1 /*
2 * linux/net/sunrpc/svc.c
3 *
4 * High-level RPC service routines
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 *
8 * Multiple threads pools and NUMAisation
9 * Copyright (c) 2006 Silicon Graphics, Inc.
10 * by Greg Banks <gnb@melbourne.sgi.com>
11 */
12
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30
31 #define RPCDBG_FACILITY RPCDBG_SVCDSP
32
33 static void svc_unregister(const struct svc_serv *serv, struct net *net);
34
35 #define svc_serv_is_pooled(serv) ((serv)->sv_function)
36
37 /*
38 * Mode for mapping cpus to pools.
39 */
40 enum {
41 SVC_POOL_AUTO = -1, /* choose one of the others */
42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
43 * (legacy & UP mode) */
44 SVC_POOL_PERCPU, /* one pool per cpu */
45 SVC_POOL_PERNODE /* one pool per numa node */
46 };
47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
48
49 /*
50 * Structure for mapping cpus to pools and vice versa.
51 * Setup once during sunrpc initialisation.
52 */
53 static struct svc_pool_map {
54 int count; /* How many svc_servs use us */
55 int mode; /* Note: int not enum to avoid
56 * warnings about "enumeration value
57 * not handled in switch" */
58 unsigned int npools;
59 unsigned int *pool_to; /* maps pool id to cpu or node */
60 unsigned int *to_pool; /* maps cpu or node to pool id */
61 } svc_pool_map = {
62 .count = 0,
63 .mode = SVC_POOL_DEFAULT
64 };
65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
66
67 static int
param_set_pool_mode(const char * val,struct kernel_param * kp)68 param_set_pool_mode(const char *val, struct kernel_param *kp)
69 {
70 int *ip = (int *)kp->arg;
71 struct svc_pool_map *m = &svc_pool_map;
72 int err;
73
74 mutex_lock(&svc_pool_map_mutex);
75
76 err = -EBUSY;
77 if (m->count)
78 goto out;
79
80 err = 0;
81 if (!strncmp(val, "auto", 4))
82 *ip = SVC_POOL_AUTO;
83 else if (!strncmp(val, "global", 6))
84 *ip = SVC_POOL_GLOBAL;
85 else if (!strncmp(val, "percpu", 6))
86 *ip = SVC_POOL_PERCPU;
87 else if (!strncmp(val, "pernode", 7))
88 *ip = SVC_POOL_PERNODE;
89 else
90 err = -EINVAL;
91
92 out:
93 mutex_unlock(&svc_pool_map_mutex);
94 return err;
95 }
96
97 static int
param_get_pool_mode(char * buf,struct kernel_param * kp)98 param_get_pool_mode(char *buf, struct kernel_param *kp)
99 {
100 int *ip = (int *)kp->arg;
101
102 switch (*ip)
103 {
104 case SVC_POOL_AUTO:
105 return strlcpy(buf, "auto", 20);
106 case SVC_POOL_GLOBAL:
107 return strlcpy(buf, "global", 20);
108 case SVC_POOL_PERCPU:
109 return strlcpy(buf, "percpu", 20);
110 case SVC_POOL_PERNODE:
111 return strlcpy(buf, "pernode", 20);
112 default:
113 return sprintf(buf, "%d", *ip);
114 }
115 }
116
117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
118 &svc_pool_map.mode, 0644);
119
120 /*
121 * Detect best pool mapping mode heuristically,
122 * according to the machine's topology.
123 */
124 static int
svc_pool_map_choose_mode(void)125 svc_pool_map_choose_mode(void)
126 {
127 unsigned int node;
128
129 if (nr_online_nodes > 1) {
130 /*
131 * Actually have multiple NUMA nodes,
132 * so split pools on NUMA node boundaries
133 */
134 return SVC_POOL_PERNODE;
135 }
136
137 node = first_online_node;
138 if (nr_cpus_node(node) > 2) {
139 /*
140 * Non-trivial SMP, or CONFIG_NUMA on
141 * non-NUMA hardware, e.g. with a generic
142 * x86_64 kernel on Xeons. In this case we
143 * want to divide the pools on cpu boundaries.
144 */
145 return SVC_POOL_PERCPU;
146 }
147
148 /* default: one global pool */
149 return SVC_POOL_GLOBAL;
150 }
151
152 /*
153 * Allocate the to_pool[] and pool_to[] arrays.
154 * Returns 0 on success or an errno.
155 */
156 static int
svc_pool_map_alloc_arrays(struct svc_pool_map * m,unsigned int maxpools)157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
158 {
159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
160 if (!m->to_pool)
161 goto fail;
162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
163 if (!m->pool_to)
164 goto fail_free;
165
166 return 0;
167
168 fail_free:
169 kfree(m->to_pool);
170 m->to_pool = NULL;
171 fail:
172 return -ENOMEM;
173 }
174
175 /*
176 * Initialise the pool map for SVC_POOL_PERCPU mode.
177 * Returns number of pools or <0 on error.
178 */
179 static int
svc_pool_map_init_percpu(struct svc_pool_map * m)180 svc_pool_map_init_percpu(struct svc_pool_map *m)
181 {
182 unsigned int maxpools = nr_cpu_ids;
183 unsigned int pidx = 0;
184 unsigned int cpu;
185 int err;
186
187 err = svc_pool_map_alloc_arrays(m, maxpools);
188 if (err)
189 return err;
190
191 for_each_online_cpu(cpu) {
192 BUG_ON(pidx > maxpools);
193 m->to_pool[cpu] = pidx;
194 m->pool_to[pidx] = cpu;
195 pidx++;
196 }
197 /* cpus brought online later all get mapped to pool0, sorry */
198
199 return pidx;
200 };
201
202
203 /*
204 * Initialise the pool map for SVC_POOL_PERNODE mode.
205 * Returns number of pools or <0 on error.
206 */
207 static int
svc_pool_map_init_pernode(struct svc_pool_map * m)208 svc_pool_map_init_pernode(struct svc_pool_map *m)
209 {
210 unsigned int maxpools = nr_node_ids;
211 unsigned int pidx = 0;
212 unsigned int node;
213 int err;
214
215 err = svc_pool_map_alloc_arrays(m, maxpools);
216 if (err)
217 return err;
218
219 for_each_node_with_cpus(node) {
220 /* some architectures (e.g. SN2) have cpuless nodes */
221 BUG_ON(pidx > maxpools);
222 m->to_pool[node] = pidx;
223 m->pool_to[pidx] = node;
224 pidx++;
225 }
226 /* nodes brought online later all get mapped to pool0, sorry */
227
228 return pidx;
229 }
230
231
232 /*
233 * Add a reference to the global map of cpus to pools (and
234 * vice versa). Initialise the map if we're the first user.
235 * Returns the number of pools.
236 */
237 static unsigned int
svc_pool_map_get(void)238 svc_pool_map_get(void)
239 {
240 struct svc_pool_map *m = &svc_pool_map;
241 int npools = -1;
242
243 mutex_lock(&svc_pool_map_mutex);
244
245 if (m->count++) {
246 mutex_unlock(&svc_pool_map_mutex);
247 return m->npools;
248 }
249
250 if (m->mode == SVC_POOL_AUTO)
251 m->mode = svc_pool_map_choose_mode();
252
253 switch (m->mode) {
254 case SVC_POOL_PERCPU:
255 npools = svc_pool_map_init_percpu(m);
256 break;
257 case SVC_POOL_PERNODE:
258 npools = svc_pool_map_init_pernode(m);
259 break;
260 }
261
262 if (npools < 0) {
263 /* default, or memory allocation failure */
264 npools = 1;
265 m->mode = SVC_POOL_GLOBAL;
266 }
267 m->npools = npools;
268
269 mutex_unlock(&svc_pool_map_mutex);
270 return m->npools;
271 }
272
273
274 /*
275 * Drop a reference to the global map of cpus to pools.
276 * When the last reference is dropped, the map data is
277 * freed; this allows the sysadmin to change the pool
278 * mode using the pool_mode module option without
279 * rebooting or re-loading sunrpc.ko.
280 */
281 static void
svc_pool_map_put(void)282 svc_pool_map_put(void)
283 {
284 struct svc_pool_map *m = &svc_pool_map;
285
286 mutex_lock(&svc_pool_map_mutex);
287
288 if (!--m->count) {
289 kfree(m->to_pool);
290 m->to_pool = NULL;
291 kfree(m->pool_to);
292 m->pool_to = NULL;
293 m->npools = 0;
294 }
295
296 mutex_unlock(&svc_pool_map_mutex);
297 }
298
299
svc_pool_map_get_node(unsigned int pidx)300 static int svc_pool_map_get_node(unsigned int pidx)
301 {
302 const struct svc_pool_map *m = &svc_pool_map;
303
304 if (m->count) {
305 if (m->mode == SVC_POOL_PERCPU)
306 return cpu_to_node(m->pool_to[pidx]);
307 if (m->mode == SVC_POOL_PERNODE)
308 return m->pool_to[pidx];
309 }
310 return NUMA_NO_NODE;
311 }
312 /*
313 * Set the given thread's cpus_allowed mask so that it
314 * will only run on cpus in the given pool.
315 */
316 static inline void
svc_pool_map_set_cpumask(struct task_struct * task,unsigned int pidx)317 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
318 {
319 struct svc_pool_map *m = &svc_pool_map;
320 unsigned int node = m->pool_to[pidx];
321
322 /*
323 * The caller checks for sv_nrpools > 1, which
324 * implies that we've been initialized.
325 */
326 WARN_ON_ONCE(m->count == 0);
327 if (m->count == 0)
328 return;
329
330 switch (m->mode) {
331 case SVC_POOL_PERCPU:
332 {
333 set_cpus_allowed_ptr(task, cpumask_of(node));
334 break;
335 }
336 case SVC_POOL_PERNODE:
337 {
338 set_cpus_allowed_ptr(task, cpumask_of_node(node));
339 break;
340 }
341 }
342 }
343
344 /*
345 * Use the mapping mode to choose a pool for a given CPU.
346 * Used when enqueueing an incoming RPC. Always returns
347 * a non-NULL pool pointer.
348 */
349 struct svc_pool *
svc_pool_for_cpu(struct svc_serv * serv,int cpu)350 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
351 {
352 struct svc_pool_map *m = &svc_pool_map;
353 unsigned int pidx = 0;
354
355 /*
356 * An uninitialised map happens in a pure client when
357 * lockd is brought up, so silently treat it the
358 * same as SVC_POOL_GLOBAL.
359 */
360 if (svc_serv_is_pooled(serv)) {
361 switch (m->mode) {
362 case SVC_POOL_PERCPU:
363 pidx = m->to_pool[cpu];
364 break;
365 case SVC_POOL_PERNODE:
366 pidx = m->to_pool[cpu_to_node(cpu)];
367 break;
368 }
369 }
370 return &serv->sv_pools[pidx % serv->sv_nrpools];
371 }
372
svc_rpcb_setup(struct svc_serv * serv,struct net * net)373 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
374 {
375 int err;
376
377 err = rpcb_create_local(net);
378 if (err)
379 return err;
380
381 /* Remove any stale portmap registrations */
382 svc_unregister(serv, net);
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
386
svc_rpcb_cleanup(struct svc_serv * serv,struct net * net)387 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
388 {
389 svc_unregister(serv, net);
390 rpcb_put_local(net);
391 }
392 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
393
svc_uses_rpcbind(struct svc_serv * serv)394 static int svc_uses_rpcbind(struct svc_serv *serv)
395 {
396 struct svc_program *progp;
397 unsigned int i;
398
399 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
400 for (i = 0; i < progp->pg_nvers; i++) {
401 if (progp->pg_vers[i] == NULL)
402 continue;
403 if (progp->pg_vers[i]->vs_hidden == 0)
404 return 1;
405 }
406 }
407
408 return 0;
409 }
410
svc_bind(struct svc_serv * serv,struct net * net)411 int svc_bind(struct svc_serv *serv, struct net *net)
412 {
413 if (!svc_uses_rpcbind(serv))
414 return 0;
415 return svc_rpcb_setup(serv, net);
416 }
417 EXPORT_SYMBOL_GPL(svc_bind);
418
419 /*
420 * Create an RPC service
421 */
422 static struct svc_serv *
__svc_create(struct svc_program * prog,unsigned int bufsize,int npools,void (* shutdown)(struct svc_serv * serv,struct net * net))423 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
424 void (*shutdown)(struct svc_serv *serv, struct net *net))
425 {
426 struct svc_serv *serv;
427 unsigned int vers;
428 unsigned int xdrsize;
429 unsigned int i;
430
431 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
432 return NULL;
433 serv->sv_name = prog->pg_name;
434 serv->sv_program = prog;
435 serv->sv_nrthreads = 1;
436 serv->sv_stats = prog->pg_stats;
437 if (bufsize > RPCSVC_MAXPAYLOAD)
438 bufsize = RPCSVC_MAXPAYLOAD;
439 serv->sv_max_payload = bufsize? bufsize : 4096;
440 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
441 serv->sv_shutdown = shutdown;
442 xdrsize = 0;
443 while (prog) {
444 prog->pg_lovers = prog->pg_nvers-1;
445 for (vers=0; vers<prog->pg_nvers ; vers++)
446 if (prog->pg_vers[vers]) {
447 prog->pg_hivers = vers;
448 if (prog->pg_lovers > vers)
449 prog->pg_lovers = vers;
450 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
451 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
452 }
453 prog = prog->pg_next;
454 }
455 serv->sv_xdrsize = xdrsize;
456 INIT_LIST_HEAD(&serv->sv_tempsocks);
457 INIT_LIST_HEAD(&serv->sv_permsocks);
458 init_timer(&serv->sv_temptimer);
459 spin_lock_init(&serv->sv_lock);
460
461 serv->sv_nrpools = npools;
462 serv->sv_pools =
463 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
464 GFP_KERNEL);
465 if (!serv->sv_pools) {
466 kfree(serv);
467 return NULL;
468 }
469
470 for (i = 0; i < serv->sv_nrpools; i++) {
471 struct svc_pool *pool = &serv->sv_pools[i];
472
473 dprintk("svc: initialising pool %u for %s\n",
474 i, serv->sv_name);
475
476 pool->sp_id = i;
477 INIT_LIST_HEAD(&pool->sp_threads);
478 INIT_LIST_HEAD(&pool->sp_sockets);
479 INIT_LIST_HEAD(&pool->sp_all_threads);
480 spin_lock_init(&pool->sp_lock);
481 }
482
483 if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown))
484 serv->sv_shutdown = svc_rpcb_cleanup;
485
486 return serv;
487 }
488
489 struct svc_serv *
svc_create(struct svc_program * prog,unsigned int bufsize,void (* shutdown)(struct svc_serv * serv,struct net * net))490 svc_create(struct svc_program *prog, unsigned int bufsize,
491 void (*shutdown)(struct svc_serv *serv, struct net *net))
492 {
493 return __svc_create(prog, bufsize, /*npools*/1, shutdown);
494 }
495 EXPORT_SYMBOL_GPL(svc_create);
496
497 struct svc_serv *
svc_create_pooled(struct svc_program * prog,unsigned int bufsize,void (* shutdown)(struct svc_serv * serv,struct net * net),svc_thread_fn func,struct module * mod)498 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
499 void (*shutdown)(struct svc_serv *serv, struct net *net),
500 svc_thread_fn func, struct module *mod)
501 {
502 struct svc_serv *serv;
503 unsigned int npools = svc_pool_map_get();
504
505 serv = __svc_create(prog, bufsize, npools, shutdown);
506
507 if (serv != NULL) {
508 serv->sv_function = func;
509 serv->sv_module = mod;
510 }
511
512 return serv;
513 }
514 EXPORT_SYMBOL_GPL(svc_create_pooled);
515
svc_shutdown_net(struct svc_serv * serv,struct net * net)516 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
517 {
518 svc_close_net(serv, net);
519
520 if (serv->sv_shutdown)
521 serv->sv_shutdown(serv, net);
522 }
523 EXPORT_SYMBOL_GPL(svc_shutdown_net);
524
525 /*
526 * Destroy an RPC service. Should be called with appropriate locking to
527 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
528 */
529 void
svc_destroy(struct svc_serv * serv)530 svc_destroy(struct svc_serv *serv)
531 {
532 dprintk("svc: svc_destroy(%s, %d)\n",
533 serv->sv_program->pg_name,
534 serv->sv_nrthreads);
535
536 if (serv->sv_nrthreads) {
537 if (--(serv->sv_nrthreads) != 0) {
538 svc_sock_update_bufs(serv);
539 return;
540 }
541 } else
542 printk("svc_destroy: no threads for serv=%p!\n", serv);
543
544 del_timer_sync(&serv->sv_temptimer);
545
546 /*
547 * The last user is gone and thus all sockets have to be destroyed to
548 * the point. Check this.
549 */
550 BUG_ON(!list_empty(&serv->sv_permsocks));
551 BUG_ON(!list_empty(&serv->sv_tempsocks));
552
553 cache_clean_deferred(serv);
554
555 if (svc_serv_is_pooled(serv))
556 svc_pool_map_put();
557
558 kfree(serv->sv_pools);
559 kfree(serv);
560 }
561 EXPORT_SYMBOL_GPL(svc_destroy);
562
563 /*
564 * Allocate an RPC server's buffer space.
565 * We allocate pages and place them in rq_argpages.
566 */
567 static int
svc_init_buffer(struct svc_rqst * rqstp,unsigned int size,int node)568 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
569 {
570 unsigned int pages, arghi;
571
572 /* bc_xprt uses fore channel allocated buffers */
573 if (svc_is_backchannel(rqstp))
574 return 1;
575
576 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
577 * We assume one is at most one page
578 */
579 arghi = 0;
580 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
581 if (pages > RPCSVC_MAXPAGES)
582 pages = RPCSVC_MAXPAGES;
583 while (pages) {
584 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
585 if (!p)
586 break;
587 rqstp->rq_pages[arghi++] = p;
588 pages--;
589 }
590 return pages == 0;
591 }
592
593 /*
594 * Release an RPC server buffer
595 */
596 static void
svc_release_buffer(struct svc_rqst * rqstp)597 svc_release_buffer(struct svc_rqst *rqstp)
598 {
599 unsigned int i;
600
601 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
602 if (rqstp->rq_pages[i])
603 put_page(rqstp->rq_pages[i]);
604 }
605
606 struct svc_rqst *
svc_prepare_thread(struct svc_serv * serv,struct svc_pool * pool,int node)607 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
608 {
609 struct svc_rqst *rqstp;
610
611 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
612 if (!rqstp)
613 goto out_enomem;
614
615 serv->sv_nrthreads++;
616 spin_lock_bh(&pool->sp_lock);
617 pool->sp_nrthreads++;
618 list_add(&rqstp->rq_all, &pool->sp_all_threads);
619 spin_unlock_bh(&pool->sp_lock);
620 rqstp->rq_server = serv;
621 rqstp->rq_pool = pool;
622
623 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
624 if (!rqstp->rq_argp)
625 goto out_thread;
626
627 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
628 if (!rqstp->rq_resp)
629 goto out_thread;
630
631 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
632 goto out_thread;
633
634 return rqstp;
635 out_thread:
636 svc_exit_thread(rqstp);
637 out_enomem:
638 return ERR_PTR(-ENOMEM);
639 }
640 EXPORT_SYMBOL_GPL(svc_prepare_thread);
641
642 /*
643 * Choose a pool in which to create a new thread, for svc_set_num_threads
644 */
645 static inline struct svc_pool *
choose_pool(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)646 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
647 {
648 if (pool != NULL)
649 return pool;
650
651 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
652 }
653
654 /*
655 * Choose a thread to kill, for svc_set_num_threads
656 */
657 static inline struct task_struct *
choose_victim(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)658 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
659 {
660 unsigned int i;
661 struct task_struct *task = NULL;
662
663 if (pool != NULL) {
664 spin_lock_bh(&pool->sp_lock);
665 } else {
666 /* choose a pool in round-robin fashion */
667 for (i = 0; i < serv->sv_nrpools; i++) {
668 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
669 spin_lock_bh(&pool->sp_lock);
670 if (!list_empty(&pool->sp_all_threads))
671 goto found_pool;
672 spin_unlock_bh(&pool->sp_lock);
673 }
674 return NULL;
675 }
676
677 found_pool:
678 if (!list_empty(&pool->sp_all_threads)) {
679 struct svc_rqst *rqstp;
680
681 /*
682 * Remove from the pool->sp_all_threads list
683 * so we don't try to kill it again.
684 */
685 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
686 list_del_init(&rqstp->rq_all);
687 task = rqstp->rq_task;
688 }
689 spin_unlock_bh(&pool->sp_lock);
690
691 return task;
692 }
693
694 /*
695 * Create or destroy enough new threads to make the number
696 * of threads the given number. If `pool' is non-NULL, applies
697 * only to threads in that pool, otherwise round-robins between
698 * all pools. Caller must ensure that mutual exclusion between this and
699 * server startup or shutdown.
700 *
701 * Destroying threads relies on the service threads filling in
702 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
703 * has been created using svc_create_pooled().
704 *
705 * Based on code that used to be in nfsd_svc() but tweaked
706 * to be pool-aware.
707 */
708 int
svc_set_num_threads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)709 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
710 {
711 struct svc_rqst *rqstp;
712 struct task_struct *task;
713 struct svc_pool *chosen_pool;
714 int error = 0;
715 unsigned int state = serv->sv_nrthreads-1;
716 int node;
717
718 if (pool == NULL) {
719 /* The -1 assumes caller has done a svc_get() */
720 nrservs -= (serv->sv_nrthreads-1);
721 } else {
722 spin_lock_bh(&pool->sp_lock);
723 nrservs -= pool->sp_nrthreads;
724 spin_unlock_bh(&pool->sp_lock);
725 }
726
727 /* create new threads */
728 while (nrservs > 0) {
729 nrservs--;
730 chosen_pool = choose_pool(serv, pool, &state);
731
732 node = svc_pool_map_get_node(chosen_pool->sp_id);
733 rqstp = svc_prepare_thread(serv, chosen_pool, node);
734 if (IS_ERR(rqstp)) {
735 error = PTR_ERR(rqstp);
736 break;
737 }
738
739 __module_get(serv->sv_module);
740 task = kthread_create_on_node(serv->sv_function, rqstp,
741 node, "%s", serv->sv_name);
742 if (IS_ERR(task)) {
743 error = PTR_ERR(task);
744 module_put(serv->sv_module);
745 svc_exit_thread(rqstp);
746 break;
747 }
748
749 rqstp->rq_task = task;
750 if (serv->sv_nrpools > 1)
751 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
752
753 svc_sock_update_bufs(serv);
754 wake_up_process(task);
755 }
756 /* destroy old threads */
757 while (nrservs < 0 &&
758 (task = choose_victim(serv, pool, &state)) != NULL) {
759 send_sig(SIGINT, task, 1);
760 nrservs++;
761 }
762
763 return error;
764 }
765 EXPORT_SYMBOL_GPL(svc_set_num_threads);
766
767 /*
768 * Called from a server thread as it's exiting. Caller must hold the BKL or
769 * the "service mutex", whichever is appropriate for the service.
770 */
771 void
svc_exit_thread(struct svc_rqst * rqstp)772 svc_exit_thread(struct svc_rqst *rqstp)
773 {
774 struct svc_serv *serv = rqstp->rq_server;
775 struct svc_pool *pool = rqstp->rq_pool;
776
777 svc_release_buffer(rqstp);
778 kfree(rqstp->rq_resp);
779 kfree(rqstp->rq_argp);
780 kfree(rqstp->rq_auth_data);
781
782 spin_lock_bh(&pool->sp_lock);
783 pool->sp_nrthreads--;
784 list_del(&rqstp->rq_all);
785 spin_unlock_bh(&pool->sp_lock);
786
787 kfree(rqstp);
788
789 /* Release the server */
790 if (serv)
791 svc_destroy(serv);
792 }
793 EXPORT_SYMBOL_GPL(svc_exit_thread);
794
795 /*
796 * Register an "inet" protocol family netid with the local
797 * rpcbind daemon via an rpcbind v4 SET request.
798 *
799 * No netconfig infrastructure is available in the kernel, so
800 * we map IP_ protocol numbers to netids by hand.
801 *
802 * Returns zero on success; a negative errno value is returned
803 * if any error occurs.
804 */
__svc_rpcb_register4(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)805 static int __svc_rpcb_register4(struct net *net, const u32 program,
806 const u32 version,
807 const unsigned short protocol,
808 const unsigned short port)
809 {
810 const struct sockaddr_in sin = {
811 .sin_family = AF_INET,
812 .sin_addr.s_addr = htonl(INADDR_ANY),
813 .sin_port = htons(port),
814 };
815 const char *netid;
816 int error;
817
818 switch (protocol) {
819 case IPPROTO_UDP:
820 netid = RPCBIND_NETID_UDP;
821 break;
822 case IPPROTO_TCP:
823 netid = RPCBIND_NETID_TCP;
824 break;
825 default:
826 return -ENOPROTOOPT;
827 }
828
829 error = rpcb_v4_register(net, program, version,
830 (const struct sockaddr *)&sin, netid);
831
832 /*
833 * User space didn't support rpcbind v4, so retry this
834 * registration request with the legacy rpcbind v2 protocol.
835 */
836 if (error == -EPROTONOSUPPORT)
837 error = rpcb_register(net, program, version, protocol, port);
838
839 return error;
840 }
841
842 #if IS_ENABLED(CONFIG_IPV6)
843 /*
844 * Register an "inet6" protocol family netid with the local
845 * rpcbind daemon via an rpcbind v4 SET request.
846 *
847 * No netconfig infrastructure is available in the kernel, so
848 * we map IP_ protocol numbers to netids by hand.
849 *
850 * Returns zero on success; a negative errno value is returned
851 * if any error occurs.
852 */
__svc_rpcb_register6(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)853 static int __svc_rpcb_register6(struct net *net, const u32 program,
854 const u32 version,
855 const unsigned short protocol,
856 const unsigned short port)
857 {
858 const struct sockaddr_in6 sin6 = {
859 .sin6_family = AF_INET6,
860 .sin6_addr = IN6ADDR_ANY_INIT,
861 .sin6_port = htons(port),
862 };
863 const char *netid;
864 int error;
865
866 switch (protocol) {
867 case IPPROTO_UDP:
868 netid = RPCBIND_NETID_UDP6;
869 break;
870 case IPPROTO_TCP:
871 netid = RPCBIND_NETID_TCP6;
872 break;
873 default:
874 return -ENOPROTOOPT;
875 }
876
877 error = rpcb_v4_register(net, program, version,
878 (const struct sockaddr *)&sin6, netid);
879
880 /*
881 * User space didn't support rpcbind version 4, so we won't
882 * use a PF_INET6 listener.
883 */
884 if (error == -EPROTONOSUPPORT)
885 error = -EAFNOSUPPORT;
886
887 return error;
888 }
889 #endif /* IS_ENABLED(CONFIG_IPV6) */
890
891 /*
892 * Register a kernel RPC service via rpcbind version 4.
893 *
894 * Returns zero on success; a negative errno value is returned
895 * if any error occurs.
896 */
__svc_register(struct net * net,const char * progname,const u32 program,const u32 version,const int family,const unsigned short protocol,const unsigned short port)897 static int __svc_register(struct net *net, const char *progname,
898 const u32 program, const u32 version,
899 const int family,
900 const unsigned short protocol,
901 const unsigned short port)
902 {
903 int error = -EAFNOSUPPORT;
904
905 switch (family) {
906 case PF_INET:
907 error = __svc_rpcb_register4(net, program, version,
908 protocol, port);
909 break;
910 #if IS_ENABLED(CONFIG_IPV6)
911 case PF_INET6:
912 error = __svc_rpcb_register6(net, program, version,
913 protocol, port);
914 #endif
915 }
916
917 return error;
918 }
919
920 /**
921 * svc_register - register an RPC service with the local portmapper
922 * @serv: svc_serv struct for the service to register
923 * @net: net namespace for the service to register
924 * @family: protocol family of service's listener socket
925 * @proto: transport protocol number to advertise
926 * @port: port to advertise
927 *
928 * Service is registered for any address in the passed-in protocol family
929 */
svc_register(const struct svc_serv * serv,struct net * net,const int family,const unsigned short proto,const unsigned short port)930 int svc_register(const struct svc_serv *serv, struct net *net,
931 const int family, const unsigned short proto,
932 const unsigned short port)
933 {
934 struct svc_program *progp;
935 struct svc_version *vers;
936 unsigned int i;
937 int error = 0;
938
939 WARN_ON_ONCE(proto == 0 && port == 0);
940 if (proto == 0 && port == 0)
941 return -EINVAL;
942
943 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
944 for (i = 0; i < progp->pg_nvers; i++) {
945 vers = progp->pg_vers[i];
946 if (vers == NULL)
947 continue;
948
949 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
950 progp->pg_name,
951 i,
952 proto == IPPROTO_UDP? "udp" : "tcp",
953 port,
954 family,
955 vers->vs_hidden ?
956 " (but not telling portmap)" : "");
957
958 if (vers->vs_hidden)
959 continue;
960
961 error = __svc_register(net, progp->pg_name, progp->pg_prog,
962 i, family, proto, port);
963
964 if (vers->vs_rpcb_optnl) {
965 error = 0;
966 continue;
967 }
968
969 if (error < 0) {
970 printk(KERN_WARNING "svc: failed to register "
971 "%sv%u RPC service (errno %d).\n",
972 progp->pg_name, i, -error);
973 break;
974 }
975 }
976 }
977
978 return error;
979 }
980
981 /*
982 * If user space is running rpcbind, it should take the v4 UNSET
983 * and clear everything for this [program, version]. If user space
984 * is running portmap, it will reject the v4 UNSET, but won't have
985 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
986 * in this case to clear all existing entries for [program, version].
987 */
__svc_unregister(struct net * net,const u32 program,const u32 version,const char * progname)988 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
989 const char *progname)
990 {
991 int error;
992
993 error = rpcb_v4_register(net, program, version, NULL, "");
994
995 /*
996 * User space didn't support rpcbind v4, so retry this
997 * request with the legacy rpcbind v2 protocol.
998 */
999 if (error == -EPROTONOSUPPORT)
1000 error = rpcb_register(net, program, version, 0, 0);
1001
1002 dprintk("svc: %s(%sv%u), error %d\n",
1003 __func__, progname, version, error);
1004 }
1005
1006 /*
1007 * All netids, bind addresses and ports registered for [program, version]
1008 * are removed from the local rpcbind database (if the service is not
1009 * hidden) to make way for a new instance of the service.
1010 *
1011 * The result of unregistration is reported via dprintk for those who want
1012 * verification of the result, but is otherwise not important.
1013 */
svc_unregister(const struct svc_serv * serv,struct net * net)1014 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1015 {
1016 struct svc_program *progp;
1017 unsigned long flags;
1018 unsigned int i;
1019
1020 clear_thread_flag(TIF_SIGPENDING);
1021
1022 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1023 for (i = 0; i < progp->pg_nvers; i++) {
1024 if (progp->pg_vers[i] == NULL)
1025 continue;
1026 if (progp->pg_vers[i]->vs_hidden)
1027 continue;
1028
1029 dprintk("svc: attempting to unregister %sv%u\n",
1030 progp->pg_name, i);
1031 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1032 }
1033 }
1034
1035 spin_lock_irqsave(¤t->sighand->siglock, flags);
1036 recalc_sigpending();
1037 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
1038 }
1039
1040 /*
1041 * dprintk the given error with the address of the client that caused it.
1042 */
1043 #ifdef RPC_DEBUG
1044 static __printf(2, 3)
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1045 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1046 {
1047 struct va_format vaf;
1048 va_list args;
1049 char buf[RPC_MAX_ADDRBUFLEN];
1050
1051 va_start(args, fmt);
1052
1053 vaf.fmt = fmt;
1054 vaf.va = &args;
1055
1056 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1057
1058 va_end(args);
1059 }
1060 #else
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1061 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1062 #endif
1063
1064 /*
1065 * Common routine for processing the RPC request.
1066 */
1067 static int
svc_process_common(struct svc_rqst * rqstp,struct kvec * argv,struct kvec * resv)1068 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1069 {
1070 struct svc_program *progp;
1071 struct svc_version *versp = NULL; /* compiler food */
1072 struct svc_procedure *procp = NULL;
1073 struct svc_serv *serv = rqstp->rq_server;
1074 kxdrproc_t xdr;
1075 __be32 *statp;
1076 u32 prog, vers, proc;
1077 __be32 auth_stat, rpc_stat;
1078 int auth_res;
1079 __be32 *reply_statp;
1080
1081 rpc_stat = rpc_success;
1082
1083 if (argv->iov_len < 6*4)
1084 goto err_short_len;
1085
1086 /* Will be turned off only in gss privacy case: */
1087 rqstp->rq_splice_ok = true;
1088 /* Will be turned off only when NFSv4 Sessions are used */
1089 rqstp->rq_usedeferral = true;
1090 rqstp->rq_dropme = false;
1091
1092 /* Setup reply header */
1093 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1094
1095 svc_putu32(resv, rqstp->rq_xid);
1096
1097 vers = svc_getnl(argv);
1098
1099 /* First words of reply: */
1100 svc_putnl(resv, 1); /* REPLY */
1101
1102 if (vers != 2) /* RPC version number */
1103 goto err_bad_rpc;
1104
1105 /* Save position in case we later decide to reject: */
1106 reply_statp = resv->iov_base + resv->iov_len;
1107
1108 svc_putnl(resv, 0); /* ACCEPT */
1109
1110 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1111 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */
1112 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */
1113
1114 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1115 if (prog == progp->pg_prog)
1116 break;
1117
1118 /*
1119 * Decode auth data, and add verifier to reply buffer.
1120 * We do this before anything else in order to get a decent
1121 * auth verifier.
1122 */
1123 auth_res = svc_authenticate(rqstp, &auth_stat);
1124 /* Also give the program a chance to reject this call: */
1125 if (auth_res == SVC_OK && progp) {
1126 auth_stat = rpc_autherr_badcred;
1127 auth_res = progp->pg_authenticate(rqstp);
1128 }
1129 switch (auth_res) {
1130 case SVC_OK:
1131 break;
1132 case SVC_GARBAGE:
1133 goto err_garbage;
1134 case SVC_SYSERR:
1135 rpc_stat = rpc_system_err;
1136 goto err_bad;
1137 case SVC_DENIED:
1138 goto err_bad_auth;
1139 case SVC_CLOSE:
1140 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1141 svc_close_xprt(rqstp->rq_xprt);
1142 case SVC_DROP:
1143 goto dropit;
1144 case SVC_COMPLETE:
1145 goto sendit;
1146 }
1147
1148 if (progp == NULL)
1149 goto err_bad_prog;
1150
1151 if (vers >= progp->pg_nvers ||
1152 !(versp = progp->pg_vers[vers]))
1153 goto err_bad_vers;
1154
1155 procp = versp->vs_proc + proc;
1156 if (proc >= versp->vs_nproc || !procp->pc_func)
1157 goto err_bad_proc;
1158 rqstp->rq_procinfo = procp;
1159
1160 /* Syntactic check complete */
1161 serv->sv_stats->rpccnt++;
1162
1163 /* Build the reply header. */
1164 statp = resv->iov_base +resv->iov_len;
1165 svc_putnl(resv, RPC_SUCCESS);
1166
1167 /* Bump per-procedure stats counter */
1168 procp->pc_count++;
1169
1170 /* Initialize storage for argp and resp */
1171 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1172 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1173
1174 /* un-reserve some of the out-queue now that we have a
1175 * better idea of reply size
1176 */
1177 if (procp->pc_xdrressize)
1178 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1179
1180 /* Call the function that processes the request. */
1181 if (!versp->vs_dispatch) {
1182 /* Decode arguments */
1183 xdr = procp->pc_decode;
1184 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1185 goto err_garbage;
1186
1187 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1188
1189 /* Encode reply */
1190 if (rqstp->rq_dropme) {
1191 if (procp->pc_release)
1192 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1193 goto dropit;
1194 }
1195 if (*statp == rpc_success &&
1196 (xdr = procp->pc_encode) &&
1197 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1198 dprintk("svc: failed to encode reply\n");
1199 /* serv->sv_stats->rpcsystemerr++; */
1200 *statp = rpc_system_err;
1201 }
1202 } else {
1203 dprintk("svc: calling dispatcher\n");
1204 if (!versp->vs_dispatch(rqstp, statp)) {
1205 /* Release reply info */
1206 if (procp->pc_release)
1207 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1208 goto dropit;
1209 }
1210 }
1211
1212 /* Check RPC status result */
1213 if (*statp != rpc_success)
1214 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1215
1216 /* Release reply info */
1217 if (procp->pc_release)
1218 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1219
1220 if (procp->pc_encode == NULL)
1221 goto dropit;
1222
1223 sendit:
1224 if (svc_authorise(rqstp))
1225 goto dropit;
1226 return 1; /* Caller can now send it */
1227
1228 dropit:
1229 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1230 dprintk("svc: svc_process dropit\n");
1231 return 0;
1232
1233 err_short_len:
1234 svc_printk(rqstp, "short len %Zd, dropping request\n",
1235 argv->iov_len);
1236
1237 goto dropit; /* drop request */
1238
1239 err_bad_rpc:
1240 serv->sv_stats->rpcbadfmt++;
1241 svc_putnl(resv, 1); /* REJECT */
1242 svc_putnl(resv, 0); /* RPC_MISMATCH */
1243 svc_putnl(resv, 2); /* Only RPCv2 supported */
1244 svc_putnl(resv, 2);
1245 goto sendit;
1246
1247 err_bad_auth:
1248 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1249 serv->sv_stats->rpcbadauth++;
1250 /* Restore write pointer to location of accept status: */
1251 xdr_ressize_check(rqstp, reply_statp);
1252 svc_putnl(resv, 1); /* REJECT */
1253 svc_putnl(resv, 1); /* AUTH_ERROR */
1254 svc_putnl(resv, ntohl(auth_stat)); /* status */
1255 goto sendit;
1256
1257 err_bad_prog:
1258 dprintk("svc: unknown program %d\n", prog);
1259 serv->sv_stats->rpcbadfmt++;
1260 svc_putnl(resv, RPC_PROG_UNAVAIL);
1261 goto sendit;
1262
1263 err_bad_vers:
1264 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1265 vers, prog, progp->pg_name);
1266
1267 serv->sv_stats->rpcbadfmt++;
1268 svc_putnl(resv, RPC_PROG_MISMATCH);
1269 svc_putnl(resv, progp->pg_lovers);
1270 svc_putnl(resv, progp->pg_hivers);
1271 goto sendit;
1272
1273 err_bad_proc:
1274 svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1275
1276 serv->sv_stats->rpcbadfmt++;
1277 svc_putnl(resv, RPC_PROC_UNAVAIL);
1278 goto sendit;
1279
1280 err_garbage:
1281 svc_printk(rqstp, "failed to decode args\n");
1282
1283 rpc_stat = rpc_garbage_args;
1284 err_bad:
1285 serv->sv_stats->rpcbadfmt++;
1286 svc_putnl(resv, ntohl(rpc_stat));
1287 goto sendit;
1288 }
1289 EXPORT_SYMBOL_GPL(svc_process);
1290
1291 /*
1292 * Process the RPC request.
1293 */
1294 int
svc_process(struct svc_rqst * rqstp)1295 svc_process(struct svc_rqst *rqstp)
1296 {
1297 struct kvec *argv = &rqstp->rq_arg.head[0];
1298 struct kvec *resv = &rqstp->rq_res.head[0];
1299 struct svc_serv *serv = rqstp->rq_server;
1300 u32 dir;
1301
1302 /*
1303 * Setup response xdr_buf.
1304 * Initially it has just one page
1305 */
1306 rqstp->rq_next_page = &rqstp->rq_respages[1];
1307 resv->iov_base = page_address(rqstp->rq_respages[0]);
1308 resv->iov_len = 0;
1309 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1310 rqstp->rq_res.len = 0;
1311 rqstp->rq_res.page_base = 0;
1312 rqstp->rq_res.page_len = 0;
1313 rqstp->rq_res.buflen = PAGE_SIZE;
1314 rqstp->rq_res.tail[0].iov_base = NULL;
1315 rqstp->rq_res.tail[0].iov_len = 0;
1316
1317 rqstp->rq_xid = svc_getu32(argv);
1318
1319 dir = svc_getnl(argv);
1320 if (dir != 0) {
1321 /* direction != CALL */
1322 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1323 serv->sv_stats->rpcbadfmt++;
1324 svc_drop(rqstp);
1325 return 0;
1326 }
1327
1328 /* Returns 1 for send, 0 for drop */
1329 if (svc_process_common(rqstp, argv, resv))
1330 return svc_send(rqstp);
1331 else {
1332 svc_drop(rqstp);
1333 return 0;
1334 }
1335 }
1336
1337 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1338 /*
1339 * Process a backchannel RPC request that arrived over an existing
1340 * outbound connection
1341 */
1342 int
bc_svc_process(struct svc_serv * serv,struct rpc_rqst * req,struct svc_rqst * rqstp)1343 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1344 struct svc_rqst *rqstp)
1345 {
1346 struct kvec *argv = &rqstp->rq_arg.head[0];
1347 struct kvec *resv = &rqstp->rq_res.head[0];
1348
1349 /* Build the svc_rqst used by the common processing routine */
1350 rqstp->rq_xprt = serv->sv_bc_xprt;
1351 rqstp->rq_xid = req->rq_xid;
1352 rqstp->rq_prot = req->rq_xprt->prot;
1353 rqstp->rq_server = serv;
1354
1355 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1356 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1357 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1358 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1359
1360 /* reset result send buffer "put" position */
1361 resv->iov_len = 0;
1362
1363 if (rqstp->rq_prot != IPPROTO_TCP) {
1364 printk(KERN_ERR "No support for Non-TCP transports!\n");
1365 BUG();
1366 }
1367
1368 /*
1369 * Skip the next two words because they've already been
1370 * processed in the trasport
1371 */
1372 svc_getu32(argv); /* XID */
1373 svc_getnl(argv); /* CALLDIR */
1374
1375 /* Returns 1 for send, 0 for drop */
1376 if (svc_process_common(rqstp, argv, resv)) {
1377 memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1378 sizeof(req->rq_snd_buf));
1379 return bc_send(req);
1380 } else {
1381 /* drop request */
1382 xprt_free_bc_request(req);
1383 return 0;
1384 }
1385 }
1386 EXPORT_SYMBOL_GPL(bc_svc_process);
1387 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1388
1389 /*
1390 * Return (transport-specific) limit on the rpc payload.
1391 */
svc_max_payload(const struct svc_rqst * rqstp)1392 u32 svc_max_payload(const struct svc_rqst *rqstp)
1393 {
1394 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1395
1396 if (rqstp->rq_server->sv_max_payload < max)
1397 max = rqstp->rq_server->sv_max_payload;
1398 return max;
1399 }
1400 EXPORT_SYMBOL_GPL(svc_max_payload);
1401