1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121
122 /*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128 struct qfq_group;
129
130 struct qfq_aggregate;
131
132 struct qfq_class {
133 struct Qdisc_class_common common;
134
135 unsigned int refcnt;
136 unsigned int filter_cnt;
137
138 struct gnet_stats_basic_packed bstats;
139 struct gnet_stats_queue qstats;
140 struct gnet_stats_rate_est64 rate_est;
141 struct Qdisc *qdisc;
142 struct list_head alist; /* Link for active-classes list. */
143 struct qfq_aggregate *agg; /* Parent aggregate. */
144 int deficit; /* DRR deficit counter. */
145 };
146
147 struct qfq_aggregate {
148 struct hlist_node next; /* Link for the slot list. */
149 u64 S, F; /* flow timestamps (exact) */
150
151 /* group we belong to. In principle we would need the index,
152 * which is log_2(lmax/weight), but we never reference it
153 * directly, only the group.
154 */
155 struct qfq_group *grp;
156
157 /* these are copied from the flowset. */
158 u32 class_weight; /* Weight of each class in this aggregate. */
159 /* Max pkt size for the classes in this aggregate, DRR quantum. */
160 int lmax;
161
162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
163 u32 budgetmax; /* Max budget for this aggregate. */
164 u32 initial_budget, budget; /* Initial and current budget. */
165
166 int num_classes; /* Number of classes in this aggr. */
167 struct list_head active; /* DRR queue of active classes. */
168
169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
170 };
171
172 struct qfq_group {
173 u64 S, F; /* group timestamps (approx). */
174 unsigned int slot_shift; /* Slot shift. */
175 unsigned int index; /* Group index. */
176 unsigned int front; /* Index of the front slot. */
177 unsigned long full_slots; /* non-empty slots */
178
179 /* Array of RR lists of active aggregates. */
180 struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182
183 struct qfq_sched {
184 struct tcf_proto __rcu *filter_list;
185 struct Qdisc_class_hash clhash;
186
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 num_active_agg; /* Num. of active aggregates */
190 u32 wsum; /* weight sum */
191 u32 iwsum; /* inverse weight sum */
192
193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196
197 u32 max_agg_classes; /* Max number of classes per aggr. */
198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200
201 /*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 * for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 * must be rescheduled for service
207 */
208 enum update_reason {enqueue, requeue};
209
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219 }
220
qfq_purge_queue(struct qfq_class * cl)221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 unsigned int len = cl->qdisc->q.qlen;
224 unsigned int backlog = cl->qdisc->qstats.backlog;
225
226 qdisc_reset(cl->qdisc);
227 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
228 }
229
230 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
231 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
232 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
233 };
234
235 /*
236 * Calculate a flow index, given its weight and maximum packet length.
237 * index = log_2(maxlen/weight) but we need to apply the scaling.
238 * This is used only once at flow creation.
239 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)240 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
241 {
242 u64 slot_size = (u64)maxlen * inv_w;
243 unsigned long size_map;
244 int index = 0;
245
246 size_map = slot_size >> min_slot_shift;
247 if (!size_map)
248 goto out;
249
250 index = __fls(size_map) + 1; /* basically a log_2 */
251 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
252
253 if (index < 0)
254 index = 0;
255 out:
256 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
257 (unsigned long) ONE_FP/inv_w, maxlen, index);
258
259 return index;
260 }
261
262 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
263 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
264 enum update_reason);
265
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)266 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
267 u32 lmax, u32 weight)
268 {
269 INIT_LIST_HEAD(&agg->active);
270 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
271
272 agg->lmax = lmax;
273 agg->class_weight = weight;
274 }
275
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)276 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
277 u32 lmax, u32 weight)
278 {
279 struct qfq_aggregate *agg;
280
281 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
282 if (agg->lmax == lmax && agg->class_weight == weight)
283 return agg;
284
285 return NULL;
286 }
287
288
289 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)290 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
291 int new_num_classes)
292 {
293 u32 new_agg_weight;
294
295 if (new_num_classes == q->max_agg_classes)
296 hlist_del_init(&agg->nonfull_next);
297
298 if (agg->num_classes > new_num_classes &&
299 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
300 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
301
302 /* The next assignment may let
303 * agg->initial_budget > agg->budgetmax
304 * hold, we will take it into account in charge_actual_service().
305 */
306 agg->budgetmax = new_num_classes * agg->lmax;
307 new_agg_weight = agg->class_weight * new_num_classes;
308 agg->inv_w = ONE_FP/new_agg_weight;
309
310 if (agg->grp == NULL) {
311 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
312 q->min_slot_shift);
313 agg->grp = &q->groups[i];
314 }
315
316 q->wsum +=
317 (int) agg->class_weight * (new_num_classes - agg->num_classes);
318 q->iwsum = ONE_FP / q->wsum;
319
320 agg->num_classes = new_num_classes;
321 }
322
323 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)324 static void qfq_add_to_agg(struct qfq_sched *q,
325 struct qfq_aggregate *agg,
326 struct qfq_class *cl)
327 {
328 cl->agg = agg;
329
330 qfq_update_agg(q, agg, agg->num_classes+1);
331 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
332 list_add_tail(&cl->alist, &agg->active);
333 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
334 cl && q->in_serv_agg != agg) /* agg was inactive */
335 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
336 }
337 }
338
339 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
340
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)341 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
342 {
343 if (!hlist_unhashed(&agg->nonfull_next))
344 hlist_del_init(&agg->nonfull_next);
345 q->wsum -= agg->class_weight;
346 if (q->wsum != 0)
347 q->iwsum = ONE_FP / q->wsum;
348
349 if (q->in_serv_agg == agg)
350 q->in_serv_agg = qfq_choose_next_agg(q);
351 kfree(agg);
352 }
353
354 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)355 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
356 {
357 struct qfq_aggregate *agg = cl->agg;
358
359
360 list_del(&cl->alist); /* remove from RR queue of the aggregate */
361 if (list_empty(&agg->active)) /* agg is now inactive */
362 qfq_deactivate_agg(q, agg);
363 }
364
365 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)366 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
367 {
368 struct qfq_aggregate *agg = cl->agg;
369
370 cl->agg = NULL;
371 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
372 qfq_destroy_agg(q, agg);
373 return;
374 }
375 qfq_update_agg(q, agg, agg->num_classes-1);
376 }
377
378 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)379 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
380 {
381 if (cl->qdisc->q.qlen > 0) /* class is active */
382 qfq_deactivate_class(q, cl);
383
384 qfq_rm_from_agg(q, cl);
385 }
386
387 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)388 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
389 u32 lmax)
390 {
391 struct qfq_sched *q = qdisc_priv(sch);
392 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
393
394 if (new_agg == NULL) { /* create new aggregate */
395 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 if (new_agg == NULL)
397 return -ENOBUFS;
398 qfq_init_agg(q, new_agg, lmax, weight);
399 }
400 qfq_deact_rm_from_agg(q, cl);
401 qfq_add_to_agg(q, new_agg, cl);
402
403 return 0;
404 }
405
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 struct nlattr **tca, unsigned long *arg)
408 {
409 struct qfq_sched *q = qdisc_priv(sch);
410 struct qfq_class *cl = (struct qfq_class *)*arg;
411 bool existing = false;
412 struct nlattr *tb[TCA_QFQ_MAX + 1];
413 struct qfq_aggregate *new_agg = NULL;
414 u32 weight, lmax, inv_w;
415 int err;
416 int delta_w;
417
418 if (tca[TCA_OPTIONS] == NULL) {
419 pr_notice("qfq: no options\n");
420 return -EINVAL;
421 }
422
423 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
424 if (err < 0)
425 return err;
426
427 if (tb[TCA_QFQ_WEIGHT]) {
428 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
429 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
430 pr_notice("qfq: invalid weight %u\n", weight);
431 return -EINVAL;
432 }
433 } else
434 weight = 1;
435
436 if (tb[TCA_QFQ_LMAX]) {
437 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
438 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
439 pr_notice("qfq: invalid max length %u\n", lmax);
440 return -EINVAL;
441 }
442 } else
443 lmax = psched_mtu(qdisc_dev(sch));
444
445 inv_w = ONE_FP / weight;
446 weight = ONE_FP / inv_w;
447
448 if (cl != NULL &&
449 lmax == cl->agg->lmax &&
450 weight == cl->agg->class_weight)
451 return 0; /* nothing to change */
452
453 delta_w = weight - (cl ? cl->agg->class_weight : 0);
454
455 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
456 pr_notice("qfq: total weight out of range (%d + %u)\n",
457 delta_w, q->wsum);
458 return -EINVAL;
459 }
460
461 if (cl != NULL) { /* modify existing class */
462 if (tca[TCA_RATE]) {
463 err = gen_replace_estimator(&cl->bstats, NULL,
464 &cl->rate_est,
465 qdisc_root_sleeping_lock(sch),
466 tca[TCA_RATE]);
467 if (err)
468 return err;
469 }
470 existing = true;
471 goto set_change_agg;
472 }
473
474 /* create and init new class */
475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 if (cl == NULL)
477 return -ENOBUFS;
478
479 cl->refcnt = 1;
480 cl->common.classid = classid;
481 cl->deficit = lmax;
482
483 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
484 &pfifo_qdisc_ops, classid);
485 if (cl->qdisc == NULL)
486 cl->qdisc = &noop_qdisc;
487
488 if (tca[TCA_RATE]) {
489 err = gen_new_estimator(&cl->bstats, NULL,
490 &cl->rate_est,
491 qdisc_root_sleeping_lock(sch),
492 tca[TCA_RATE]);
493 if (err)
494 goto destroy_class;
495 }
496
497 sch_tree_lock(sch);
498 qdisc_class_hash_insert(&q->clhash, &cl->common);
499 sch_tree_unlock(sch);
500
501 qdisc_class_hash_grow(sch, &q->clhash);
502
503 set_change_agg:
504 sch_tree_lock(sch);
505 new_agg = qfq_find_agg(q, lmax, weight);
506 if (new_agg == NULL) { /* create new aggregate */
507 sch_tree_unlock(sch);
508 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
509 if (new_agg == NULL) {
510 err = -ENOBUFS;
511 gen_kill_estimator(&cl->bstats, &cl->rate_est);
512 goto destroy_class;
513 }
514 sch_tree_lock(sch);
515 qfq_init_agg(q, new_agg, lmax, weight);
516 }
517 if (existing)
518 qfq_deact_rm_from_agg(q, cl);
519 qfq_add_to_agg(q, new_agg, cl);
520 sch_tree_unlock(sch);
521
522 *arg = (unsigned long)cl;
523 return 0;
524
525 destroy_class:
526 qdisc_destroy(cl->qdisc);
527 kfree(cl);
528 return err;
529 }
530
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)531 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
532 {
533 struct qfq_sched *q = qdisc_priv(sch);
534
535 qfq_rm_from_agg(q, cl);
536 gen_kill_estimator(&cl->bstats, &cl->rate_est);
537 qdisc_destroy(cl->qdisc);
538 kfree(cl);
539 }
540
qfq_delete_class(struct Qdisc * sch,unsigned long arg)541 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
542 {
543 struct qfq_sched *q = qdisc_priv(sch);
544 struct qfq_class *cl = (struct qfq_class *)arg;
545
546 if (cl->filter_cnt > 0)
547 return -EBUSY;
548
549 sch_tree_lock(sch);
550
551 qfq_purge_queue(cl);
552 qdisc_class_hash_remove(&q->clhash, &cl->common);
553
554 BUG_ON(--cl->refcnt == 0);
555 /*
556 * This shouldn't happen: we "hold" one cops->get() when called
557 * from tc_ctl_tclass; the destroy method is done from cops->put().
558 */
559
560 sch_tree_unlock(sch);
561 return 0;
562 }
563
qfq_get_class(struct Qdisc * sch,u32 classid)564 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
565 {
566 struct qfq_class *cl = qfq_find_class(sch, classid);
567
568 if (cl != NULL)
569 cl->refcnt++;
570
571 return (unsigned long)cl;
572 }
573
qfq_put_class(struct Qdisc * sch,unsigned long arg)574 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
575 {
576 struct qfq_class *cl = (struct qfq_class *)arg;
577
578 if (--cl->refcnt == 0)
579 qfq_destroy_class(sch, cl);
580 }
581
qfq_tcf_chain(struct Qdisc * sch,unsigned long cl)582 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
583 unsigned long cl)
584 {
585 struct qfq_sched *q = qdisc_priv(sch);
586
587 if (cl)
588 return NULL;
589
590 return &q->filter_list;
591 }
592
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)593 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
594 u32 classid)
595 {
596 struct qfq_class *cl = qfq_find_class(sch, classid);
597
598 if (cl != NULL)
599 cl->filter_cnt++;
600
601 return (unsigned long)cl;
602 }
603
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)604 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
605 {
606 struct qfq_class *cl = (struct qfq_class *)arg;
607
608 cl->filter_cnt--;
609 }
610
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old)611 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
612 struct Qdisc *new, struct Qdisc **old)
613 {
614 struct qfq_class *cl = (struct qfq_class *)arg;
615
616 if (new == NULL) {
617 new = qdisc_create_dflt(sch->dev_queue,
618 &pfifo_qdisc_ops, cl->common.classid);
619 if (new == NULL)
620 new = &noop_qdisc;
621 }
622
623 *old = qdisc_replace(sch, new, &cl->qdisc);
624 return 0;
625 }
626
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)627 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
628 {
629 struct qfq_class *cl = (struct qfq_class *)arg;
630
631 return cl->qdisc;
632 }
633
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)634 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
635 struct sk_buff *skb, struct tcmsg *tcm)
636 {
637 struct qfq_class *cl = (struct qfq_class *)arg;
638 struct nlattr *nest;
639
640 tcm->tcm_parent = TC_H_ROOT;
641 tcm->tcm_handle = cl->common.classid;
642 tcm->tcm_info = cl->qdisc->handle;
643
644 nest = nla_nest_start(skb, TCA_OPTIONS);
645 if (nest == NULL)
646 goto nla_put_failure;
647 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
648 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
649 goto nla_put_failure;
650 return nla_nest_end(skb, nest);
651
652 nla_put_failure:
653 nla_nest_cancel(skb, nest);
654 return -EMSGSIZE;
655 }
656
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)657 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
658 struct gnet_dump *d)
659 {
660 struct qfq_class *cl = (struct qfq_class *)arg;
661 struct tc_qfq_stats xstats;
662
663 memset(&xstats, 0, sizeof(xstats));
664
665 xstats.weight = cl->agg->class_weight;
666 xstats.lmax = cl->agg->lmax;
667
668 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
669 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
670 gnet_stats_copy_queue(d, NULL,
671 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
672 return -1;
673
674 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
675 }
676
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)677 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
678 {
679 struct qfq_sched *q = qdisc_priv(sch);
680 struct qfq_class *cl;
681 unsigned int i;
682
683 if (arg->stop)
684 return;
685
686 for (i = 0; i < q->clhash.hashsize; i++) {
687 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
688 if (arg->count < arg->skip) {
689 arg->count++;
690 continue;
691 }
692 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
693 arg->stop = 1;
694 return;
695 }
696 arg->count++;
697 }
698 }
699 }
700
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)701 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
702 int *qerr)
703 {
704 struct qfq_sched *q = qdisc_priv(sch);
705 struct qfq_class *cl;
706 struct tcf_result res;
707 struct tcf_proto *fl;
708 int result;
709
710 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
711 pr_debug("qfq_classify: found %d\n", skb->priority);
712 cl = qfq_find_class(sch, skb->priority);
713 if (cl != NULL)
714 return cl;
715 }
716
717 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
718 fl = rcu_dereference_bh(q->filter_list);
719 result = tc_classify(skb, fl, &res);
720 if (result >= 0) {
721 #ifdef CONFIG_NET_CLS_ACT
722 switch (result) {
723 case TC_ACT_QUEUED:
724 case TC_ACT_STOLEN:
725 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
726 case TC_ACT_SHOT:
727 return NULL;
728 }
729 #endif
730 cl = (struct qfq_class *)res.class;
731 if (cl == NULL)
732 cl = qfq_find_class(sch, res.classid);
733 return cl;
734 }
735
736 return NULL;
737 }
738
739 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)740 static inline int qfq_gt(u64 a, u64 b)
741 {
742 return (s64)(a - b) > 0;
743 }
744
745 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)746 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
747 {
748 return ts & ~((1ULL << shift) - 1);
749 }
750
751 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)752 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
753 unsigned long bitmap)
754 {
755 int index = __ffs(bitmap);
756 return &q->groups[index];
757 }
758 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)759 static inline unsigned long mask_from(unsigned long bitmap, int from)
760 {
761 return bitmap & ~((1UL << from) - 1);
762 }
763
764 /*
765 * The state computation relies on ER=0, IR=1, EB=2, IB=3
766 * First compute eligibility comparing grp->S, q->V,
767 * then check if someone is blocking us and possibly add EB
768 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)769 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
770 {
771 /* if S > V we are not eligible */
772 unsigned int state = qfq_gt(grp->S, q->V);
773 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
774 struct qfq_group *next;
775
776 if (mask) {
777 next = qfq_ffs(q, mask);
778 if (qfq_gt(grp->F, next->F))
779 state |= EB;
780 }
781
782 return state;
783 }
784
785
786 /*
787 * In principle
788 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
789 * q->bitmaps[src] &= ~mask;
790 * but we should make sure that src != dst
791 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)792 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
793 int src, int dst)
794 {
795 q->bitmaps[dst] |= q->bitmaps[src] & mask;
796 q->bitmaps[src] &= ~mask;
797 }
798
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)799 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
800 {
801 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
802 struct qfq_group *next;
803
804 if (mask) {
805 next = qfq_ffs(q, mask);
806 if (!qfq_gt(next->F, old_F))
807 return;
808 }
809
810 mask = (1UL << index) - 1;
811 qfq_move_groups(q, mask, EB, ER);
812 qfq_move_groups(q, mask, IB, IR);
813 }
814
815 /*
816 * perhaps
817 *
818 old_V ^= q->V;
819 old_V >>= q->min_slot_shift;
820 if (old_V) {
821 ...
822 }
823 *
824 */
qfq_make_eligible(struct qfq_sched * q)825 static void qfq_make_eligible(struct qfq_sched *q)
826 {
827 unsigned long vslot = q->V >> q->min_slot_shift;
828 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
829
830 if (vslot != old_vslot) {
831 unsigned long mask;
832 int last_flip_pos = fls(vslot ^ old_vslot);
833
834 if (last_flip_pos > 31) /* higher than the number of groups */
835 mask = ~0UL; /* make all groups eligible */
836 else
837 mask = (1UL << last_flip_pos) - 1;
838
839 qfq_move_groups(q, mask, IR, ER);
840 qfq_move_groups(q, mask, IB, EB);
841 }
842 }
843
844 /*
845 * The index of the slot in which the input aggregate agg is to be
846 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
847 * and not a '-1' because the start time of the group may be moved
848 * backward by one slot after the aggregate has been inserted, and
849 * this would cause non-empty slots to be right-shifted by one
850 * position.
851 *
852 * QFQ+ fully satisfies this bound to the slot index if the parameters
853 * of the classes are not changed dynamically, and if QFQ+ never
854 * happens to postpone the service of agg unjustly, i.e., it never
855 * happens that the aggregate becomes backlogged and eligible, or just
856 * eligible, while an aggregate with a higher approximated finish time
857 * is being served. In particular, in this case QFQ+ guarantees that
858 * the timestamps of agg are low enough that the slot index is never
859 * higher than 2. Unfortunately, QFQ+ cannot provide the same
860 * guarantee if it happens to unjustly postpone the service of agg, or
861 * if the parameters of some class are changed.
862 *
863 * As for the first event, i.e., an out-of-order service, the
864 * upper bound to the slot index guaranteed by QFQ+ grows to
865 * 2 +
866 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
867 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
868 *
869 * The following function deals with this problem by backward-shifting
870 * the timestamps of agg, if needed, so as to guarantee that the slot
871 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
872 * cause the service of other aggregates to be postponed, yet the
873 * worst-case guarantees of these aggregates are not violated. In
874 * fact, in case of no out-of-order service, the timestamps of agg
875 * would have been even lower than they are after the backward shift,
876 * because QFQ+ would have guaranteed a maximum value equal to 2 for
877 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
878 * service is postponed because of the backward-shift would have
879 * however waited for the service of agg before being served.
880 *
881 * The other event that may cause the slot index to be higher than 2
882 * for agg is a recent change of the parameters of some class. If the
883 * weight of a class is increased or the lmax (max_pkt_size) of the
884 * class is decreased, then a new aggregate with smaller slot size
885 * than the original parent aggregate of the class may happen to be
886 * activated. The activation of this aggregate should be properly
887 * delayed to when the service of the class has finished in the ideal
888 * system tracked by QFQ+. If the activation of the aggregate is not
889 * delayed to this reference time instant, then this aggregate may be
890 * unjustly served before other aggregates waiting for service. This
891 * may cause the above bound to the slot index to be violated for some
892 * of these unlucky aggregates.
893 *
894 * Instead of delaying the activation of the new aggregate, which is
895 * quite complex, the above-discussed capping of the slot index is
896 * used to handle also the consequences of a change of the parameters
897 * of a class.
898 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)899 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
900 u64 roundedS)
901 {
902 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
903 unsigned int i; /* slot index in the bucket list */
904
905 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
906 u64 deltaS = roundedS - grp->S -
907 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
908 agg->S -= deltaS;
909 agg->F -= deltaS;
910 slot = QFQ_MAX_SLOTS - 2;
911 }
912
913 i = (grp->front + slot) % QFQ_MAX_SLOTS;
914
915 hlist_add_head(&agg->next, &grp->slots[i]);
916 __set_bit(slot, &grp->full_slots);
917 }
918
919 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)920 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
921 {
922 return hlist_entry(grp->slots[grp->front].first,
923 struct qfq_aggregate, next);
924 }
925
926 /*
927 * remove the entry from the slot
928 */
qfq_front_slot_remove(struct qfq_group * grp)929 static void qfq_front_slot_remove(struct qfq_group *grp)
930 {
931 struct qfq_aggregate *agg = qfq_slot_head(grp);
932
933 BUG_ON(!agg);
934 hlist_del(&agg->next);
935 if (hlist_empty(&grp->slots[grp->front]))
936 __clear_bit(0, &grp->full_slots);
937 }
938
939 /*
940 * Returns the first aggregate in the first non-empty bucket of the
941 * group. As a side effect, adjusts the bucket list so the first
942 * non-empty bucket is at position 0 in full_slots.
943 */
qfq_slot_scan(struct qfq_group * grp)944 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
945 {
946 unsigned int i;
947
948 pr_debug("qfq slot_scan: grp %u full %#lx\n",
949 grp->index, grp->full_slots);
950
951 if (grp->full_slots == 0)
952 return NULL;
953
954 i = __ffs(grp->full_slots); /* zero based */
955 if (i > 0) {
956 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
957 grp->full_slots >>= i;
958 }
959
960 return qfq_slot_head(grp);
961 }
962
963 /*
964 * adjust the bucket list. When the start time of a group decreases,
965 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
966 * move the objects. The mask of occupied slots must be shifted
967 * because we use ffs() to find the first non-empty slot.
968 * This covers decreases in the group's start time, but what about
969 * increases of the start time ?
970 * Here too we should make sure that i is less than 32
971 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)972 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
973 {
974 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
975
976 grp->full_slots <<= i;
977 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
978 }
979
qfq_update_eligible(struct qfq_sched * q)980 static void qfq_update_eligible(struct qfq_sched *q)
981 {
982 struct qfq_group *grp;
983 unsigned long ineligible;
984
985 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
986 if (ineligible) {
987 if (!q->bitmaps[ER]) {
988 grp = qfq_ffs(q, ineligible);
989 if (qfq_gt(grp->S, q->V))
990 q->V = grp->S;
991 }
992 qfq_make_eligible(q);
993 }
994 }
995
996 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)997 static void agg_dequeue(struct qfq_aggregate *agg,
998 struct qfq_class *cl, unsigned int len)
999 {
1000 qdisc_dequeue_peeked(cl->qdisc);
1001
1002 cl->deficit -= (int) len;
1003
1004 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1005 list_del(&cl->alist);
1006 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1007 cl->deficit += agg->lmax;
1008 list_move_tail(&cl->alist, &agg->active);
1009 }
1010 }
1011
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1012 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1013 struct qfq_class **cl,
1014 unsigned int *len)
1015 {
1016 struct sk_buff *skb;
1017
1018 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1019 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1020 if (skb == NULL)
1021 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1022 else
1023 *len = qdisc_pkt_len(skb);
1024
1025 return skb;
1026 }
1027
1028 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1029 static inline void charge_actual_service(struct qfq_aggregate *agg)
1030 {
1031 /* Compute the service received by the aggregate, taking into
1032 * account that, after decreasing the number of classes in
1033 * agg, it may happen that
1034 * agg->initial_budget - agg->budget > agg->bugdetmax
1035 */
1036 u32 service_received = min(agg->budgetmax,
1037 agg->initial_budget - agg->budget);
1038
1039 agg->F = agg->S + (u64)service_received * agg->inv_w;
1040 }
1041
1042 /* Assign a reasonable start time for a new aggregate in group i.
1043 * Admissible values for \hat(F) are multiples of \sigma_i
1044 * no greater than V+\sigma_i . Larger values mean that
1045 * we had a wraparound so we consider the timestamp to be stale.
1046 *
1047 * If F is not stale and F >= V then we set S = F.
1048 * Otherwise we should assign S = V, but this may violate
1049 * the ordering in EB (see [2]). So, if we have groups in ER,
1050 * set S to the F_j of the first group j which would be blocking us.
1051 * We are guaranteed not to move S backward because
1052 * otherwise our group i would still be blocked.
1053 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1054 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1055 {
1056 unsigned long mask;
1057 u64 limit, roundedF;
1058 int slot_shift = agg->grp->slot_shift;
1059
1060 roundedF = qfq_round_down(agg->F, slot_shift);
1061 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1062
1063 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1064 /* timestamp was stale */
1065 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1066 if (mask) {
1067 struct qfq_group *next = qfq_ffs(q, mask);
1068 if (qfq_gt(roundedF, next->F)) {
1069 if (qfq_gt(limit, next->F))
1070 agg->S = next->F;
1071 else /* preserve timestamp correctness */
1072 agg->S = limit;
1073 return;
1074 }
1075 }
1076 agg->S = q->V;
1077 } else /* timestamp is not stale */
1078 agg->S = agg->F;
1079 }
1080
1081 /* Update the timestamps of agg before scheduling/rescheduling it for
1082 * service. In particular, assign to agg->F its maximum possible
1083 * value, i.e., the virtual finish time with which the aggregate
1084 * should be labeled if it used all its budget once in service.
1085 */
1086 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1087 qfq_update_agg_ts(struct qfq_sched *q,
1088 struct qfq_aggregate *agg, enum update_reason reason)
1089 {
1090 if (reason != requeue)
1091 qfq_update_start(q, agg);
1092 else /* just charge agg for the service received */
1093 agg->S = agg->F;
1094
1095 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1096 }
1097
1098 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1099
qfq_dequeue(struct Qdisc * sch)1100 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1101 {
1102 struct qfq_sched *q = qdisc_priv(sch);
1103 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1104 struct qfq_class *cl;
1105 struct sk_buff *skb = NULL;
1106 /* next-packet len, 0 means no more active classes in in-service agg */
1107 unsigned int len = 0;
1108
1109 if (in_serv_agg == NULL)
1110 return NULL;
1111
1112 if (!list_empty(&in_serv_agg->active))
1113 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1114
1115 /*
1116 * If there are no active classes in the in-service aggregate,
1117 * or if the aggregate has not enough budget to serve its next
1118 * class, then choose the next aggregate to serve.
1119 */
1120 if (len == 0 || in_serv_agg->budget < len) {
1121 charge_actual_service(in_serv_agg);
1122
1123 /* recharge the budget of the aggregate */
1124 in_serv_agg->initial_budget = in_serv_agg->budget =
1125 in_serv_agg->budgetmax;
1126
1127 if (!list_empty(&in_serv_agg->active)) {
1128 /*
1129 * Still active: reschedule for
1130 * service. Possible optimization: if no other
1131 * aggregate is active, then there is no point
1132 * in rescheduling this aggregate, and we can
1133 * just keep it as the in-service one. This
1134 * should be however a corner case, and to
1135 * handle it, we would need to maintain an
1136 * extra num_active_aggs field.
1137 */
1138 qfq_update_agg_ts(q, in_serv_agg, requeue);
1139 qfq_schedule_agg(q, in_serv_agg);
1140 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1141 q->in_serv_agg = NULL;
1142 return NULL;
1143 }
1144
1145 /*
1146 * If we get here, there are other aggregates queued:
1147 * choose the new aggregate to serve.
1148 */
1149 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1150 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1151 }
1152 if (!skb)
1153 return NULL;
1154
1155 sch->q.qlen--;
1156 qdisc_bstats_update(sch, skb);
1157
1158 agg_dequeue(in_serv_agg, cl, len);
1159 /* If lmax is lowered, through qfq_change_class, for a class
1160 * owning pending packets with larger size than the new value
1161 * of lmax, then the following condition may hold.
1162 */
1163 if (unlikely(in_serv_agg->budget < len))
1164 in_serv_agg->budget = 0;
1165 else
1166 in_serv_agg->budget -= len;
1167
1168 q->V += (u64)len * q->iwsum;
1169 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1170 len, (unsigned long long) in_serv_agg->F,
1171 (unsigned long long) q->V);
1172
1173 return skb;
1174 }
1175
qfq_choose_next_agg(struct qfq_sched * q)1176 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1177 {
1178 struct qfq_group *grp;
1179 struct qfq_aggregate *agg, *new_front_agg;
1180 u64 old_F;
1181
1182 qfq_update_eligible(q);
1183 q->oldV = q->V;
1184
1185 if (!q->bitmaps[ER])
1186 return NULL;
1187
1188 grp = qfq_ffs(q, q->bitmaps[ER]);
1189 old_F = grp->F;
1190
1191 agg = qfq_slot_head(grp);
1192
1193 /* agg starts to be served, remove it from schedule */
1194 qfq_front_slot_remove(grp);
1195
1196 new_front_agg = qfq_slot_scan(grp);
1197
1198 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1199 __clear_bit(grp->index, &q->bitmaps[ER]);
1200 else {
1201 u64 roundedS = qfq_round_down(new_front_agg->S,
1202 grp->slot_shift);
1203 unsigned int s;
1204
1205 if (grp->S == roundedS)
1206 return agg;
1207 grp->S = roundedS;
1208 grp->F = roundedS + (2ULL << grp->slot_shift);
1209 __clear_bit(grp->index, &q->bitmaps[ER]);
1210 s = qfq_calc_state(q, grp);
1211 __set_bit(grp->index, &q->bitmaps[s]);
1212 }
1213
1214 qfq_unblock_groups(q, grp->index, old_F);
1215
1216 return agg;
1217 }
1218
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch)1219 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1220 {
1221 struct qfq_sched *q = qdisc_priv(sch);
1222 struct qfq_class *cl;
1223 struct qfq_aggregate *agg;
1224 int err = 0;
1225
1226 cl = qfq_classify(skb, sch, &err);
1227 if (cl == NULL) {
1228 if (err & __NET_XMIT_BYPASS)
1229 qdisc_qstats_drop(sch);
1230 kfree_skb(skb);
1231 return err;
1232 }
1233 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1234
1235 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1236 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1237 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1238 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1239 qdisc_pkt_len(skb));
1240 if (err)
1241 return err;
1242 }
1243
1244 err = qdisc_enqueue(skb, cl->qdisc);
1245 if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 if (net_xmit_drop_count(err)) {
1248 cl->qstats.drops++;
1249 qdisc_qstats_drop(sch);
1250 }
1251 return err;
1252 }
1253
1254 bstats_update(&cl->bstats, skb);
1255 ++sch->q.qlen;
1256
1257 agg = cl->agg;
1258 /* if the queue was not empty, then done here */
1259 if (cl->qdisc->q.qlen != 1) {
1260 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1261 list_first_entry(&agg->active, struct qfq_class, alist)
1262 == cl && cl->deficit < qdisc_pkt_len(skb))
1263 list_move_tail(&cl->alist, &agg->active);
1264
1265 return err;
1266 }
1267
1268 /* schedule class for service within the aggregate */
1269 cl->deficit = agg->lmax;
1270 list_add_tail(&cl->alist, &agg->active);
1271
1272 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1273 q->in_serv_agg == agg)
1274 return err; /* non-empty or in service, nothing else to do */
1275
1276 qfq_activate_agg(q, agg, enqueue);
1277
1278 return err;
1279 }
1280
1281 /*
1282 * Schedule aggregate according to its timestamps.
1283 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1284 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1285 {
1286 struct qfq_group *grp = agg->grp;
1287 u64 roundedS;
1288 int s;
1289
1290 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1291
1292 /*
1293 * Insert agg in the correct bucket.
1294 * If agg->S >= grp->S we don't need to adjust the
1295 * bucket list and simply go to the insertion phase.
1296 * Otherwise grp->S is decreasing, we must make room
1297 * in the bucket list, and also recompute the group state.
1298 * Finally, if there were no flows in this group and nobody
1299 * was in ER make sure to adjust V.
1300 */
1301 if (grp->full_slots) {
1302 if (!qfq_gt(grp->S, agg->S))
1303 goto skip_update;
1304
1305 /* create a slot for this agg->S */
1306 qfq_slot_rotate(grp, roundedS);
1307 /* group was surely ineligible, remove */
1308 __clear_bit(grp->index, &q->bitmaps[IR]);
1309 __clear_bit(grp->index, &q->bitmaps[IB]);
1310 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1311 q->in_serv_agg == NULL)
1312 q->V = roundedS;
1313
1314 grp->S = roundedS;
1315 grp->F = roundedS + (2ULL << grp->slot_shift);
1316 s = qfq_calc_state(q, grp);
1317 __set_bit(grp->index, &q->bitmaps[s]);
1318
1319 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1320 s, q->bitmaps[s],
1321 (unsigned long long) agg->S,
1322 (unsigned long long) agg->F,
1323 (unsigned long long) q->V);
1324
1325 skip_update:
1326 qfq_slot_insert(grp, agg, roundedS);
1327 }
1328
1329
1330 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1331 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1332 enum update_reason reason)
1333 {
1334 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1335
1336 qfq_update_agg_ts(q, agg, reason);
1337 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1338 q->in_serv_agg = agg; /* start serving this aggregate */
1339 /* update V: to be in service, agg must be eligible */
1340 q->oldV = q->V = agg->S;
1341 } else if (agg != q->in_serv_agg)
1342 qfq_schedule_agg(q, agg);
1343 }
1344
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1345 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1346 struct qfq_aggregate *agg)
1347 {
1348 unsigned int i, offset;
1349 u64 roundedS;
1350
1351 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1352 offset = (roundedS - grp->S) >> grp->slot_shift;
1353
1354 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1355
1356 hlist_del(&agg->next);
1357 if (hlist_empty(&grp->slots[i]))
1358 __clear_bit(offset, &grp->full_slots);
1359 }
1360
1361 /*
1362 * Called to forcibly deschedule an aggregate. If the aggregate is
1363 * not in the front bucket, or if the latter has other aggregates in
1364 * the front bucket, we can simply remove the aggregate with no other
1365 * side effects.
1366 * Otherwise we must propagate the event up.
1367 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1368 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1369 {
1370 struct qfq_group *grp = agg->grp;
1371 unsigned long mask;
1372 u64 roundedS;
1373 int s;
1374
1375 if (agg == q->in_serv_agg) {
1376 charge_actual_service(agg);
1377 q->in_serv_agg = qfq_choose_next_agg(q);
1378 return;
1379 }
1380
1381 agg->F = agg->S;
1382 qfq_slot_remove(q, grp, agg);
1383
1384 if (!grp->full_slots) {
1385 __clear_bit(grp->index, &q->bitmaps[IR]);
1386 __clear_bit(grp->index, &q->bitmaps[EB]);
1387 __clear_bit(grp->index, &q->bitmaps[IB]);
1388
1389 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1390 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1391 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1392 if (mask)
1393 mask = ~((1UL << __fls(mask)) - 1);
1394 else
1395 mask = ~0UL;
1396 qfq_move_groups(q, mask, EB, ER);
1397 qfq_move_groups(q, mask, IB, IR);
1398 }
1399 __clear_bit(grp->index, &q->bitmaps[ER]);
1400 } else if (hlist_empty(&grp->slots[grp->front])) {
1401 agg = qfq_slot_scan(grp);
1402 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1403 if (grp->S != roundedS) {
1404 __clear_bit(grp->index, &q->bitmaps[ER]);
1405 __clear_bit(grp->index, &q->bitmaps[IR]);
1406 __clear_bit(grp->index, &q->bitmaps[EB]);
1407 __clear_bit(grp->index, &q->bitmaps[IB]);
1408 grp->S = roundedS;
1409 grp->F = roundedS + (2ULL << grp->slot_shift);
1410 s = qfq_calc_state(q, grp);
1411 __set_bit(grp->index, &q->bitmaps[s]);
1412 }
1413 }
1414 }
1415
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1416 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1417 {
1418 struct qfq_sched *q = qdisc_priv(sch);
1419 struct qfq_class *cl = (struct qfq_class *)arg;
1420
1421 if (cl->qdisc->q.qlen == 0)
1422 qfq_deactivate_class(q, cl);
1423 }
1424
qfq_drop_from_slot(struct qfq_sched * q,struct hlist_head * slot)1425 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1426 struct hlist_head *slot)
1427 {
1428 struct qfq_aggregate *agg;
1429 struct qfq_class *cl;
1430 unsigned int len;
1431
1432 hlist_for_each_entry(agg, slot, next) {
1433 list_for_each_entry(cl, &agg->active, alist) {
1434
1435 if (!cl->qdisc->ops->drop)
1436 continue;
1437
1438 len = cl->qdisc->ops->drop(cl->qdisc);
1439 if (len > 0) {
1440 if (cl->qdisc->q.qlen == 0)
1441 qfq_deactivate_class(q, cl);
1442
1443 return len;
1444 }
1445 }
1446 }
1447 return 0;
1448 }
1449
qfq_drop(struct Qdisc * sch)1450 static unsigned int qfq_drop(struct Qdisc *sch)
1451 {
1452 struct qfq_sched *q = qdisc_priv(sch);
1453 struct qfq_group *grp;
1454 unsigned int i, j, len;
1455
1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457 grp = &q->groups[i];
1458 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1459 len = qfq_drop_from_slot(q, &grp->slots[j]);
1460 if (len > 0) {
1461 sch->q.qlen--;
1462 return len;
1463 }
1464 }
1465
1466 }
1467
1468 return 0;
1469 }
1470
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt)1471 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1472 {
1473 struct qfq_sched *q = qdisc_priv(sch);
1474 struct qfq_group *grp;
1475 int i, j, err;
1476 u32 max_cl_shift, maxbudg_shift, max_classes;
1477
1478 err = qdisc_class_hash_init(&q->clhash);
1479 if (err < 0)
1480 return err;
1481
1482 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1483 max_classes = QFQ_MAX_AGG_CLASSES;
1484 else
1485 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1486 /* max_cl_shift = floor(log_2(max_classes)) */
1487 max_cl_shift = __fls(max_classes);
1488 q->max_agg_classes = 1<<max_cl_shift;
1489
1490 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1491 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1492 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1493
1494 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1495 grp = &q->groups[i];
1496 grp->index = i;
1497 grp->slot_shift = q->min_slot_shift + i;
1498 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1499 INIT_HLIST_HEAD(&grp->slots[j]);
1500 }
1501
1502 INIT_HLIST_HEAD(&q->nonfull_aggs);
1503
1504 return 0;
1505 }
1506
qfq_reset_qdisc(struct Qdisc * sch)1507 static void qfq_reset_qdisc(struct Qdisc *sch)
1508 {
1509 struct qfq_sched *q = qdisc_priv(sch);
1510 struct qfq_class *cl;
1511 unsigned int i;
1512
1513 for (i = 0; i < q->clhash.hashsize; i++) {
1514 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1515 if (cl->qdisc->q.qlen > 0)
1516 qfq_deactivate_class(q, cl);
1517
1518 qdisc_reset(cl->qdisc);
1519 }
1520 }
1521 sch->q.qlen = 0;
1522 }
1523
qfq_destroy_qdisc(struct Qdisc * sch)1524 static void qfq_destroy_qdisc(struct Qdisc *sch)
1525 {
1526 struct qfq_sched *q = qdisc_priv(sch);
1527 struct qfq_class *cl;
1528 struct hlist_node *next;
1529 unsigned int i;
1530
1531 tcf_destroy_chain(&q->filter_list);
1532
1533 for (i = 0; i < q->clhash.hashsize; i++) {
1534 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1535 common.hnode) {
1536 qfq_destroy_class(sch, cl);
1537 }
1538 }
1539 qdisc_class_hash_destroy(&q->clhash);
1540 }
1541
1542 static const struct Qdisc_class_ops qfq_class_ops = {
1543 .change = qfq_change_class,
1544 .delete = qfq_delete_class,
1545 .get = qfq_get_class,
1546 .put = qfq_put_class,
1547 .tcf_chain = qfq_tcf_chain,
1548 .bind_tcf = qfq_bind_tcf,
1549 .unbind_tcf = qfq_unbind_tcf,
1550 .graft = qfq_graft_class,
1551 .leaf = qfq_class_leaf,
1552 .qlen_notify = qfq_qlen_notify,
1553 .dump = qfq_dump_class,
1554 .dump_stats = qfq_dump_class_stats,
1555 .walk = qfq_walk,
1556 };
1557
1558 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1559 .cl_ops = &qfq_class_ops,
1560 .id = "qfq",
1561 .priv_size = sizeof(struct qfq_sched),
1562 .enqueue = qfq_enqueue,
1563 .dequeue = qfq_dequeue,
1564 .peek = qdisc_peek_dequeued,
1565 .drop = qfq_drop,
1566 .init = qfq_init_qdisc,
1567 .reset = qfq_reset_qdisc,
1568 .destroy = qfq_destroy_qdisc,
1569 .owner = THIS_MODULE,
1570 };
1571
qfq_init(void)1572 static int __init qfq_init(void)
1573 {
1574 return register_qdisc(&qfq_qdisc_ops);
1575 }
1576
qfq_exit(void)1577 static void __exit qfq_exit(void)
1578 {
1579 unregister_qdisc(&qfq_qdisc_ops);
1580 }
1581
1582 module_init(qfq_init);
1583 module_exit(qfq_exit);
1584 MODULE_LICENSE("GPL");
1585