 		goto out;
765 
766 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
767 
768 	/* this is the only place which holds both the socket's rs_lock
769 	 * and the connection's c_lock */
770 	spin_lock_irqsave(&rs->rs_lock, flags);
771 
772 	/*
773 	 * If there is a little space in sndbuf, we don't queue anything,
774 	 * and userspace gets -EAGAIN. But poll() indicates there's send
775 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
776 	 * freed up by incoming acks. So we check the *old* value of
777 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
778 	 * and poll() now knows no more data can be sent.
779 	 */
780 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
781 		rs->rs_snd_bytes += len;
782 
783 		/* let recv side know we are close to send space exhaustion.
784 		 * This is probably not the optimal way to do it, as this
785 		 * means we set the flag on *all* messages as soon as our
786 		 * throughput hits a certain threshold.
787 		 */
788 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
789 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
790 
791 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
792 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
793 		rds_message_addref(rm);
794 		rm->m_rs = rs;
795 
796 		/* The code ordering is a little weird, but we're
797 		   trying to minimize the time we hold c_lock */
798 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
799 		rm->m_inc.i_conn = conn;
800 		rds_message_addref(rm);
801 
802 		spin_lock(&conn->c_lock);
803 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
804 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
805 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
806 		spin_unlock(&conn->c_lock);
807 
808 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
809 			 rm, len, rs, rs->rs_snd_bytes,
810 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
811 
812 		*queued = 1;
813 	}
814 
815 	spin_unlock_irqrestore(&rs->rs_lock, flags);
816 out:
817 	return *queued;
818 }
819 
820 /*
821  * rds_message is getting to be quite complicated, and we'd like to allocate
822  * it all in one go. This figures out how big it needs to be up front.
823  */
rds_rm_size(struct msghdr * msg,int data_len)824 static int rds_rm_size(struct msghdr *msg, int data_len)
825 {
826 	struct cmsghdr *cmsg;
827 	int size = 0;
828 	int cmsg_groups = 0;
829 	int retval;
830 
831 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
832 		if (!CMSG_OK(msg, cmsg))
833 			return -EINVAL;
834 
835 		if (cmsg->cmsg_level != SOL_RDS)
836 			continue;
837 
838 		switch (cmsg->cmsg_type) {
839 		case RDS_CMSG_RDMA_ARGS:
840 			cmsg_groups |= 1;
841 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
842 			if (retval < 0)
843 				return retval;
844 			size += retval;
845 
846 			break;
847 
848 		case RDS_CMSG_RDMA_DEST:
849 		case RDS_CMSG_RDMA_MAP:
850 			cmsg_groups |= 2;
851 			/* these are valid but do no add any size */
852 			break;
853 
854 		case RDS_CMSG_ATOMIC_CSWP:
855 		case RDS_CMSG_ATOMIC_FADD:
856 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
857 		case RDS_CMSG_MASKED_ATOMIC_FADD:
858 			cmsg_groups |= 1;
859 			size += sizeof(struct scatterlist);
860 			break;
861 
862 		default:
863 			return -EINVAL;
864 		}
865 
866 	}
867 
868 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
869 
870 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
871 	if (cmsg_groups == 3)
872 		return -EINVAL;
873 
874 	return size;
875 }
876 
rds_cmsg_send(struct rds_sock * rs,struct rds_message * rm,struct msghdr * msg,int * allocated_mr)877 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
878 			 struct msghdr *msg, int *allocated_mr)
879 {
880 	struct cmsghdr *cmsg;
881 	int ret = 0;
882 
883 	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
884 		if (!CMSG_OK(msg, cmsg))
885 			return -EINVAL;
886 
887 		if (cmsg->cmsg_level != SOL_RDS)
888 			continue;
889 
890 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
891 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
892 		 */
893 		switch (cmsg->cmsg_type) {
894 		case RDS_CMSG_RDMA_ARGS:
895 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
896 			break;
897 
898 		case RDS_CMSG_RDMA_DEST:
899 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
900 			break;
901 
902 		case RDS_CMSG_RDMA_MAP:
903 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
904 			if (!ret)
905 				*allocated_mr = 1;
906 			else if (ret == -ENODEV)
907 				/* Accommodate the get_mr() case which can fail
908 				 * if connection isn't established yet.
909 				 */
910 				ret = -EAGAIN;
911 			break;
912 		case RDS_CMSG_ATOMIC_CSWP:
913 		case RDS_CMSG_ATOMIC_FADD:
914 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
915 		case RDS_CMSG_MASKED_ATOMIC_FADD:
916 			ret = rds_cmsg_atomic(rs, rm, cmsg);
917 			break;
918 
919 		default:
920 			return -EINVAL;
921 		}
922 
923 		if (ret)
924 			break;
925 	}
926 
927 	return ret;
928 }
929 
rds_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t payload_len)930 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
931 		size_t payload_len)
932 {
933 	struct sock *sk = sock->sk;
934 	struct rds_sock *rs = rds_sk_to_rs(sk);
935 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 	__be32 daddr;
937 	__be16 dport;
938 	struct rds_message *rm = NULL;
939 	struct rds_connection *conn;
940 	int ret = 0;
941 	int queued = 0, allocated_mr = 0;
942 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
943 	long timeo = sock_sndtimeo(sk, nonblock);
944 
945 	/* Mirror Linux UDP mirror of BSD error message compatibility */
946 	/* XXX: Perhaps MSG_MORE someday */
947 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
948 		ret = -EOPNOTSUPP;
949 		goto out;
950 	}
951 
952 	if (msg->msg_namelen) {
953 		/* XXX fail non-unicast destination IPs? */
954 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
955 			ret = -EINVAL;
956 			goto out;
957 		}
958 		daddr = usin->sin_addr.s_addr;
959 		dport = usin->sin_port;
960 	} else {
961 		/* We only care about consistency with ->connect() */
962 		lock_sock(sk);
963 		daddr = rs->rs_conn_addr;
964 		dport = rs->rs_conn_port;
965 		release_sock(sk);
966 	}
967 
968 	lock_sock(sk);
969 	if (daddr == 0 || rs->rs_bound_addr == 0) {
970 		release_sock(sk);
971 		ret = -ENOTCONN; /* XXX not a great errno */
972 		goto out;
973 	}
974 	release_sock(sk);
975 
976 	/* size of rm including all sgs */
977 	ret = rds_rm_size(msg, payload_len);
978 	if (ret < 0)
979 		goto out;
980 
981 	rm = rds_message_alloc(ret, GFP_KERNEL);
982 	if (!rm) {
983 		ret = -ENOMEM;
984 		goto out;
985 	}
986 
987 	/* Attach data to the rm */
988 	if (payload_len) {
989 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
990 		if (!rm->data.op_sg) {
991 			ret = -ENOMEM;
992 			goto out;
993 		}
994 		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
995 		if (ret)
996 			goto out;
997 	}
998 	rm->data.op_active = 1;
999 
1000 	rm->m_daddr = daddr;
1001 
1002 	/* rds_conn_create has a spinlock that runs with IRQ off.
1003 	 * Caching the conn in the socket helps a lot. */
1004 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1005 		conn = rs->rs_conn;
1006 	else {
1007 		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1008 					rs->rs_transport,
1009 					sock->sk->sk_allocation);
1010 		if (IS_ERR(conn)) {
1011 			ret = PTR_ERR(conn);
1012 			goto out;
1013 		}
1014 		rs->rs_conn = conn;
1015 	}
1016 
1017 	/* Parse any control messages the user may have included. */
1018 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1019 	if (ret) {
1020 		/* Trigger connection so that its ready for the next retry */
1021 		if (ret ==  -EAGAIN)
1022 			rds_conn_connect_if_down(conn);
1023 		goto out;
1024 	}
1025 
1026 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1027 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1028 			       &rm->rdma, conn->c_trans->xmit_rdma);
1029 		ret = -EOPNOTSUPP;
1030 		goto out;
1031 	}
1032 
1033 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1034 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1035 			       &rm->atomic, conn->c_trans->xmit_atomic);
1036 		ret = -EOPNOTSUPP;
1037 		goto out;
1038 	}
1039 
1040 	rds_conn_connect_if_down(conn);
1041 
1042 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1043 	if (ret) {
1044 		rs->rs_seen_congestion = 1;
1045 		goto out;
1046 	}
1047 
1048 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1049 				  dport, &queued)) {
1050 		rds_stats_inc(s_send_queue_full);
1051 		/* XXX make sure this is reasonable */
1052 		if (payload_len > rds_sk_sndbuf(rs)) {
1053 			ret = -EMSGSIZE;
1054 			goto out;
1055 		}
1056 		if (nonblock) {
1057 			ret = -EAGAIN;
1058 			goto out;
1059 		}
1060 
1061 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1062 					rds_send_queue_rm(rs, conn, rm,
1063 							  rs->rs_bound_port,
1064 							  dport,
1065 							  &queued),
1066 					timeo);
1067 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1068 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1069 			continue;
1070 
1071 		ret = timeo;
1072 		if (ret == 0)
1073 			ret = -ETIMEDOUT;
1074 		goto out;
1075 	}
1076 
1077 	/*
1078 	 * By now we've committed to the send.  We reuse rds_send_worker()
1079 	 * to retry sends in the rds thread if the transport asks us to.
1080 	 */
1081 	rds_stats_inc(s_send_queued);
1082 
1083 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1084 		rds_send_xmit(conn);
1085 
1086 	rds_message_put(rm);
1087 	return payload_len;
1088 
1089 out:
1090 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1091 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1092 	 * or in any other way, we need to destroy the MR again */
1093 	if (allocated_mr)
1094 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1095 
1096 	if (rm)
1097 		rds_message_put(rm);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Reply to a ping packet.
1103  */
1104 int
rds_send_pong(struct rds_connection * conn,__be16 dport)1105 rds_send_pong(struct rds_connection *conn, __be16 dport)
1106 {
1107 	struct rds_message *rm;
1108 	unsigned long flags;
1109 	int ret = 0;
1110 
1111 	rm = rds_message_alloc(0, GFP_ATOMIC);
1112 	if (!rm) {
1113 		ret = -ENOMEM;
1114 		goto out;
1115 	}
1116 
1117 	rm->m_daddr = conn->c_faddr;
1118 	rm->data.op_active = 1;
1119 
1120 	rds_conn_connect_if_down(conn);
1121 
1122 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1123 	if (ret)
1124 		goto out;
1125 
1126 	spin_lock_irqsave(&conn->c_lock, flags);
1127 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1128 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1129 	rds_message_addref(rm);
1130 	rm->m_inc.i_conn = conn;
1131 
1132 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1133 				    conn->c_next_tx_seq);
1134 	conn->c_next_tx_seq++;
1135 	spin_unlock_irqrestore(&conn->c_lock, flags);
1136 
1137 	rds_stats_inc(s_send_queued);
1138 	rds_stats_inc(s_send_pong);
1139 
1140 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1141 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1142 
1143 	rds_message_put(rm);
1144 	return 0;
1145 
1146 out:
1147 	if (rm)
1148 		rds_message_put(rm);
1149 	return ret;
1150 }
1151