• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct gnet_stats_rate_est64 rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto __rcu *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			num_active_agg; /* Num. of active aggregates */
190 	u32			wsum;		/* weight sum */
191 	u32			iwsum;		/* inverse weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
qfq_purge_queue(struct qfq_class * cl)221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 	unsigned int backlog = cl->qdisc->qstats.backlog;
225 
226 	qdisc_reset(cl->qdisc);
227 	qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
228 }
229 
230 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
231 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
232 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
233 };
234 
235 /*
236  * Calculate a flow index, given its weight and maximum packet length.
237  * index = log_2(maxlen/weight) but we need to apply the scaling.
238  * This is used only once at flow creation.
239  */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)240 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
241 {
242 	u64 slot_size = (u64)maxlen * inv_w;
243 	unsigned long size_map;
244 	int index = 0;
245 
246 	size_map = slot_size >> min_slot_shift;
247 	if (!size_map)
248 		goto out;
249 
250 	index = __fls(size_map) + 1;	/* basically a log_2 */
251 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
252 
253 	if (index < 0)
254 		index = 0;
255 out:
256 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
257 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
258 
259 	return index;
260 }
261 
262 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
263 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
264 			     enum update_reason);
265 
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)266 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
267 			 u32 lmax, u32 weight)
268 {
269 	INIT_LIST_HEAD(&agg->active);
270 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
271 
272 	agg->lmax = lmax;
273 	agg->class_weight = weight;
274 }
275 
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)276 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
277 					  u32 lmax, u32 weight)
278 {
279 	struct qfq_aggregate *agg;
280 
281 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
282 		if (agg->lmax == lmax && agg->class_weight == weight)
283 			return agg;
284 
285 	return NULL;
286 }
287 
288 
289 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)290 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
291 			   int new_num_classes)
292 {
293 	u32 new_agg_weight;
294 
295 	if (new_num_classes == q->max_agg_classes)
296 		hlist_del_init(&agg->nonfull_next);
297 
298 	if (agg->num_classes > new_num_classes &&
299 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
300 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
301 
302 	/* The next assignment may let
303 	 * agg->initial_budget > agg->budgetmax
304 	 * hold, we will take it into account in charge_actual_service().
305 	 */
306 	agg->budgetmax = new_num_classes * agg->lmax;
307 	new_agg_weight = agg->class_weight * new_num_classes;
308 	agg->inv_w = ONE_FP/new_agg_weight;
309 
310 	if (agg->grp == NULL) {
311 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
312 				       q->min_slot_shift);
313 		agg->grp = &q->groups[i];
314 	}
315 
316 	q->wsum +=
317 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
318 	q->iwsum = ONE_FP / q->wsum;
319 
320 	agg->num_classes = new_num_classes;
321 }
322 
323 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)324 static void qfq_add_to_agg(struct qfq_sched *q,
325 			   struct qfq_aggregate *agg,
326 			   struct qfq_class *cl)
327 {
328 	cl->agg = agg;
329 
330 	qfq_update_agg(q, agg, agg->num_classes+1);
331 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
332 		list_add_tail(&cl->alist, &agg->active);
333 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
334 		    cl && q->in_serv_agg != agg) /* agg was inactive */
335 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
336 	}
337 }
338 
339 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
340 
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)341 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
342 {
343 	if (!hlist_unhashed(&agg->nonfull_next))
344 		hlist_del_init(&agg->nonfull_next);
345 	q->wsum -= agg->class_weight;
346 	if (q->wsum != 0)
347 		q->iwsum = ONE_FP / q->wsum;
348 
349 	if (q->in_serv_agg == agg)
350 		q->in_serv_agg = qfq_choose_next_agg(q);
351 	kfree(agg);
352 }
353 
354 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)355 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
356 {
357 	struct qfq_aggregate *agg = cl->agg;
358 
359 
360 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
361 	if (list_empty(&agg->active)) /* agg is now inactive */
362 		qfq_deactivate_agg(q, agg);
363 }
364 
365 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)366 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
367 {
368 	struct qfq_aggregate *agg = cl->agg;
369 
370 	cl->agg = NULL;
371 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
372 		qfq_destroy_agg(q, agg);
373 		return;
374 	}
375 	qfq_update_agg(q, agg, agg->num_classes-1);
376 }
377 
378 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)379 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
380 {
381 	if (cl->qdisc->q.qlen > 0) /* class is active */
382 		qfq_deactivate_class(q, cl);
383 
384 	qfq_rm_from_agg(q, cl);
385 }
386 
387 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)388 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
389 			   u32 lmax)
390 {
391 	struct qfq_sched *q = qdisc_priv(sch);
392 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
393 
394 	if (new_agg == NULL) { /* create new aggregate */
395 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 		if (new_agg == NULL)
397 			return -ENOBUFS;
398 		qfq_init_agg(q, new_agg, lmax, weight);
399 	}
400 	qfq_deact_rm_from_agg(q, cl);
401 	qfq_add_to_agg(q, new_agg, cl);
402 
403 	return 0;
404 }
405 
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 			    struct nlattr **tca, unsigned long *arg)
408 {
409 	struct qfq_sched *q = qdisc_priv(sch);
410 	struct qfq_class *cl = (struct qfq_class *)*arg;
411 	bool existing = false;
412 	struct nlattr *tb[TCA_QFQ_MAX + 1];
413 	struct qfq_aggregate *new_agg = NULL;
414 	u32 weight, lmax, inv_w;
415 	int err;
416 	int delta_w;
417 
418 	if (tca[TCA_OPTIONS] == NULL) {
419 		pr_notice("qfq: no options\n");
420 		return -EINVAL;
421 	}
422 
423 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
424 	if (err < 0)
425 		return err;
426 
427 	if (tb[TCA_QFQ_WEIGHT]) {
428 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
429 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
430 			pr_notice("qfq: invalid weight %u\n", weight);
431 			return -EINVAL;
432 		}
433 	} else
434 		weight = 1;
435 
436 	if (tb[TCA_QFQ_LMAX]) {
437 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
438 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
439 			pr_notice("qfq: invalid max length %u\n", lmax);
440 			return -EINVAL;
441 		}
442 	} else
443 		lmax = psched_mtu(qdisc_dev(sch));
444 
445 	inv_w = ONE_FP / weight;
446 	weight = ONE_FP / inv_w;
447 
448 	if (cl != NULL &&
449 	    lmax == cl->agg->lmax &&
450 	    weight == cl->agg->class_weight)
451 		return 0; /* nothing to change */
452 
453 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
454 
455 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
456 		pr_notice("qfq: total weight out of range (%d + %u)\n",
457 			  delta_w, q->wsum);
458 		return -EINVAL;
459 	}
460 
461 	if (cl != NULL) { /* modify existing class */
462 		if (tca[TCA_RATE]) {
463 			err = gen_replace_estimator(&cl->bstats, NULL,
464 						    &cl->rate_est,
465 						    qdisc_root_sleeping_lock(sch),
466 						    tca[TCA_RATE]);
467 			if (err)
468 				return err;
469 		}
470 		existing = true;
471 		goto set_change_agg;
472 	}
473 
474 	/* create and init new class */
475 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 	if (cl == NULL)
477 		return -ENOBUFS;
478 
479 	cl->refcnt = 1;
480 	cl->common.classid = classid;
481 	cl->deficit = lmax;
482 
483 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
484 				      &pfifo_qdisc_ops, classid);
485 	if (cl->qdisc == NULL)
486 		cl->qdisc = &noop_qdisc;
487 
488 	if (tca[TCA_RATE]) {
489 		err = gen_new_estimator(&cl->bstats, NULL,
490 					&cl->rate_est,
491 					qdisc_root_sleeping_lock(sch),
492 					tca[TCA_RATE]);
493 		if (err)
494 			goto destroy_class;
495 	}
496 
497 	sch_tree_lock(sch);
498 	qdisc_class_hash_insert(&q->clhash, &cl->common);
499 	sch_tree_unlock(sch);
500 
501 	qdisc_class_hash_grow(sch, &q->clhash);
502 
503 set_change_agg:
504 	sch_tree_lock(sch);
505 	new_agg = qfq_find_agg(q, lmax, weight);
506 	if (new_agg == NULL) { /* create new aggregate */
507 		sch_tree_unlock(sch);
508 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
509 		if (new_agg == NULL) {
510 			err = -ENOBUFS;
511 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
512 			goto destroy_class;
513 		}
514 		sch_tree_lock(sch);
515 		qfq_init_agg(q, new_agg, lmax, weight);
516 	}
517 	if (existing)
518 		qfq_deact_rm_from_agg(q, cl);
519 	qfq_add_to_agg(q, new_agg, cl);
520 	sch_tree_unlock(sch);
521 
522 	*arg = (unsigned long)cl;
523 	return 0;
524 
525 destroy_class:
526 	qdisc_destroy(cl->qdisc);
527 	kfree(cl);
528 	return err;
529 }
530 
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)531 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
532 {
533 	struct qfq_sched *q = qdisc_priv(sch);
534 
535 	qfq_rm_from_agg(q, cl);
536 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
537 	qdisc_destroy(cl->qdisc);
538 	kfree(cl);
539 }
540 
qfq_delete_class(struct Qdisc * sch,unsigned long arg)541 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
542 {
543 	struct qfq_sched *q = qdisc_priv(sch);
544 	struct qfq_class *cl = (struct qfq_class *)arg;
545 
546 	if (cl->filter_cnt > 0)
547 		return -EBUSY;
548 
549 	sch_tree_lock(sch);
550 
551 	qfq_purge_queue(cl);
552 	qdisc_class_hash_remove(&q->clhash, &cl->common);
553 
554 	BUG_ON(--cl->refcnt == 0);
555 	/*
556 	 * This shouldn't happen: we "hold" one cops->get() when called
557 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
558 	 */
559 
560 	sch_tree_unlock(sch);
561 	return 0;
562 }
563 
qfq_get_class(struct Qdisc * sch,u32 classid)564 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
565 {
566 	struct qfq_class *cl = qfq_find_class(sch, classid);
567 
568 	if (cl != NULL)
569 		cl->refcnt++;
570 
571 	return (unsigned long)cl;
572 }
573 
qfq_put_class(struct Qdisc * sch,unsigned long arg)574 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
575 {
576 	struct qfq_class *cl = (struct qfq_class *)arg;
577 
578 	if (--cl->refcnt == 0)
579 		qfq_destroy_class(sch, cl);
580 }
581 
qfq_tcf_chain(struct Qdisc * sch,unsigned long cl)582 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
583 					      unsigned long cl)
584 {
585 	struct qfq_sched *q = qdisc_priv(sch);
586 
587 	if (cl)
588 		return NULL;
589 
590 	return &q->filter_list;
591 }
592 
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)593 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
594 				  u32 classid)
595 {
596 	struct qfq_class *cl = qfq_find_class(sch, classid);
597 
598 	if (cl != NULL)
599 		cl->filter_cnt++;
600 
601 	return (unsigned long)cl;
602 }
603 
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)604 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
605 {
606 	struct qfq_class *cl = (struct qfq_class *)arg;
607 
608 	cl->filter_cnt--;
609 }
610 
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old)611 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
612 			   struct Qdisc *new, struct Qdisc **old)
613 {
614 	struct qfq_class *cl = (struct qfq_class *)arg;
615 
616 	if (new == NULL) {
617 		new = qdisc_create_dflt(sch->dev_queue,
618 					&pfifo_qdisc_ops, cl->common.classid);
619 		if (new == NULL)
620 			new = &noop_qdisc;
621 	}
622 
623 	*old = qdisc_replace(sch, new, &cl->qdisc);
624 	return 0;
625 }
626 
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)627 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
628 {
629 	struct qfq_class *cl = (struct qfq_class *)arg;
630 
631 	return cl->qdisc;
632 }
633 
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)634 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
635 			  struct sk_buff *skb, struct tcmsg *tcm)
636 {
637 	struct qfq_class *cl = (struct qfq_class *)arg;
638 	struct nlattr *nest;
639 
640 	tcm->tcm_parent	= TC_H_ROOT;
641 	tcm->tcm_handle	= cl->common.classid;
642 	tcm->tcm_info	= cl->qdisc->handle;
643 
644 	nest = nla_nest_start(skb, TCA_OPTIONS);
645 	if (nest == NULL)
646 		goto nla_put_failure;
647 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
648 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
649 		goto nla_put_failure;
650 	return nla_nest_end(skb, nest);
651 
652 nla_put_failure:
653 	nla_nest_cancel(skb, nest);
654 	return -EMSGSIZE;
655 }
656 
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)657 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
658 				struct gnet_dump *d)
659 {
660 	struct qfq_class *cl = (struct qfq_class *)arg;
661 	struct tc_qfq_stats xstats;
662 
663 	memset(&xstats, 0, sizeof(xstats));
664 
665 	xstats.weight = cl->agg->class_weight;
666 	xstats.lmax = cl->agg->lmax;
667 
668 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
669 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
670 	    gnet_stats_copy_queue(d, NULL,
671 				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
672 		return -1;
673 
674 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
675 }
676 
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)677 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
678 {
679 	struct qfq_sched *q = qdisc_priv(sch);
680 	struct qfq_class *cl;
681 	unsigned int i;
682 
683 	if (arg->stop)
684 		return;
685 
686 	for (i = 0; i < q->clhash.hashsize; i++) {
687 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
688 			if (arg->count < arg->skip) {
689 				arg->count++;
690 				continue;
691 			}
692 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
693 				arg->stop = 1;
694 				return;
695 			}
696 			arg->count++;
697 		}
698 	}
699 }
700 
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)701 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
702 				      int *qerr)
703 {
704 	struct qfq_sched *q = qdisc_priv(sch);
705 	struct qfq_class *cl;
706 	struct tcf_result res;
707 	struct tcf_proto *fl;
708 	int result;
709 
710 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
711 		pr_debug("qfq_classify: found %d\n", skb->priority);
712 		cl = qfq_find_class(sch, skb->priority);
713 		if (cl != NULL)
714 			return cl;
715 	}
716 
717 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
718 	fl = rcu_dereference_bh(q->filter_list);
719 	result = tc_classify(skb, fl, &res);
720 	if (result >= 0) {
721 #ifdef CONFIG_NET_CLS_ACT
722 		switch (result) {
723 		case TC_ACT_QUEUED:
724 		case TC_ACT_STOLEN:
725 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
726 		case TC_ACT_SHOT:
727 			return NULL;
728 		}
729 #endif
730 		cl = (struct qfq_class *)res.class;
731 		if (cl == NULL)
732 			cl = qfq_find_class(sch, res.classid);
733 		return cl;
734 	}
735 
736 	return NULL;
737 }
738 
739 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)740 static inline int qfq_gt(u64 a, u64 b)
741 {
742 	return (s64)(a - b) > 0;
743 }
744 
745 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)746 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
747 {
748 	return ts & ~((1ULL << shift) - 1);
749 }
750 
751 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)752 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
753 					unsigned long bitmap)
754 {
755 	int index = __ffs(bitmap);
756 	return &q->groups[index];
757 }
758 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)759 static inline unsigned long mask_from(unsigned long bitmap, int from)
760 {
761 	return bitmap & ~((1UL << from) - 1);
762 }
763 
764 /*
765  * The state computation relies on ER=0, IR=1, EB=2, IB=3
766  * First compute eligibility comparing grp->S, q->V,
767  * then check if someone is blocking us and possibly add EB
768  */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)769 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
770 {
771 	/* if S > V we are not eligible */
772 	unsigned int state = qfq_gt(grp->S, q->V);
773 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
774 	struct qfq_group *next;
775 
776 	if (mask) {
777 		next = qfq_ffs(q, mask);
778 		if (qfq_gt(grp->F, next->F))
779 			state |= EB;
780 	}
781 
782 	return state;
783 }
784 
785 
786 /*
787  * In principle
788  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
789  *	q->bitmaps[src] &= ~mask;
790  * but we should make sure that src != dst
791  */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)792 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
793 				   int src, int dst)
794 {
795 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
796 	q->bitmaps[src] &= ~mask;
797 }
798 
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)799 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
800 {
801 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
802 	struct qfq_group *next;
803 
804 	if (mask) {
805 		next = qfq_ffs(q, mask);
806 		if (!qfq_gt(next->F, old_F))
807 			return;
808 	}
809 
810 	mask = (1UL << index) - 1;
811 	qfq_move_groups(q, mask, EB, ER);
812 	qfq_move_groups(q, mask, IB, IR);
813 }
814 
815 /*
816  * perhaps
817  *
818 	old_V ^= q->V;
819 	old_V >>= q->min_slot_shift;
820 	if (old_V) {
821 		...
822 	}
823  *
824  */
qfq_make_eligible(struct qfq_sched * q)825 static void qfq_make_eligible(struct qfq_sched *q)
826 {
827 	unsigned long vslot = q->V >> q->min_slot_shift;
828 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
829 
830 	if (vslot != old_vslot) {
831 		unsigned long mask;
832 		int last_flip_pos = fls(vslot ^ old_vslot);
833 
834 		if (last_flip_pos > 31) /* higher than the number of groups */
835 			mask = ~0UL;    /* make all groups eligible */
836 		else
837 			mask = (1UL << last_flip_pos) - 1;
838 
839 		qfq_move_groups(q, mask, IR, ER);
840 		qfq_move_groups(q, mask, IB, EB);
841 	}
842 }
843 
844 /*
845  * The index of the slot in which the input aggregate agg is to be
846  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
847  * and not a '-1' because the start time of the group may be moved
848  * backward by one slot after the aggregate has been inserted, and
849  * this would cause non-empty slots to be right-shifted by one
850  * position.
851  *
852  * QFQ+ fully satisfies this bound to the slot index if the parameters
853  * of the classes are not changed dynamically, and if QFQ+ never
854  * happens to postpone the service of agg unjustly, i.e., it never
855  * happens that the aggregate becomes backlogged and eligible, or just
856  * eligible, while an aggregate with a higher approximated finish time
857  * is being served. In particular, in this case QFQ+ guarantees that
858  * the timestamps of agg are low enough that the slot index is never
859  * higher than 2. Unfortunately, QFQ+ cannot provide the same
860  * guarantee if it happens to unjustly postpone the service of agg, or
861  * if the parameters of some class are changed.
862  *
863  * As for the first event, i.e., an out-of-order service, the
864  * upper bound to the slot index guaranteed by QFQ+ grows to
865  * 2 +
866  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
867  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
868  *
869  * The following function deals with this problem by backward-shifting
870  * the timestamps of agg, if needed, so as to guarantee that the slot
871  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
872  * cause the service of other aggregates to be postponed, yet the
873  * worst-case guarantees of these aggregates are not violated.  In
874  * fact, in case of no out-of-order service, the timestamps of agg
875  * would have been even lower than they are after the backward shift,
876  * because QFQ+ would have guaranteed a maximum value equal to 2 for
877  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
878  * service is postponed because of the backward-shift would have
879  * however waited for the service of agg before being served.
880  *
881  * The other event that may cause the slot index to be higher than 2
882  * for agg is a recent change of the parameters of some class. If the
883  * weight of a class is increased or the lmax (max_pkt_size) of the
884  * class is decreased, then a new aggregate with smaller slot size
885  * than the original parent aggregate of the class may happen to be
886  * activated. The activation of this aggregate should be properly
887  * delayed to when the service of the class has finished in the ideal
888  * system tracked by QFQ+. If the activation of the aggregate is not
889  * delayed to this reference time instant, then this aggregate may be
890  * unjustly served before other aggregates waiting for service. This
891  * may cause the above bound to the slot index to be violated for some
892  * of these unlucky aggregates.
893  *
894  * Instead of delaying the activation of the new aggregate, which is
895  * quite complex, the above-discussed capping of the slot index is
896  * used to handle also the consequences of a change of the parameters
897  * of a class.
898  */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)899 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
900 			    u64 roundedS)
901 {
902 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
903 	unsigned int i; /* slot index in the bucket list */
904 
905 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
906 		u64 deltaS = roundedS - grp->S -
907 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
908 		agg->S -= deltaS;
909 		agg->F -= deltaS;
910 		slot = QFQ_MAX_SLOTS - 2;
911 	}
912 
913 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
914 
915 	hlist_add_head(&agg->next, &grp->slots[i]);
916 	__set_bit(slot, &grp->full_slots);
917 }
918 
919 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)920 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
921 {
922 	return hlist_entry(grp->slots[grp->front].first,
923 			   struct qfq_aggregate, next);
924 }
925 
926 /*
927  * remove the entry from the slot
928  */
qfq_front_slot_remove(struct qfq_group * grp)929 static void qfq_front_slot_remove(struct qfq_group *grp)
930 {
931 	struct qfq_aggregate *agg = qfq_slot_head(grp);
932 
933 	BUG_ON(!agg);
934 	hlist_del(&agg->next);
935 	if (hlist_empty(&grp->slots[grp->front]))
936 		__clear_bit(0, &grp->full_slots);
937 }
938 
939 /*
940  * Returns the first aggregate in the first non-empty bucket of the
941  * group. As a side effect, adjusts the bucket list so the first
942  * non-empty bucket is at position 0 in full_slots.
943  */
qfq_slot_scan(struct qfq_group * grp)944 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
945 {
946 	unsigned int i;
947 
948 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
949 		 grp->index, grp->full_slots);
950 
951 	if (grp->full_slots == 0)
952 		return NULL;
953 
954 	i = __ffs(grp->full_slots);  /* zero based */
955 	if (i > 0) {
956 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
957 		grp->full_slots >>= i;
958 	}
959 
960 	return qfq_slot_head(grp);
961 }
962 
963 /*
964  * adjust the bucket list. When the start time of a group decreases,
965  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
966  * move the objects. The mask of occupied slots must be shifted
967  * because we use ffs() to find the first non-empty slot.
968  * This covers decreases in the group's start time, but what about
969  * increases of the start time ?
970  * Here too we should make sure that i is less than 32
971  */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)972 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
973 {
974 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
975 
976 	grp->full_slots <<= i;
977 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
978 }
979 
qfq_update_eligible(struct qfq_sched * q)980 static void qfq_update_eligible(struct qfq_sched *q)
981 {
982 	struct qfq_group *grp;
983 	unsigned long ineligible;
984 
985 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
986 	if (ineligible) {
987 		if (!q->bitmaps[ER]) {
988 			grp = qfq_ffs(q, ineligible);
989 			if (qfq_gt(grp->S, q->V))
990 				q->V = grp->S;
991 		}
992 		qfq_make_eligible(q);
993 	}
994 }
995 
996 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)997 static void agg_dequeue(struct qfq_aggregate *agg,
998 			struct qfq_class *cl, unsigned int len)
999 {
1000 	qdisc_dequeue_peeked(cl->qdisc);
1001 
1002 	cl->deficit -= (int) len;
1003 
1004 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1005 		list_del(&cl->alist);
1006 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1007 		cl->deficit += agg->lmax;
1008 		list_move_tail(&cl->alist, &agg->active);
1009 	}
1010 }
1011 
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1012 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1013 					   struct qfq_class **cl,
1014 					   unsigned int *len)
1015 {
1016 	struct sk_buff *skb;
1017 
1018 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1019 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1020 	if (skb == NULL)
1021 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1022 	else
1023 		*len = qdisc_pkt_len(skb);
1024 
1025 	return skb;
1026 }
1027 
1028 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1029 static inline void charge_actual_service(struct qfq_aggregate *agg)
1030 {
1031 	/* Compute the service received by the aggregate, taking into
1032 	 * account that, after decreasing the number of classes in
1033 	 * agg, it may happen that
1034 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1035 	 */
1036 	u32 service_received = min(agg->budgetmax,
1037 				   agg->initial_budget - agg->budget);
1038 
1039 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1040 }
1041 
1042 /* Assign a reasonable start time for a new aggregate in group i.
1043  * Admissible values for \hat(F) are multiples of \sigma_i
1044  * no greater than V+\sigma_i . Larger values mean that
1045  * we had a wraparound so we consider the timestamp to be stale.
1046  *
1047  * If F is not stale and F >= V then we set S = F.
1048  * Otherwise we should assign S = V, but this may violate
1049  * the ordering in EB (see [2]). So, if we have groups in ER,
1050  * set S to the F_j of the first group j which would be blocking us.
1051  * We are guaranteed not to move S backward because
1052  * otherwise our group i would still be blocked.
1053  */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1054 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1055 {
1056 	unsigned long mask;
1057 	u64 limit, roundedF;
1058 	int slot_shift = agg->grp->slot_shift;
1059 
1060 	roundedF = qfq_round_down(agg->F, slot_shift);
1061 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1062 
1063 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1064 		/* timestamp was stale */
1065 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1066 		if (mask) {
1067 			struct qfq_group *next = qfq_ffs(q, mask);
1068 			if (qfq_gt(roundedF, next->F)) {
1069 				if (qfq_gt(limit, next->F))
1070 					agg->S = next->F;
1071 				else /* preserve timestamp correctness */
1072 					agg->S = limit;
1073 				return;
1074 			}
1075 		}
1076 		agg->S = q->V;
1077 	} else  /* timestamp is not stale */
1078 		agg->S = agg->F;
1079 }
1080 
1081 /* Update the timestamps of agg before scheduling/rescheduling it for
1082  * service.  In particular, assign to agg->F its maximum possible
1083  * value, i.e., the virtual finish time with which the aggregate
1084  * should be labeled if it used all its budget once in service.
1085  */
1086 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1087 qfq_update_agg_ts(struct qfq_sched *q,
1088 		    struct qfq_aggregate *agg, enum update_reason reason)
1089 {
1090 	if (reason != requeue)
1091 		qfq_update_start(q, agg);
1092 	else /* just charge agg for the service received */
1093 		agg->S = agg->F;
1094 
1095 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1096 }
1097 
1098 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1099 
qfq_dequeue(struct Qdisc * sch)1100 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1101 {
1102 	struct qfq_sched *q = qdisc_priv(sch);
1103 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1104 	struct qfq_class *cl;
1105 	struct sk_buff *skb = NULL;
1106 	/* next-packet len, 0 means no more active classes in in-service agg */
1107 	unsigned int len = 0;
1108 
1109 	if (in_serv_agg == NULL)
1110 		return NULL;
1111 
1112 	if (!list_empty(&in_serv_agg->active))
1113 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1114 
1115 	/*
1116 	 * If there are no active classes in the in-service aggregate,
1117 	 * or if the aggregate has not enough budget to serve its next
1118 	 * class, then choose the next aggregate to serve.
1119 	 */
1120 	if (len == 0 || in_serv_agg->budget < len) {
1121 		charge_actual_service(in_serv_agg);
1122 
1123 		/* recharge the budget of the aggregate */
1124 		in_serv_agg->initial_budget = in_serv_agg->budget =
1125 			in_serv_agg->budgetmax;
1126 
1127 		if (!list_empty(&in_serv_agg->active)) {
1128 			/*
1129 			 * Still active: reschedule for
1130 			 * service. Possible optimization: if no other
1131 			 * aggregate is active, then there is no point
1132 			 * in rescheduling this aggregate, and we can
1133 			 * just keep it as the in-service one. This
1134 			 * should be however a corner case, and to
1135 			 * handle it, we would need to maintain an
1136 			 * extra num_active_aggs field.
1137 			*/
1138 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1139 			qfq_schedule_agg(q, in_serv_agg);
1140 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1141 			q->in_serv_agg = NULL;
1142 			return NULL;
1143 		}
1144 
1145 		/*
1146 		 * If we get here, there are other aggregates queued:
1147 		 * choose the new aggregate to serve.
1148 		 */
1149 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1150 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1151 	}
1152 	if (!skb)
1153 		return NULL;
1154 
1155 	sch->q.qlen--;
1156 	qdisc_bstats_update(sch, skb);
1157 
1158 	agg_dequeue(in_serv_agg, cl, len);
1159 	/* If lmax is lowered, through qfq_change_class, for a class
1160 	 * owning pending packets with larger size than the new value
1161 	 * of lmax, then the following condition may hold.
1162 	 */
1163 	if (unlikely(in_serv_agg->budget < len))
1164 		in_serv_agg->budget = 0;
1165 	else
1166 		in_serv_agg->budget -= len;
1167 
1168 	q->V += (u64)len * q->iwsum;
1169 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1170 		 len, (unsigned long long) in_serv_agg->F,
1171 		 (unsigned long long) q->V);
1172 
1173 	return skb;
1174 }
1175 
qfq_choose_next_agg(struct qfq_sched * q)1176 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1177 {
1178 	struct qfq_group *grp;
1179 	struct qfq_aggregate *agg, *new_front_agg;
1180 	u64 old_F;
1181 
1182 	qfq_update_eligible(q);
1183 	q->oldV = q->V;
1184 
1185 	if (!q->bitmaps[ER])
1186 		return NULL;
1187 
1188 	grp = qfq_ffs(q, q->bitmaps[ER]);
1189 	old_F = grp->F;
1190 
1191 	agg = qfq_slot_head(grp);
1192 
1193 	/* agg starts to be served, remove it from schedule */
1194 	qfq_front_slot_remove(grp);
1195 
1196 	new_front_agg = qfq_slot_scan(grp);
1197 
1198 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1199 		__clear_bit(grp->index, &q->bitmaps[ER]);
1200 	else {
1201 		u64 roundedS = qfq_round_down(new_front_agg->S,
1202 					      grp->slot_shift);
1203 		unsigned int s;
1204 
1205 		if (grp->S == roundedS)
1206 			return agg;
1207 		grp->S = roundedS;
1208 		grp->F = roundedS + (2ULL << grp->slot_shift);
1209 		__clear_bit(grp->index, &q->bitmaps[ER]);
1210 		s = qfq_calc_state(q, grp);
1211 		__set_bit(grp->index, &q->bitmaps[s]);
1212 	}
1213 
1214 	qfq_unblock_groups(q, grp->index, old_F);
1215 
1216 	return agg;
1217 }
1218 
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch)1219 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1220 {
1221 	struct qfq_sched *q = qdisc_priv(sch);
1222 	struct qfq_class *cl;
1223 	struct qfq_aggregate *agg;
1224 	int err = 0;
1225 
1226 	cl = qfq_classify(skb, sch, &err);
1227 	if (cl == NULL) {
1228 		if (err & __NET_XMIT_BYPASS)
1229 			qdisc_qstats_drop(sch);
1230 		kfree_skb(skb);
1231 		return err;
1232 	}
1233 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1234 
1235 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1236 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1237 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1238 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1239 				     qdisc_pkt_len(skb));
1240 		if (err)
1241 			return err;
1242 	}
1243 
1244 	err = qdisc_enqueue(skb, cl->qdisc);
1245 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 		if (net_xmit_drop_count(err)) {
1248 			cl->qstats.drops++;
1249 			qdisc_qstats_drop(sch);
1250 		}
1251 		return err;
1252 	}
1253 
1254 	bstats_update(&cl->bstats, skb);
1255 	++sch->q.qlen;
1256 
1257 	agg = cl->agg;
1258 	/* if the queue was not empty, then done here */
1259 	if (cl->qdisc->q.qlen != 1) {
1260 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1261 		    list_first_entry(&agg->active, struct qfq_class, alist)
1262 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1263 			list_move_tail(&cl->alist, &agg->active);
1264 
1265 		return err;
1266 	}
1267 
1268 	/* schedule class for service within the aggregate */
1269 	cl->deficit = agg->lmax;
1270 	list_add_tail(&cl->alist, &agg->active);
1271 
1272 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1273 	    q->in_serv_agg == agg)
1274 		return err; /* non-empty or in service, nothing else to do */
1275 
1276 	qfq_activate_agg(q, agg, enqueue);
1277 
1278 	return err;
1279 }
1280 
1281 /*
1282  * Schedule aggregate according to its timestamps.
1283  */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1284 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1285 {
1286 	struct qfq_group *grp = agg->grp;
1287 	u64 roundedS;
1288 	int s;
1289 
1290 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1291 
1292 	/*
1293 	 * Insert agg in the correct bucket.
1294 	 * If agg->S >= grp->S we don't need to adjust the
1295 	 * bucket list and simply go to the insertion phase.
1296 	 * Otherwise grp->S is decreasing, we must make room
1297 	 * in the bucket list, and also recompute the group state.
1298 	 * Finally, if there were no flows in this group and nobody
1299 	 * was in ER make sure to adjust V.
1300 	 */
1301 	if (grp->full_slots) {
1302 		if (!qfq_gt(grp->S, agg->S))
1303 			goto skip_update;
1304 
1305 		/* create a slot for this agg->S */
1306 		qfq_slot_rotate(grp, roundedS);
1307 		/* group was surely ineligible, remove */
1308 		__clear_bit(grp->index, &q->bitmaps[IR]);
1309 		__clear_bit(grp->index, &q->bitmaps[IB]);
1310 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1311 		   q->in_serv_agg == NULL)
1312 		q->V = roundedS;
1313 
1314 	grp->S = roundedS;
1315 	grp->F = roundedS + (2ULL << grp->slot_shift);
1316 	s = qfq_calc_state(q, grp);
1317 	__set_bit(grp->index, &q->bitmaps[s]);
1318 
1319 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1320 		 s, q->bitmaps[s],
1321 		 (unsigned long long) agg->S,
1322 		 (unsigned long long) agg->F,
1323 		 (unsigned long long) q->V);
1324 
1325 skip_update:
1326 	qfq_slot_insert(grp, agg, roundedS);
1327 }
1328 
1329 
1330 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1331 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1332 			     enum update_reason reason)
1333 {
1334 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1335 
1336 	qfq_update_agg_ts(q, agg, reason);
1337 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1338 		q->in_serv_agg = agg; /* start serving this aggregate */
1339 		 /* update V: to be in service, agg must be eligible */
1340 		q->oldV = q->V = agg->S;
1341 	} else if (agg != q->in_serv_agg)
1342 		qfq_schedule_agg(q, agg);
1343 }
1344 
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1345 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1346 			    struct qfq_aggregate *agg)
1347 {
1348 	unsigned int i, offset;
1349 	u64 roundedS;
1350 
1351 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1352 	offset = (roundedS - grp->S) >> grp->slot_shift;
1353 
1354 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1355 
1356 	hlist_del(&agg->next);
1357 	if (hlist_empty(&grp->slots[i]))
1358 		__clear_bit(offset, &grp->full_slots);
1359 }
1360 
1361 /*
1362  * Called to forcibly deschedule an aggregate.  If the aggregate is
1363  * not in the front bucket, or if the latter has other aggregates in
1364  * the front bucket, we can simply remove the aggregate with no other
1365  * side effects.
1366  * Otherwise we must propagate the event up.
1367  */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1368 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1369 {
1370 	struct qfq_group *grp = agg->grp;
1371 	unsigned long mask;
1372 	u64 roundedS;
1373 	int s;
1374 
1375 	if (agg == q->in_serv_agg) {
1376 		charge_actual_service(agg);
1377 		q->in_serv_agg = qfq_choose_next_agg(q);
1378 		return;
1379 	}
1380 
1381 	agg->F = agg->S;
1382 	qfq_slot_remove(q, grp, agg);
1383 
1384 	if (!grp->full_slots) {
1385 		__clear_bit(grp->index, &q->bitmaps[IR]);
1386 		__clear_bit(grp->index, &q->bitmaps[EB]);
1387 		__clear_bit(grp->index, &q->bitmaps[IB]);
1388 
1389 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1390 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1391 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1392 			if (mask)
1393 				mask = ~((1UL << __fls(mask)) - 1);
1394 			else
1395 				mask = ~0UL;
1396 			qfq_move_groups(q, mask, EB, ER);
1397 			qfq_move_groups(q, mask, IB, IR);
1398 		}
1399 		__clear_bit(grp->index, &q->bitmaps[ER]);
1400 	} else if (hlist_empty(&grp->slots[grp->front])) {
1401 		agg = qfq_slot_scan(grp);
1402 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1403 		if (grp->S != roundedS) {
1404 			__clear_bit(grp->index, &q->bitmaps[ER]);
1405 			__clear_bit(grp->index, &q->bitmaps[IR]);
1406 			__clear_bit(grp->index, &q->bitmaps[EB]);
1407 			__clear_bit(grp->index, &q->bitmaps[IB]);
1408 			grp->S = roundedS;
1409 			grp->F = roundedS + (2ULL << grp->slot_shift);
1410 			s = qfq_calc_state(q, grp);
1411 			__set_bit(grp->index, &q->bitmaps[s]);
1412 		}
1413 	}
1414 }
1415 
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1416 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1417 {
1418 	struct qfq_sched *q = qdisc_priv(sch);
1419 	struct qfq_class *cl = (struct qfq_class *)arg;
1420 
1421 	if (cl->qdisc->q.qlen == 0)
1422 		qfq_deactivate_class(q, cl);
1423 }
1424 
qfq_drop_from_slot(struct qfq_sched * q,struct hlist_head * slot)1425 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1426 				       struct hlist_head *slot)
1427 {
1428 	struct qfq_aggregate *agg;
1429 	struct qfq_class *cl;
1430 	unsigned int len;
1431 
1432 	hlist_for_each_entry(agg, slot, next) {
1433 		list_for_each_entry(cl, &agg->active, alist) {
1434 
1435 			if (!cl->qdisc->ops->drop)
1436 				continue;
1437 
1438 			len = cl->qdisc->ops->drop(cl->qdisc);
1439 			if (len > 0) {
1440 				if (cl->qdisc->q.qlen == 0)
1441 					qfq_deactivate_class(q, cl);
1442 
1443 				return len;
1444 			}
1445 		}
1446 	}
1447 	return 0;
1448 }
1449 
qfq_drop(struct Qdisc * sch)1450 static unsigned int qfq_drop(struct Qdisc *sch)
1451 {
1452 	struct qfq_sched *q = qdisc_priv(sch);
1453 	struct qfq_group *grp;
1454 	unsigned int i, j, len;
1455 
1456 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457 		grp = &q->groups[i];
1458 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1459 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1460 			if (len > 0) {
1461 				sch->q.qlen--;
1462 				return len;
1463 			}
1464 		}
1465 
1466 	}
1467 
1468 	return 0;
1469 }
1470 
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt)1471 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1472 {
1473 	struct qfq_sched *q = qdisc_priv(sch);
1474 	struct qfq_group *grp;
1475 	int i, j, err;
1476 	u32 max_cl_shift, maxbudg_shift, max_classes;
1477 
1478 	err = qdisc_class_hash_init(&q->clhash);
1479 	if (err < 0)
1480 		return err;
1481 
1482 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1483 		max_classes = QFQ_MAX_AGG_CLASSES;
1484 	else
1485 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1486 	/* max_cl_shift = floor(log_2(max_classes)) */
1487 	max_cl_shift = __fls(max_classes);
1488 	q->max_agg_classes = 1<<max_cl_shift;
1489 
1490 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1491 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1492 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1493 
1494 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1495 		grp = &q->groups[i];
1496 		grp->index = i;
1497 		grp->slot_shift = q->min_slot_shift + i;
1498 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1499 			INIT_HLIST_HEAD(&grp->slots[j]);
1500 	}
1501 
1502 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1503 
1504 	return 0;
1505 }
1506 
qfq_reset_qdisc(struct Qdisc * sch)1507 static void qfq_reset_qdisc(struct Qdisc *sch)
1508 {
1509 	struct qfq_sched *q = qdisc_priv(sch);
1510 	struct qfq_class *cl;
1511 	unsigned int i;
1512 
1513 	for (i = 0; i < q->clhash.hashsize; i++) {
1514 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1515 			if (cl->qdisc->q.qlen > 0)
1516 				qfq_deactivate_class(q, cl);
1517 
1518 			qdisc_reset(cl->qdisc);
1519 		}
1520 	}
1521 	sch->q.qlen = 0;
1522 }
1523 
qfq_destroy_qdisc(struct Qdisc * sch)1524 static void qfq_destroy_qdisc(struct Qdisc *sch)
1525 {
1526 	struct qfq_sched *q = qdisc_priv(sch);
1527 	struct qfq_class *cl;
1528 	struct hlist_node *next;
1529 	unsigned int i;
1530 
1531 	tcf_destroy_chain(&q->filter_list);
1532 
1533 	for (i = 0; i < q->clhash.hashsize; i++) {
1534 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1535 					  common.hnode) {
1536 			qfq_destroy_class(sch, cl);
1537 		}
1538 	}
1539 	qdisc_class_hash_destroy(&q->clhash);
1540 }
1541 
1542 static const struct Qdisc_class_ops qfq_class_ops = {
1543 	.change		= qfq_change_class,
1544 	.delete		= qfq_delete_class,
1545 	.get		= qfq_get_class,
1546 	.put		= qfq_put_class,
1547 	.tcf_chain	= qfq_tcf_chain,
1548 	.bind_tcf	= qfq_bind_tcf,
1549 	.unbind_tcf	= qfq_unbind_tcf,
1550 	.graft		= qfq_graft_class,
1551 	.leaf		= qfq_class_leaf,
1552 	.qlen_notify	= qfq_qlen_notify,
1553 	.dump		= qfq_dump_class,
1554 	.dump_stats	= qfq_dump_class_stats,
1555 	.walk		= qfq_walk,
1556 };
1557 
1558 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1559 	.cl_ops		= &qfq_class_ops,
1560 	.id		= "qfq",
1561 	.priv_size	= sizeof(struct qfq_sched),
1562 	.enqueue	= qfq_enqueue,
1563 	.dequeue	= qfq_dequeue,
1564 	.peek		= qdisc_peek_dequeued,
1565 	.drop		= qfq_drop,
1566 	.init		= qfq_init_qdisc,
1567 	.reset		= qfq_reset_qdisc,
1568 	.destroy	= qfq_destroy_qdisc,
1569 	.owner		= THIS_MODULE,
1570 };
1571 
qfq_init(void)1572 static int __init qfq_init(void)
1573 {
1574 	return register_qdisc(&qfq_qdisc_ops);
1575 }
1576 
qfq_exit(void)1577 static void __exit qfq_exit(void)
1578 {
1579 	unregister_qdisc(&qfq_qdisc_ops);
1580 }
1581 
1582 module_init(qfq_init);
1583 module_exit(qfq_exit);
1584 MODULE_LICENSE("GPL");
1585