• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1		ftrace - Function Tracer
2		========================
3
4Copyright 2008 Red Hat Inc.
5   Author:   Steven Rostedt <srostedt@redhat.com>
6  License:   The GNU Free Documentation License, Version 1.2
7               (dual licensed under the GPL v2)
8Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
9	     John Kacur, and David Teigland.
10Written for: 2.6.28-rc2
11
12Introduction
13------------
14
15Ftrace is an internal tracer designed to help out developers and
16designers of systems to find what is going on inside the kernel.
17It can be used for debugging or analyzing latencies and
18performance issues that take place outside of user-space.
19
20Although ftrace is the function tracer, it also includes an
21infrastructure that allows for other types of tracing. Some of
22the tracers that are currently in ftrace include a tracer to
23trace context switches, the time it takes for a high priority
24task to run after it was woken up, the time interrupts are
25disabled, and more (ftrace allows for tracer plugins, which
26means that the list of tracers can always grow).
27
28
29Implementation Details
30----------------------
31
32See ftrace-design.txt for details for arch porters and such.
33
34
35The File System
36---------------
37
38Ftrace uses the debugfs file system to hold the control files as
39well as the files to display output.
40
41When debugfs is configured into the kernel (which selecting any ftrace
42option will do) the directory /sys/kernel/debug will be created. To mount
43this directory, you can add to your /etc/fstab file:
44
45 debugfs       /sys/kernel/debug          debugfs defaults        0       0
46
47Or you can mount it at run time with:
48
49 mount -t debugfs nodev /sys/kernel/debug
50
51For quicker access to that directory you may want to make a soft link to
52it:
53
54 ln -s /sys/kernel/debug /debug
55
56Any selected ftrace option will also create a directory called tracing
57within the debugfs. The rest of the document will assume that you are in
58the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
59on the files within that directory and not distract from the content with
60the extended "/sys/kernel/debug/tracing" path name.
61
62That's it! (assuming that you have ftrace configured into your kernel)
63
64After mounting the debugfs, you can see a directory called
65"tracing".  This directory contains the control and output files
66of ftrace. Here is a list of some of the key files:
67
68
69 Note: all time values are in microseconds.
70
71  current_tracer:
72
73	This is used to set or display the current tracer
74	that is configured.
75
76  available_tracers:
77
78	This holds the different types of tracers that
79	have been compiled into the kernel. The
80	tracers listed here can be configured by
81	echoing their name into current_tracer.
82
83  tracing_on:
84
85	This sets or displays whether writing to the trace
86	ring buffer is enabled. Echo 0 into this file to disable
87	the tracer or 1 to enable it.
88
89  trace:
90
91	This file holds the output of the trace in a human
92	readable format (described below).
93
94  trace_pipe:
95
96	The output is the same as the "trace" file but this
97	file is meant to be streamed with live tracing.
98	Reads from this file will block until new data is
99	retrieved.  Unlike the "trace" file, this file is a
100	consumer. This means reading from this file causes
101	sequential reads to display more current data. Once
102	data is read from this file, it is consumed, and
103	will not be read again with a sequential read. The
104	"trace" file is static, and if the tracer is not
105	adding more data,they will display the same
106	information every time they are read.
107
108  trace_options:
109
110	This file lets the user control the amount of data
111	that is displayed in one of the above output
112	files.
113
114  tracing_max_latency:
115
116	Some of the tracers record the max latency.
117	For example, the time interrupts are disabled.
118	This time is saved in this file. The max trace
119	will also be stored, and displayed by "trace".
120	A new max trace will only be recorded if the
121	latency is greater than the value in this
122	file. (in microseconds)
123
124  buffer_size_kb:
125
126	This sets or displays the number of kilobytes each CPU
127	buffer can hold. The tracer buffers are the same size
128	for each CPU. The displayed number is the size of the
129	CPU buffer and not total size of all buffers. The
130	trace buffers are allocated in pages (blocks of memory
131	that the kernel uses for allocation, usually 4 KB in size).
132	If the last page allocated has room for more bytes
133	than requested, the rest of the page will be used,
134	making the actual allocation bigger than requested.
135	( Note, the size may not be a multiple of the page size
136	  due to buffer management overhead. )
137
138	This can only be updated when the current_tracer
139	is set to "nop".
140
141  tracing_cpumask:
142
143	This is a mask that lets the user only trace
144	on specified CPUS. The format is a hex string
145	representing the CPUS.
146
147  set_ftrace_filter:
148
149	When dynamic ftrace is configured in (see the
150	section below "dynamic ftrace"), the code is dynamically
151	modified (code text rewrite) to disable calling of the
152	function profiler (mcount). This lets tracing be configured
153	in with practically no overhead in performance.  This also
154	has a side effect of enabling or disabling specific functions
155	to be traced. Echoing names of functions into this file
156	will limit the trace to only those functions.
157
158	This interface also allows for commands to be used. See the
159	"Filter commands" section for more details.
160
161  set_ftrace_notrace:
162
163	This has an effect opposite to that of
164	set_ftrace_filter. Any function that is added here will not
165	be traced. If a function exists in both set_ftrace_filter
166	and set_ftrace_notrace,	the function will _not_ be traced.
167
168  set_ftrace_pid:
169
170	Have the function tracer only trace a single thread.
171
172  set_graph_function:
173
174	Set a "trigger" function where tracing should start
175	with the function graph tracer (See the section
176	"dynamic ftrace" for more details).
177
178  available_filter_functions:
179
180	This lists the functions that ftrace
181	has processed and can trace. These are the function
182	names that you can pass to "set_ftrace_filter" or
183	"set_ftrace_notrace". (See the section "dynamic ftrace"
184	below for more details.)
185
186
187The Tracers
188-----------
189
190Here is the list of current tracers that may be configured.
191
192  "function"
193
194	Function call tracer to trace all kernel functions.
195
196  "function_graph"
197
198	Similar to the function tracer except that the
199	function tracer probes the functions on their entry
200	whereas the function graph tracer traces on both entry
201	and exit of the functions. It then provides the ability
202	to draw a graph of function calls similar to C code
203	source.
204
205  "irqsoff"
206
207	Traces the areas that disable interrupts and saves
208	the trace with the longest max latency.
209	See tracing_max_latency. When a new max is recorded,
210	it replaces the old trace. It is best to view this
211	trace with the latency-format option enabled.
212
213  "preemptoff"
214
215	Similar to irqsoff but traces and records the amount of
216	time for which preemption is disabled.
217
218  "preemptirqsoff"
219
220	Similar to irqsoff and preemptoff, but traces and
221	records the largest time for which irqs and/or preemption
222	is disabled.
223
224  "wakeup"
225
226	Traces and records the max latency that it takes for
227	the highest priority task to get scheduled after
228	it has been woken up.
229        Traces all tasks as an average developer would expect.
230
231  "wakeup_rt"
232
233        Traces and records the max latency that it takes for just
234        RT tasks (as the current "wakeup" does). This is useful
235        for those interested in wake up timings of RT tasks.
236
237  "hw-branch-tracer"
238
239	Uses the BTS CPU feature on x86 CPUs to traces all
240	branches executed.
241
242  "nop"
243
244	This is the "trace nothing" tracer. To remove all
245	tracers from tracing simply echo "nop" into
246	current_tracer.
247
248
249Examples of using the tracer
250----------------------------
251
252Here are typical examples of using the tracers when controlling
253them only with the debugfs interface (without using any
254user-land utilities).
255
256Output format:
257--------------
258
259Here is an example of the output format of the file "trace"
260
261                             --------
262# tracer: function
263#
264#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
265#              | |      |          |         |
266            bash-4251  [01] 10152.583854: path_put <-path_walk
267            bash-4251  [01] 10152.583855: dput <-path_put
268            bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
269                             --------
270
271A header is printed with the tracer name that is represented by
272the trace. In this case the tracer is "function". Then a header
273showing the format. Task name "bash", the task PID "4251", the
274CPU that it was running on "01", the timestamp in <secs>.<usecs>
275format, the function name that was traced "path_put" and the
276parent function that called this function "path_walk". The
277timestamp is the time at which the function was entered.
278
279Latency trace format
280--------------------
281
282When the latency-format option is enabled, the trace file gives
283somewhat more information to see why a latency happened.
284Here is a typical trace.
285
286# tracer: irqsoff
287#
288irqsoff latency trace v1.1.5 on 2.6.26-rc8
289--------------------------------------------------------------------
290 latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
291    -----------------
292    | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
293    -----------------
294 => started at: apic_timer_interrupt
295 => ended at:   do_softirq
296
297#                _------=> CPU#
298#               / _-----=> irqs-off
299#              | / _----=> need-resched
300#              || / _---=> hardirq/softirq
301#              ||| / _--=> preempt-depth
302#              |||| /
303#              |||||     delay
304#  cmd     pid ||||| time  |   caller
305#     \   /    |||||   \   |   /
306  <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
307  <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
308  <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
309
310
311This shows that the current tracer is "irqsoff" tracing the time
312for which interrupts were disabled. It gives the trace version
313and the version of the kernel upon which this was executed on
314(2.6.26-rc8). Then it displays the max latency in microsecs (97
315us). The number of trace entries displayed and the total number
316recorded (both are three: #3/3). The type of preemption that was
317used (PREEMPT). VP, KP, SP, and HP are always zero and are
318reserved for later use. #P is the number of online CPUS (#P:2).
319
320The task is the process that was running when the latency
321occurred. (swapper pid: 0).
322
323The start and stop (the functions in which the interrupts were
324disabled and enabled respectively) that caused the latencies:
325
326  apic_timer_interrupt is where the interrupts were disabled.
327  do_softirq is where they were enabled again.
328
329The next lines after the header are the trace itself. The header
330explains which is which.
331
332  cmd: The name of the process in the trace.
333
334  pid: The PID of that process.
335
336  CPU#: The CPU which the process was running on.
337
338  irqs-off: 'd' interrupts are disabled. '.' otherwise.
339	    Note: If the architecture does not support a way to
340		  read the irq flags variable, an 'X' will always
341		  be printed here.
342
343  need-resched: 'N' task need_resched is set, '.' otherwise.
344
345  hardirq/softirq:
346	'H' - hard irq occurred inside a softirq.
347	'h' - hard irq is running
348	's' - soft irq is running
349	'.' - normal context.
350
351  preempt-depth: The level of preempt_disabled
352
353The above is mostly meaningful for kernel developers.
354
355  time: When the latency-format option is enabled, the trace file
356	output includes a timestamp relative to the start of the
357	trace. This differs from the output when latency-format
358	is disabled, which includes an absolute timestamp.
359
360  delay: This is just to help catch your eye a bit better. And
361	 needs to be fixed to be only relative to the same CPU.
362	 The marks are determined by the difference between this
363	 current trace and the next trace.
364	  '!' - greater than preempt_mark_thresh (default 100)
365	  '+' - greater than 1 microsecond
366	  ' ' - less than or equal to 1 microsecond.
367
368  The rest is the same as the 'trace' file.
369
370
371trace_options
372-------------
373
374The trace_options file is used to control what gets printed in
375the trace output. To see what is available, simply cat the file:
376
377  cat trace_options
378  print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
379  noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj
380
381To disable one of the options, echo in the option prepended with
382"no".
383
384  echo noprint-parent > trace_options
385
386To enable an option, leave off the "no".
387
388  echo sym-offset > trace_options
389
390Here are the available options:
391
392  print-parent - On function traces, display the calling (parent)
393		 function as well as the function being traced.
394
395  print-parent:
396   bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul
397
398  noprint-parent:
399   bash-4000  [01]  1477.606694: simple_strtoul
400
401
402  sym-offset - Display not only the function name, but also the
403	       offset in the function. For example, instead of
404	       seeing just "ktime_get", you will see
405	       "ktime_get+0xb/0x20".
406
407  sym-offset:
408   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
409
410  sym-addr - this will also display the function address as well
411	     as the function name.
412
413  sym-addr:
414   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
415
416  verbose - This deals with the trace file when the
417            latency-format option is enabled.
418
419    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
420    (+0.000ms): simple_strtoul (strict_strtoul)
421
422  raw - This will display raw numbers. This option is best for
423	use with user applications that can translate the raw
424	numbers better than having it done in the kernel.
425
426  hex - Similar to raw, but the numbers will be in a hexadecimal
427	format.
428
429  bin - This will print out the formats in raw binary.
430
431  block - TBD (needs update)
432
433  stacktrace - This is one of the options that changes the trace
434	       itself. When a trace is recorded, so is the stack
435	       of functions. This allows for back traces of
436	       trace sites.
437
438  userstacktrace - This option changes the trace. It records a
439		   stacktrace of the current userspace thread.
440
441  sym-userobj - when user stacktrace are enabled, look up which
442		object the address belongs to, and print a
443		relative address. This is especially useful when
444		ASLR is on, otherwise you don't get a chance to
445		resolve the address to object/file/line after
446		the app is no longer running
447
448		The lookup is performed when you read
449		trace,trace_pipe. Example:
450
451		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
452x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
453
454  sched-tree - trace all tasks that are on the runqueue, at
455	       every scheduling event. Will add overhead if
456	       there's a lot of tasks running at once.
457
458  latency-format - This option changes the trace. When
459                   it is enabled, the trace displays
460                   additional information about the
461                   latencies, as described in "Latency
462                   trace format".
463
464  overwrite - This controls what happens when the trace buffer is
465              full. If "1" (default), the oldest events are
466              discarded and overwritten. If "0", then the newest
467              events are discarded.
468
469ftrace_enabled
470--------------
471
472The following tracers (listed below) give different output
473depending on whether or not the sysctl ftrace_enabled is set. To
474set ftrace_enabled, one can either use the sysctl function or
475set it via the proc file system interface.
476
477  sysctl kernel.ftrace_enabled=1
478
479 or
480
481  echo 1 > /proc/sys/kernel/ftrace_enabled
482
483To disable ftrace_enabled simply replace the '1' with '0' in the
484above commands.
485
486When ftrace_enabled is set the tracers will also record the
487functions that are within the trace. The descriptions of the
488tracers will also show an example with ftrace enabled.
489
490
491irqsoff
492-------
493
494When interrupts are disabled, the CPU can not react to any other
495external event (besides NMIs and SMIs). This prevents the timer
496interrupt from triggering or the mouse interrupt from letting
497the kernel know of a new mouse event. The result is a latency
498with the reaction time.
499
500The irqsoff tracer tracks the time for which interrupts are
501disabled. When a new maximum latency is hit, the tracer saves
502the trace leading up to that latency point so that every time a
503new maximum is reached, the old saved trace is discarded and the
504new trace is saved.
505
506To reset the maximum, echo 0 into tracing_max_latency. Here is
507an example:
508
509 # echo irqsoff > current_tracer
510 # echo latency-format > trace_options
511 # echo 0 > tracing_max_latency
512 # echo 1 > tracing_on
513 # ls -ltr
514 [...]
515 # echo 0 > tracing_on
516 # cat trace
517# tracer: irqsoff
518#
519irqsoff latency trace v1.1.5 on 2.6.26
520--------------------------------------------------------------------
521 latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
522    -----------------
523    | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
524    -----------------
525 => started at: sys_setpgid
526 => ended at:   sys_setpgid
527
528#                _------=> CPU#
529#               / _-----=> irqs-off
530#              | / _----=> need-resched
531#              || / _---=> hardirq/softirq
532#              ||| / _--=> preempt-depth
533#              |||| /
534#              |||||     delay
535#  cmd     pid ||||| time  |   caller
536#     \   /    |||||   \   |   /
537    bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
538    bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
539    bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
540
541
542Here we see that that we had a latency of 12 microsecs (which is
543very good). The _write_lock_irq in sys_setpgid disabled
544interrupts. The difference between the 12 and the displayed
545timestamp 14us occurred because the clock was incremented
546between the time of recording the max latency and the time of
547recording the function that had that latency.
548
549Note the above example had ftrace_enabled not set. If we set the
550ftrace_enabled, we get a much larger output:
551
552# tracer: irqsoff
553#
554irqsoff latency trace v1.1.5 on 2.6.26-rc8
555--------------------------------------------------------------------
556 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
557    -----------------
558    | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
559    -----------------
560 => started at: __alloc_pages_internal
561 => ended at:   __alloc_pages_internal
562
563#                _------=> CPU#
564#               / _-----=> irqs-off
565#              | / _----=> need-resched
566#              || / _---=> hardirq/softirq
567#              ||| / _--=> preempt-depth
568#              |||| /
569#              |||||     delay
570#  cmd     pid ||||| time  |   caller
571#     \   /    |||||   \   |   /
572      ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
573      ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
574      ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
575      ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
576      ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
577      ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
578      ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
579      ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
580      ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
581      ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
582      ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
583      ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
584[...]
585      ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
586      ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
587      ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
588      ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
589      ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
590      ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
591      ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
592      ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
593      ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
594
595
596
597Here we traced a 50 microsecond latency. But we also see all the
598functions that were called during that time. Note that by
599enabling function tracing, we incur an added overhead. This
600overhead may extend the latency times. But nevertheless, this
601trace has provided some very helpful debugging information.
602
603
604preemptoff
605----------
606
607When preemption is disabled, we may be able to receive
608interrupts but the task cannot be preempted and a higher
609priority task must wait for preemption to be enabled again
610before it can preempt a lower priority task.
611
612The preemptoff tracer traces the places that disable preemption.
613Like the irqsoff tracer, it records the maximum latency for
614which preemption was disabled. The control of preemptoff tracer
615is much like the irqsoff tracer.
616
617 # echo preemptoff > current_tracer
618 # echo latency-format > trace_options
619 # echo 0 > tracing_max_latency
620 # echo 1 > tracing_on
621 # ls -ltr
622 [...]
623 # echo 0 > tracing_on
624 # cat trace
625# tracer: preemptoff
626#
627preemptoff latency trace v1.1.5 on 2.6.26-rc8
628--------------------------------------------------------------------
629 latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
630    -----------------
631    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
632    -----------------
633 => started at: do_IRQ
634 => ended at:   __do_softirq
635
636#                _------=> CPU#
637#               / _-----=> irqs-off
638#              | / _----=> need-resched
639#              || / _---=> hardirq/softirq
640#              ||| / _--=> preempt-depth
641#              |||| /
642#              |||||     delay
643#  cmd     pid ||||| time  |   caller
644#     \   /    |||||   \   |   /
645    sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
646    sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
647    sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
648
649
650This has some more changes. Preemption was disabled when an
651interrupt came in (notice the 'h'), and was enabled while doing
652a softirq. (notice the 's'). But we also see that interrupts
653have been disabled when entering the preempt off section and
654leaving it (the 'd'). We do not know if interrupts were enabled
655in the mean time.
656
657# tracer: preemptoff
658#
659preemptoff latency trace v1.1.5 on 2.6.26-rc8
660--------------------------------------------------------------------
661 latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
662    -----------------
663    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
664    -----------------
665 => started at: remove_wait_queue
666 => ended at:   __do_softirq
667
668#                _------=> CPU#
669#               / _-----=> irqs-off
670#              | / _----=> need-resched
671#              || / _---=> hardirq/softirq
672#              ||| / _--=> preempt-depth
673#              |||| /
674#              |||||     delay
675#  cmd     pid ||||| time  |   caller
676#     \   /    |||||   \   |   /
677    sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
678    sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
679    sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
680    sshd-4261  0d..1    2us : irq_enter (do_IRQ)
681    sshd-4261  0d..1    2us : idle_cpu (irq_enter)
682    sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
683    sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
684    sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
685[...]
686    sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
687    sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
688    sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
689    sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
690    sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
691    sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
692    sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
693    sshd-4261  0d..2   15us : do_softirq (irq_exit)
694    sshd-4261  0d...   15us : __do_softirq (do_softirq)
695    sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
696    sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
697    sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
698    sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
699    sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
700[...]
701    sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
702    sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
703    sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
704    sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
705    sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
706    sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
707    sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
708    sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
709[...]
710    sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
711    sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)
712
713
714The above is an example of the preemptoff trace with
715ftrace_enabled set. Here we see that interrupts were disabled
716the entire time. The irq_enter code lets us know that we entered
717an interrupt 'h'. Before that, the functions being traced still
718show that it is not in an interrupt, but we can see from the
719functions themselves that this is not the case.
720
721Notice that __do_softirq when called does not have a
722preempt_count. It may seem that we missed a preempt enabling.
723What really happened is that the preempt count is held on the
724thread's stack and we switched to the softirq stack (4K stacks
725in effect). The code does not copy the preempt count, but
726because interrupts are disabled, we do not need to worry about
727it. Having a tracer like this is good for letting people know
728what really happens inside the kernel.
729
730
731preemptirqsoff
732--------------
733
734Knowing the locations that have interrupts disabled or
735preemption disabled for the longest times is helpful. But
736sometimes we would like to know when either preemption and/or
737interrupts are disabled.
738
739Consider the following code:
740
741    local_irq_disable();
742    call_function_with_irqs_off();
743    preempt_disable();
744    call_function_with_irqs_and_preemption_off();
745    local_irq_enable();
746    call_function_with_preemption_off();
747    preempt_enable();
748
749The irqsoff tracer will record the total length of
750call_function_with_irqs_off() and
751call_function_with_irqs_and_preemption_off().
752
753The preemptoff tracer will record the total length of
754call_function_with_irqs_and_preemption_off() and
755call_function_with_preemption_off().
756
757But neither will trace the time that interrupts and/or
758preemption is disabled. This total time is the time that we can
759not schedule. To record this time, use the preemptirqsoff
760tracer.
761
762Again, using this trace is much like the irqsoff and preemptoff
763tracers.
764
765 # echo preemptirqsoff > current_tracer
766 # echo latency-format > trace_options
767 # echo 0 > tracing_max_latency
768 # echo 1 > tracing_on
769 # ls -ltr
770 [...]
771 # echo 0 > tracing_on
772 # cat trace
773# tracer: preemptirqsoff
774#
775preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
776--------------------------------------------------------------------
777 latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
778    -----------------
779    | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
780    -----------------
781 => started at: apic_timer_interrupt
782 => ended at:   __do_softirq
783
784#                _------=> CPU#
785#               / _-----=> irqs-off
786#              | / _----=> need-resched
787#              || / _---=> hardirq/softirq
788#              ||| / _--=> preempt-depth
789#              |||| /
790#              |||||     delay
791#  cmd     pid ||||| time  |   caller
792#     \   /    |||||   \   |   /
793      ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
794      ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
795      ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
796
797
798
799The trace_hardirqs_off_thunk is called from assembly on x86 when
800interrupts are disabled in the assembly code. Without the
801function tracing, we do not know if interrupts were enabled
802within the preemption points. We do see that it started with
803preemption enabled.
804
805Here is a trace with ftrace_enabled set:
806
807
808# tracer: preemptirqsoff
809#
810preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
811--------------------------------------------------------------------
812 latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
813    -----------------
814    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
815    -----------------
816 => started at: write_chan
817 => ended at:   __do_softirq
818
819#                _------=> CPU#
820#               / _-----=> irqs-off
821#              | / _----=> need-resched
822#              || / _---=> hardirq/softirq
823#              ||| / _--=> preempt-depth
824#              |||| /
825#              |||||     delay
826#  cmd     pid ||||| time  |   caller
827#     \   /    |||||   \   |   /
828      ls-4473  0.N..    0us : preempt_schedule (write_chan)
829      ls-4473  0dN.1    1us : _spin_lock (schedule)
830      ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
831      ls-4473  0d..2    2us : put_prev_task_fair (schedule)
832[...]
833      ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
834      ls-4473  0d..2   13us : __switch_to (schedule)
835    sshd-4261  0d..2   14us : finish_task_switch (schedule)
836    sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
837    sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
838    sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
839    sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
840    sshd-4261  0d..2   17us : irq_enter (do_IRQ)
841    sshd-4261  0d..2   17us : idle_cpu (irq_enter)
842    sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
843    sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
844    sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
845    sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
846    sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
847    sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
848    sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
849[...]
850    sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
851    sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
852    sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
853    sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
854    sshd-4261  0d..3   30us : do_softirq (irq_exit)
855    sshd-4261  0d...   30us : __do_softirq (do_softirq)
856    sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
857    sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
858    sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
859[...]
860    sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
861    sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
862    sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
863    sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
864    sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
865    sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
866    sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
867    sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
868    sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
869[...]
870    sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
871    sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
872    sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
873    sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
874    sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
875    sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
876    sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
877    sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
878    sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
879    sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
880    sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
881[...]
882    sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
883    sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
884    sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
885    sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
886    sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
887    sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
888    sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)
889
890
891This is a very interesting trace. It started with the preemption
892of the ls task. We see that the task had the "need_resched" bit
893set via the 'N' in the trace.  Interrupts were disabled before
894the spin_lock at the beginning of the trace. We see that a
895schedule took place to run sshd.  When the interrupts were
896enabled, we took an interrupt. On return from the interrupt
897handler, the softirq ran. We took another interrupt while
898running the softirq as we see from the capital 'H'.
899
900
901wakeup
902------
903
904In a Real-Time environment it is very important to know the
905wakeup time it takes for the highest priority task that is woken
906up to the time that it executes. This is also known as "schedule
907latency". I stress the point that this is about RT tasks. It is
908also important to know the scheduling latency of non-RT tasks,
909but the average schedule latency is better for non-RT tasks.
910Tools like LatencyTop are more appropriate for such
911measurements.
912
913Real-Time environments are interested in the worst case latency.
914That is the longest latency it takes for something to happen,
915and not the average. We can have a very fast scheduler that may
916only have a large latency once in a while, but that would not
917work well with Real-Time tasks.  The wakeup tracer was designed
918to record the worst case wakeups of RT tasks. Non-RT tasks are
919not recorded because the tracer only records one worst case and
920tracing non-RT tasks that are unpredictable will overwrite the
921worst case latency of RT tasks.
922
923Since this tracer only deals with RT tasks, we will run this
924slightly differently than we did with the previous tracers.
925Instead of performing an 'ls', we will run 'sleep 1' under
926'chrt' which changes the priority of the task.
927
928 # echo wakeup > current_tracer
929 # echo latency-format > trace_options
930 # echo 0 > tracing_max_latency
931 # echo 1 > tracing_on
932 # chrt -f 5 sleep 1
933 # echo 0 > tracing_on
934 # cat trace
935# tracer: wakeup
936#
937wakeup latency trace v1.1.5 on 2.6.26-rc8
938--------------------------------------------------------------------
939 latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
940    -----------------
941    | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
942    -----------------
943
944#                _------=> CPU#
945#               / _-----=> irqs-off
946#              | / _----=> need-resched
947#              || / _---=> hardirq/softirq
948#              ||| / _--=> preempt-depth
949#              |||| /
950#              |||||     delay
951#  cmd     pid ||||| time  |   caller
952#     \   /    |||||   \   |   /
953  <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
954  <idle>-0     1d..4    4us : schedule (cpu_idle)
955
956
957Running this on an idle system, we see that it only took 4
958microseconds to perform the task switch.  Note, since the trace
959marker in the schedule is before the actual "switch", we stop
960the tracing when the recorded task is about to schedule in. This
961may change if we add a new marker at the end of the scheduler.
962
963Notice that the recorded task is 'sleep' with the PID of 4901
964and it has an rt_prio of 5. This priority is user-space priority
965and not the internal kernel priority. The policy is 1 for
966SCHED_FIFO and 2 for SCHED_RR.
967
968Doing the same with chrt -r 5 and ftrace_enabled set.
969
970# tracer: wakeup
971#
972wakeup latency trace v1.1.5 on 2.6.26-rc8
973--------------------------------------------------------------------
974 latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
975    -----------------
976    | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
977    -----------------
978
979#                _------=> CPU#
980#               / _-----=> irqs-off
981#              | / _----=> need-resched
982#              || / _---=> hardirq/softirq
983#              ||| / _--=> preempt-depth
984#              |||| /
985#              |||||     delay
986#  cmd     pid ||||| time  |   caller
987#     \   /    |||||   \   |   /
988ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
989ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
990ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
991ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
992ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
993ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
994ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
995ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
996[...]
997ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
998ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
999ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
1000ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
1001[...]
1002ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
1003ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
1004ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
1005ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
1006ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
1007ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
1008ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
1009ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
1010ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
1011ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
1012ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
1013ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
1014ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
1015ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
1016[...]
1017ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
1018ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
1019ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
1020ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
1021ksoftirq-7     1d..4   50us : schedule (__cond_resched)
1022
1023The interrupt went off while running ksoftirqd. This task runs
1024at SCHED_OTHER. Why did not we see the 'N' set early? This may
1025be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K
1026stacks configured, the interrupt and softirq run with their own
1027stack. Some information is held on the top of the task's stack
1028(need_resched and preempt_count are both stored there). The
1029setting of the NEED_RESCHED bit is done directly to the task's
1030stack, but the reading of the NEED_RESCHED is done by looking at
1031the current stack, which in this case is the stack for the hard
1032interrupt. This hides the fact that NEED_RESCHED has been set.
1033We do not see the 'N' until we switch back to the task's
1034assigned stack.
1035
1036function
1037--------
1038
1039This tracer is the function tracer. Enabling the function tracer
1040can be done from the debug file system. Make sure the
1041ftrace_enabled is set; otherwise this tracer is a nop.
1042
1043 # sysctl kernel.ftrace_enabled=1
1044 # echo function > current_tracer
1045 # echo 1 > tracing_on
1046 # usleep 1
1047 # echo 0 > tracing_on
1048 # cat trace
1049# tracer: function
1050#
1051#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1052#              | |      |          |         |
1053            bash-4003  [00]   123.638713: finish_task_switch <-schedule
1054            bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
1055            bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
1056            bash-4003  [00]   123.638715: hrtick_set <-schedule
1057            bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
1058            bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
1059            bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
1060            bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
1061            bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
1062            bash-4003  [00]   123.638718: sub_preempt_count <-schedule
1063            bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
1064            bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
1065            bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
1066            bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
1067            bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
1068[...]
1069
1070
1071Note: function tracer uses ring buffers to store the above
1072entries. The newest data may overwrite the oldest data.
1073Sometimes using echo to stop the trace is not sufficient because
1074the tracing could have overwritten the data that you wanted to
1075record. For this reason, it is sometimes better to disable
1076tracing directly from a program. This allows you to stop the
1077tracing at the point that you hit the part that you are
1078interested in. To disable the tracing directly from a C program,
1079something like following code snippet can be used:
1080
1081int trace_fd;
1082[...]
1083int main(int argc, char *argv[]) {
1084	[...]
1085	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1086	[...]
1087	if (condition_hit()) {
1088		write(trace_fd, "0", 1);
1089	}
1090	[...]
1091}
1092
1093
1094Single thread tracing
1095---------------------
1096
1097By writing into set_ftrace_pid you can trace a
1098single thread. For example:
1099
1100# cat set_ftrace_pid
1101no pid
1102# echo 3111 > set_ftrace_pid
1103# cat set_ftrace_pid
11043111
1105# echo function > current_tracer
1106# cat trace | head
1107 # tracer: function
1108 #
1109 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1110 #              | |       |          |         |
1111     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1112     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1113     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1114     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1115     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1116     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1117# echo -1 > set_ftrace_pid
1118# cat trace |head
1119 # tracer: function
1120 #
1121 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1122 #              | |       |          |         |
1123 ##### CPU 3 buffer started ####
1124     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1125     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1126     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1127     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1128     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1129
1130If you want to trace a function when executing, you could use
1131something like this simple program:
1132
1133#include <stdio.h>
1134#include <stdlib.h>
1135#include <sys/types.h>
1136#include <sys/stat.h>
1137#include <fcntl.h>
1138#include <unistd.h>
1139#include <string.h>
1140
1141#define _STR(x) #x
1142#define STR(x) _STR(x)
1143#define MAX_PATH 256
1144
1145const char *find_debugfs(void)
1146{
1147       static char debugfs[MAX_PATH+1];
1148       static int debugfs_found;
1149       char type[100];
1150       FILE *fp;
1151
1152       if (debugfs_found)
1153               return debugfs;
1154
1155       if ((fp = fopen("/proc/mounts","r")) == NULL) {
1156               perror("/proc/mounts");
1157               return NULL;
1158       }
1159
1160       while (fscanf(fp, "%*s %"
1161                     STR(MAX_PATH)
1162                     "s %99s %*s %*d %*d\n",
1163                     debugfs, type) == 2) {
1164               if (strcmp(type, "debugfs") == 0)
1165                       break;
1166       }
1167       fclose(fp);
1168
1169       if (strcmp(type, "debugfs") != 0) {
1170               fprintf(stderr, "debugfs not mounted");
1171               return NULL;
1172       }
1173
1174       strcat(debugfs, "/tracing/");
1175       debugfs_found = 1;
1176
1177       return debugfs;
1178}
1179
1180const char *tracing_file(const char *file_name)
1181{
1182       static char trace_file[MAX_PATH+1];
1183       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1184       return trace_file;
1185}
1186
1187int main (int argc, char **argv)
1188{
1189        if (argc < 1)
1190                exit(-1);
1191
1192        if (fork() > 0) {
1193                int fd, ffd;
1194                char line[64];
1195                int s;
1196
1197                ffd = open(tracing_file("current_tracer"), O_WRONLY);
1198                if (ffd < 0)
1199                        exit(-1);
1200                write(ffd, "nop", 3);
1201
1202                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1203                s = sprintf(line, "%d\n", getpid());
1204                write(fd, line, s);
1205
1206                write(ffd, "function", 8);
1207
1208                close(fd);
1209                close(ffd);
1210
1211                execvp(argv[1], argv+1);
1212        }
1213
1214        return 0;
1215}
1216
1217
1218hw-branch-tracer (x86 only)
1219---------------------------
1220
1221This tracer uses the x86 last branch tracing hardware feature to
1222collect a branch trace on all cpus with relatively low overhead.
1223
1224The tracer uses a fixed-size circular buffer per cpu and only
1225traces ring 0 branches. The trace file dumps that buffer in the
1226following format:
1227
1228# tracer: hw-branch-tracer
1229#
1230# CPU#        TO  <-  FROM
1231   0  scheduler_tick+0xb5/0x1bf	  <-  task_tick_idle+0x5/0x6
1232   2  run_posix_cpu_timers+0x2b/0x72a	  <-  run_posix_cpu_timers+0x25/0x72a
1233   0  scheduler_tick+0x139/0x1bf	  <-  scheduler_tick+0xed/0x1bf
1234   0  scheduler_tick+0x17c/0x1bf	  <-  scheduler_tick+0x148/0x1bf
1235   2  run_posix_cpu_timers+0x9e/0x72a	  <-  run_posix_cpu_timers+0x5e/0x72a
1236   0  scheduler_tick+0x1b6/0x1bf	  <-  scheduler_tick+0x1aa/0x1bf
1237
1238
1239The tracer may be used to dump the trace for the oops'ing cpu on
1240a kernel oops into the system log. To enable this,
1241ftrace_dump_on_oops must be set. To set ftrace_dump_on_oops, one
1242can either use the sysctl function or set it via the proc system
1243interface.
1244
1245  sysctl kernel.ftrace_dump_on_oops=n
1246
1247or
1248
1249  echo n > /proc/sys/kernel/ftrace_dump_on_oops
1250
1251If n = 1, ftrace will dump buffers of all CPUs, if n = 2 ftrace will
1252only dump the buffer of the CPU that triggered the oops.
1253
1254Here's an example of such a dump after a null pointer
1255dereference in a kernel module:
1256
1257[57848.105921] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
1258[57848.106019] IP: [<ffffffffa0000006>] open+0x6/0x14 [oops]
1259[57848.106019] PGD 2354e9067 PUD 2375e7067 PMD 0
1260[57848.106019] Oops: 0002 [#1] SMP
1261[57848.106019] last sysfs file: /sys/devices/pci0000:00/0000:00:1e.0/0000:20:05.0/local_cpus
1262[57848.106019] Dumping ftrace buffer:
1263[57848.106019] ---------------------------------
1264[...]
1265[57848.106019]    0  chrdev_open+0xe6/0x165	  <-  cdev_put+0x23/0x24
1266[57848.106019]    0  chrdev_open+0x117/0x165	  <-  chrdev_open+0xfa/0x165
1267[57848.106019]    0  chrdev_open+0x120/0x165	  <-  chrdev_open+0x11c/0x165
1268[57848.106019]    0  chrdev_open+0x134/0x165	  <-  chrdev_open+0x12b/0x165
1269[57848.106019]    0  open+0x0/0x14 [oops]	  <-  chrdev_open+0x144/0x165
1270[57848.106019]    0  page_fault+0x0/0x30	  <-  open+0x6/0x14 [oops]
1271[57848.106019]    0  error_entry+0x0/0x5b	  <-  page_fault+0x4/0x30
1272[57848.106019]    0  error_kernelspace+0x0/0x31	  <-  error_entry+0x59/0x5b
1273[57848.106019]    0  error_sti+0x0/0x1	  <-  error_kernelspace+0x2d/0x31
1274[57848.106019]    0  page_fault+0x9/0x30	  <-  error_sti+0x0/0x1
1275[57848.106019]    0  do_page_fault+0x0/0x881	  <-  page_fault+0x1a/0x30
1276[...]
1277[57848.106019]    0  do_page_fault+0x66b/0x881	  <-  is_prefetch+0x1ee/0x1f2
1278[57848.106019]    0  do_page_fault+0x6e0/0x881	  <-  do_page_fault+0x67a/0x881
1279[57848.106019]    0  oops_begin+0x0/0x96	  <-  do_page_fault+0x6e0/0x881
1280[57848.106019]    0  trace_hw_branch_oops+0x0/0x2d	  <-  oops_begin+0x9/0x96
1281[...]
1282[57848.106019]    0  ds_suspend_bts+0x2a/0xe3	  <-  ds_suspend_bts+0x1a/0xe3
1283[57848.106019] ---------------------------------
1284[57848.106019] CPU 0
1285[57848.106019] Modules linked in: oops
1286[57848.106019] Pid: 5542, comm: cat Tainted: G        W  2.6.28 #23
1287[57848.106019] RIP: 0010:[<ffffffffa0000006>]  [<ffffffffa0000006>] open+0x6/0x14 [oops]
1288[57848.106019] RSP: 0018:ffff880235457d48  EFLAGS: 00010246
1289[...]
1290
1291
1292function graph tracer
1293---------------------------
1294
1295This tracer is similar to the function tracer except that it
1296probes a function on its entry and its exit. This is done by
1297using a dynamically allocated stack of return addresses in each
1298task_struct. On function entry the tracer overwrites the return
1299address of each function traced to set a custom probe. Thus the
1300original return address is stored on the stack of return address
1301in the task_struct.
1302
1303Probing on both ends of a function leads to special features
1304such as:
1305
1306- measure of a function's time execution
1307- having a reliable call stack to draw function calls graph
1308
1309This tracer is useful in several situations:
1310
1311- you want to find the reason of a strange kernel behavior and
1312  need to see what happens in detail on any areas (or specific
1313  ones).
1314
1315- you are experiencing weird latencies but it's difficult to
1316  find its origin.
1317
1318- you want to find quickly which path is taken by a specific
1319  function
1320
1321- you just want to peek inside a working kernel and want to see
1322  what happens there.
1323
1324# tracer: function_graph
1325#
1326# CPU  DURATION                  FUNCTION CALLS
1327# |     |   |                     |   |   |   |
1328
1329 0)               |  sys_open() {
1330 0)               |    do_sys_open() {
1331 0)               |      getname() {
1332 0)               |        kmem_cache_alloc() {
1333 0)   1.382 us    |          __might_sleep();
1334 0)   2.478 us    |        }
1335 0)               |        strncpy_from_user() {
1336 0)               |          might_fault() {
1337 0)   1.389 us    |            __might_sleep();
1338 0)   2.553 us    |          }
1339 0)   3.807 us    |        }
1340 0)   7.876 us    |      }
1341 0)               |      alloc_fd() {
1342 0)   0.668 us    |        _spin_lock();
1343 0)   0.570 us    |        expand_files();
1344 0)   0.586 us    |        _spin_unlock();
1345
1346
1347There are several columns that can be dynamically
1348enabled/disabled. You can use every combination of options you
1349want, depending on your needs.
1350
1351- The cpu number on which the function executed is default
1352  enabled.  It is sometimes better to only trace one cpu (see
1353  tracing_cpu_mask file) or you might sometimes see unordered
1354  function calls while cpu tracing switch.
1355
1356	hide: echo nofuncgraph-cpu > trace_options
1357	show: echo funcgraph-cpu > trace_options
1358
1359- The duration (function's time of execution) is displayed on
1360  the closing bracket line of a function or on the same line
1361  than the current function in case of a leaf one. It is default
1362  enabled.
1363
1364	hide: echo nofuncgraph-duration > trace_options
1365	show: echo funcgraph-duration > trace_options
1366
1367- The overhead field precedes the duration field in case of
1368  reached duration thresholds.
1369
1370	hide: echo nofuncgraph-overhead > trace_options
1371	show: echo funcgraph-overhead > trace_options
1372	depends on: funcgraph-duration
1373
1374  ie:
1375
1376  0)               |    up_write() {
1377  0)   0.646 us    |      _spin_lock_irqsave();
1378  0)   0.684 us    |      _spin_unlock_irqrestore();
1379  0)   3.123 us    |    }
1380  0)   0.548 us    |    fput();
1381  0) + 58.628 us   |  }
1382
1383  [...]
1384
1385  0)               |      putname() {
1386  0)               |        kmem_cache_free() {
1387  0)   0.518 us    |          __phys_addr();
1388  0)   1.757 us    |        }
1389  0)   2.861 us    |      }
1390  0) ! 115.305 us  |    }
1391  0) ! 116.402 us  |  }
1392
1393  + means that the function exceeded 10 usecs.
1394  ! means that the function exceeded 100 usecs.
1395
1396
1397- The task/pid field displays the thread cmdline and pid which
1398  executed the function. It is default disabled.
1399
1400	hide: echo nofuncgraph-proc > trace_options
1401	show: echo funcgraph-proc > trace_options
1402
1403  ie:
1404
1405  # tracer: function_graph
1406  #
1407  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
1408  # |    |    |           |   |                     |   |   |   |
1409  0)    sh-4802     |               |                  d_free() {
1410  0)    sh-4802     |               |                    call_rcu() {
1411  0)    sh-4802     |               |                      __call_rcu() {
1412  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
1413  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
1414  0)    sh-4802     |   2.899 us    |                      }
1415  0)    sh-4802     |   4.040 us    |                    }
1416  0)    sh-4802     |   5.151 us    |                  }
1417  0)    sh-4802     | + 49.370 us   |                }
1418
1419
1420- The absolute time field is an absolute timestamp given by the
1421  system clock since it started. A snapshot of this time is
1422  given on each entry/exit of functions
1423
1424	hide: echo nofuncgraph-abstime > trace_options
1425	show: echo funcgraph-abstime > trace_options
1426
1427  ie:
1428
1429  #
1430  #      TIME       CPU  DURATION                  FUNCTION CALLS
1431  #       |         |     |   |                     |   |   |   |
1432  360.774522 |   1)   0.541 us    |                                          }
1433  360.774522 |   1)   4.663 us    |                                        }
1434  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
1435  360.774524 |   1)   6.796 us    |                                      }
1436  360.774524 |   1)   7.952 us    |                                    }
1437  360.774525 |   1)   9.063 us    |                                  }
1438  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
1439  360.774527 |   1)   0.578 us    |                                  __brelse();
1440  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
1441  360.774528 |   1)               |                                    unlock_buffer() {
1442  360.774529 |   1)               |                                      wake_up_bit() {
1443  360.774529 |   1)               |                                        bit_waitqueue() {
1444  360.774530 |   1)   0.594 us    |                                          __phys_addr();
1445
1446
1447You can put some comments on specific functions by using
1448trace_printk() For example, if you want to put a comment inside
1449the __might_sleep() function, you just have to include
1450<linux/ftrace.h> and call trace_printk() inside __might_sleep()
1451
1452trace_printk("I'm a comment!\n")
1453
1454will produce:
1455
1456 1)               |             __might_sleep() {
1457 1)               |                /* I'm a comment! */
1458 1)   1.449 us    |             }
1459
1460
1461You can disable the hierarchical function call formatting and instead print a
1462flat list of function entry and return events.  This uses the format described
1463in the Output Formatting section and respects all the trace options that
1464control that formatting.  Hierarchical formatting is the default.
1465
1466	hierachical: echo nofuncgraph-flat > trace_options
1467	flat: echo funcgraph-flat > trace_options
1468
1469  ie:
1470
1471  # tracer: function_graph
1472  #
1473  # entries-in-buffer/entries-written: 68355/68355   #P:2
1474  #
1475  #                              _-----=> irqs-off
1476  #                             / _----=> need-resched
1477  #                            | / _---=> hardirq/softirq
1478  #                            || / _--=> preempt-depth
1479  #                            ||| /     delay
1480  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
1481  #              | |       |   ||||       |         |
1482                sh-1806  [001] d...   198.843443: graph_ent: func=_raw_spin_lock
1483                sh-1806  [001] d...   198.843445: graph_ent: func=__raw_spin_lock
1484                sh-1806  [001] d..1   198.843447: graph_ret: func=__raw_spin_lock
1485                sh-1806  [001] d..1   198.843449: graph_ret: func=_raw_spin_lock
1486                sh-1806  [001] d..1   198.843451: graph_ent: func=_raw_spin_unlock_irqrestore
1487                sh-1806  [001] d...   198.843453: graph_ret: func=_raw_spin_unlock_irqrestore
1488
1489
1490You might find other useful features for this tracer in the
1491following "dynamic ftrace" section such as tracing only specific
1492functions or tasks.
1493
1494dynamic ftrace
1495--------------
1496
1497If CONFIG_DYNAMIC_FTRACE is set, the system will run with
1498virtually no overhead when function tracing is disabled. The way
1499this works is the mcount function call (placed at the start of
1500every kernel function, produced by the -pg switch in gcc),
1501starts of pointing to a simple return. (Enabling FTRACE will
1502include the -pg switch in the compiling of the kernel.)
1503
1504At compile time every C file object is run through the
1505recordmcount.pl script (located in the scripts directory). This
1506script will process the C object using objdump to find all the
1507locations in the .text section that call mcount. (Note, only the
1508.text section is processed, since processing other sections like
1509.init.text may cause races due to those sections being freed).
1510
1511A new section called "__mcount_loc" is created that holds
1512references to all the mcount call sites in the .text section.
1513This section is compiled back into the original object. The
1514final linker will add all these references into a single table.
1515
1516On boot up, before SMP is initialized, the dynamic ftrace code
1517scans this table and updates all the locations into nops. It
1518also records the locations, which are added to the
1519available_filter_functions list.  Modules are processed as they
1520are loaded and before they are executed.  When a module is
1521unloaded, it also removes its functions from the ftrace function
1522list. This is automatic in the module unload code, and the
1523module author does not need to worry about it.
1524
1525When tracing is enabled, kstop_machine is called to prevent
1526races with the CPUS executing code being modified (which can
1527cause the CPU to do undesirable things), and the nops are
1528patched back to calls. But this time, they do not call mcount
1529(which is just a function stub). They now call into the ftrace
1530infrastructure.
1531
1532One special side-effect to the recording of the functions being
1533traced is that we can now selectively choose which functions we
1534wish to trace and which ones we want the mcount calls to remain
1535as nops.
1536
1537Two files are used, one for enabling and one for disabling the
1538tracing of specified functions. They are:
1539
1540  set_ftrace_filter
1541
1542and
1543
1544  set_ftrace_notrace
1545
1546A list of available functions that you can add to these files is
1547listed in:
1548
1549   available_filter_functions
1550
1551 # cat available_filter_functions
1552put_prev_task_idle
1553kmem_cache_create
1554pick_next_task_rt
1555get_online_cpus
1556pick_next_task_fair
1557mutex_lock
1558[...]
1559
1560If I am only interested in sys_nanosleep and hrtimer_interrupt:
1561
1562 # echo sys_nanosleep hrtimer_interrupt \
1563		> set_ftrace_filter
1564 # echo function > current_tracer
1565 # echo 1 > tracing_on
1566 # usleep 1
1567 # echo 0 > tracing_on
1568 # cat trace
1569# tracer: ftrace
1570#
1571#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1572#              | |      |          |         |
1573          usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
1574          usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
1575          <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
1576
1577To see which functions are being traced, you can cat the file:
1578
1579 # cat set_ftrace_filter
1580hrtimer_interrupt
1581sys_nanosleep
1582
1583
1584Perhaps this is not enough. The filters also allow simple wild
1585cards. Only the following are currently available
1586
1587  <match>*  - will match functions that begin with <match>
1588  *<match>  - will match functions that end with <match>
1589  *<match>* - will match functions that have <match> in it
1590
1591These are the only wild cards which are supported.
1592
1593  <match>*<match> will not work.
1594
1595Note: It is better to use quotes to enclose the wild cards,
1596      otherwise the shell may expand the parameters into names
1597      of files in the local directory.
1598
1599 # echo 'hrtimer_*' > set_ftrace_filter
1600
1601Produces:
1602
1603# tracer: ftrace
1604#
1605#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1606#              | |      |          |         |
1607            bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
1608            bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
1609            bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
1610            bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
1611          <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
1612          <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
1613          <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
1614          <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
1615          <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
1616
1617
1618Notice that we lost the sys_nanosleep.
1619
1620 # cat set_ftrace_filter
1621hrtimer_run_queues
1622hrtimer_run_pending
1623hrtimer_init
1624hrtimer_cancel
1625hrtimer_try_to_cancel
1626hrtimer_forward
1627hrtimer_start
1628hrtimer_reprogram
1629hrtimer_force_reprogram
1630hrtimer_get_next_event
1631hrtimer_interrupt
1632hrtimer_nanosleep
1633hrtimer_wakeup
1634hrtimer_get_remaining
1635hrtimer_get_res
1636hrtimer_init_sleeper
1637
1638
1639This is because the '>' and '>>' act just like they do in bash.
1640To rewrite the filters, use '>'
1641To append to the filters, use '>>'
1642
1643To clear out a filter so that all functions will be recorded
1644again:
1645
1646 # echo > set_ftrace_filter
1647 # cat set_ftrace_filter
1648 #
1649
1650Again, now we want to append.
1651
1652 # echo sys_nanosleep > set_ftrace_filter
1653 # cat set_ftrace_filter
1654sys_nanosleep
1655 # echo 'hrtimer_*' >> set_ftrace_filter
1656 # cat set_ftrace_filter
1657hrtimer_run_queues
1658hrtimer_run_pending
1659hrtimer_init
1660hrtimer_cancel
1661hrtimer_try_to_cancel
1662hrtimer_forward
1663hrtimer_start
1664hrtimer_reprogram
1665hrtimer_force_reprogram
1666hrtimer_get_next_event
1667hrtimer_interrupt
1668sys_nanosleep
1669hrtimer_nanosleep
1670hrtimer_wakeup
1671hrtimer_get_remaining
1672hrtimer_get_res
1673hrtimer_init_sleeper
1674
1675
1676The set_ftrace_notrace prevents those functions from being
1677traced.
1678
1679 # echo '*preempt*' '*lock*' > set_ftrace_notrace
1680
1681Produces:
1682
1683# tracer: ftrace
1684#
1685#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1686#              | |      |          |         |
1687            bash-4043  [01]   115.281644: finish_task_switch <-schedule
1688            bash-4043  [01]   115.281645: hrtick_set <-schedule
1689            bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
1690            bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
1691            bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
1692            bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
1693            bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
1694            bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
1695            bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process
1696
1697We can see that there's no more lock or preempt tracing.
1698
1699
1700Dynamic ftrace with the function graph tracer
1701---------------------------------------------
1702
1703Although what has been explained above concerns both the
1704function tracer and the function-graph-tracer, there are some
1705special features only available in the function-graph tracer.
1706
1707If you want to trace only one function and all of its children,
1708you just have to echo its name into set_graph_function:
1709
1710 echo __do_fault > set_graph_function
1711
1712will produce the following "expanded" trace of the __do_fault()
1713function:
1714
1715 0)               |  __do_fault() {
1716 0)               |    filemap_fault() {
1717 0)               |      find_lock_page() {
1718 0)   0.804 us    |        find_get_page();
1719 0)               |        __might_sleep() {
1720 0)   1.329 us    |        }
1721 0)   3.904 us    |      }
1722 0)   4.979 us    |    }
1723 0)   0.653 us    |    _spin_lock();
1724 0)   0.578 us    |    page_add_file_rmap();
1725 0)   0.525 us    |    native_set_pte_at();
1726 0)   0.585 us    |    _spin_unlock();
1727 0)               |    unlock_page() {
1728 0)   0.541 us    |      page_waitqueue();
1729 0)   0.639 us    |      __wake_up_bit();
1730 0)   2.786 us    |    }
1731 0) + 14.237 us   |  }
1732 0)               |  __do_fault() {
1733 0)               |    filemap_fault() {
1734 0)               |      find_lock_page() {
1735 0)   0.698 us    |        find_get_page();
1736 0)               |        __might_sleep() {
1737 0)   1.412 us    |        }
1738 0)   3.950 us    |      }
1739 0)   5.098 us    |    }
1740 0)   0.631 us    |    _spin_lock();
1741 0)   0.571 us    |    page_add_file_rmap();
1742 0)   0.526 us    |    native_set_pte_at();
1743 0)   0.586 us    |    _spin_unlock();
1744 0)               |    unlock_page() {
1745 0)   0.533 us    |      page_waitqueue();
1746 0)   0.638 us    |      __wake_up_bit();
1747 0)   2.793 us    |    }
1748 0) + 14.012 us   |  }
1749
1750You can also expand several functions at once:
1751
1752 echo sys_open > set_graph_function
1753 echo sys_close >> set_graph_function
1754
1755Now if you want to go back to trace all functions you can clear
1756this special filter via:
1757
1758 echo > set_graph_function
1759
1760
1761Filter commands
1762---------------
1763
1764A few commands are supported by the set_ftrace_filter interface.
1765Trace commands have the following format:
1766
1767<function>:<command>:<parameter>
1768
1769The following commands are supported:
1770
1771- mod
1772  This command enables function filtering per module. The
1773  parameter defines the module. For example, if only the write*
1774  functions in the ext3 module are desired, run:
1775
1776   echo 'write*:mod:ext3' > set_ftrace_filter
1777
1778  This command interacts with the filter in the same way as
1779  filtering based on function names. Thus, adding more functions
1780  in a different module is accomplished by appending (>>) to the
1781  filter file. Remove specific module functions by prepending
1782  '!':
1783
1784   echo '!writeback*:mod:ext3' >> set_ftrace_filter
1785
1786- traceon/traceoff
1787  These commands turn tracing on and off when the specified
1788  functions are hit. The parameter determines how many times the
1789  tracing system is turned on and off. If unspecified, there is
1790  no limit. For example, to disable tracing when a schedule bug
1791  is hit the first 5 times, run:
1792
1793   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
1794
1795  These commands are cumulative whether or not they are appended
1796  to set_ftrace_filter. To remove a command, prepend it by '!'
1797  and drop the parameter:
1798
1799   echo '!__schedule_bug:traceoff' > set_ftrace_filter
1800
1801
1802trace_pipe
1803----------
1804
1805The trace_pipe outputs the same content as the trace file, but
1806the effect on the tracing is different. Every read from
1807trace_pipe is consumed. This means that subsequent reads will be
1808different. The trace is live.
1809
1810 # echo function > current_tracer
1811 # cat trace_pipe > /tmp/trace.out &
1812[1] 4153
1813 # echo 1 > tracing_on
1814 # usleep 1
1815 # echo 0 > tracing_on
1816 # cat trace
1817# tracer: function
1818#
1819#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1820#              | |      |          |         |
1821
1822 #
1823 # cat /tmp/trace.out
1824            bash-4043  [00] 41.267106: finish_task_switch <-schedule
1825            bash-4043  [00] 41.267106: hrtick_set <-schedule
1826            bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
1827            bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
1828            bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
1829            bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
1830            bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
1831            bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
1832            bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
1833            bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
1834
1835
1836Note, reading the trace_pipe file will block until more input is
1837added. By changing the tracer, trace_pipe will issue an EOF. We
1838needed to set the function tracer _before_ we "cat" the
1839trace_pipe file.
1840
1841
1842trace entries
1843-------------
1844
1845Having too much or not enough data can be troublesome in
1846diagnosing an issue in the kernel. The file buffer_size_kb is
1847used to modify the size of the internal trace buffers. The
1848number listed is the number of entries that can be recorded per
1849CPU. To know the full size, multiply the number of possible CPUS
1850with the number of entries.
1851
1852 # cat buffer_size_kb
18531408 (units kilobytes)
1854
1855Note, to modify this, you must have tracing completely disabled.
1856To do that, echo "nop" into the current_tracer. If the
1857current_tracer is not set to "nop", an EINVAL error will be
1858returned.
1859
1860 # echo nop > current_tracer
1861 # echo 10000 > buffer_size_kb
1862 # cat buffer_size_kb
186310000 (units kilobytes)
1864
1865The number of pages which will be allocated is limited to a
1866percentage of available memory. Allocating too much will produce
1867an error.
1868
1869 # echo 1000000000000 > buffer_size_kb
1870-bash: echo: write error: Cannot allocate memory
1871 # cat buffer_size_kb
187285
1873
1874-----------
1875
1876More details can be found in the source code, in the
1877kernel/trace/*.c files.
1878