1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41
42 #include "rds.h"
43
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45 * time to time and briefly release the CPU. Otherwise the softlock watchdog
46 * will kick our shin.
47 * Also, it seems fairer to not let one busy connection stall all the
48 * others.
49 *
50 * send_batch_count is the number of times we'll loop in send_xmit. Setting
51 * it to 0 will restore the old behavior (where we looped until we had
52 * drained the queue).
53 */
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59
60 /*
61 * Reset the send state. Callers must ensure that this doesn't race with
62 * rds_send_xmit().
63 */
rds_send_reset(struct rds_connection * conn)64 void rds_send_reset(struct rds_connection *conn)
65 {
66 struct rds_message *rm, *tmp;
67 unsigned long flags;
68
69 if (conn->c_xmit_rm) {
70 rm = conn->c_xmit_rm;
71 conn->c_xmit_rm = NULL;
72 /* Tell the user the RDMA op is no longer mapped by the
73 * transport. This isn't entirely true (it's flushed out
74 * independently) but as the connection is down, there's
75 * no ongoing RDMA to/from that memory */
76 rds_message_unmapped(rm);
77 rds_message_put(rm);
78 }
79
80 conn->c_xmit_sg = 0;
81 conn->c_xmit_hdr_off = 0;
82 conn->c_xmit_data_off = 0;
83 conn->c_xmit_atomic_sent = 0;
84 conn->c_xmit_rdma_sent = 0;
85 conn->c_xmit_data_sent = 0;
86
87 conn->c_map_queued = 0;
88
89 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn->c_lock, flags);
94 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 }
98 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 spin_unlock_irqrestore(&conn->c_lock, flags);
100 }
101
acquire_in_xmit(struct rds_connection * conn)102 static int acquire_in_xmit(struct rds_connection *conn)
103 {
104 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 }
106
release_in_xmit(struct rds_connection * conn)107 static void release_in_xmit(struct rds_connection *conn)
108 {
109 clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 smp_mb__after_atomic();
111 /*
112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 * hot path and finding waiters is very rare. We don't want to walk
114 * the system-wide hashed waitqueue buckets in the fast path only to
115 * almost never find waiters.
116 */
117 if (waitqueue_active(&conn->c_waitq))
118 wake_up_all(&conn->c_waitq);
119 }
120
121 /*
122 * We're making the conscious trade-off here to only send one message
123 * down the connection at a time.
124 * Pro:
125 * - tx queueing is a simple fifo list
126 * - reassembly is optional and easily done by transports per conn
127 * - no per flow rx lookup at all, straight to the socket
128 * - less per-frag memory and wire overhead
129 * Con:
130 * - queued acks can be delayed behind large messages
131 * Depends:
132 * - small message latency is higher behind queued large messages
133 * - large message latency isn't starved by intervening small sends
134 */
rds_send_xmit(struct rds_connection * conn)135 int rds_send_xmit(struct rds_connection *conn)
136 {
137 struct rds_message *rm;
138 unsigned long flags;
139 unsigned int tmp;
140 struct scatterlist *sg;
141 int ret = 0;
142 LIST_HEAD(to_be_dropped);
143
144 restart:
145
146 /*
147 * sendmsg calls here after having queued its message on the send
148 * queue. We only have one task feeding the connection at a time. If
149 * another thread is already feeding the queue then we back off. This
150 * avoids blocking the caller and trading per-connection data between
151 * caches per message.
152 */
153 if (!acquire_in_xmit(conn)) {
154 rds_stats_inc(s_send_lock_contention);
155 ret = -ENOMEM;
156 goto out;
157 }
158
159 /*
160 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
161 * we do the opposite to avoid races.
162 */
163 if (!rds_conn_up(conn)) {
164 release_in_xmit(conn);
165 ret = 0;
166 goto out;
167 }
168
169 if (conn->c_trans->xmit_prepare)
170 conn->c_trans->xmit_prepare(conn);
171
172 /*
173 * spin trying to push headers and data down the connection until
174 * the connection doesn't make forward progress.
175 */
176 while (1) {
177
178 rm = conn->c_xmit_rm;
179
180 /*
181 * If between sending messages, we can send a pending congestion
182 * map update.
183 */
184 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
185 rm = rds_cong_update_alloc(conn);
186 if (IS_ERR(rm)) {
187 ret = PTR_ERR(rm);
188 break;
189 }
190 rm->data.op_active = 1;
191
192 conn->c_xmit_rm = rm;
193 }
194
195 /*
196 * If not already working on one, grab the next message.
197 *
198 * c_xmit_rm holds a ref while we're sending this message down
199 * the connction. We can use this ref while holding the
200 * send_sem.. rds_send_reset() is serialized with it.
201 */
202 if (!rm) {
203 unsigned int len;
204
205 spin_lock_irqsave(&conn->c_lock, flags);
206
207 if (!list_empty(&conn->c_send_queue)) {
208 rm = list_entry(conn->c_send_queue.next,
209 struct rds_message,
210 m_conn_item);
211 rds_message_addref(rm);
212
213 /*
214 * Move the message from the send queue to the retransmit
215 * list right away.
216 */
217 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
218 }
219
220 spin_unlock_irqrestore(&conn->c_lock, flags);
221
222 if (!rm)
223 break;
224
225 /* Unfortunately, the way Infiniband deals with
226 * RDMA to a bad MR key is by moving the entire
227 * queue pair to error state. We cold possibly
228 * recover from that, but right now we drop the
229 * connection.
230 * Therefore, we never retransmit messages with RDMA ops.
231 */
232 if (rm->rdma.op_active &&
233 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
234 spin_lock_irqsave(&conn->c_lock, flags);
235 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
236 list_move(&rm->m_conn_item, &to_be_dropped);
237 spin_unlock_irqrestore(&conn->c_lock, flags);
238 continue;
239 }
240
241 /* Require an ACK every once in a while */
242 len = ntohl(rm->m_inc.i_hdr.h_len);
243 if (conn->c_unacked_packets == 0 ||
244 conn->c_unacked_bytes < len) {
245 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
246
247 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
248 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
249 rds_stats_inc(s_send_ack_required);
250 } else {
251 conn->c_unacked_bytes -= len;
252 conn->c_unacked_packets--;
253 }
254
255 conn->c_xmit_rm = rm;
256 }
257
258 /* The transport either sends the whole rdma or none of it */
259 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
260 rm->m_final_op = &rm->rdma;
261 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
262 if (ret)
263 break;
264 conn->c_xmit_rdma_sent = 1;
265
266 /* The transport owns the mapped memory for now.
267 * You can't unmap it while it's on the send queue */
268 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
269 }
270
271 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
272 rm->m_final_op = &rm->atomic;
273 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
274 if (ret)
275 break;
276 conn->c_xmit_atomic_sent = 1;
277
278 /* The transport owns the mapped memory for now.
279 * You can't unmap it while it's on the send queue */
280 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
281 }
282
283 /*
284 * A number of cases require an RDS header to be sent
285 * even if there is no data.
286 * We permit 0-byte sends; rds-ping depends on this.
287 * However, if there are exclusively attached silent ops,
288 * we skip the hdr/data send, to enable silent operation.
289 */
290 if (rm->data.op_nents == 0) {
291 int ops_present;
292 int all_ops_are_silent = 1;
293
294 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
295 if (rm->atomic.op_active && !rm->atomic.op_silent)
296 all_ops_are_silent = 0;
297 if (rm->rdma.op_active && !rm->rdma.op_silent)
298 all_ops_are_silent = 0;
299
300 if (ops_present && all_ops_are_silent
301 && !rm->m_rdma_cookie)
302 rm->data.op_active = 0;
303 }
304
305 if (rm->data.op_active && !conn->c_xmit_data_sent) {
306 rm->m_final_op = &rm->data;
307 ret = conn->c_trans->xmit(conn, rm,
308 conn->c_xmit_hdr_off,
309 conn->c_xmit_sg,
310 conn->c_xmit_data_off);
311 if (ret <= 0)
312 break;
313
314 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
315 tmp = min_t(int, ret,
316 sizeof(struct rds_header) -
317 conn->c_xmit_hdr_off);
318 conn->c_xmit_hdr_off += tmp;
319 ret -= tmp;
320 }
321
322 sg = &rm->data.op_sg[conn->c_xmit_sg];
323 while (ret) {
324 tmp = min_t(int, ret, sg->length -
325 conn->c_xmit_data_off);
326 conn->c_xmit_data_off += tmp;
327 ret -= tmp;
328 if (conn->c_xmit_data_off == sg->length) {
329 conn->c_xmit_data_off = 0;
330 sg++;
331 conn->c_xmit_sg++;
332 BUG_ON(ret != 0 &&
333 conn->c_xmit_sg == rm->data.op_nents);
334 }
335 }
336
337 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
338 (conn->c_xmit_sg == rm->data.op_nents))
339 conn->c_xmit_data_sent = 1;
340 }
341
342 /*
343 * A rm will only take multiple times through this loop
344 * if there is a data op. Thus, if the data is sent (or there was
345 * none), then we're done with the rm.
346 */
347 if (!rm->data.op_active || conn->c_xmit_data_sent) {
348 conn->c_xmit_rm = NULL;
349 conn->c_xmit_sg = 0;
350 conn->c_xmit_hdr_off = 0;
351 conn->c_xmit_data_off = 0;
352 conn->c_xmit_rdma_sent = 0;
353 conn->c_xmit_atomic_sent = 0;
354 conn->c_xmit_data_sent = 0;
355
356 rds_message_put(rm);
357 }
358 }
359
360 if (conn->c_trans->xmit_complete)
361 conn->c_trans->xmit_complete(conn);
362
363 release_in_xmit(conn);
364
365 /* Nuke any messages we decided not to retransmit. */
366 if (!list_empty(&to_be_dropped)) {
367 /* irqs on here, so we can put(), unlike above */
368 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
369 rds_message_put(rm);
370 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
371 }
372
373 /*
374 * Other senders can queue a message after we last test the send queue
375 * but before we clear RDS_IN_XMIT. In that case they'd back off and
376 * not try and send their newly queued message. We need to check the
377 * send queue after having cleared RDS_IN_XMIT so that their message
378 * doesn't get stuck on the send queue.
379 *
380 * If the transport cannot continue (i.e ret != 0), then it must
381 * call us when more room is available, such as from the tx
382 * completion handler.
383 */
384 if (ret == 0) {
385 smp_mb();
386 if (!list_empty(&conn->c_send_queue)) {
387 rds_stats_inc(s_send_lock_queue_raced);
388 goto restart;
389 }
390 }
391 out:
392 return ret;
393 }
394
rds_send_sndbuf_remove(struct rds_sock * rs,struct rds_message * rm)395 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
396 {
397 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
398
399 assert_spin_locked(&rs->rs_lock);
400
401 BUG_ON(rs->rs_snd_bytes < len);
402 rs->rs_snd_bytes -= len;
403
404 if (rs->rs_snd_bytes == 0)
405 rds_stats_inc(s_send_queue_empty);
406 }
407
rds_send_is_acked(struct rds_message * rm,u64 ack,is_acked_func is_acked)408 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
409 is_acked_func is_acked)
410 {
411 if (is_acked)
412 return is_acked(rm, ack);
413 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
414 }
415
416 /*
417 * This is pretty similar to what happens below in the ACK
418 * handling code - except that we call here as soon as we get
419 * the IB send completion on the RDMA op and the accompanying
420 * message.
421 */
rds_rdma_send_complete(struct rds_message * rm,int status)422 void rds_rdma_send_complete(struct rds_message *rm, int status)
423 {
424 struct rds_sock *rs = NULL;
425 struct rm_rdma_op *ro;
426 struct rds_notifier *notifier;
427 unsigned long flags;
428 unsigned int notify = 0;
429
430 spin_lock_irqsave(&rm->m_rs_lock, flags);
431
432 notify = rm->rdma.op_notify | rm->data.op_notify;
433 ro = &rm->rdma;
434 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
435 ro->op_active && notify && ro->op_notifier) {
436 notifier = ro->op_notifier;
437 rs = rm->m_rs;
438 sock_hold(rds_rs_to_sk(rs));
439
440 notifier->n_status = status;
441 spin_lock(&rs->rs_lock);
442 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
443 spin_unlock(&rs->rs_lock);
444
445 ro->op_notifier = NULL;
446 }
447
448 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
449
450 if (rs) {
451 rds_wake_sk_sleep(rs);
452 sock_put(rds_rs_to_sk(rs));
453 }
454 }
455 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
456
457 /*
458 * Just like above, except looks at atomic op
459 */
rds_atomic_send_complete(struct rds_message * rm,int status)460 void rds_atomic_send_complete(struct rds_message *rm, int status)
461 {
462 struct rds_sock *rs = NULL;
463 struct rm_atomic_op *ao;
464 struct rds_notifier *notifier;
465 unsigned long flags;
466
467 spin_lock_irqsave(&rm->m_rs_lock, flags);
468
469 ao = &rm->atomic;
470 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
471 && ao->op_active && ao->op_notify && ao->op_notifier) {
472 notifier = ao->op_notifier;
473 rs = rm->m_rs;
474 sock_hold(rds_rs_to_sk(rs));
475
476 notifier->n_status = status;
477 spin_lock(&rs->rs_lock);
478 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
479 spin_unlock(&rs->rs_lock);
480
481 ao->op_notifier = NULL;
482 }
483
484 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
485
486 if (rs) {
487 rds_wake_sk_sleep(rs);
488 sock_put(rds_rs_to_sk(rs));
489 }
490 }
491 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
492
493 /*
494 * This is the same as rds_rdma_send_complete except we
495 * don't do any locking - we have all the ingredients (message,
496 * socket, socket lock) and can just move the notifier.
497 */
498 static inline void
__rds_send_complete(struct rds_sock * rs,struct rds_message * rm,int status)499 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
500 {
501 struct rm_rdma_op *ro;
502 struct rm_atomic_op *ao;
503
504 ro = &rm->rdma;
505 if (ro->op_active && ro->op_notify && ro->op_notifier) {
506 ro->op_notifier->n_status = status;
507 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
508 ro->op_notifier = NULL;
509 }
510
511 ao = &rm->atomic;
512 if (ao->op_active && ao->op_notify && ao->op_notifier) {
513 ao->op_notifier->n_status = status;
514 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
515 ao->op_notifier = NULL;
516 }
517
518 /* No need to wake the app - caller does this */
519 }
520
521 /*
522 * This is called from the IB send completion when we detect
523 * a RDMA operation that failed with remote access error.
524 * So speed is not an issue here.
525 */
rds_send_get_message(struct rds_connection * conn,struct rm_rdma_op * op)526 struct rds_message *rds_send_get_message(struct rds_connection *conn,
527 struct rm_rdma_op *op)
528 {
529 struct rds_message *rm, *tmp, *found = NULL;
530 unsigned long flags;
531
532 spin_lock_irqsave(&conn->c_lock, flags);
533
534 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
535 if (&rm->rdma == op) {
536 atomic_inc(&rm->m_refcount);
537 found = rm;
538 goto out;
539 }
540 }
541
542 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
543 if (&rm->rdma == op) {
544 atomic_inc(&rm->m_refcount);
545 found = rm;
546 break;
547 }
548 }
549
550 out:
551 spin_unlock_irqrestore(&conn->c_lock, flags);
552
553 return found;
554 }
555 EXPORT_SYMBOL_GPL(rds_send_get_message);
556
557 /*
558 * This removes messages from the socket's list if they're on it. The list
559 * argument must be private to the caller, we must be able to modify it
560 * without locks. The messages must have a reference held for their
561 * position on the list. This function will drop that reference after
562 * removing the messages from the 'messages' list regardless of if it found
563 * the messages on the socket list or not.
564 */
rds_send_remove_from_sock(struct list_head * messages,int status)565 static void rds_send_remove_from_sock(struct list_head *messages, int status)
566 {
567 unsigned long flags;
568 struct rds_sock *rs = NULL;
569 struct rds_message *rm;
570
571 while (!list_empty(messages)) {
572 int was_on_sock = 0;
573
574 rm = list_entry(messages->next, struct rds_message,
575 m_conn_item);
576 list_del_init(&rm->m_conn_item);
577
578 /*
579 * If we see this flag cleared then we're *sure* that someone
580 * else beat us to removing it from the sock. If we race
581 * with their flag update we'll get the lock and then really
582 * see that the flag has been cleared.
583 *
584 * The message spinlock makes sure nobody clears rm->m_rs
585 * while we're messing with it. It does not prevent the
586 * message from being removed from the socket, though.
587 */
588 spin_lock_irqsave(&rm->m_rs_lock, flags);
589 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
590 goto unlock_and_drop;
591
592 if (rs != rm->m_rs) {
593 if (rs) {
594 rds_wake_sk_sleep(rs);
595 sock_put(rds_rs_to_sk(rs));
596 }
597 rs = rm->m_rs;
598 if (rs)
599 sock_hold(rds_rs_to_sk(rs));
600 }
601 if (!rs)
602 goto unlock_and_drop;
603 spin_lock(&rs->rs_lock);
604
605 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
606 struct rm_rdma_op *ro = &rm->rdma;
607 struct rds_notifier *notifier;
608
609 list_del_init(&rm->m_sock_item);
610 rds_send_sndbuf_remove(rs, rm);
611
612 if (ro->op_active && ro->op_notifier &&
613 (ro->op_notify || (ro->op_recverr && status))) {
614 notifier = ro->op_notifier;
615 list_add_tail(¬ifier->n_list,
616 &rs->rs_notify_queue);
617 if (!notifier->n_status)
618 notifier->n_status = status;
619 rm->rdma.op_notifier = NULL;
620 }
621 was_on_sock = 1;
622 rm->m_rs = NULL;
623 }
624 spin_unlock(&rs->rs_lock);
625
626 unlock_and_drop:
627 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
628 rds_message_put(rm);
629 if (was_on_sock)
630 rds_message_put(rm);
631 }
632
633 if (rs) {
634 rds_wake_sk_sleep(rs);
635 sock_put(rds_rs_to_sk(rs));
636 }
637 }
638
639 /*
640 * Transports call here when they've determined that the receiver queued
641 * messages up to, and including, the given sequence number. Messages are
642 * moved to the retrans queue when rds_send_xmit picks them off the send
643 * queue. This means that in the TCP case, the message may not have been
644 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
645 * checks the RDS_MSG_HAS_ACK_SEQ bit.
646 */
rds_send_drop_acked(struct rds_connection * conn,u64 ack,is_acked_func is_acked)647 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
648 is_acked_func is_acked)
649 {
650 struct rds_message *rm, *tmp;
651 unsigned long flags;
652 LIST_HEAD(list);
653
654 spin_lock_irqsave(&conn->c_lock, flags);
655
656 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
657 if (!rds_send_is_acked(rm, ack, is_acked))
658 break;
659
660 list_move(&rm->m_conn_item, &list);
661 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
662 }
663
664 /* order flag updates with spin locks */
665 if (!list_empty(&list))
666 smp_mb__after_atomic();
667
668 spin_unlock_irqrestore(&conn->c_lock, flags);
669
670 /* now remove the messages from the sock list as needed */
671 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
672 }
673 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
674
rds_send_drop_to(struct rds_sock * rs,struct sockaddr_in * dest)675 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
676 {
677 struct rds_message *rm, *tmp;
678 struct rds_connection *conn;
679 unsigned long flags;
680 LIST_HEAD(list);
681
682 /* get all the messages we're dropping under the rs lock */
683 spin_lock_irqsave(&rs->rs_lock, flags);
684
685 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
686 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
687 dest->sin_port != rm->m_inc.i_hdr.h_dport))
688 continue;
689
690 list_move(&rm->m_sock_item, &list);
691 rds_send_sndbuf_remove(rs, rm);
692 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
693 }
694
695 /* order flag updates with the rs lock */
696 smp_mb__after_atomic();
697
698 spin_unlock_irqrestore(&rs->rs_lock, flags);
699
700 if (list_empty(&list))
701 return;
702
703 /* Remove the messages from the conn */
704 list_for_each_entry(rm, &list, m_sock_item) {
705
706 conn = rm->m_inc.i_conn;
707
708 spin_lock_irqsave(&conn->c_lock, flags);
709 /*
710 * Maybe someone else beat us to removing rm from the conn.
711 * If we race with their flag update we'll get the lock and
712 * then really see that the flag has been cleared.
713 */
714 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
715 spin_unlock_irqrestore(&conn->c_lock, flags);
716 spin_lock_irqsave(&rm->m_rs_lock, flags);
717 rm->m_rs = NULL;
718 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
719 continue;
720 }
721 list_del_init(&rm->m_conn_item);
722 spin_unlock_irqrestore(&conn->c_lock, flags);
723
724 /*
725 * Couldn't grab m_rs_lock in top loop (lock ordering),
726 * but we can now.
727 */
728 spin_lock_irqsave(&rm->m_rs_lock, flags);
729
730 spin_lock(&rs->rs_lock);
731 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
732 spin_unlock(&rs->rs_lock);
733
734 rm->m_rs = NULL;
735 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
736
737 rds_message_put(rm);
738 }
739
740 rds_wake_sk_sleep(rs);
741
742 while (!list_empty(&list)) {
743 rm = list_entry(list.next, struct rds_message, m_sock_item);
744 list_del_init(&rm->m_sock_item);
745
746 rds_message_wait(rm);
747 rds_message_put(rm);
748 }
749 }
750
751 /*
752 * we only want this to fire once so we use the callers 'queued'. It's
753 * possible that another thread can race with us and remove the
754 * message from the flow with RDS_CANCEL_SENT_TO.
755 */
rds_send_queue_rm(struct rds_sock * rs,struct rds_connection * conn,struct rds_message * rm,__be16 sport,__be16 dport,int * queued)756 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
757 struct rds_message *rm, __be16 sport,
758 __be16 dport, int *queued)
759 {
760 unsigned long flags;
761 u32 len;
762
763 if (*queued)
764 goto out;
765
766 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
767
768 /* this is the only place which holds both the socket's rs_lock
769 * and the connection's c_lock */
770 spin_lock_irqsave(&rs->rs_lock, flags);
771
772 /*
773 * If there is a little space in sndbuf, we don't queue anything,
774 * and userspace gets -EAGAIN. But poll() indicates there's send
775 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
776 * freed up by incoming acks. So we check the *old* value of
777 * rs_snd_bytes here to allow the last msg to exceed the buffer,
778 * and poll() now knows no more data can be sent.
779 */
780 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
781 rs->rs_snd_bytes += len;
782
783 /* let recv side know we are close to send space exhaustion.
784 * This is probably not the optimal way to do it, as this
785 * means we set the flag on *all* messages as soon as our
786 * throughput hits a certain threshold.
787 */
788 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
789 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
790
791 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
792 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
793 rds_message_addref(rm);
794 rm->m_rs = rs;
795
796 /* The code ordering is a little weird, but we're
797 trying to minimize the time we hold c_lock */
798 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
799 rm->m_inc.i_conn = conn;
800 rds_message_addref(rm);
801
802 spin_lock(&conn->c_lock);
803 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
804 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
805 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
806 spin_unlock(&conn->c_lock);
807
808 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
809 rm, len, rs, rs->rs_snd_bytes,
810 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
811
812 *queued = 1;
813 }
814
815 spin_unlock_irqrestore(&rs->rs_lock, flags);
816 out:
817 return *queued;
818 }
819
820 /*
821 * rds_message is getting to be quite complicated, and we'd like to allocate
822 * it all in one go. This figures out how big it needs to be up front.
823 */
rds_rm_size(struct msghdr * msg,int data_len)824 static int rds_rm_size(struct msghdr *msg, int data_len)
825 {
826 struct cmsghdr *cmsg;
827 int size = 0;
828 int cmsg_groups = 0;
829 int retval;
830
831 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
832 if (!CMSG_OK(msg, cmsg))
833 return -EINVAL;
834
835 if (cmsg->cmsg_level != SOL_RDS)
836 continue;
837
838 switch (cmsg->cmsg_type) {
839 case RDS_CMSG_RDMA_ARGS:
840 cmsg_groups |= 1;
841 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
842 if (retval < 0)
843 return retval;
844 size += retval;
845
846 break;
847
848 case RDS_CMSG_RDMA_DEST:
849 case RDS_CMSG_RDMA_MAP:
850 cmsg_groups |= 2;
851 /* these are valid but do no add any size */
852 break;
853
854 case RDS_CMSG_ATOMIC_CSWP:
855 case RDS_CMSG_ATOMIC_FADD:
856 case RDS_CMSG_MASKED_ATOMIC_CSWP:
857 case RDS_CMSG_MASKED_ATOMIC_FADD:
858 cmsg_groups |= 1;
859 size += sizeof(struct scatterlist);
860 break;
861
862 default:
863 return -EINVAL;
864 }
865
866 }
867
868 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
869
870 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
871 if (cmsg_groups == 3)
872 return -EINVAL;
873
874 return size;
875 }
876
rds_cmsg_send(struct rds_sock * rs,struct rds_message * rm,struct msghdr * msg,int * allocated_mr)877 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
878 struct msghdr *msg, int *allocated_mr)
879 {
880 struct cmsghdr *cmsg;
881 int ret = 0;
882
883 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
884 if (!CMSG_OK(msg, cmsg))
885 return -EINVAL;
886
887 if (cmsg->cmsg_level != SOL_RDS)
888 continue;
889
890 /* As a side effect, RDMA_DEST and RDMA_MAP will set
891 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
892 */
893 switch (cmsg->cmsg_type) {
894 case RDS_CMSG_RDMA_ARGS:
895 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
896 break;
897
898 case RDS_CMSG_RDMA_DEST:
899 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
900 break;
901
902 case RDS_CMSG_RDMA_MAP:
903 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
904 if (!ret)
905 *allocated_mr = 1;
906 else if (ret == -ENODEV)
907 /* Accommodate the get_mr() case which can fail
908 * if connection isn't established yet.
909 */
910 ret = -EAGAIN;
911 break;
912 case RDS_CMSG_ATOMIC_CSWP:
913 case RDS_CMSG_ATOMIC_FADD:
914 case RDS_CMSG_MASKED_ATOMIC_CSWP:
915 case RDS_CMSG_MASKED_ATOMIC_FADD:
916 ret = rds_cmsg_atomic(rs, rm, cmsg);
917 break;
918
919 default:
920 return -EINVAL;
921 }
922
923 if (ret)
924 break;
925 }
926
927 return ret;
928 }
929
rds_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t payload_len)930 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
931 size_t payload_len)
932 {
933 struct sock *sk = sock->sk;
934 struct rds_sock *rs = rds_sk_to_rs(sk);
935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 __be32 daddr;
937 __be16 dport;
938 struct rds_message *rm = NULL;
939 struct rds_connection *conn;
940 int ret = 0;
941 int queued = 0, allocated_mr = 0;
942 int nonblock = msg->msg_flags & MSG_DONTWAIT;
943 long timeo = sock_sndtimeo(sk, nonblock);
944
945 /* Mirror Linux UDP mirror of BSD error message compatibility */
946 /* XXX: Perhaps MSG_MORE someday */
947 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
948 ret = -EOPNOTSUPP;
949 goto out;
950 }
951
952 if (msg->msg_namelen) {
953 /* XXX fail non-unicast destination IPs? */
954 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
955 ret = -EINVAL;
956 goto out;
957 }
958 daddr = usin->sin_addr.s_addr;
959 dport = usin->sin_port;
960 } else {
961 /* We only care about consistency with ->connect() */
962 lock_sock(sk);
963 daddr = rs->rs_conn_addr;
964 dport = rs->rs_conn_port;
965 release_sock(sk);
966 }
967
968 lock_sock(sk);
969 if (daddr == 0 || rs->rs_bound_addr == 0) {
970 release_sock(sk);
971 ret = -ENOTCONN; /* XXX not a great errno */
972 goto out;
973 }
974 release_sock(sk);
975
976 /* size of rm including all sgs */
977 ret = rds_rm_size(msg, payload_len);
978 if (ret < 0)
979 goto out;
980
981 rm = rds_message_alloc(ret, GFP_KERNEL);
982 if (!rm) {
983 ret = -ENOMEM;
984 goto out;
985 }
986
987 /* Attach data to the rm */
988 if (payload_len) {
989 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
990 if (!rm->data.op_sg) {
991 ret = -ENOMEM;
992 goto out;
993 }
994 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
995 if (ret)
996 goto out;
997 }
998 rm->data.op_active = 1;
999
1000 rm->m_daddr = daddr;
1001
1002 /* rds_conn_create has a spinlock that runs with IRQ off.
1003 * Caching the conn in the socket helps a lot. */
1004 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1005 conn = rs->rs_conn;
1006 else {
1007 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1008 rs->rs_transport,
1009 sock->sk->sk_allocation);
1010 if (IS_ERR(conn)) {
1011 ret = PTR_ERR(conn);
1012 goto out;
1013 }
1014 rs->rs_conn = conn;
1015 }
1016
1017 /* Parse any control messages the user may have included. */
1018 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1019 if (ret) {
1020 /* Trigger connection so that its ready for the next retry */
1021 if (ret == -EAGAIN)
1022 rds_conn_connect_if_down(conn);
1023 goto out;
1024 }
1025
1026 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1027 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1028 &rm->rdma, conn->c_trans->xmit_rdma);
1029 ret = -EOPNOTSUPP;
1030 goto out;
1031 }
1032
1033 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1034 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1035 &rm->atomic, conn->c_trans->xmit_atomic);
1036 ret = -EOPNOTSUPP;
1037 goto out;
1038 }
1039
1040 rds_conn_connect_if_down(conn);
1041
1042 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1043 if (ret) {
1044 rs->rs_seen_congestion = 1;
1045 goto out;
1046 }
1047
1048 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1049 dport, &queued)) {
1050 rds_stats_inc(s_send_queue_full);
1051 /* XXX make sure this is reasonable */
1052 if (payload_len > rds_sk_sndbuf(rs)) {
1053 ret = -EMSGSIZE;
1054 goto out;
1055 }
1056 if (nonblock) {
1057 ret = -EAGAIN;
1058 goto out;
1059 }
1060
1061 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1062 rds_send_queue_rm(rs, conn, rm,
1063 rs->rs_bound_port,
1064 dport,
1065 &queued),
1066 timeo);
1067 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1068 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1069 continue;
1070
1071 ret = timeo;
1072 if (ret == 0)
1073 ret = -ETIMEDOUT;
1074 goto out;
1075 }
1076
1077 /*
1078 * By now we've committed to the send. We reuse rds_send_worker()
1079 * to retry sends in the rds thread if the transport asks us to.
1080 */
1081 rds_stats_inc(s_send_queued);
1082
1083 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1084 rds_send_xmit(conn);
1085
1086 rds_message_put(rm);
1087 return payload_len;
1088
1089 out:
1090 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1091 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1092 * or in any other way, we need to destroy the MR again */
1093 if (allocated_mr)
1094 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1095
1096 if (rm)
1097 rds_message_put(rm);
1098 return ret;
1099 }
1100
1101 /*
1102 * Reply to a ping packet.
1103 */
1104 int
rds_send_pong(struct rds_connection * conn,__be16 dport)1105 rds_send_pong(struct rds_connection *conn, __be16 dport)
1106 {
1107 struct rds_message *rm;
1108 unsigned long flags;
1109 int ret = 0;
1110
1111 rm = rds_message_alloc(0, GFP_ATOMIC);
1112 if (!rm) {
1113 ret = -ENOMEM;
1114 goto out;
1115 }
1116
1117 rm->m_daddr = conn->c_faddr;
1118 rm->data.op_active = 1;
1119
1120 rds_conn_connect_if_down(conn);
1121
1122 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1123 if (ret)
1124 goto out;
1125
1126 spin_lock_irqsave(&conn->c_lock, flags);
1127 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1128 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1129 rds_message_addref(rm);
1130 rm->m_inc.i_conn = conn;
1131
1132 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1133 conn->c_next_tx_seq);
1134 conn->c_next_tx_seq++;
1135 spin_unlock_irqrestore(&conn->c_lock, flags);
1136
1137 rds_stats_inc(s_send_queued);
1138 rds_stats_inc(s_send_pong);
1139
1140 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1141 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1142
1143 rds_message_put(rm);
1144 return 0;
1145
1146 out:
1147 if (rm)
1148 rds_message_put(rm);
1149 return ret;
1150 }
1151